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Abstract
Point cloud regression localization technology has a wide range of
applications in the multimedia field. For example, in virtual reality
and augmented reality, accurate point cloud localization can sig-
nificantly enhance the user experience. Recently, point cloud pose
regression algorithms based on APR (Absolute Pose Regression) and
SCR (Scene Coordinate Regression) have achieved near sub-meter
accuracy, requiring multiple repetitive trajectories for training. The
key to their success lies in the diversity of viewpoints, temporal
changes, and trajectories,which is resource-consuming. How-
ever, due to the errors in GPS/INS, the coupling between trajectories
is not ideal, and the stability of re-localization is insufficient. Since
LiDAR has covered most of the scene, single-shot localization has
the potential to approach or even surpass multi-trajectory localiza-
tion methods through pose enhancement. Specifically, we present
Pose Enhancement Localization (PELoc), which feeds one trajectory,
proposing SSDA (Single-shot Data Augmentation) and LTI (LiDAR
Trajectories-coupled Interpolation) to simulate different driving
poses, and we introduce KP-CL (Key Points Contrastive Learn-
ing) through feature perturbation to mitigate the differences in
viewpoint/temporal phase transformations in similar scenes across
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different trajectories. Our algorithm has been tested on the Oxford,
QE-Oxford, and NCLT datasets, where single-shot localization ac-
curacy can approach near sub-meter level on QE-Oxford and NCLT.
The code will be published in https://github.com/Eaton2022/PELoc.
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1 Introduction
Multi-path effects and terrain occlusions can degrade the per-
formance of GPS/GNSS devices, limiting their ability to provide
high-precision localization[10, 18] in all conditions[16, 28]. Re-
cently, point cloud localization[37, 50] based on deep learning
has enabled scene recognition when devices fail. Therefore, point
cloud[12, 24] localization is a fundamental and hot research topic
in fields such as autonomous driving[7, 11, 22, 34] and intelligent
navigation[8, 35, 51–53]. Retrieval-based methods[27, 32, 41] re-
quire pre-built maps, which demand substantial storage and compu-
tational resources for maintaining and searching the map database.
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Figure 1: Single-shot localization results of PELoc (ours)
and the baseline on the Oxford and NCLT datasets. PELoc
achieves significantly more accurate localization results.

In contrast, absolute pose regression[31] methods are map-free,
enabling efficient and rapid decision-making for localization.

Popular regression-based localization algorithms[21, 46] heavily
rely on multiple repetitive trajectories, which provide rich scene
and viewpoint variations. However, trajectory collection is time-
consuming and labor-intensive[13, 56]. When the network is fed
with only a single trajectory, the model’s performance is signifi-
cantly lower than that of multi-trajectory training. The blue trajec-
tory points in Figure. 1 represents the results of single-shot training,
which exhibit a large number of prediction noise points.

Next, we will delve deep into two questions.Question one:Why
does single-shot localization fall short in accuracy? Firstly,
the poses between different trajectories inherently have deviations.
When using a single trajectory for training, there will inevitably
be translation and rotation errors. Secondly, the model encoun-
ters some reversed or unfamiliar scenes that it has never seen be-
fore. Thirdly, viewpoint and scene transformations can also cause
feature differences in the same scene across different trajectories,
which the model finds hard to handle.

Question 2: Why does single-shot localization has the po-
tential to approach even outperform multi-trajectory local-
ization? Some study [20] indicates that the acquisition of ground
truth in current methods largely relies on GPS/INS, which is error-
prone, as shown in Figure 2 (a). Such ground truth errors also
lead to inconsistencies in trajectories, thereby reducing localization
accuracy. We conducted this experiment in Figure 2 (d), often ne-
cessitating time-consuming trajectory correction. However, even
after correcting the poses, there are still a few errors remaining,
as shown in Figure 2 (b). This has motivated us to propose LTI
for trajectory generation. The trajectories we generate are coupled
with each other, as illustrated in Figure 2 (c), resulting in higher
relocalization accuracy, a finding that has been verified in our exper-
imental section. Therefore, our trajectories-coupled interpolation
has the potential to surpass multi-trajectory localization methods.

Based on the aforementioned analysis, we present PELoc for
single-shot localization. The primary limitations of single-shot lo-
calization stem from the singularity of trajectory and pose. The
antidote lies in: (1) SSDA (single-shot data augmentation) and (2)
LTI (LiDAR Trajectories-coupled Interpolation). Additionally, to
mitigate the feature differences caused by viewpoint and scene
changes, we introduce KP-CL (Key Points Contrastive Learning).

Figure 2: (a) and (b): Due to the errors in GPS/INS devices, the
relative stability between different trajectories is not ideal.
(c) illustrates the effect of our proposed trajectories-coupled
interpolation. (d) presents the experimental results of pose
quality. PI denotes pose interpolation.

Our contributions are summarized as follows:

• We conduct a thorough analysis of the key factors and limita-
tions of multi-trajectory point cloud localization, presenting
our novel single-shot localization algorithm, PELoc, which is
the first work to research map-free single-shot localization
as far as we are aware.

• We introduce novel LTI (LiDAR Trajectories-coupled Inter-
polation), SSDA (Single-shot Data Augmentation), KP-CL
(Key Points Contrastive Learning), and a training strategy
RFT(Remove 5% Random Consecutive Frames Training) to
increase the diversity of data and poses, effectively enhanc-
ing the accuracy of single-shot localization.

• We perform experiments on the Oxford, QEOxford, and
NCLT datasets, achieving average near sub-meter localiza-
tion accuracy on the QEOxford (7.15m/4.94◦ to 1.09m/1.62◦)
and NCLT datasets (17.94m/10.83◦ to 1.02m/3.61◦), which
outperforms the result of the baseline trained with four tra-
jectories in some trajectories. We also compare it with other
methods suitable for single-shot localization, thereby demon-
strating the superiority of our approach.

2 Related Work
Point cloud localization[23, 30, 38] can be categorized into map-
based and regression-based(map-free) methods. Map-based meth-
ods treat point cloud localization as a place recognition task[1, 55],
following a pipeline of retrieval and registration. Retrieval-based
methods rely on pre-built map databases, while registration-based
methods can achieve precise localization but at the cost of higher
complexity. Regression-based methods can be further divided into
relative and absolute pose estimation. Relative pose estimation[17]
analyzes consecutive laser scans and is prone to cumulative er-
rors, whereas absolute pose estimation[4, 5] enables independent
decision-making. Our single-shot localization is based on absolute
pose estimation, which we will focus on introducing next.
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Figure 3: Network architecture of PELoc. PELoc is an algorithm designed for regressing world poses using a single trajectory for
long-term localization. The flow of PELoc’s network is as follows: LTI generates two new trajectories, making a total of three
trajectories for training. After the point clouds undergo SSDA, they are fed into an Encoder-Decoder network. The features
extracted are used for both KP-CL and point cloud regression. The final loss is a combination of the losses from KP-CL and
point cloud regression. Note: Details of the encoder architecture and SSDA can be found in Figure 4 and in the Experimental
Settings section.

2.1 Regression-based Localization
Point cloud regression localization can be divided into APR and
SCR methods[20, 48]. APR methods regress the 6-DoF pose di-
rectly through a neural network. Classic representative works in-
clude Atloc[29], Ms-Transformer[14], PointLoc[33], etc. Recently,
Diffloc[19] has treated LiDAR localization as a conditional pose
generation problem, utilizing a diffusion model to construct a de-
noising process for APR. Inspired by the image localization method
ACE[3], FlashMix[9] employs a scene-agnostic backbone to extract
a feature buffer, significantly reducing training time. SCR methods
first regress the 3-DoF world coordinates and then use RANSAC[26]
to compute the correspondences between local and world coordi-
nates, resulting in a 6-DoF pose[45]. Representative works include
SGLoc and LiSA[40]. SGLoc identified GPS/INS errors in localiza-
tion datasets, while LiSA incorporated semantic features into the
localization process. SCR methods tend to converge faster than
APR methods. Our PELoc method is based on SCR. The coupling in
our proposed LTI method is better than that of the original multi-
trajectories, thus having the potential to surpass the accuracy of
multi-trajectory training.

2.2 Single-shot Localization Solutions
To the best of our knowledge, this work is the first to investigate
single-shot point cloud map-free regression. We have identified
several promising approaches for single-shot localization[42] and

compared with them in our ablation studies. (1) Equivariant Fea-
tures: Point cloud retrieval is typically single-shot. RING[39] de-
rived rotation-translation equivariant point cloud feature represen-
tations using Fourier formulas. Kaba et al.[15] learned canonical rep-
resentations of point cloud rotation data, effectively capturing their
equivariance. (2) Point Cloud Interpolation: Due to the insufficient
number of samples for a single trajectory, we considered themethod
of point cloud interpolation. PointINet[25] estimated the scene flow
between two adjacent point clouds and proposed a novel point fu-
sion scheme; NeuralPCI[54] further considered the spatiotemporal
dimension, implicitly integrating information from multiple frames
to handle large nonlinear motions. (3) Contrastive Learning: Con-
trastive learning has been extensively applied in recommendation
systems[44], graph learning[49], and vision tasks[43]. In the 3D
detection field, it can effectively identify regions of interest[36], sig-
nificantly reducing computational load. How to apply contrastive
learning in point cloud localization remains a challenge.

We will compare our method with these approaches in the
methodology and experimental sections, demonstrating that our
method is superior and more suitable for point cloud absolute lo-
calization.

3 Proposed Framework: PELoc
3.1 Framework Overview & Motivation
PELoc trains using only one original trajectory. After regress-
ing the world coordinates, it employs RANSAC to eliminate out-
liers, thereby obtaining a 6-DoF (Degree of Freedom) pose. Recent
regression-based LiDAR pose estimation algorithms[20, 40] heavily
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rely on the diversity provided by multiple trajectories. However,
collecting multiple trajectories is resource-consuming. This has
motivated us to explore localization using a single trajectory. To
address challenges such as trajectory variations and viewpoint
changes, we present PELoc, see Figure. 3. PELoc’s LTI and SSDA
effectively increase the diversity of training data, while KP-CL’s
contrastive learning capability further enhances the robustness of
the algorithm. Additionally, we propose a new training method,
RFT(Remove 5% Random Consecutive Frames for Training), to
mitigate the trajectory dependency in single-trajectory training.
When using multiple trajectories for localization, data augmenta-
tion plays a limited role due to the abundance of data, and some
current state-of-the-art methods[20, 40] do not employ it. However,
for single-shot localization, data augmentation is critical, prompting
us to propose an effective SSDA (Single-shot Data Augmentation).
Some current works[57] only consider the rotation and translation
of point clouds, but do not take into account flipping, which is cru-
cial for single-shot localization. This is because, during single-shot
training, some reverse sections remain unseen. We will elaborate
on SSDA in the Settings section.

3.2 LiDAR Trajectories-coupled Interpolation
The primary motivations for LTI are twofold: (1) The training data
for single-shot localization lacks trajectory diversity; (2) we can gen-
erate coupled trajectories by interpolating from a single trajectory.
As analyzed in Introduction, question 2, and further validated in
our experiments on the Stability of Re-localization. We summa-
rize the process of LTI in the form of pseudocode, as shown below in
Algorithm 1. LTI is a simple yet effective point cloud interpolation
method. Its role is to simulate the movement of different trajectories.
We explicitly generate two trajectories for left and right driving,
rather than forward. We provide a comparative explanation in the
experiment section titled "Comparison with Other Single-shot
Localization Solutions".

It can be broadly divided into three steps: (1) Interpolate new
poses from two consecutive frames; In the interpolation of rota-
tions, we employ quaternions to perform spherical linear interpola-
tion (SLERP). First, we convert the rotation matrix to a quaternion:

𝑞 = 𝑎 + 𝑏 · 𝑖 + 𝑐 · 𝑗 + 𝑑 · 𝑘 (1)

, a represents the angle of rotation, while (i,j,k) denote the three
orthogonal axes in 3D space. Given the rotation angle, q can be
represented as:

𝑞 = 𝑐𝑜𝑠 (𝜃
2
) + 𝑠𝑖𝑛(𝜃

2
) (𝑏 · 𝑖 + 𝑐 · 𝑗 + 𝑑 · 𝑘) (2)

After obtaining the quaternions corresponding to two rotation
matrices, we can interpolate to get a new rotation pose:

𝑞(Δ𝑡) = 𝑠𝑖𝑛(1 − Δ𝑡) · 𝜃
𝑠𝑖𝑛(𝜃 ) · 𝑞1 +

𝑠𝑖𝑛(Δ𝑡 · 𝜃 )
𝑠𝑖𝑛(𝜃 ) · 𝑞2,Δ𝑡 ∈ [0, 1] . (3)

𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠 (𝑞1 · 𝑞2) (4)

For the interpolation of translations, LTI utilizes effective linear
interpolation (LERP). Therefore, we can obtain the interpolated
rotation matrix 𝑅Δ𝑡 and translation matrix 𝑇Δ𝑡 .

Algorithm 1: LTI Method Pseudocode
Input :Original point cloud trajectory P = {𝑃1, ..., 𝑃𝑛};

rotation matrices R = {𝑅1, ..., 𝑅𝑛}; translation
vectors T = {𝑇1, ...,𝑇𝑛}

Output :New trajectory Pnew; interpolated rotations 𝑅Δ𝑡 ;
interpolated translations 𝑇Δ𝑡

Data: 𝑅𝑝 : rotation perturbation ∼ U(−2◦, 2◦);
𝑇𝑝𝑦 : y-axis translation perturbation ∼ U(−0.3, 0.3);
𝑇𝑝𝑥 : x-axis sine wave perturbation;
®𝑉 = [0,±2, 0]𝑇 : lateral shift vector;

1 for each consecutive frame pair 𝑖 ∈ {1, ..., 𝑛 − 1} do
// Rotation interpolation via SLERP

𝑅Δ𝑡 ← 𝑅𝑝 · SLERP(𝑅𝑖 , 𝑅𝑖+1,Δ𝑡);
// Linear translation interpolation

𝑇Δ𝑡 ← 𝑇𝑖 + Δ𝑡 · (𝑇𝑖+1 −𝑇𝑖 );
// Compute relative rotation and translation

𝑅𝑟 ← 𝑅Δ𝑡 · 𝑅⊤𝑖 ;
2 𝑇𝑟 ← 𝑅⊤𝑟 · (𝑇Δ𝑡 −𝑇𝑖 );

// Compute new point cloud

3 Pnew ← 𝑃𝑖 · 𝑅⊤𝑟 −𝑇𝑟 ;
// Shift y-coordinate of new points by ±2 and

add perturbation for x and y coordinate

4 for each point 𝑝 ∈ Pnew do
5 𝑝.𝑦 ← 𝑝.𝑦 ± 2;
6 𝑝.𝑥 ← 𝑝.𝑥 +𝑇𝑝𝑥 ;
7 𝑝.𝑦 ← 𝑝.𝑦 +𝑇𝑝𝑦 ;
8 end

// compute new translation and add

perturbation for new translation

𝑇Δ𝑡 ← 𝑇Δ𝑡 ∓ 𝑅Δ𝑡 ®𝑉 ;
9 𝑇Δ𝑡 .𝑥 ← 𝑇Δ𝑡 .𝑥 +𝑇𝑝𝑥 ;

10 𝑇Δ𝑡 .𝑦 ← 𝑇Δ𝑡 .𝑦 +𝑇𝑝𝑦 ;
11 return (Pnew, 𝑅Δ𝑡 ,𝑇Δ𝑡 );
12 end

(2) Compute new point cloud. In this step, we calculate the
relative pose between the interpolated frame and the original point
cloud, obtaining the relative rotation 𝑅𝑟 and translation 𝑇𝑟 . Then,
we transform the point cloud to the position of the interpolated
frame, resulting in a new point cloud P𝑛𝑒𝑤 .

(2) Explicitly translate the point cloud and pose laterally.
We shift coordinates of y axis which is lateral direction for both
points and poses. To simulate natural object motion or environ-
mental noise as much as possible, We introduce random sine per-
turbations in the forward direction for both the point cloud and
the pose, and apply uniform perturbations in the lateral directions.
These perturbations help generate rich trajectory information.

3.3 Key Points Contrastive Learning
The motivation behind KP-CL is to enable the model to learn the
correlation between different trajectories in the same scene. How-
ever, applying contrastive learning (CL) to large-scale point clouds
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localization poses a challenge for GPU memory. The graph struc-
ture used in contrastive learning has far fewer nodes than point
clouds. Unlike point cloud detection, where each frame contains
many foreground objects of different categories that can easily form
positive and negative sample pairs, point cloud localization does
not have this advantage.

Therefore, we face two problems: (1) how to reduce the compu-
tational memory of CL, and (2) how to find positive and negative
sample pairs. To address the first problem, we observed that the
number of points is reduced to 1/8 of the original scene by the last
layer of the encoder through convolution operations (see Figure.4).
We refer to the points in the last layer as key points, whose deep
features can effectively encode the scene and also serve as the input
for KP-CL. Regarding the second problem, inspired by some related
work[44] and considering that the features of the same scene on
different trajectories are relatively similar, adding a small amount of
noise for simulation is appropriate. Therefore, we construct positive
and negative sample pairs by adding noise, without the need for
multiple inferences through different data augmentations, which
would cause an unbearable memory overhead.

Additionally, our KP-CL has a notable difference from the origi-
nal CL. The original CL typically constructs a symmetric loss be-
tween augmented views. However, the original features are quite
important in point cloud localization. Therefore, we compare the
original features with the augmented views. Next, we present the
process of KP-CL.

First, we augment the features 𝑥 of the key points to obtain two
views 𝑥1, 𝑥2, taking 𝑥1 as an example:

𝑥1 = 𝑥 + 𝑠𝑖𝑔𝑛(𝑥) · 𝜀1

𝜀1

2 · 0.1 (5)

𝜀 is random noise which ∈ [0,1]. Next, we project and normalize the
features to obtain new features:𝑧, 𝑧1, 𝑧2 (feature:128 dimensions).
Finally, we define the contrastive learning loss. Through our ex-
periments, we found that considering the diagonal elements of the
similarity matrix between 𝑧 and 𝑧1 for positive samples, and con-
sidering both 𝑧 with 𝑧1 and 𝑧2 for negative samples yields better
results:

L𝑘𝑝−𝑐𝑙 = −
1
𝑁

𝑁∑︁
𝑖=1
[
𝑧𝑇
𝑖
· 𝑧1

𝑖

𝜏
− 𝑙𝑜𝑔(

𝑁∑︁
𝑗=1
𝑖≠𝑗

(𝑒𝑧
𝑇
𝑖
·𝑧1

𝑗
/𝜏 + 𝑒𝑧

𝑇
𝑖
·𝑧2

𝑗
/𝜏 ))] (6)

𝜏 is the temperature parameter, and we set it as 0.15.

3.4 Ransac, Loss function and RFT
In the RANSAC section, we follow SGLoc[20] and utilize RANSAC
to ultimately obtain the 6-DoF localization of the point cloud. The
overall loss of PELoc is divided into two parts: localization loss and
contrastive learning loss.

L𝑙𝑜𝑐 =
1
𝑃

∑︁
𝑝𝑖 ∈𝑃



𝑝𝑖 − 𝑝∗𝑖 

1 (7)

𝑝𝑖 denotes predicted position and 𝑝∗𝑖 is the ground world coordinate
position. Based on our experiments, we set the coefficient of the
contrastive learning loss to 2. The total loss is:

L = L𝑙𝑜𝑐 + 2 · L𝑘𝑝−𝑐𝑙 (8)

Figure 4: The structure of the PELoc encoder. We utilize the
features of key points for KP-CL.

Additionally, we introduce a new training strategy called RFT
(Remove 5% Random Consecutive Frames Training). RFT randomly
discards 5% of consecutive frames in each training iteration. This
approach aims to reduce the dependency on a single trajectory and
enhance the diversity of the training trajectories.

4 Experiments
4.1 Settings
Benchmark datasets We conducted extensive experiments
on three large-scale datasets: Oxford Radar RobotCar, Quality-
enhanced Oxford and NCLT.

Oxford Radar RobotCar(Oxford)[2] is a large-scale urban au-
tonomous driving dataset collected over a year using a specially
equipped vehicle. It contains multi-sensor recordings from a 3D
LiDAR, stereo cameras, Radar and GPS/INS system, capturing a
10km route through central Oxford under diverse conditions, in-
cluding sunlight, rain, snow, and night-time illumination. The re-
peated traversals of the same nominal route exhibit natural tra-
jectory variations characteristic of real-world driving scenarios,
while maintaining consistent route topology. Quality-enhanced
Oxford (QEOxford)[20], introduced in the SGLoc framework, ad-
dresses GPS/INS measurement errors in the original Oxford dataset
through Iterative Closest Point (ICP)-based pose refinement. Specif-
ically, it aligns raw data with high-quality reference submaps using
ICP. We include QEOxford as an enhanced evaluation benchmark
in our experiments. NCLT[6] was collected by the University of
Michigan using a Segway robotic platform, spanning 27 sessions
over 15 months across indoor/outdoor campus environments. It pro-
vides multimodal sensor data (omnidirectional vision, 3D LiDAR,
IMU, RTK GPS) and captures significant environmental dynamics,
including seasonal weather shifts, dense summer foliage, and it
contains no single trajectory that covers all test paths. By fusing
RTK GPS with LiDAR point cloud alignment, it delivers millimeter-
level pose ground truth, making it ideal for evaluating localization
robustness under real-world variability.

Setup and Training details We chose SGLoc as our baseline and
improved the encoder, as shown in the Figure 4. The residual block
structure can enhance the accuracy of the algorithm, which we
call SGLoc-V2. Our GPU is an NVIDIA RTX 4090. Apart from the
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Figure 5: Visualization results of PELoc and SGLoc-V2 (single-shot, our baseline) on the four test trajectories of the QEOxford
dataset. Black represents the ground truth, and red represents the predicted values.

Table 1: Comparison of average position error and orientation error between PELoc (single-shot) and SoTA, which uses four
trajectories to train on the Oxford/QEOxford datasets. SGLoc-V2 (single-shot) serves as the baseline for PELoc. † denotes using
four trajectories to train. (1) denotes using one original trajectory to train.

Oxford dataset(m,◦) ↓

Methods PoseSOE†[47] PosePN++†[48] NIDALoc†[45] DiffLoc†[19] SGLoc-V2†[20] LiSA†[40] SGLoc-V2(1) PELoc(ours (1))
SGLoc-V2-based

15-13-06-37 7.59/1.94 9.59/1.92 6.71/1.33 3.57/0.88 2.57/1.37 2.36/1.29 10.29/5.06 2.78/1.40
17-13-26-39 10.39/2.08 10.66/1.92 5.45/1.40 3.65/0.68 3.71/1.47 3.47/1.43 7.92/4.69 3.19/1.73
17-14-03-00 9.21/2.12 9.01/1.51 6.68/1.26 4.03/0.70 2.99/1.42 3.19/1.34 7.21/4.46 2.76/1.65
18-14-14-42 7.27/1.87 8.44/1.71 4.80/1.18 2.86/0.60 1.88/1.21 1.95/1.23 6.42/3.93 2.50/1.66
Average 8.62/2.00 9.43/1.77 5.91/1.29 3.53/0.72 2.78/1.36 2.74/1.32 7.96/4.54 2.81/1.61

Quality-enhanced(QE) Oxford dataset(m,◦) ↓

15-13-06-37 4.17/1.76 4.54/1.83 3.71/1.50 2.03/1.04 1.06/1.05 0.94/1.10 8.20/4.61 1.06/1.56
17-13-26-39 6.16/1.81 6.44/1.78 5.40/1.40 1.78/0.79 1.38/1.17 1.17/1.21 6.72/6.65 1.22/1.62
17-14-03-00 5.42/1.87 4.89/1.55 3.94/1.30 2.05/0.83 0.76/1.14 0.84/1.15 7.20/4.44 1.02/1.63
18-14-14-42 4.16/1.70 4.64/1.61 4.08/1.30 1.56/0.83 0.72/1.06 0.85/1.11 6.49/4.06 1.06/1.68

Average 4.98/1.79 5.13/1.69 4.28/1.38 1.86/0.87 0.98/1.11 0.95/1.14 7.15/4.94 1.09/1.62

Table 2: Comparison of average position error and orientation error between PELoc (single-shot) and SoTA, which use four
trajectories to train on the NCLT datasets. SGLoc-V2 (single-shot) serves as the baseline for PELoc. † denotes using four
trajectories to train. (1) denotes using one original trajectory to train.

NCLT dataset(m,◦) ↓

Methods PoseSOE†[47] PosePN++†[48] NIDALoc†[45] DiffLoc†[19] SGLoc-V2†[20] LiSA†[40] SGLoc-V2(1) PELoc(ours (1))
SGLoc-V2-based

2012-02-12 13.09/8.05 4.97/3.75 4.48/3.59 0.99/2.40 0.76/2.70 0.97/2.23 8.79/10.32 0.89/3.49
2012-02-19 6.16/4.51 3.68/2.65 3.14/2.52 0.92/2.14 0.71/2.49 0.91/2.09 37.12/17.48 1.22/3.73
2012-03-31 5.24/4.56 4.35/3.38 3.67/3.46 0.98/2.27 0.68/2.66 0.87/2.21 7.92/4.69 0.96/3.63

Average 8.16/5.71 4.33/3.26 3.76/3.19 0.96/2.27 0.71/2.61 0.92/2.18 17.94/10.83 1.02/3.61

network design, there are several notable differences between PE-
Loc and SGLoc-V2. (1) SGLoc-V2 trained with four trajectories on
both Oxford/QEOxford and NCLT datasets, whereas PELoc utilized
only one. After careful consideration, we selected two relatively
complete trajectories: 2019-01-11-14-02-26 for Oxford/QEOxford

and 2012-02-18 for NCLT. (2) Given the abundance of samples four-
trajectory training, data augmentation was not employed in SGLoc.
However, for single-shot localization, data augmentation is crucial,
prompting us to introduce SSDA.
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Single-shot Data Augmentation: SSDA not only accounts for
vehicle translation and angular offset but also considers the scenario
where the vehicle travels in the opposite direction on a certain pass.
The translation augmentation settings are as follows: the probability
of translation along the xyz axes is 0.5 each, with translation ranges
of [-3,3] m for the x and y axes and [-1,1] m for the z axis. The
rotation augmentation settings are: the probability of rotation for
roll, pitch, and yaw angles is 0.5 each, with rotation ranges of [-
𝜋/4,+𝜋/4] for roll and pitch angles and [-𝜋/2,+𝜋/2] for the yaw
angle. The reverse settings are: the probability of reversing is 0.5,
with simultaneous flipping of the xy axes.

4.2 Comparison With State-of-the-Arts:
Methods Using Four Trajectories

As far as we are aware, this is the first work on single-shot localiza-
tion. In this section, we will primarily compare with the state-of-the-
art methods that use four trajectories for localization. In subsequent
sections, we will specifically compare with potential single-shot
solutions. The algorithms we compare include the classics PoseSOE,
PosePN++, PoseMinkLoc, and the latest state-of-the-art methods:
FlashMix, SGLoc-V2, LiSA, and SGLoc-V2 (single-shot, our baseline).
We will report the mean position and orientation errors.

Localization on the QEOxford/Oxford dataset: PELoc
achieves an average position error of 2.81m and an orientation
error of 1.61◦ on the four test trajectories of the Oxford dataset, re-
ducing the errors of our single-shot baseline (7.96m, 4.54◦) by 5.15m
and 2.93◦ respectively. Due to the more inconsistencies among the
trajectories in Oxford, our PELoc is able to almost match the per-
formance of SGLoc-V2 (using four trajectories for training), with
an average localization error lagging by only 3 centimeters. It is
worth mentioning that PELoc achieved SoTA position error perfor-
mance on the 17-13 and 17-14 trajectories. On the QEOxford dataset,
thanks to the improved INS pose errors, PELoc attains better accu-
racy, with an average position error of 1.06m and an orientation
error of 1.62◦, a significant reduction from the single-shot baseline
errors of 6.09m and 3.32◦. The average position/orientation error
lags behind that of SGLoc-V2 (using four trajectories for training)
by 0.14m/0.51 degrees, which we consider to be an acceptable range.
Additionally, we outperformed it on the 17-13 trajectory. The visu-
alization Figure. 5 shows that PELoc exhibits minimal large jumps,
indicating that it has learned robust environmental features from
the limited one pass and can effectively handle challenges such as
viewpoint changes and trajectory reversals.

Localization on the NCLT dataset: The NCLT dataset is more
challenging for single-shot localization for longer temporal and
spatial variations. The average error for single-shot localization
(baseline) reaches 17.36 m and 12.17◦. SGLoc-V2, which uses four
trajectories for training, achieves state-of-the-art performance. PE-
Loc also performs remarkably well, with an average error of 1.02
meters and 3.61 degrees. It achieves sub-meter position accuracy on
the 02-12 and 03-31 trajectories. On the 02-19 trajectory, it reduces
the baseline error by 33.16 m and 13.75◦. However, PELoc fails to
handle the 05-26 trajectory, we do not provide a comparison of
accuracy. We will discuss this further in the discussion section. The
visualization is presented in Figure.6.

Figure 6: Visualization results of PELoc and SGLoc-V2 of the
NCLT dataset.

4.3 Stability of Re-localization

Figure 7: It shows the relative localization errors of the three
trajectories in the same scene. The 11-14-s simulated point
cloud corresponds to the 11-14 trajectory, while the 18-15,14-
12 trajectory was collected on a different day.

PELoc’s LTI exhibits a significant distinction from the original
multi-trajectory training: the generated point cloud trajectories are
coupled, whereas the other trajectories(e.g. 11-14 and 11-18) are
affected by GPS/INS errors more or less. This coupling enhances the
stability in re-localization. Taking the left picture as an example, we
trained three models using the 11-14 trajectory from Oxford, and its
simulated trajectory 11-14-s, as well as another trajectory, 18-15, for
individual training. The three models were then tested on the 15-13
trajectory. By comparing the per-frame position errors of different
models, we obtained the relative localization accuracy differences
for the same scene. The Figure.7 illustrates that the relative position
error between 11-14 and 11-14-s is primarily concentrated within
0-1 meters, whereas the relative position error between 11-14 and
18-15 is mainly distributed between 1-3 meters, indicating that the
re-localization accuracy between the LTI trajectory and the original
trajectory is higher. This approach eliminates additional GPS/INS
errors between training trajectories. We believe this is beneficial
for localization.

4.4 Comparison with Other Single-shot
Localization Solutions

In the comparison with other single-shot localization solutions, we
selected DTG and EF. The experimental results are shown in the
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Table 3: Comparison with Other Single-shot Localization
Method. DTG :Denser TrajectoryGeneration, EF: Equivariant
Features. † means use the same SSDA.

single-shot Localization Solutions
Methods PE/OE (15-13) (m/◦) Training Epochs

baseline 8.20/4.61 50
DTG[25]† 2.89/2.57 50
EF[15] 2.69/1.94 100

Ours† 1.06/1.56 50

Figure 8: Comparison of point cloud generation betweenDTG
(left) and LTI (right) methods. Both approaches utilize point
clouds from frames 𝑇 (blue) and 𝑇 + 1 (red) to synthesize the
intermediate frame 𝑡 (other colors).

Table3. DTG, inspired by point cloud interpolation works such as
PointINet[25], aims to increase the density of trajectories (in the for-
ward and backward directions, not lateral, see Figure.8). However,
since PointINet and NeuralPCI[54] take nearly 1 minute to generate
a single frame of point cloud, the time consumption is excessive. We
used the method in LTI to simulate forward-moving point clouds,
but the results were not as good as ours. The main reason is that the
original point cloud trajectory is already dense, and the forward and
backward interpolation methods cannot introduce a richer set of
poses. The EF method, inspired by work[15], maps the point cloud
to a canonical space and learns the equivariant rotation of the point
cloud. Compared to the baseline, the effect is significant. However,
it still falls short of our method. First, the LiDAR on Oxford dataset
is mounted on the left side, which affects the learning of the reverse
point cloud angles. Second, it requires more training epochs to fit
both the original network and the equivariant network.

4.5 Ablation Study
The ablation is shown in Table 4. Ablation on SSDA: SSDA sig-
nificantly boosts performance by effectively simulating trajectory
rotations and translations, reducing the baseline error by 4.06m
in position and 0.87 degrees in orientation. Ablation on LTI: The
combination of LTI and SSDA serves as an antidote for single-shot
localization. LTI’s diversity in pose and point cloud further reduces
errors by 2.49m in position and 1.85 degrees in orientation. Abla-
tion on KP-CL: KP-CL enhances the model’s ability to distinguish
between similar scenes, lowering the baseline error by 2.51m in
position and 1.65 degrees in orientation in standalone experiments.
In the final combination, it reduces errors by an additional 0.45m
in position and 0.33 degrees in orientation, effectively minimizing

Table 4: Performance Breakdown of PELoc on the QEOx-
ford 15-13 Trajectory: KP-CL (Key Points Contrastive Learn-
ing), SSDA (Single-shot Data Augmentation), RFT (Remove
of 5% random Consecutive Frames for Training), LTI (LiDAR
Trajectories-coupled Interpolation).

KP-CL SSDA RFT LTI 15-13 (m/◦)

8.20/4.61
5.69/2.96
4.14/3.74
4.00/3.77
1.51/1.89
1.06/1.56

localization noise. Ablation on RFT: RFT contributes to localization
accuracy. As shown in Table 4, RFT reduces errors by 0.14m, this
training strategy further enhances the diversity of trajectories.

Figure 9: Qualitative and quantitative analysis of the NCLT
05-26 trajectory

4.6 Discussion
Why LTI is effective: There are two main reasons for its effective-
ness: (1) Though the trajectories generated by LTI aren’t "real," the
lateral interpolation operations in LTI lead the model to perceive
that the car is on different trajectories. Thus, we posit that the
coordinate offsets in the point cloud scenes can, to some extent,
serve as a proxy for real point clouds. (2) The lateral interpolation
and perturbation operations in LTI increase the diversity of poses
and scenes.

Limitations of PELoc: PELoc is unable to handle the 05-26
trajectory in the NCLT dataset for two main reasons, as you can see
in Figure .9: (1) The vegetation and trees are much denser on 05-26,
resulting in significant differences in point cloud features compared
to 02-18. (2) There are large sections of new trajectories on 05-26
that PELoc cannot process since it has not seen them before.

5 Conclusion
In this work, we present PELoc, a method for long-term LiDAR
regression-based localization using a single trajectory, enabling
near sub-meter localization accuracy on the QEOxford and NCLT
datasets. Looking ahead, we commit to researching more long-term
and robust one-pass localization algorithms.
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