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Abstract

Dexterous grasp generation is a fundamental challenge in robotics, requiring
both grasp stability and adaptability across diverse objects and tasks. Analytical
methods ensure stable grasps but are inefficient and lack task adaptability, while
generative approaches improve efficiency and task integration but generalize poorly
to unseen objects and tasks due to data limitations. In this paper, we propose a
transfer-based framework for dexterous grasp generation, leveraging a conditional
diffusion model to transfer high-quality grasps from shape templates to novel
objects within the same category. Specifically, we reformulate the grasp transfer
problem as the generation of an object contact map, incorporating object shape
similarity and task specifications into the diffusion process. To handle complex
shape variations, we introduce a dual mapping mechanism, capturing intricate
geometric relationship between shape templates and novel objects. Beyond the
contact map, we derive two additional object-centric maps, the part map and
direction map, to encode finer contact details for more stable grasps. We then
develop a cascaded conditional diffusion model framework to jointly transfer these
three maps, ensuring their intra-consistency. Finally, we introduce a robust grasp
recovery mechanism, identifying reliable contact points and optimizing grasp
configurations efficiently. Extensive experiments demonstrate the superiority of
our proposed method. Our approach effectively balances grasp quality, generation
efficiency, and generalization performance across various tasks. Project homepage:

1 Introduction

Dexterous grasp generation is a crucial task in robotics, enabling robotic hands to manipulate objects
with human-like precision and adaptability [ 1, 2, 3]. It plays a fundamental role in humanoid robotics,
particularly in its application in unstructured environments[4, 5] and human-robot interactions [6,

, 8, 9]. However, the high degrees of freedom of dexterous robotic hands increase the difficulty of
achieving stable grasps [ 1], while complex contact dynamics between robot fingers and objects in
diverse shapes hinder the generalization of existing methods [10, 1 1]. How to generate stable and
generalizable grasps across various objects remains a challenging problem that has gained extensive
attention [12, 13, 14, 15] in recent years but has not yet been fully resolved.

Existing dexterous grasp generation methods can be broadly categorized into analytical [16, 17, 18,

, 20, 21] and generative [22, 23, 24, 25, 26, 27] approaches. Analytical methods optimize grasps
by defining objective functions based on hand-object constraints such as force closure [16, 17, 20],
penetration [21], and hand coverage [18, 19], ensuring high-quality and stable grasp synthesis.
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Figure 1: Comparison of our proposed framework with existing analytical and generative methods.
The proposed transfer-based framework can effectively balance efficiency, quality, task adaptability,
and generalization capability for dexterous grasp generation.

However, these methods are computationally expensive due to the complexity of the optimization
process [28]. Moreover, generating task-oriented grasps requires manually designing task-specific
constraints (e.g., object part constraints [29] or wrench constraints [30]), making them difficult
to generalize across diverse real-world robotic tasks. In contrast, generative methods learn grasp
distributions conditioned on object features, enabling efficient and diverse dexterous grasp synthesis.
By integrating task embeddings [3 1, 32, 33], they can further produce grasps aligned with specific task
requirements. However, their performance heavily depends on the quality of training data, including
the diversity of objects, accuracy of grasp annotations, and completeness of task descriptions. As a
result, generative models still struggle to generalize to out-of-distribution (OOD) objects and novel
tasks, where the learned grasp distribution may fail to transfer effectively. As illustrated in Fig. 1,
while analytical methods ensure grasp stability and generative methods enhance efficiency and task
adaptability, no existing approach effectively integrates their strengths to achieve both stability and
generalization in dexterous grasp generation.

In this regard, we innovate a transfer-based framework for dexterous grasp generation. The core idea is
to use generative models to efficiently transfer high-quality grasps sampled by analytical methods on
a shape template to novel objects within the same category. Unlike conventional analytical methods,
our approach can improve efficiency and adaptability by using generative models for grasp transfer.
Compared to existing generative approaches, our method models the conditional grasp distribution
based on task embeddings and geometric similarities across object categories, rather than directly
learning an implicit distribution tied to object features [3 1, 32, 33]. This enables the generation of
high-quality, task-oriented grasps while enhancing generalization to new object instances, unseen
tasks, and even novel object categories. Nevertheless, implementing this framework presents several
challenges. The substantial shape variations across objects, the complex contact interactions between
robot hands and diverse object geometries, and the need to accommodate varying task specifications
introduce fundamental difficulties that must be addressed.

In this paper, we present a novel conditional diffusion model for dexterous grasp transfer. Specifically,
we follow [34, 22, 35, 36] and leverage robust object-centric representations to reformulate the grasp
transfer problem as the generation of an object contact map. We then propose a framework that
integrates object geometry similarity along with the task embedding into the diffusion model for a
conditional generation of the contact map. To handle the complex shape variations across diverse
objects, we introduce a dual mapping mechanism within conditional diffusion. This mechanism
explicitly models the dual mapping relationships between the template shape and the reconstructed
template contact map, and between the noise and the contact map of the novel object. In this way, the
diffusion model effectively captures the intricate geometric similarities between the shape template
and the novel object under different task specifications, enabling the generation of an accurate contact
map aligned with the intended grasping task.

The contact map alone indicates whether the dexterous robotic hand is in contact with the object
but fails to capture the finer details of the contact interaction. To achieve more stable and dexterous
grasping, we follow [35] to further derive two additional object-centric maps, the part map and
the direction map, which provide richer information about the contact regions and the grasping
orientations. To jointly transfer three object-centric maps from the shape template to the novel object,
we develop a cascaded conditional diffusion framework. This cascaded design enables a progressive
generation process, ensuring intra-consistency among the three maps and preserving coherent contact,
part, and direction information throughout the transfer process. Based on the transferred three object-



centric maps, we design a robust mechanism to automatically identify object points with reliable part
and direction predictions. Finally, we recover the grasp configuration parameters through a fast and
robust optimization scheme, ensuring the stability and feasibility of the generated dexterous grasps
for novel objects. We summarize our main contributions as follows:

* We formulate dexterous grasp generation as an object contact map transfer problem and
propose a novel conditional diffusion model that jointly captures object geometric similarity
and textual task embeddings, enabling more generalizable dexterous grasp generation.

* We exploit object-centric part map and direction map to enrich hand-object contact represen-
tation and develop a cascaded conditional diffusion framework to jointly transfer the object
contact map, part map, and direction map with high consistency.

* We propose a robust optimization method that adaptively identifies object points with reliable
part and direction predictions and comprehensively leverages contact information from the
contact, part, and direction maps to robustly recover dexterous grasp parameters.

» Extensive experiments show that our method can transfer dexterous grasps from shape
templates to novel objects with high quality. It generalizes well across diverse objects, tasks,
and unseen categories while generating grasps that well align with task specifications.

2 Related Work

Analytical Methods for Dexterous Grasp Generation. This kind of methods typically formulates
dexterous grasp generation as an optimization problem, leveraging analytical models of contact
mechanics [18, 19], force closure [37, 16, 17], and grasp stability [21, 38] to compute optimal
hand configurations for grasping a given object. While previous methods [39, 40, 41, 37] rely on
computationally expensive approaches to compute force closure between the robotic hand and the
object for grasp optimization, recent methods [ 16, 17, 20] have introduced differentiable force-closure
estimators to speed up this computation. In addition, to apply these analytical methods to task-oriented
grasping, recent approaches define task-specific object parts [29] for grasping or constrain the wrench
relationship [30] between the robotic hand and the object based on the task type, thereby generating
dexterous grasps that align with task requirements. However, these heuristic methods still struggle
to generalize across diverse objects and tasks. In this paper, we will explore a more efficient and
generalizable transfer-based framework for dexterous grasp generation.

Generative Methods for Dexterous Grasp Generation. Generative methods for dexterous grasp
generation [42, 43] learn grasp distributions conditioned on object features, typically through direct
parameter prediction [24, 44, 45] or optimization using object-centric contact representations [46,

, 23, 35]. Compared to analytical methods, these methods can effectively incorporate high-level
task embeddings [47, 48, 49, 32, 31, 50, 25], making them well-suited for practical applications.
Among such methods, diffusion models [51, 52] are particularly adept at modeling the complex
data distributions [53, 54, 55, 56, 57], and recent works [58, 59, 60, 61, 62, 63, 33] have explored
diffusion-based methods to improve quality and efficiency for dexterous grasp generation. For
example, DexDiffuser [58] generates dexterous grasps by denoising randomly sampled grasp pose
parameters conditioned on object point clouds. FastGrasp [59] introduces a one-stage diffusion model
to enhance grasp generation efficiency and incorporates physical constraints into the latent grasp
representation to improve grasp quality. UGG [62] further develops a unified diffusion model for
multi-task learning of hand-object interactions. However, the performance of generative methods is
often limited by training data quality and scale, potentially yielding less stable grasps than analytical
methods. This paper proposes a diffusion-based grasp transfer framework that leverages object
geometric similarity via text embeddings, instead of directly learning grasp distributions from training
data. Our framework offers high scalability and effectively utilizes high-quality grasps from shape
templates to enhance grasp quality for novel objects.

Transfer-based Methods for Dexterous Grasp Generation. Previous transfer-based methods either
necessitate training on individual object category [27, 64], or depend on pre-defined object parts and
functionalities to guide the transfer process [20, 65], which limit their ability to generalize effectively
to novel tasks and categories. Recent methods employ detailed object shape representations, such as
Neural Radiance Fields (NeRF) or Signed Distance Functions (SDFs), to enable higher-quality grasp
transfer [66, 67, 68, 69, 70]. For instance, Tink [69] learns an implicit SDF for each object instance
and transfers grasps via shape interpolation. However, it requires learning separate models for each
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Figure 2: Our conditional diffusion model learns to transfer contact maps via a template-target
framework. The template branch encodes shape templates (X, c.) — h,, while the target branch
denoises latent vector z; conditioned on target geometry x,, template features h., and language ¢. A
bidirectional adaptation module A bridges these branches through feature integration.

object or category, which is computationally expensive and fundamentally limits generalization to
novel categories. In this paper, we introduce a conditional diffusion model for grasp transfer, which
jointly learns task specifications and the shape similarity between a given shape template and novel
objects. After training on a set of base categories, our approach exhibits strong generalization to
novel categories and tasks without the need for per-category retraining.

3 Methodology

In this section, we introduce our approach for dexterous grasp generation. Given a target object
x, € R™*3 represented by m points, our goal is to generate the corresponding dexterous grasp
configuration q, € R¥ based on the task specification ¢, where k denotes the degree-of-freedom of
the robot hand (e.g., k = 24 for the ShadowHand). To ensure robust grasp recovery, we follow the
pipeline [22, 35], which first generates an object contact map ¢ € R™*! and then optimizes the grasp
parameters based on the contact information. We formulate this process as a contact transfer problem.
Specifically, let x, € R™*3 be a shape template associated with x,, and let c. denote its contact
map for task £. Our objective is to transfer c, from x. to x, to obtain the target contact map c,, that
aligns with ¢, which then would be used to recover the grasp configuration.

To this end, we first introduce a conditional diffusion model in Sec. 3.1, which jointly integrates the
geometric similarity between x, and x. with the textual task description for contact map transfer.
In Sec. 3.2, we further present an object-centric part and direction mapping mechanism to enhance
contact representation and present a cascaded framework based on the conditional diffusion model
to jointly transfer object contact, part, and direction maps while ensuring their mutual consistency.
Finally, in Sec. 3.3, we develop a robust optimization method that adaptively identifies reliable object
points based on part and direction predictions, efficiently leveraging the enriched contact information
to recover dexterous grasp parameters with high robustness.

3.1 Conditional Diffusion Model for Contact Map Transfer

Diffusion Preliminaries. A denoising diffusion probabilistic model (DDPM) is trained to learn the
transformation relationship between c, and a latent variable z € R™*! sampled from a tractable
Gaussian distribution. Formally, this learning process consists of two Markov chains: a forward chain
q(z¢|cq) = N(z¢; Vaica, (1 — @;)1) that gradually adds noise to ¢, over T' timesteps, where o :=
Hizl g is the cumulative product of noise scheduling coefficients s € (0, 1), and z; represents the
noisy version of ¢, at timestep ¢. The reverse process pg(c, |z, C) iteratively reconstructs ¢, from
z, through a noise prediction network €y(z;, C, t), where C' is the condition on X., X, C¢, £. The
model is trained by minimizing the objective:

L(0) = EBors(1.1).con (1) 1€ — €6(2, C, 1), (1)

where U and  are the uniform and Gaussian distributions, respectively. While this vanilla conditional
diffusion implicitly captures the distribution of contact maps, it would fall short in handling the



shape variation between x. and x, for contact map transfer. We therefore present a conditional
diffusion model with a dual mapping architecture to enhance the geometric feature learning of the
shape template and novel target objects, and to improve the contact map transfer performance.

Diffusion with Dual Mapping Branch. As shown in Fig. 2, we propose a diffusion architecture
consisting of a template branch and a target branch to jointly learn template feature h, and target
feature h!, coupled with a dual feature adaptation module A that mutually integrates the learned
features to bridge the shape gap between them. For the template branch, we employ a reconstruction
network to encode and reconstruct the template’s contact map. First, the point encoder fe,. extracts
geometric and semantic features h, = fe,.(Xe, ce) from the template’s point cloud and its ground-
truth contact map. These features are then adapted by the adaptation module 4., which injects
target-aware characteristics from the target branch’s intermediate features h¢. Finally, the network is
trained to minimize the reconstruction loss:

Lrecon = ||Ce - fdec(-Ae(hea ha))”Q @)

For the target branch, we implement the denoising network €y comprising the encoder g, and decoder
Jdec» Where €9(z¢, C, 1) £ gaec (Aa (gene(Xas Zt), he), f1(0), t) explicitly combines geometric encod-
ing and conditional noise prediction. In specific, we first extract target features h!, = genc (X4, 21),
fuse them with template features h. via adaptation module .4,, and condition on language features
f1(€) [71]. The target decoder gge. ultimately predicts the noise to optimize the following objective:

Lairr = Evri(1,1),e~n 0,1 € — €0(2e, C, 1) || 3
Adaptation Module for Conditional Diffusion. The adaptation module A is designed to mutually

integrate features between the template and target branches, serving as a conditioning mechanism to
guide the learning process for both networks. Formally, the adaptation process for A, is defined as:

ht hT

A, (h! h,) = MLP (softmax ( U ) he> +h!, 4
Vd

where d is the dimension of h.. Similarly, A, operates in reverse direction, merging the target feature

to template. By adaptively attending to the relevant regions of the template (target) feature based on

the target (template) geometric and semantic context, the model can effectively learn the inherent

relationship between shape templates and novel objects.

Training and Sampling. During training, the model jointly optimizes the parameters of the template
and target branches. The overall training objective combines the reconstruction loss from template
branch and the diffusion loss from the target branch Leopet = Lrecon + ALaitt, Where A = 1is a
weighting factor. During inference, we first sample pure noise zr ~ A (0, I) and iteratively denoise
it through 7" steps to generate the target contact map &, = zo. At each timestep t = T},..., 1, the
latent state updates as z;—1 = pg(z¢, C,t) + ore with € ~ N (0, I), here o; determines the stochastic
noise injection magnitude during denoising, following the variance schedule as derived in DDPM.
The conditional mean py is computed by the target denoising network €y through:

1 1-—
M@(Zt7c, t) = \/TT (Zt — \/f%eg(zt,c, t)) 5 (5)

with C' £ {Aq(Genc(Xas 2t), fene(Xes €e)), f1(£)} combining all conditions for generation.

3.2 Cascaded Conditional Diffusion for Joint Contact, Part, and Direction Transfer

Part and Direction Map for Dexterous Grasp. Despite the contact map provides a useful represen-
tation of contact regions, it alone is insufficient to fully capture the complex hand-object interaction,
leaving ambiguities in both the specific grasping parts and the grasping style. To address this, we
follow a previous work [35] on human grasp synthesis and model dexterous grasps using additional
part maps and direction maps. The part map p € R™*? indicates the closest hand part for each point
on the object, where b = 16 represents the 16 predefined parts of the dexterous hand. The direction
map d € R™*3 encodes the direction from each point on the object to the center of its corresponding
hand part. Together, these object-centric contact, part, and direction maps provide a more precise and
detailed representation of the dexterous grasp, enhancing the potential for robust grasp transfer.
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the template branch predicts the probability distribution over the b parts for each point, and the
training is supervised using a negative log-likelihood (NLL) loss:

n b
1 . .
F o — (4:3) 100 B (i+9) 6
recon o E E pe Y’ logpe ™, (6)

i=1 j=1

where p.(gi’j) and P’/ are the ground-truth and predicted association probabilities between point ¢
and part j. For the direction map, we employ cosine similarity to measure the alignment between the

reconstructed direction map d. and the ground truth d.:
dir 1~ dY-al

ﬁrecon = - Z T (7)
n = (1adal)

i,5)

where dgi) and 83) are the ground-truth and predicted direction vectors for point ¢. Please refer to
Sec. A.1 for more details on the cascaded diffusion models.

3.3 Robust Dexterous Grasp Optimization with Transferred Maps

Identify Object Points with Reliable Map Values. Given the transferred contact map c, part map p,
and direction map d for a novel object, we develop a method to identify object points with reliable
map values to improve the robustness and accuracy of the recovered grasp parameters. By definition,
the part map p assigns each object point to a hand part, while the direction map d provides a unit
vector indicating the intended contact direction for grasping. Notably, for all points belonging to the
same part in p, their corresponding direction vectors in d should theoretically converge at a single
point in space. This point represents the closest joint position on the robotic hand associated with the
grasping action for that object part.

Leveraging this property, we can estimate the corresponding joint position for each part in p by
computing the intersection of direction vectors within the same part. Specifically, let x = {x*|i =
1,...,w} € R3*¥ be a part with w points, and dy, = {d%|i = 1,...,w} € R3*¥ denote the associated
normalized directions. The corresponding joint position J can be recovered by minimizing:
D(J;x,dx) = D (x" = J) (I = di(d5) ) (x" = ), ®
i=1
which computes the sum of squared distance between J and the normalized direction vectors. Given
that 0D /0J = Y17 | —2x (I—-di(d%) ") (x"—J), optimizing Eq. 8 equals to solve a linear function
as A x J=b,where A =3"" (I—-di(di)"),andb=>" (I—di(di)")x" Then, the joint
position can be solved by J = A'b, where AT denotes the Moore-Penose pseudoinverse of A. Based
on the recovered joint positions, we apply two filtering rules to select reliable object points for grasp
parameter optimization: (i) The average distance between J and x should smaller than a threshold 7.
This criterion eliminates parts where the direction predictions are highly noisy. (ii) Each object point
in x should lie within a distance threshold 7, from the joint position J. This rule removes outliers in
the part map where individual points significantly deviate from the expected grasping region.



Analytical Generative Transfer

Methods

DFC [16] DexGraspNet[17] ContactGen [35] UGG [62] Tink [69] Ours-Contact Ours
SR (%) 1 78.98 83.63 73.00 70.50 69.82 78.46 84.65
Pen. (mm) | 3.15 4.52 4.11 8.08 1.14 1.87 1.47
Cov. (%) 1 32.28 31.87 34.78 35.06 25.13 36.28 38.16

Table 1: Performance comparison with different task-agnostic grasp generation methods. The best
results are in bold. Ours-Contact denotes the result with only the transferred contact map, while
Ours denotes the result after using the jointly transferred contact, part and direction maps.

Template Tink Ours GT Template Tink Ours GT low

Figure 4: Qualitative comparison with Tink for contact map transfer on novel objects.

Grasp Synthesis. Based on the remained points with reliable map values, we exploit an efficient
optimization method to recover the grasp parameters. The hand mesh can be reconstructed from q
using differentiable forward kinematic. Given the contact map ¢ € R™*!, part map p € R™*?, and
direction map d € R™*3, we iteratively update q by minimizing the following loss function:

ﬁsyn = AcontEeont + AdirEair + AnEp, 9
where Econt = Lumse (€, ©) is the mean squared error between the predicted contact map € and the

contact map ¢ derived from the current robot configuration q, and Eg, = W - Ecos(a, d) is the
weighted cosine similarity loss. In addition, E, is a regularization term that ensures grasp quality by
penalizing hand-object penetration and encouraging natural hand postures. We optimize 200 steps to
obtain the final grasp parameters. Please refer to Sec. A.2 for more details on grasp synthesis.

4 Experiment

In this section, we will answer the following key questions through our extensive experiments. (1)
Does our transfer-based framework enable high-quality grasp transfer to novel objects, and how
does it compare to existing grasp generation methods? (2) How well does our method generalize
to novel objects, unseen object categories, and new task specifications, compared to state-of-the-art
task-oriented grasp generation approaches? (3) How does each proposed module contribute to the
overall performance, including the adaptation module for conditional diffusion, cascaded diffusion
framework, and robust grasp optimization method?

4.1 Experimental Settings

Datasets. To comprehensively evaluate dexterous grasp generation methods across various objects
and robotic manipulation tasks, we conducted experiments on the customized CapGrasp dataset [31].
CapGrasp is one of the largest publicly available task-oriented grasp datasets, comprising 1.8k object
instances from 32 diverse categories and providing high-quality human grasps for 50k tasks, each with
specific textual descriptions. To assess grasp generation performance in robotic manipulation tasks, we
first applied the grasp retargeting method from [32] to convert human grasps into ShadowHand [72]
grasps. Next, we excluded object categories with only a few instances (e.g., those containing a
single instance) and used the remaining categories for model training and evaluation. Specifically,
we selected 16 out of the remaining 24 object categories for model training. Within each training
category, approximately 10% of the objects were held out for testing to evaluate the model’s ability
to generalize to novel objects. Meanwhile, the remaining 8 categories were reserved to assess the
model’s generalization to novel object categories.

Competing Methods and Evaluation Metrics. To answer question (1), we compared our method
with representative dexterous grasp generation methods, including conventional analytical meth-
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Figure 5: Qualitative comparison with generative methods on unseen objects across diverse tasks.

Seen Categories Unseen Categories
Methods SRT Pen.] Cov.T Cont Err.| Consis.T SR1T Pen.| Cov.T Cont. Err.| Consis. T
RealDex [50] 42.16 326  23.61 0.1002 80.62 2990 3.35 17.15 0.0975 70.85
DexGYS [32] 41.56 2225 30.50 0.0834 74.85 39.16 23.63 3237 0.1332 68.08
Tink [69] 62.60 129 24.86 0.0327 68.75 — — — — —
Ours-Contact  76.14  1.68 33.55 0.0322 75.26 7034 159  35.66 0.0410 75.00
Ours 7932 1.74  36.77 0.0287 83.60 7414 136  30.05 0.0363 79.28

Table 2: Performance comparison on Seen and Unseen Categories across different methods. Cont.
and Consis. are two metrics used to evaluate the alignment of the generated grasp with the task
specifications. The best results are in bold.

ods DFC [16] and DexGraspNet [17], generative methods ContactGen [35] and UGG (a recent
diffusion-based method) [62], and one transfer-based method Tink [69]. Following [32, 31, 34], we
quantitatively evaluate the grasp quality using representative metrics, including the overall grasp
Success Rate (SR) in IsaacGym simulator [73], Penetration Depth (Pen.), and Contact Coverage
(Cov.). To answer question (2), we further compared our method with two recent generative ap-
proaches, RealDex [50] and DexGYS [32], assessing their performance on novel object instances and
categories across various tasks. In this experiment, we additionally assess the alignment of the gener-
ated grasps with the task specifications using representative metrics [74, 31, 32], including Contact
Error (Cont. Err.), VLM-assisted [75] Consistency (Consis.), Chamfer Distance (CD), R-Precision
(R-Prec @TopK), and Fréchet Inception Distance (P-FID). Please refer to Sec. A.3 and Sec. A.4 for
more implementation details.

4.2 Main Results

Quality evaluation in task-agnostic grasping. Focusing on evaluating the grasp quality, similar
to [22, 23, 35], we evaluated different methods on novel objects belonging to seen categories. For
each object category, we select five task-agnostic grasps with the lowest retargeting loss from its
corresponding shape template, and transfer them to various novel objects within the same category
using our proposed diffusion model. For analytical methods, we perform individual analytical
optimization with force closure for each novel object and select the five grasps with the lowest
analytical energy function values for evaluation. For generative methods, we follow the pipeline
in [44] to select the top five grasps from the generated grasp candidates for quantitative assessment.

Tab. 1 presents the average performance of all competing methods. As can be observed, both our
method and the analytical methods achieve a high grasp success rate across various objects. It indicates
that our method can effectively transfer dexterous grasps from a template to diverse novel objects,
maintaining high grasp quality even without performing complex force-closure-based optimization
for each novel object. Compared to existing generative approaches, our method consistently produces
higher-quality dexterous grasps for various objects, achieving a higher success rate, greater stability
with smaller penetration, and better hand coverage over the object. We also compared our method
with Tink, a widely used grasp transfer approach. Tink requires learning an implicit shape function
for each object instance and performs grasp transfer through shape interpolation. To ensure a fair
comparison, we retrieved the most similar shape from the training set for each novel object based on
Chamfer Distance and use its corresponding implicit shape for grasp transfer in Tink. However, Tink
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Figure 6: Real-world experimental results. For each task, the left, middle, and right images show the
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Methods SR Pen. Cov. Cont.Err.
w/o A, 37.57 1.95 21.11 0.0522
w/o Ae 38.03 1.99 2191 0.0512

w/o cascaded-I 60.71 1.87 25.08 0.0489
w/o cascaded-II 58.51 1.82 20.73 0.0594
w/o task desc.  73.85 1.83 34.03 0.0322
w/o robust opt.  55.04 1.74 27.95 0.0448
Ours 79.32 1.74 36.77 0.0287

w/o Robust. Ours-Contact Ours GT

Figure 7: Qualitative grasp comparison with / with-
Table 3: Quantitative ablation study results. ~©ut robust optimization.

is highly sensitive to shape variations, leading to a noticeable drop in grasp quality when transferring
grasps to novel objects (as shown in Fig. 4). These results demonstrate that our proposed method can
effectively transfer grasps from shape templates to a wide range of novel objects, achieving grasp
quality comparable to conventional analytical methods. Meanwhile, our method achieves significantly
higher grasp quality compared to existing generative approaches and greater robustness to shape
variations compared to Tink.

Generalization evaluation in task-oriented grasping. In this experiment, we compared our ap-
proach with two recent task-oriented dexterous grasp generation methods, RealDex and DexGYS, as
well as the transfer-based method Tink. For RealDex, we first generated a set of grasp candidates
and then use a vision-language model prompted with the task description to select the grasp that best
aligns with the given task. For DexGYS, the task description is directly used as an input feature to
generate a dexterous grasp that aligns with the specified task. Tab. 2 presents a comparative analysis
of different methods on novel objects and novel object categories. As can be observed, our method
effectively transfers grasps from shape templates to diverse novel objects while maintaining high
grasp quality and strong alignment with task specifications. As shown in Fig. 5, across various novel
objects, our approach significantly outperforms all competing methods. For the more challenging
scenario of novel object categories with novel tasks, all methods experience a performance drop
to varying degrees. However, our proposed method demonstrates superior generalization ability.
Without requiring retraining on new object categories, it can be directly applied to novel categories
to generate stable dexterous grasps for a wide range of manipulation tasks. These results indicate
the superior generalization capability of the proposed method for dexterous grasp generation. Please
refer to Sec. A.5 for more results.

Real world experiments. We conducted real-world dexterous grasping experiments to evaluate
the effectiveness of our method in practical scenarios. The experiments were performed on a self-
developed humanoid robotic platform equipped with an Inspire dexterous hand mounted at the end
of the robot arm. For visual perception, we deployed one ZED camera on the robot’s head and
placed two RealSense cameras on the left and right sides of the robot to capture multi-view RGB
images. Given a textual task instruction, we used Grounding-DINO [76] to segment the target object
and leveraged the recent 3D foundation model VGGT [77] to reconstruct the object’s point cloud
from the captured views. Without any re-training or fine-tuning of our model, we directly used
the reconstructed point cloud to predict the dexterous grasp configuration. For grasp execution, we
followed the protocol in [32], where the robot arm first moves to the predicted 6-DOF pose of the
hand’s root, and then the Inspire hand actuates its joint angles based on the predicted contact poses.
We tested four object categories across five different task specifications, and repeated the grasping
process five times and recorded the average grasp success rate for each object. A successful grasp



is defined as lifting the object at least 30 cm from the table and holding it stably for 5 seconds. As
shown in Fig. 6, our method can effectively transfer the contact map from template objects to novel,
noisy objects, and achieve an average success rate of 70% across the tested categories (60% for Bowl,
80% for Bottle, 80% for Cup, and 60% for Headphones), demonstrating the practical applicability of
our approach and its robustness to real-world observation noise.

4.3 Ablation Study

In the ablation study, we removed different individual modules from the complete diffusion model and
retrained the model with the same training dataset. We then evaluated the dexterous grasp generated
by different model variants on novel objects and Tab. 3 presents the experimental results.

(i) Removing the adaptation module would result in a significant performance drop. Both adaptation
modules play important roles in the dual-branch diffusion architecture. They improve the learning of
complex geometric features for the shape template and novel objects, and effectively model the shape
similarity between the shape template and novel objects for robust contact map transfer.

(ii) Our proposed cascaded framework is effective in improving grasp generation performance. We
validate this through two ablations: (I) using three independent diffusion models separately for
contact, part and direction map, and (II) a unified diffusion model that concatenates all three maps
into a single representation. The independent variant suffers from inter-map inconsistencies, while
the unified model fails to disentangle competing learning signals (please refer to Sec. A.5 for more
results). This demonstrates that the cascaded framework ensures better coherence among different
grasp representations, ultimately improving grasp generation accuracy.

(iii) Incorporating textual task descriptions further enhances grasp generation. This is because the
textual features improve the accuracy of the extracted conditioning features. For the same template-
object pair, different textual inputs produce different condition features, which guide the model to
generate task-specific map predictions. This confirms that task descriptions play a crucial role in
adapting the generated grasps to different manipulation tasks.

(iv) Without the proposed robust optimization strategy, we observe that the grasp generation perfor-
mance is even worse than using only the contact map (55.04 vs. 76.14). This is because, while the part
map and direction map offer more detailed hand-object contact relationships, their generated results
are also more susceptible to noise. As shown in Fig. 7, our proposed robust optimization strategy
effectively filters out unreliable predictions in the part map and direction map, ensuring that useful
information from these additional maps enhances grasp precision. Moreover, it significantly improves
the robustness of the optimized grasp parameters, leading to more reliable grasp generation.

5 Conclusion

In this paper, we propose a novel transfer-based framework for dexterous grasp generation, integrating
the strengths of both analytical and generative methods. We introduce a conditional diffusion model
that leverages task embeddings to learn geometric similarities for contact map transfer, and further
develop a cascaded diffusion framework to jointly transfer contact, part, and direction maps while
maintaining their consistency. To enhance robustness, we propose an adaptive optimization strategy
for reliable grasp parameter optimization. Extensive experiments show our method delivers high
grasp quality and task adaptability, with strong generalization to unseen objects and categories,
highlighting its potential for dexterous robotic and humanoid applications.

While our method shows promising results, our study is currently limited to experiments conducted on
one of the most representative five-fingered robotic hands, the ShadowHand. To further evaluate the
generality of our approach, we have conducted additional experiments on human hand grasping. The
results demonstrate that our framework can be directly applied to human hands and achieves superior
performance in both task-agnostic and task-oriented scenarios (please refer to Sec. A.5 for detailed
results). Nevertheless, further exploration of the framework’s generalization to cross-embodiment
dexterous hands with varying numbers of fingers and morphological structures remains an important
and promising direction for future research. Moreover, investigating effective execution policies for
dexterous grasping across diverse objects, as well as exploring how the transferred contact map can
serve as an enhanced visual representation for vision-language-action models, constitutes another
interesting and challenging problem for real-world dexterous manipulation.
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* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our method in Sec. 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the information needed to reproduce the main experimental
results in Sec. 4 and the supplementary material.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: As presented in Sec. 4, all experiments were conducted based on publicly
available benchmark data. The relevant data, code, and instructions will be publicly available
via the project homepage:

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (
) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

» The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (
) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Sec. 4 and the supplementary material.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: However, we empirically test that the proposed method is robust to random
seed and we are willing to provide the results regarding it if required.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to Sec. 4 and the supplementary material.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics ?

Answer: [Yes]
Justification: We carefully read and follow the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please refer to the supplementary material.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: We do not release any data or models that have a high risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use the CapGrasp dataset and cite the original paper. All third-party assets
used in this work are properly credited and comply with their original licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets,
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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14.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not involve research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We do not use LLMs as any important, original, or non-standard components.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy ( )
for what should or should not be described.
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A Appendix

In this supplementary material, we provide additional contents that are not included in the main paper
due to the space limit:

Al. Details on Cascaded Diffusion Models
A2. Details of Grasp Synthesis

A3. Implementation Details

A4. Details on Experimental Settings

AS. Additional Results

A6. Discussion on Broader Impacts

A.1 Details on Cascaded Diffusion Models

Diffusion Model for Part Map Transfer. As mentioned in the main paper, the generation of target’s
part map p, is conditioned on (X, C¢, Pe, Xq, Cq). The diffusion loss for the part map transfer is
defined as: )

L3 = Errt(1,1),eon 0.1 [|€ — ghee (Aa(hg he) )]
where ¢

qec 18 the decoder for the part map diffusion process. For notational consistency with the
contact diffusion formulation in the main paper, we resuse gqe. to denote the decoder for the part
map diffusion process in this section, and reuse h, to denote the template feature (now encoding
part information), and h?, for the target feature at timestep ¢. The target feature h!, is obtained by
encoding the concatenation of target’s point cloud x,, the predicted contact map ¢€,, and the noisy
part map p, at timestep ¢ using the target encoder gen:

hfz = genc(Xaa o, pfl)-
Similarly, the template feature h,. is obtained by encoding the template’s point cloud x., contact map
C., and part map p. using the template encoder fe.:

h, = fenc(X67 Ce, pe)-
These features are then adapted through the adaptation module A,, which integrates h, into the
target branch to guide the generation of the target part map. The overall loss function for part map
generation combines the reconstruction loss and the diffusion loss:

Lo = L300 + A5,

where A\, = 1 is the weighting constant.

During inference, we randomly sample a noise zr ~ A(0,I) and perform T denoising steps to
gradually obtain the predicted part map p, £ 7, conditioned on X, X,, Ce, Pe, Ca, and t.

Diffusion Model for Direction Map Transfer. Similarly, the diffusion loss for the direction map
transfer is defined as:

ir ir 2
‘Cgiff = ]EtNU(l,T),ENN(OJ) HE - ggec (‘Aa (hz, h6)7 t) H )
where gdir

dr is the decoder for the direction map diffusion process, h, is the target feature at timestep
t, and h. is the template feature.

The target feature h’ is obtained by encoding the target’s point cloud x,, the predicted contact map
¢,, the predicted part map p,, and the noisy direction map d, at timestep ¢ using the target branch
encoder gen:

hfz = genc(xa; €4, Pa, dfz)
The template feature h, is obtained by encoding the template’s point cloud x., contact map c., part
map p., and direction map d. using the template branch encoder fep:

h, = fEHC(X67Cea Pe, de)-

The overall loss function for direction map generation combines the reconstruction loss and the
diffusion loss: ' .

Lais = Ligeon + AaLiir
where \g = 1 is the weighting constant.
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A.2 Details of Grasp Synthesis

The regularization term E}, ensures grasp quality by incorporating penetration, naturalness, and
hand-object distance into the optimization. It is defined as:

Eh - /\penEpen + )\qEq + >\disEdi57 (10)

where Apen, A, and Agis are weighting coefficients that balance the contributions of each term. In
detail, the penetration penalty Fi., is computed as:

Bpen = Y ReLU(—s(h,x)), (11)
heH

where ¢(h, x) is the signed distance from a point & sampled from the hand mesh # to the object x.
The naturalness term E, penalizes deviations of joint angles 6 from their upper and lower limit 6pper
and Ojoye:

E, = ||ReLU(8 — Oypper) + ReLU (Bloner — 0)]]°. (12)

Finally, the distance term Ey;s = d(hg, x) encourages the predefined keypoints Ay, to be closer to the
object surface. Here, d(-, -) computes the Euclidean distance between the points and object.

A.3 Implementation Details

We set the number of points n and m for the template and target point cloud to 2048, respectively.
We employ PointNet++ [78] as the backbone for both the template reconstruction model and the
target diffusion model, which contains 4 Set Abstraction layers and 4 Feature Propagation layers
as point encoder and point decoder following the standard U-Net [79] framework. The feature
dimensions for he and h, are both 512. The diffusion timestep ¢ is embedded into feature with 512
dimensions via a two-layer MLP (R128 — R>!2 — R512) with Swish activation. We use a pre-trained
language foundation model, Bert-base [71], to extract the token embedding f;(¢) € R768 from the
task description. The adaption module A contains 4 attention heads and 64 hidden dimensions. We
employ the Adam optimizer with a batch size of 56, number of workers 4, and learning rate 2e-4,
jointly training the two branches from scratch for 1000 epochs on two NVIDIA 3090 GPUs, which
takes about 24 hours. The diffusion timesteps 1" are set to 1000 for both training and sampling. For
robust grasp optimization, the thresholds 7, and 73, are both set to 0.1. The weighting coefficients
for grasp synthesis are configured as Acone = 1 X 1071, A\gir = 1 x 1072, A, = 1.0, Ape, = 3.0,
Ag = 1.0, and Ay, = 1.0.

A.4 Details on Experimental Settings

Our customized CapGrasp [3 1] dataset contains 24 categories, divided into seen and unseen sets with
strict category-level separation to evaluate generalization:

* Seen Categories (16 categories):
Binoculars, Bottle, Cameras, Cylinder bottle, Eyeglasses, Frying pan, Hammer, Light bulb,
Lotion pump, Mouse, Mug, Pen, Phone, Power drill, Screwdriver, and Teapot.

» Unseen Categories (8 categories):
Bowl, Cup, Flashlight, Game controller, Headphones, Knife, Trigger sprayer, and Wineglass.

The dataset consists about 50k hand-object grasp pairs, each annotated with on average 5 task
descriptions. During training, we randomly select one task description for each grasp. To facilitate
training efficiency and balance the data distribution, for object categories containing more than 2k
grasp pairs, we randomly retain at most 2k pairs per epoch during training. This sampling strategy is
applied consistently to both our proposed method and all baseline methods to ensure fair comparison.

As discussed in the main paper, we evaluate the quality of generated grasps using Success Rate, Pene-
tration Depth, and Contact Coverage. Success Rate (SR) is evaluated in the IsaacGym simulator [73].
A successful grasp involves lifting an object with gravity at —9.8m/s?, raising it over 10 ¢cm, and
ensuring that the object displacement remains below 2 cm after 60 simulation steps. We randomize
the object position and rotation on table and run 10 trials for each grasp, taking the average as the
success rate. To ensure a secure grasp in the simulator, we follow [22] and apply force through
single-step pose optimization for all compared methods. Initially, we select finger points facing the
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Table 4: Comparison of the generated human grasps on unseen objects.

Method Pen. Volume | Contact Ratio T Simulation Disp. |
ContactGen [35] 5.44 82.75% 3.96
Tink [69] 1.91 77.62% 3.31
Ours 1.11 87.45% 2.76

object and within Smm of its surface, then define a target hand pose by moving these points 2mm
toward the object. Next, we optimize the hand joint parameters using a single step of gradient descent
to minimize the discrepancy between the current and target poses. Finally, the force is applied to the
object by updating the hand pose via a positional controller. Penetration Depth (Pen.) measures
the maximum penetration depth from the object point cloud to the hand meshes, quantifying surface
penetration. Contact Coverage (Cov.) computes the percentage of hand points within +2mm of the
object surface, reflecting the ratio of points in contact with the object.

Following [31, 32, 74], we adopt Contact Error, P-FID, Chamfer Distance, R-Precision and VLM-
assisted approach to evaluate the task consistency. Contact Error (Cont. Err.) calculates the L2
distance of object contact map between the generated grasp and ground truth. P-FID computes the
Fréchet Inception Distance between the generated hand point cloud and the ground truth point clouds,
leveraging a pre-trained feature extractor from [80]. Chamfer Distance (CD) quantifies the average
point-wise discrepancy between the generated hand point cloud and the ground-truth point cloud.
R-Precision (R-Prec@TopK) evaluates the semantic alignment between the language instructions
and the generated grasps. We render the generated hand-object interactions into images and use
pre-trained image and text encoders from [80] to measure how well the visual output matches the
textual description. For each generated grasp image, we create a candidate pool composed of its
ground-truth instruction and 31 randomly selected samples. We then compute the cosine distances
between the image features and the language features for every sample in the pool and then rank them
accordingly. We report the Top-k retrieval accuracy (for k=1, 3, 5), which is the percentage of trials
where the ground-truth instruction is successfully ranked among the top k candidates. VLM-assisted
Consistency (Consis.) is performed by prompting the GPT-40 [75] to score the consistency of the
synthesized grasp based on the grasp images and task instructions. The scores provided range from 0
to 100, with higher scores indicating better consistency.

A.5 Additional Results

Evaluation on Human Grasp Generation. In the main paper, we primarily use robotic hand [72]
for evaluation. Apart from the robotic hand, we also evaluate our method on the human grasp
generation. In specific, we change the three object-centric maps on template from robotic hand to
human hand parameterized in MANO model [81]. We compare our method with one generative
method, ContactGen [35], and one transfer-based method, Tink [69]. Both methods leverage contact
map, part map, and direction map as intermediate representations for dexterous grasp generation.
Following [35], we evaluate the generated grasps based on the Penetration Volume (Pen. Volume),
Contact Ratio, and Simulation Displacement of the object center under gravity (Simulation Disp.).
As shown in Table 4, our method achieves the best performance in all metrics, indicating that our
method can also be effectively applied to MANO model. Fig. 16 shows the visualization results of
our method on unseen objects and unseen categories for various task descriptions.

More Visualization Results. Fig. 13 shows more qualitative results generated by our method. Fig. 10
presents a comparison with Tink [69] for contact map transfer on novel objects. Fig. 15 further
demonstrates the visualization results of our proposed method performing contact transfer on novel
object categories. The model effectively captures the geometric relationships between novel template
and target objects, demonstrating strong generalizability across diverse and challenging scenarios.

Additional Results on Generalization Evaluation. Fig. 11 provides a qualitative comparison
with RealDex [50] and DexGYS [32] on novel objects across various tasks. Additionally, Fig. 14
illustrates the grasps generated by our proposed method on unseen categories. Tab. 5 shows the
quantitative comparison of generative metrics among our method, RealDex, and DexGYS. Our
method significantly outperforms other methods, showing superior generalization ability across
a wide range of tasks and unseen categories. To further enhance the comparative analysis with
generative methods for grasp transfer, we also modified the baseline DexGYS to incorporate template
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Table 5: Quantitative comparison of generative metrics with generative methods on novel categories.

Method P-FID] CD| R-Prec@ToplT R-Prec@Top31 R-Prec@Top5T
RealDex 14.564  0.155 0.1081 0.1662 0.3784
DexGYS 10.344  0.120 0.1351 0.3243 0.4595
Ours-contact  6.381  0.037 0.2569 0.4538 0.5972
Ours 6.124  0.028 0.2322 0.4795 0.6199
- DexGYS - DexGYS+Template Ours
20% 35 0.15 2
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Figure 8: Comparison with generative baseline with or without template on unseen categories

information. Specifically, we introduced a new template branch in the first-stage module of DexGYS,
which takes both the template object point cloud and the corresponding hand point cloud as inputs.
We extracted template-relevant features using a point cloud backbone and concatenated them with
the original target object and textual task features to condition the grasp generation process. We
re-trained this customized DexGY S+Template model from scratch on the same training dataset used
for our method. As shown in the Fig. 8, incorporating the template grasp improves the performance
of DexGYS to some extent, especially in terms of grasp quality and task relevance. However, the
performance of this variant remains consistently inferior to our proposed model across all 8 unseen
object categories. This result suggests that simply using the template grasp as an additional condition,
without explicitly modeling the geometric similarity between the template and the target object, is
insufficient for generalizing to novel categories.

Ablation Study on Cascaded Framework. Fig. 17 compares the transferred part and direction maps
between models trained independently (w/o cascaded-I) and our cascaded framework. The model
without the cascaded framework (columns (b,f)) exhibits significant inconsistency across the three
maps, highlighting the importance of the cascaded design.

Ablation Study on Task Embedding. Fig. 12 compares the transferred contact maps and generated
grasps between the model without task embedding and our method. Our method (columns (b,d))
aligns better with the input task, indicating that incorporating task descriptions into the model enhance
grasp adaptation to diverse tasks.

Table 6: Robustness to template selection strategy on novel categories.

Method SRT Pen.] Cov.t Cont. Err.] Consis.T
Ours 7414  1.36  30.55 0.0363 79.28
Ours-Random 75.36  1.50 32.32 0.0391 77.19

Robustness to Template Variations. In main paper, for each object category, one shape template is
randomly selected from the CapGrasp dataset and used consistently across all experiments. To further
evaluate our model’s sensitivity to the choice of shape template, we conducted additional experiments
on 8 unseen object categories using varying template shapes. Specifically, for each target object
during testing, we randomly selected a different shape template (from the same category but not the
same instance) from CapGrasp, and directly applied our trained model for grasp transfer without any
re-training. In addition, we also conducted experiments using alternative template hands generated by
two different methods: DexGraspNet (an analytical method) and ContactGen (a generative method).
We sampled a diverse set of grasps around the shape template using these methods, then executed
them in simulation and selected the top-10 grasps based on success rate as template hands for grasp
transfer. We then evaluated the transferred grasps using three label-free quality metrics. As shown in
the Tab. 6 and Fig. 9, our model maintains strong performance across different template hand sources,
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demonstrating that the proposed grasp transfer framework is not restricted to a fixed shape template
and is robust to shape variation between the template and the target object.

A.6 Discussion on Broader Impacts

In this paper, we propose a transfer-based frame-
work for dexterous grasp generation. By en-
abling robust grasp transfer across objects within
categories, our method can potentially enhance
assistive robotics for daily living support, im-
prove industrial automation efficiency in manu-
facturing and logistics, and facilitate more natu-
ral physical interactions in service robotics. The
method’s ability to handle complex shape vari-
ations makes it particularly valuable for applica-
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Figure 9: Performance of transferring grasps from

different sources

tions requiring adaptable grasping, such as customized prosthetic control, warehouse automation for
diverse products, and educational robotics platforms. These advancements may ultimately contribute
to increased workplace safety, expanded accessibility for individuals with mobility impairments, and
reduced physical strain in repetitive manual tasks.
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Figure 10: Qualitative comparison results with Tink for contact map transfer on novel objects.
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Figure 11: More qualitative comparison with generative methods on unseen objects across diverse

task descriptions.
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“To use the bowl to serve food using all five fingers” “To touch the headband with three fingers”
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Figure 12: Ablation results on the use of task embedding for contact map transfer and grasp generation.
(a,c) Transferred contact maps/grasps from the model without using task embedding. (b,d) Transferred
contact maps/grasps from our proposed method.
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Figure 13: Visualization of grasps generated by our proposed method on diverse objects.
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“To grasp the wineglass to check the wine’s clarity” “To hold the game controller to control an in-game vehicle”
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Figure 14: Visualization of the grasps generated by our method on unseen categories for various task
descriptions.

Flashlight Trigger sprayer Trigger sprayer

Game controller Knife

é
Wineglass Wineglass
né\g(g &Ehfgg %

Bow! Headphones Headphones

NN 6
;8 29 29 85

N é

Template Ours GT Template Ours Template Ours

L%

Figure 15: Qualitative results of our method for contact map transfer on unseen categories.
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“To hold the knife’s handle to use it” “To hold the stem of a wineglass to drink wine”
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“To tighten trigger sprayer’s closure for secure storage” “To grip the headphones to balance it on your head”
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Figure 16: Visualization of the human grasps generated by our method on unseen objects and unseen
categories for various task descriptions.
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Figure 17: Qualitative ablation study of the cascaded framework. (a,e) Transferred contact maps.

(b,f) Transferred part/direction maps from the model w/o cascaded-I. (c,g) Transferred part/direction
maps from our model. (d,h) Ground truth part/direction maps.
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