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Abstract001

International enterprises, organizations, and002
hospitals collect large amounts of multi-modal003
data stored in databases, text documents, im-004
ages, and videos. While there has been recent005
progress in the separate fields of multi-modal006
data exploration as well as in database sys-007
tems that automatically translate natural lan-008
guage questions to database query languages,009
the research challenge of querying both struc-010
tured databases and unstructured modalities011
(e.g., texts, images) in natural language remains012
largely unexplored. In this paper, we propose013
M2EX 1—a system that enables multi-modal014
data exploration via language agents. Our ap-015
proach is based on the following research con-016
tributions: (1) Our system is inspired by a real-017
world use case that enables users to explore018
multi-modal information systems. (2) M2EX019
leverages an LLM-based agentic AI framework020
to decompose a natural language question into021
subtasks such as text-to-SQL generation and022
image analysis and to orchestrate modality-023
specific experts in an efficient query plan. (3)024
Experimental results on multi-modal datasets,025
encompassing relational data, text, and images,026
demonstrate that our system outperforms state-027
of-the-art multi-modal exploration systems, ex-028
celling in both accuracy and various perfor-029
mance metrics, including query latency, API030
costs, and planning efficiency, thanks to the031
more effective utilization of the reasoning ca-032
pabilities of LLMs.033

1 Introduction034

The rapid expansion of multi-modal data; span-035

ning structured tables, text, images, and video; has036

created an urgent need for flexible, scalable sys-037

tems for complex data exploration. In fields like038

healthcare, users often query across EHRs, medical039

images, and clinical notes using natural language.040

1Data and code repository are available at https:
//anonymous.4open.science/r/M2EX-paper-87C0/
README.md.

However, current systems struggle with integrating 041

modalities, capturing user intent, and optimizing 042

execution workflows, limiting their real-world util- 043

ity. Traditional solutions focus on single-modality 044

tasks such as text-to-SQL (Sivasubramaniam et al., 045

2024; Nooralahzadeh et al., 2024; Pourreza and 046

Rafiei, 2024), visual question answering (Li et al., 047

2023a; Ko et al., 2023; Du et al., 2023), or domain- 048

specific QA (Dong et al., 2024; Liu et al., 2024b), 049

often relying on rigid pipelines or handcrafted logic. 050

While effective in narrow settings, they lack the 051

flexibility to handle heterogeneous data or dynamic 052

analytical goals. 053

Recent large language models (LLMs) and 054

vision-language models (VLLMs) offer broader 055

generalization but remain limited in real-world mul- 056

timodal use. Techniques like retrieval-augmented 057

generation (RAG) improve grounding but often fail 058

at structured reasoning, long-term context, and pre- 059

cise tool use; especially in domains that require 060

deep alignment across modalities and step-wise 061

execution. Efforts to inspire LLMs with agentic 062

capabilities – such as ReAct (Yao et al., 2023), tool 063

invocation (Yang et al., 2023; Schick et al., 2023), 064

or workflow automation (Liu et al., 2024a; Urban 065

and Binnig, 2024) – have further exposed systemic 066

challenges. 067

Existing frameworks frequently adopt rigid, se- 068

quential decision-making processes, incurring com- 069

putational overhead and limiting scalability. Eval- 070

uations of these systems are often conducted on 071

in-house datasets, lacking rigorous benchmarking 072

against ground-truth metrics or real-world multi- 073

modal contexts. Moreover, many approaches en- 074

force fixed task-planning hierarchies or routing 075

mechanisms, stifling adaptability and reusability 076

across diverse applications. This “one-size-fits-all” 077

mentality contrasts starkly with the need for mod- 078

ular, composable agents capable of dynamically 079

integrating domain-specific tools, retaining contex- 080

tual memory, and self-optimizing workflows. 081
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Figure 1: (Left): Example workflows of multi-modal data exploration in natural language over heterogeneous data
sources. (Right): M2EX system architecture.

To understand these challenges, a concrete sce-082

nario of multi-modal exploration involving a rela-083

tional database, text documents, and images is out-084

lined here. A seemingly straightforward query like085

Show me the progression of cancer lesions over the086

last 12 months of patients with lung cancer who are087

smokers (see Figure 1, Left) requires multi-modal088

integration, posing challenges in decomposition089

and optimization. Critical to this process is opti-090

mizing the workflow sequence, i.e., determining091

which queries should be executed first to minimize092

computational overhead and maximize efficiency.093

In this work, we propose a novel framework094

for multi-modal data exploration that bridges these095

gaps through LLM-based agents designed for ex-096

tensibility, precision, and cross-domain generaliza-097

tion. Our approach combines a “Swiss army knife”098

philosophy — enabling reusable, adaptable mod-099

ules for tasks like semantic parsing, cross-modal100

retrieval, and structured data operations — with101

a principled evaluation strategy spanning diverse102

benchmark datasets. By decoupling task planning103

from execution and incorporating feedback-driven104

memory, our system supports iterative exploration105

while mitigating the pitfalls of shallow evaluation106

and fixed workflows. We demonstrate its efficacy107

across text, visual, tabular, and hybrid data do-108

mains, underscoring the potential of agentic LLMs109

to unify multi-modal analysis in a scalable, user-110

centric paradigm.111

• Heterogeneous data understanding: How can112

we accurately interpret natural language queries113

over diverse data types such as text, tables, and114

images?115

• Workflow orchestration: How can we decompose116

a complex query into sub-tasks, organize them117

into an executable workflow, and delegate each to118

the right model or tool; respecting dependencies119

and enabling parallelism? 120

• Explainability: How can we provide users with 121

traceable, transparent results, showing how an- 122

swers were derived, what data contributed, and 123

where uncertainty remains? 124

In this paper, we propose M2EX—a multi-modal 125

data exploration system that uses a LLM-based 126

agentic framework to tackle these challenges. The 127

basic idea is to first decompose a complex natu- 128

ral language question into simpler sub-questions. 129

Each sub-question is then translated into a work- 130

flow of specific tasks. By applying smart planning, 131

our approach can reason about which task in the 132

workflow fails and thus re-plan that specific task 133

rather than restarting the complete workflow. The 134

advantage of our approach compared to similar sys- 135

tems such as CAESURA (Urban and Binnig, 2024) 136

is that it enables parallel task execution through the 137

construction of a directed acyclic task graph and 138

requires a lower number of tokens from prompt 139

engineering, resulting in more efficient query exe- 140

cution times and API calling costs. 141

The main contributions of our paper are as fol- 142

lows: (i) Unified DAG–first planning. The plan- 143

ner compiles a natural-language query directly into 144

an execution directed-acyclic graph (DAG); inde- 145

pendent subtasks therefore run in parallel without 146

a second “physical-plan” stage. (ii) Self-debug & 147

selective re-planning for speed. Each expert tool 148

validates its own output once; if a fault persists, 149

the agent rewires only the affected sub-graph. This 150

cuts end-to-end latency by up to 51% and reduces 151

token usage by 18% on the ArtWork benchmark. 152

(iii) Zero-shot cross-domain generalisation. With 153

a single prompt set and no in-context examples, 154

M2EX attains up to 42% higher answer accuracy 155

than CAESURA and NeuralSQL on ArtWork, Ro- 156

toWire, and EHRXQA. 157
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2 Related Work158

Text-to-SQL systems. The research field of text-159

to-SQL systems has seen tremendous progress over160

the last few years (Floratou et al., 2024; Pourreza161

and Rafiei, 2024) due to advances in large language162

models. Original success can be attributed to rather163

simplistic datasets consisting of databases with164

only several tables, as in Spider (Yu et al., 2018).165

Especially the introduction of new benchmarks166

such as ScienceBenchmark (Zhang et al., 2024b),167

FootbalDB (Fürst et al., 2024), BIRD (Li et al.,168

2024b) or SM3 (Sivasubramaniam et al., 2024) has169

further pushed the limits of these systems. Most of170

the research efforts have been restricted to querying171

databases in English apart from a few exceptions172

such as Statbot.Swiss (Nooralahzadeh et al., 2024).173

Multi-modal systems. Video Database Man-174

agement Systems (VDBMSs) support efficient and175

complex queries over video data, but are often re-176

stricted to videos only (e.g., Zhang et al., 2023;177

Kang et al., 2019; Kakkar et al., 2023). Thala-178

musDB (Jo and Trummer, 2024) enables queries179

over multi-modal data but requires SQL as input,180

with explicit identification of the predicates that181

should be applied to an attribute corresponding182

to video or audio data. Similarly, MindsDB2 and183

VIVA (Kang et al., 2022) require that users write184

SQL and manually combine data from relational ta-185

bles and models. Vision-language models provide186

textual descriptions of video data (Zhang et al.,187

2024a), but are not designed to support precise,188

structured queries. Recent multi-modal systems189

such as MAGMA (Doe et al., 2025), and LLaVA-190

Next (Li et al., 2024a) extend vision-language rea-191

soning via unified interfaces or tool-based con-192

trollers. However, these models are largely lim-193

ited to vision-only pipelines and lack support194

for structured tool orchestration across modali-195

ties. In contrast, M2EX generalizes to diverse tool196

types—including text-to-SQL, Python plotting, and197

image-VQA—via explicit DAG planning and par-198

tial re-planning, enabling scalable and interpretable199

execution across multi-modal queries.200

Closest to our work are CAESURA (Urban and201

Binnig, 2024), PALIMPZEST (Liu et al., 2024a),202

and MAT (Gao et al., 2025), which address multi-203

modal querying and AI workload optimization. In204

contrast, M2EX focuses on efficient orchestration205

of model calls and dependencies, reducing latency206

and cost while improving accuracy by minimiz-207

2https://docs.mindsdb.com

ing interference from intermediate outputs (Schick 208

et al., 2023)3. 209

While related systems emphasize query plan- 210

ning, they fall short in enhancing the accuracy and 211

explainability of model outputs—critical needs in 212

domains like medical data science, where regula- 213

tory standards require transparent and justifiable 214

results. 215

3 Method and System Design 216

Problem statement. Given a multi-modal query 217

q, a data lake D, a tool catalogue T with metadata 218

Tmeta, our goal is to produce a directed acyclic 219

task graph G = (V,E) and a final answer a such 220

that each node v ∈ V is a (tool, args) pair, edges 221

E encode data dependencies, the execution of G 222

is valid w.r.t. Tmeta, and a maximizes task-level 223

answer accuracy. 224

Proposed System: To address this problem, 225

M2EX enables multi-modal data exploration via 226

language agents. Its details are presented in Al- 227

gorithm 1 and Figure 1 (right) (A fully anno- 228

tated DAG and end-to-end use-case example ap- 229

pear in Figures 2 and 3). M2EX is an agentic 230

system (Kapoor et al., 2024) driven by LLMCom- 231

piler (Kim et al., 2023), a dynamic planner pat- 232

tern based on a Large Language Model, equipped 233

with a comprehensive toolkit T containing all the 234

necessary models to decompose a user’s request, 235

such as a multi-modal natural language question, 236

into a workflow (i.e., a graph of sub-questions). 237

The workflow is represented as a Directed Acyclic 238

Graph (DAG), where each node corresponds to 239

a simple sub-task (or sub-question) with a spe- 240

cific tool assigned by the planner. While decou- 241

pling logical and physical plans can be subopti- 242

mal due to plan ambiguity and nonlinearity, unlike 243

CAESURA, the planner determines sub-tasks that 244

can be executed in parallel and manages their de- 245

pendencies by leveraging an LLM to directly gener- 246

ate the execution plan from the query as a graph of 247

function calls. M2EX is designed to be adaptable, 248

allowing dynamic debugging and plan modifica- 249

tion (re-planning) when necessary, for example, if 250

a failure occurs during a text-to-SQL sub-task. 251

As shown in Algorithm 1 and Figure 1, the sys- 252

tem is composed of the following key components: 253

(1) User Query (q): a multi-modal natural lan- 254

guage question posed by the user, which initiates 255

3CAESURA and MAT employ the ReAct agent framework,
which leads to extended context tokens and increased latency.
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Algorithm 1 M2EX: Multi-Modal Data Explo-
ration via Language Agents
Require: User query q, Agent Core LLM, toolkit T , Data Lake D, Pre-

defined Prompts P , Empty memory stateR
Ensure: Final answer a

1 Stage 1: Planning & Expert Model Allocation
2 R ← R∪ {q,Dmeta}
3 S ← DECOMPOSE(R,LLM, Tmeta) ▷ Use an agent core LLM

(with a planner prompt ∈ P access to tool metadata) to decompose q
into subtasks s1, . . . , sn. Each task contains a tool, arguments, and list
of dependencies.

4 G← BUILDDAG(S,LLM) ▷ Construct a
Directed Acyclic Graph (DAG): G where each node represents a subtask
and edges represent dependencies

5 Stage 2: Execution & Self-debugging
6 σ ← TOPOLOGICALSORT(G) ▷ Determine an execution order that

respects dependencies
7 B ← GROUPPARALLELTASKS(σ,G) ▷ Partition tasks into parallel

execution
8 for each batch bk ∈ B do
9 Launch parallel execution:

10 for each subtask si ∈ bk do
11 ri ← EXECUTE(si, T ,D) ▷ Invoke the assigned expert

tool for si. Integrate n-time self-debugging to automatically detect and
correct errors as needed. (n = 1). If there is still an error, provide an
error message as an output of execution.

12 R ← R∪ {ri}
13 end for
14 end for
15 Stage 3: Decision Making
16 ValidateR via reflection ▷ Check that outputs are correct and

executable; if not, trigger error feedback.
17 if validation fails then
18 G← REPLAN(G,R,LLM, Tmeta) ▷ Dynamically adjust

the DAG (e.g., reallocate tasks or update tool parameters) based on error
feedback using an agent core LLM (with a replanning prompt ∈ P).

19 goto line 5 ▷ Restart execution with the updated plan.
20 end if
21 a← SYNTHESIZE(R,LLM) ▷ Aggregate and refine intermediate

results into the final answer using LLM reasoning.
22 if a is insufficient or uncertain then
23 G← REPLAN(G,R,LLM, Tmeta) ▷ Dynamically adjust

the DAG (e.g., reallocate tasks or update tool parameters) based on error
feedback using an agent core LLM (with a replanning prompt ∈ P).

24 goto line 5 ▷ Restart execution with the updated plan.
25 end if
26 return a

the process of task decomposition and execution.256

(2) Agent Core (LLM): the core reasoning engine257

that powers the dynamic planning, execution, and258

decision-making processes. The LLM is responsi-259

ble for decomposing the user query into subtasks,260

managing dependencies, and synthesizing final re-261

sults using diverse prompts P . (3) Expert Models &262

Tools ( Toolkit ) (T ): a comprehensive collection of263

expert models and tools that are used for executing264

specific sub-tasks. The toolkit provides the neces-265

sary models for tasks such as text-to-SQL, text266

analysis, image analysis, data preparation,267

and data plotting. Each expert model or tool268

should include a description and argument specifi-269

cations (Tmeta), and they will be available during270

the planning and re-planning stages. (4) Data Lake271

(D): a central repository that stores both structured272

and unstructured data, such as tabular data, images,273

and text. Each expert model and tool has direct274

access to the data lake to perform its assigned tasks.275

The data stored in the lake is utilized as input for276

various tasks, enabling the system to generate ac- 277

curate results for the user’s query. (5) Pre-defined 278

Prompts (P): a collection of predefined prompts 279

available to the LLM, which are used to guide 280

the reasoning process during planning, execution, 281

and decision-making (see details in Appendix B). 282

(6) Memory State (R): The initial memory state 283

starts empty and captures all intermediate results 284

and interactions throughout the workflow execu- 285

tion. The system tracks these intermediate results 286

using an output object that stores the answer and 287

reasoning at each node in the workflow. (7) Final 288

Answer (a): The final answer is the output gen- 289

erated by the system after executing all the tasks 290

and performing reasoning through the LLM. It con- 291

solidates all intermediate results and provides a 292

comprehensive response to the user’s query. The 293

final answer typically includes several components: 294

a summary of the task or query result, detailed 295

information about the outcome, the source of the 296

data used, an inference indicating the success of 297

the task, and any additional explanations or clarifi- 298

cations. This structured output ensures that the user 299

receives not only the result but also the reasoning 300

and context behind it. In Figure 2, we demonstrate 301

the showcase of M2EX using an example query 302

applied to the EHRXQA data, which includes re- 303

lational tables and images: Was patient 18061894 304

prescribed acetaminophen, and did a chest x-ray 305

show any technical assessments until 12/2103? 306

The system starts with the user query q and pro- 307

cesses it through several stages, as detailed below: 308

(i) Planning & Expert Model Allocation. The sys- 309

tem begins by analyzing the user query q and de- 310

composes it into a sequence of tasks. Using the 311

agent core (LLM), the system identifies the re- 312

quired expert models and tools from the toolkit 313

T , along with their input arguments and inter- 314

dependencies. These subtasks are synthesized 315

into a workflow represented as a Directed Acyclic 316

Graph (DAG), G, where each node represents a 317

task, and edges represent dependencies between 318

them. E.g., a natural language question can be split 319

into multiple tasks such as intent table detec- 320

tion, text2SQL, and image analysis as shown 321

in Figure 2. The workflow reflects the execution 322

sequence and dependencies that are necessary to 323

answer the user’s query. The system also utilizes 324

predefined prompts P to guide the reasoning pro- 325

cess during task decomposition. 326

(ii) Execution and Self-Debugging. The system 327

executes the tasks according to the generated work- 328
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flow by invoking the relevant expert models and329

tools from the toolkit T . The system utilizes a330

state object R, which stores intermediate results331

and interactions during the execution. The tasks are332

partitioned into independent batches B that can be333

executed in parallel, which is determined through334

a topological sort (TOPOLOGICALSORT(G)) of the335

DAG. For each batch, the system launches parallel336

executions of the assigned tasks. The tasks are ex-337

ecuted using the expert models, and the outcomes338

are passed on to subsequent tasks that depend on339

them. Each expert model includes a self-debugging340

mechanism to detect and correct errors during exe-341

cution. If an error persists, the system can provide342

feedback and retry the process, thereby enhancing343

the robustness of the execution.344

(iii) Decision Making. After the execution of the345

subtasks, M2EX inspects the intermediate results346

stored in R to determine whether they are suffi-347

cient to fulfill the user’s request. If the results are348

satisfactory, the system synthesizes them into the349

final answer a. However, if the results are insuffi-350

cient or uncertain, the system triggers a re-planning351

process by invoking REPLAN(G,R,LLM, Tmeta)352

to adjust the DAG and re-execute the tasks. This353

process repeats until the decision-making compo-354

nent is satisfied with the final result or a predefined355

maximum loop limit is reached.356

In summary, M2EX uses an algorithmic approach357

where the system first decomposes the user query358

into subtasks, executes these tasks with error de-359

tection and correction mechanisms, and synthe-360

sizes the results into a final answer. The system is361

highly adaptive, with dynamic re-planning capabil-362

ities powered by the reasoning abilities of the LLM363

to ensure efficient task execution, debugging, and364

modification of the plan when needed. Our current365

M2EX implementation offers a range of features,366

including self-debugging, query re-planning, opti-367

mization, and explainability to better understand368

how a natural language question is decomposed369

into multiple sub-tasks. See details in Appendix D.370

Complexity and convergence. Planning inspects371

|S| subtasks and calls Φ once, costing O(|S|CLLM)372

tokens (CLLM = context length processed by the373

language model). With unlimited workers, execu-374

tion latency is O(depth(G)); with p workers it is375

bounded by depth(G) as well. Re-planning only376

touches the affected sub-DAG, so its worst-case377

cost is strictly ≤ the first planning pass.378

4 Experiments 379

In this section, we evaluate M2EX’s performance, 380

focusing on the following research questions: (1) 381

How well does M2EX tackle multi-modal natural 382

language questions on three different datasets con- 383

sisting of tabular data and images? (2) How does 384

the system perform compared to state-of-the-art 385

systems such as CAESURA (Urban and Binnig, 386

2024) and NeuralSQL (Bae et al., 2024) on under- 387

lying benchmark datasets? (3) What systematic 388

errors can we observe? 389

4.1 Experimental Setup 390

Datasets For our experiments, we used three dif- 391

ferent datasets, namely datasets about artwork, bas- 392

ketball, as well as electronic health records. Due 393

to hardware limitations, we reduced the dataset to 394

100 images and reports. Processing the full size 395

in CAESURA can result in crashes due to out-of- 396

memory issues. 397

DATASET 1: ARTWORK. This dataset was intro- 398

duced by Urban and Binnig (2024) and contains 399

information about paintings in tabular form as well 400

as an image collection containing 100 images of 401

the artworks, collected from Wikipedia. The tab- 402

ular data contains metadata about paintings such 403

as title, inception, movement, etc. as well as a 404

reference to the respective paintings. A typical ex- 405

ample question from this dataset is Plot the number 406

of paintings depicting war for each century (see 407

Figure 3 in the Appendix). 408

In addition to the 24 existing questions in the Art- 409

Work dataset, we propose six new questions aimed 410

at evaluating parallel task planning and execution, 411

facilitating a comparison between the character- 412

istics of the two architectures. These six ques- 413

tions incorporate both single and multiple modali- 414

ties. Moreover, four of the six questions require re- 415

sponses in various formats: two questions demand 416

two plots, and two questions involve a combination 417

of plotting and showing the results in a specific 418

data structure, i.e. either as a tabular format or as 419

a JSON format. The final test dataset contains 30 420

natural language questions derived from the orig- 421

inal 24 in the ArtWork dataset. These include 8 422

queries seeking a single result value, 11 requir- 423

ing structured data as output, and 11 requesting 424

a plot. Of these, 18 queries involve multi-modal 425

data, while the remaining 12 are based exclusively 426

on relational data. We have chosen this dataset to 427

directly compare our system with CAESURA (Ur- 428
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ban and Binnig, 2024), one of the state-of-the-art429

systems for multi-modal data exploration in natural430

language.431

DATASET 2: ROTOWIRE. This dataset is also uti-432

lized by Urban and Binnig (2024) and consists433

of one relational database and 100 randomly se-434

lected textual reports about NBA games, including435

metadata, key statistics of individual players, and436

team performance metrics. A typical example ques-437

tion from this dataset is Plot the highest number of438

three-pointers made by players from each national-439

ity. The test dataset comprises 12 natural language440

questions, evenly divided into 6 single-modal and441

6 multi-modal queries. Regarding output format,442

3 questions require a single value as a response, 5443

involve structured data outputs, and 4 necessitate444

visualization through plots.445

DATASET 3: ELECTRONIC HEALTH RECORDS446

(EHR). We also utilized the EHRXQA (Bae et al.,447

2024) dataset, a multi-modal question answering448

dataset that integrates structured electronic health449

records (EHRs) with chest X-ray images. This450

dataset consists of 18 tables and 432 images, and451

specifically requires cross-modal reasoning. The452

questions of EHRXQA are categorized based on453

their scope in terms of modality and patient rele-454

vance. For modality-based categorization, ques-455

tions were classified into three types: Table-related,456

image-related, and table-image-related, based on457

the data modality required. The patient-based cat-458

egorization classified questions based on their rel-459

evance to a single patient, a group of patients,460

or none (i.e., unrelated to specific patients). We461

have chosen this dataset since it was used to eval-462

uate NeuralSQL, another state-of-the-art system463

for multi-modal data exploration. To manage the464

cost of an API call, we extracted 100 questions465

randomly. The selection process was guided by466

three predefined categories within the test set of the467

EHRXQA dataset: Image Single-1, Image Single-468

2, and Image+Table Single (for details, please look469

at Bae et al. (2024)).470

Several considerations influenced our decision to471

work with reduced versions of these datasets:472

Demonstrating Viability The reduced dataset size473

demonstrates M2EX’s viability across diverse mul-474

ti-modal datasets with ground truth, proving its475

ability to handle complex queries in a controlled476

setting. Complexity of Building Datasets Construct-477

ing large-scale multi-modal datasets with precise478

ground truth is a complex, manual process, which479

limits the scaling-up within the study’s scope. Cost480

Considerations The cost of API calls to the LLM 481

powering M2EX necessitates a balance between 482

dataset size and experimental feasibility, ensuring 483

thorough evaluation within practical constraints. 484

4.2 Baseline Systems and Setup 485

We compare M2EX to the baseline implementa- 486

tions of CAESURA (Urban and Binnig, 2024) 487

and NeuralSQL (Bae et al., 2024) - two impor- 488

tant state-of-the-art systems for multi-modal data 489

exploration. 490

CAESURA supports natural language queries 491

over a multi-modal data lake, leveraging BLIP-2 492

(Li et al., 2023b) for visual question answering 493

and a fine-tuned BART (Lewis et al., 2020) for 494

text question answering. We reproduced the re- 495

sults of CAESURA on the ArtWork and RotoWire 496

datasets using GPT-4o for planning, data process- 497

ing, and plot generation while adopting the other 498

tool models as proposed in CAESURA (Urban and 499

Binnig, 2024). For comparison with our system, 500

we use GPT-4o as the LLM for both planning and 501

text analysis on RotoWire. On ArtWork, we em- 502

ploy GPT-4o as the planner and retain the same 503

model for visual question answering (i.e., BLIP-2) 504

in M2EX. 505

In NeuralSQL, an LLM is integrated with an 506

external visual question answering system, M3AE 507

model (Chen et al., 2022), to handle multi-modal 508

questions over a structured database with images 509

by translating a user question to SQL in one step. 510

To ensure that we used the optimal hyperparameter 511

settings and prompt structure, we contacted the au- 512

thors of EHRXQA (Bae et al., 2024), who provided 513

the results of their experiment for NeuralSQL using 514

GPT-4o on 100 randomly selected questions. 515

For M2EX, we employ the M3AE model with 516

task-specific fine-tuned weights, provided by (Bae 517

et al., 2024), for the image analysis task. The cus- 518

tomized M3AE model is encapsulated as a web 519

service and deployed on the same computing node 520

as our experiments. We conduct the experiments 521

using a CUDA-accelerated computational node on 522

an OpenStack virtual host. This node is equipped 523

with a 16-core CPU, 16 GB of main memory, and 524

240 GB of SSD storage. Additionally, it features an 525

NVIDIA T4 GPU with 16 GB of dedicated graph- 526

ics memory. A complete mapping of subtasks to 527

expert models/tools and prompt types is provided 528

in Table 4 (Appendix C). 529
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Figure 2: M2EX system architecture in EHRXQA (Bae et al., 2024) with an example of processing a multi-modal
query. The query is automatically decomposed into various components which can be inspected by the user for
explainability.

4.3 Evaluation Metrics530

To evaluate M2EX against state-of-the-art systems,531

we use the following metrics: (i) Accuracy: Mea-532

sures the accuracy (i.e., exact match) of the gen-533

erated result set compared with the gold standard534

result set or with the human expert. (ii) Steps: Num-535

ber of steps required by the respective system to536

come up with the final result. These steps include537

reasoning, planning, re-planning, etc. (iii) Tokens:538

Number of tokens used for prompt engineering.539

(iv) Latency: End-to-end execution time for a sys-540

tem to come up with the final result. (v) API costs:541

Costs for calling the LLM, e.g. for GPT4o.542

We apply the above-mentioned metrics under543

various questions and system categories:544

(i) Modality: Questions can either be of single545

modality, i.e., querying only relational data or im-546

age data, or of multiple modalities, i.e., querying547

both relational and image data. (ii) Output Type:548

The output type of a question can either be a single549

value, e.g., true or false, a data structure, e.g., in550

tabular or JSON format, a plot, or a combination551

of plots and data structures. (iii) Workflow: The552

generated workflow plan can either be sequential or553

parallel. Finally, we evaluate if a system generates554

a correct (multi-modal) query plan (i.e., generated555

plan), and if it supports re-planning.556

4.4 Results on the Benchmark Datasets557

Results on the ArtWork and RotoWire Datasets558

Table 1 shows M2EX outperforms CAESURA by559

30% on the ArtWork and by ca. 42% on the Ro-560

toWire datasets in accuracy, with advantages in 561

both single- and multi-modality queries. Efficiency- 562

wise, M2EX excels on ArtWork with fewer steps, 563

lower latency, and reduced costs. On RotoWire, 564

despite higher token usage and costs due to ad- 565

vanced text analysis, M2EX maintains superior ac- 566

curacy. Additionally, M2EX supports re-planning 567

and offers better explanations, features absent in 568

CAESURA. 569

Results on the EHRXQA Dataset In Table 2, 570

M2EX outperforms NeuralSQL in overall accu- 571

racy (51.00% vs. 33.00% in 10-shot) on the 572

EHRXQA dataset, especially in multiple-table 573

queries (77.50% vs. 47.50%) and binary ques- 574

tions (74.00% vs. 48.00%). Additionally, M2EX 575

provides plan generation (98% coverage), expla- 576

nations, and replanning—features that NeuralSQL 577

lacks. Metrics like steps, tokens, and latency are ex- 578

cluded since NeuralSQL generates answers directly 579

without intermediate steps, unlike M2EX’s trans- 580

parent workflow. We exclude CAESURA from the 581

EHRXQA experiments due to its inefficiency with 582

EHRXQA’s complex schema. While CAESURA 583

is intended to be a general-purpose multi-modal 584

system, it processes the relational database through 585

multiple steps, examining each table and relation- 586

ship sequentially. This limitation introduces sig- 587

nificant overhead when handling the complex data 588

schema of the EHRXQA dataset (there are 18 ta- 589

bles) during its discovery phase. Consequently, 590

reproducing CAESURA on EHRXQA questions 591

fails to perform inferences at the early stages of 592
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System Category (# in ArtWork|# in RotoWire)
ArtWork RotoWire Re-planning

Accuracy Steps Tokens Latency [s] Cost [$] Gen. Plan Accuracy Steps Tokens Latency [s] Cost [$] Gen. Plan

CAESURA

Modality Single (15|6) 60.00% 152 214,014 973.28 1.33

80%

50.00% 79 100,277 500.52 0.65

91.67% No

Multiple (15|6) 6.67% 164 268,918 4,847.95 1.65 0.00% 78 133,230 959.17 0.85

Output

Single Value (8|3) 37.50% 88 135,077 1,047.24 0.82 66.67% 32 45,145 287.55 0.29
Data Structure (10|5) 50.00% 116 183,454 2,683.03 1.14 20.00% 69 104,345 659.37 0.68
Plot (8|4) 25.00% 79 112,732 1,856.66 0.69 0.00% 56 84,017 512.77 0.53

few-shot (4) Type Plot-Plot (2|0) 0% 16 21,508 108.87 0.14 – – – – –
in planning Plot-Data Structure (2|0) 0% 17 30,161 125.42 0.19 – – – – –

Workflow Sequential (24|12) 41.67% 261 399,045 5,330.12 2.45 25.00% 157 233,507 1,459.69 1.50
Parallel (6|0) 0% 55 83,887 491.11 0.52 – – – – –

Overall (30|12) 33.33% 316 482,932 5,821.23 2.98 25.00% 157 233,507 1,459.69 1.50

M2EX

Modality Single (15|6) 100.00% 96 159,212 525.09 0.61 100.00% 34 89,810 524.06 0.40
Multiple (15|6) 26.67% 107 326,400 2,515.03 1.49

100%

33.33% 42 952,386 3,235.96 3.22

100% Yes
Output

Single Value (8|3) 50.00% 56 71,575 494.78 0.39 100.00% 16 108,520 499.70 0.40
Data Structure (10|5) 50.00% 67 223,528 1,330.40 0.89 40.00% 27 410,698 2,120.15 1.57
Plot (8|4) 75.00% 52 118,431 798.97 0.48 75.00% 33 522,987 1,140.17 1.65

zero-shot Type Plot-Plot (2|0) 100.00% 14 50,108 308.92 0.22 – – – – –
Plot-Data Structure (2|0) 100.00% 14 21,970 107.05 0.10 – – – – –

Workflow Sequential (24|12) 62.50% 163 338,766 2,131.11 1.51 66.67% 76 1,042,196 3,760.02 3.62
Parallel (6|0) 66.67% 40 146,846 909.01 0.59 – – – – –

Overall (30|12) 63.33% 203 485,612 3,040.12 2.10 66.67% 76 1,042,196 3,760.02 3.62

Table 1: Performance metrics of Caesura (Urban and Binnig, 2024) and M2EX on ArtWork and RotoWire. Planner
coverage (Gen. Plan) is 100% on ArtWork and RotoWire, indicating reliable task decomposition across domains.

System
Scope Output Type

Overall (100)
Generated

Replanning
Image Single-1 Image Single-2 Image+Table Single Binary Categorical Plan(30) (30) (40) (50) (50)

NeuralSQL
zero-shot 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

N/A No
few-shot (n = 10) 26.67% 20.00% 47.50% 48.00% 18.00% 33.00%

M2EX zero-shot 23.33% 43.33% 77.50% 74.00% 28.00% 51.00% 98% Yes

Table 2: Performance metrics of NeuralSQL (zero-shot and few-shot) and
M2EX (zero-shot) on EHRXQA. Planner coverage (Generated Plan): 98%.

Dataset System Tasks Errors Dominant Error Source

ArtWork CAESURA 30 20 Faulty plans; VQA errors
M2EX 30 11 VQA errors only

RotoWire CAESURA 12 9 Text analysis; SQL faults
M2EX 12 4 Text analysis

EHRXQA NeuralSQL 100 67 N/A – no plan output
M2EX 100 49 VQA errors only

Table 3: Top-level error break-
down. See App. E for details.

the planning phase, ultimately terminating after ex-593

ceeding the maximum number of allowed attempts.594

4.5 Error Analysis595

We evaluate system errors across three datasets:596

ArtWork, RotoWire, and EHRXQA, identifying597

key bottlenecks and component failures (see Table598

3 and detailed breakdown in Appendix E, Fig. 6).599

On the ArtWork dataset, CAESURA exhibits 20600

errors out of 30 tasks, mainly due to faulty plan-601

ning in sequential workflows and incorrect outputs602

from the image analysis module. Multi-modal tasks603

involving plot and data structure outputs are partic-604

ularly error-prone, especially in parallel workflows605

where planning failures are common. By contrast,606

M2EX achieves full planning success, with image607

interpretation errors being the only significant is-608

sue. In the RotoWire dataset, CAESURA fails609

on 9 of 12 tasks due to text analysis failures and610

SQL generation flaws. M2EX resolves all single-611

modal tasks but faces 4 errors in multi-modal tasks,612

again tied to text interpretation. These patterns613

highlight M2EX’s robustness in planning and ex-614

ecution while exposing shared weaknesses in text615

and image understanding across systems.616

For the EHRXQA dataset, we focus solely on617

M2EX due to NeuralSQL’s lack of interpretable618

planning. Of 49 errors, 36 arise in categorical tasks, 619

indicating a strong link between output type and 620

model performance. Most failures originate from 621

inaccurate image analysis by the M3AE model. 622

These results emphasize the need for improved 623

image understanding, especially for categorical rea- 624

soning, alongside stronger planning and SQL com- 625

ponents. See Appendix E for full error analysis. 626

5 Conclusions 627

In this paper, we show that multi-agent collabo- 628

ration via LLMs (GPT-4o) offers a powerful ap- 629

proach to multi-modal data exploration in natural 630

language. Our system, M2EX, outperforms prior 631

methods across datasets with tabular, text, and im- 632

age data by leveraging smart re-planning, parallel 633

execution, and transparent, explainable workflows. 634

It blends accuracy, efficiency, and user-centric de- 635

sign, marking a significant advance in multi-modal 636

data exploration, with strong performance in text- 637

to-SQL tasks and potential for further enhancement 638

in image reasoning and workflow optimization. 639

Future work will focus on better data alignment, 640

prompt design, planning efficiency, and scaling to 641

larger datasets and new modalities such as video 642

and human-in-the-loop interaction. 643
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Limitations644

Despite M2EX’s overall superior performance, sev-645

eral limitations remain. Most notably, the system’s646

reliance on image analysis introduces a consistent647

source of error, particularly in tasks involving cat-648

egorical outputs. The M3AE model often fails to649

capture subtle visual distinctions, which dispro-650

portionately affects the accuracy of multi-modal651

tasks. We did not explore alternative image process-652

ing approaches, as improving the visual pipeline653

was not the primary objective of this study. In-654

stead, we adopted visual models commonly used in655

prior work to ensure a fair and consistent basis for656

comparison. Similarly, we restricted our language657

model experiments to GPT-4o to both showcase658

our proposed methods and maintain comparability659

with recent studies.660

Additionally, although M2EX successfully gen-661

erates plans for all tasks, its performance still662

hinges on accurate text interpretation. In the Ro-663

toWire dataset, for example, errors in multi-modal664

questions were largely driven by flawed text com-665

prehension, revealing a vulnerability in the lan-666

guage understanding pipeline.667

Finally, the system exhibits a performance gap668

between binary and categorical tasks, suggesting669

that output type complexity influences success670

rates. These findings indicate that further improve-671

ments are needed in visual reasoning, nuanced lan-672

guage understanding, and output-type generaliza-673

tion.674
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A M2EX on ArtWork 859

Figure 3: M2EX framework on ArtWork (Urban and Binnig, 2024) with an example of processing a multi-modal
query. The query is automatically decomposed into various components such as text2SQL, and image analysis
which can be inspected by the user for explainability.

B Prompts 860

Planner Prompt / Replanning Prompt

[SYSTEM]: Given a user question and a database schema, analyze the question to identify and break it down into relevant sub-questions.
Determine which tools (e.g., {tool_names}) are appropriate for answering each sub-question based on the available database information and
tools.
Decompose the user question into sub-questions that capture all elements of the question’s intent. This includes identifying the main objective,
relevant sub-questions, necessary background information, assumptions, and any secondary requirements.
Ensure that no part of the original question’s intent is omitted, and create a list of individual steps to answer the question fully and
accurately using tools.
You may need to use one tool multiple times to answer the original question.
First, you should begin by thoroughly analyzing the user’s main question. It’s important to understand the key components and objectives within
the query.
Next, you must review the provided database schema. This involves examining the tables, fields, and relationships within the database to
identify which parts of the schema are relevant to the user’s question and contribute to a set of sub-questions.
For each sub-question, provide all the required information that may required in other tasks. In order to find this information look at the
user question and the database information.
Each sub-question or step should focus exclusively on a single task.
Each sub-question should be a textual question. Don’t generate a code as a sub-question.
Create a plan to solve it with the utmost parallelizability.
Each plan should comprise an action from the following {num_tools} types:
{tool_descriptions}
{num_tools}. join(): Collects and combines results from prior actions.
- An LLM agent is called upon invoking join() to either finalize the user query or wait until the plans are executed.
- join should always be the last action in the plan, and will be called in two scenarios:
(a) if the answer can be determined by gathering the outputs from tasks to generate the final response.
(b) if the answer cannot be determined in the planning phase before you execute the plans. Guidelines:
- Each action described above contains input/output types and descriptions.
- You must strictly adhere to the input and output types for each action.
- The action descriptions contain the guidelines. You MUST strictly follow those guidelines when you use the actions.
- Each action in the plan should strictly be one of the above types. Follow the Python conventions for each action.
- Each action MUST have a unique ID, which is strictly increasing.
- Inputs for actions can either be constants or outputs from preceding actions. In the latter case, use the format $id to denote the ID of the
previous action whose output will be the input.
- If there is an input from preceding actions, always point its id as ‘$id‘ in the context of the action
- Always call join as the last action in the plan. Say ’<END_OF_PLAN>’ after you call join.
- Ensure the plan maximizes parallelizability.
- Only use the provided action types. If a query cannot be addressed using these, invoke the join action for the next steps.
- Never introduce new actions other than the ones provided.
{list of usecase-specific business rules}
[USER]:{state}
[SYSTEM]: Remember, ONLY respond with the task list in the correct format! E.g.: idx. tool(arg_name=args),

861
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Prompt for Decision Making

[SYSTEM]: Solve a question answering task. Here are some guidelines:
- In the Assistant Scratchpad, you will be given results of a plan you have executed to answer the user’s question.
- Thought needs to reason about the question based on the Observations in 1-2 sentences.
- Ignore irrelevant action results.
- If the required information is present, give a concise but complete and helpful answer to the user’s question. - If you are unable to give a
satisfactory finishing answer, replan to get the required information. Respond in the following format:
Thought: <reason about the task results and whether you have sufficient information to answer the question>
Action: <action to take>
- If an error occurs during previous actions, replan and take corrective measures to obtain the required information.
- Ensure that you consider errors in all the previous steps, and try to replan accordingly.
- Ensure the final answer is provided in a structured format as JSON as follows:
{{’Summary’: <concise summary of the answer>,
’details’: <detailed explanation and supporting information>,
’source’: <source of the information or how it was obtained>,
’inference’:<your final inference as YES, No, or list of requested information without any extra information which you can take from the ‘labels‘
as given below>, ’extra explanation’:<put here the extra information that you don’t provide in inference >,
}}
In the ‘inference‘ do not provide additional explanation or description. Put them in ‘extra explanation‘.
Available actions:
(1) Finish (the final answer to return to the user): returns the answer and finishes the task.
(2) Replan(the reasoning and other information that will help you plan again. Can be a line of any length): instructs why we must replan.
[USER]: {state}
[SYSTEM]: Using the above previous actions, decide whether to replan or finish.
If all the required information is present, you may finish. Consider replanning for data_preparation task if you want to structure the response
in a proper way.
If you have made many attempts to find the information without success, admit so and respond with whatever information you have gathered so the
user can work well with you.
Do not generate a response based on the sample data (assumption). If you failed after multiple attempts, you can finish and explain the reason.

862

Prompt for text2SQL

[SYSTEM]: You are a database expert. Generate a SQL query given the following user question, database information and other context that you
receive. You should analyse the question, context and database schema and come up with the executable sqlite3 query.
Provide all the required information in the SQL code to answer the original user question that may required in other tasks utilizing the relevant
database schema.
Ensure you include all necessary information, including columns used for filtering, especially when the task involves plotting or data
exploration.
This must be taken into account when performing any time-based data queries or analyses.
Translate a text question into a SQL query that can be executed on the SQLite database.
You should stick to the available schema including tables and columns in the database and should not bring any new tables or columns.
[USER]: {text2SQL task description}, {db schema}

863

Prompt for text_analysis

[SYSTEM]: You are a text analysis assistant. Analyze the provided question and report to answer the question.
Only answer the question and don’t provide extra information in your answer.
In your answer, be concrete and use None if you can’t find the answer in the report.
The output should be in the format: {{’reasoning’: ’...’, ’answer’: ’...’}}
[USER]: {text analysis task description}, {text}

864

Prompt for data_preparation

[SYSTEM]: You are a data preparation and processing assistant. Create a proper structure for the provided data from the previous steps to answer
the request.
- If the required information has not found in the provided data, ask for replanning and ask from previous tools to include the missing
information.
- You should include all the input data in the code, and prevent of ignoring them by ‘# ... (rest of the data)‘.
- You should provide a name or caption for each value in the final output considering the question and the input context."
- Don’t create any sample data in order to answer to the user question.
- You should print the final data structure.
- You should save the final data structure at the specified path with a proper filename.
- You should output the final data structure as a final output.
[USER]: {data preparation task description}, {result from previous task}

865

Prompt for data_plotting

[SYSTEM]: You are a data plotting assistant. Plot the provided data from the previous steps to answer the question.
- Analyze the user’s request and input data to determine the most suitable type of visualization/plot that also can be understood by the simple
user.
- If the required information has not been found in the provided data, ask for replanning and ask from previous tools to include the missing
information.
- Don’t create any sample data in order to answer to the user question.
- You should save the generated plot at the specified path with the proper filename and .png extension.
[USER]: {data plotting task description}, {data}
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C Tools, Models, and Prompts by Subtask 867

Task Tool / Model Prompt Type

Text-to-SQL translation GPT-4o text2SQL prompt
Text analysis GPT-4o text_analysis prompt
ArtWork VQA BLIP-2 no prompt
Medical image (EHRXQA) VQA M3AE no prompt
Data preparation GPT-4o and Python (Pandas) data_preparation pormpt and Code via LLM output
Plot generation GPT-4o and Matplotlib + Pandas data_plotting prompt and Chart Code via LLM output
DAG construction (planning/replannig) GPT-4o (Planner loop) planner Prompt / replanning prompt
Decision Making GPT-4o decision making prompt

Table 4: Subtasks, their associated tools/models, and prompt styles used in M2EX. Most tool invocations are
zero-shot or template-based.

D Optimizations in M2EX Explained with Examples 868

To better demonstrate advantages of M2EX, we provide several examples (see Figures 3 and 4) across 869

three key aspects: explanations, smart replanning, and parallel planning. The following examples provide 870

a detailed illustration of these three aspects. 871

Example 1: Plot the number of paintings that depict war for each century (see Figure 3).

Through a series of well-planned and systematically executed steps, the model demonstrates not only 872

how it processes the query but also how it provides transparency and reasoning at every stage, ensuring 873

the user understands the process and results. The figure depicts a workflow that involves (1) Planning & 874

Expert Model Allocation, (2) Execution & Self-Debugging, and (3) Decision Making. Here’s a breakdown 875

of each step: 876

1) Planning & Expert Model Allocation: The process begins with the query being broken down into a 877

sequence of subtasks: Task 1: Retrieve painting metadata, including their years and associated centuries, 878

from the database. Task 2: Analyze the images to determine whether they depict war. Task 3: Prepare the 879

data by counting the number of war-related paintings per century. Task 4: Visualize these counts in a bar 880

chart. 881

Each task is allocated to specialized tools or models, such as text2SQL to translate the natural language 882

question to SQL and database retrieval, image analysis tools for visual interpretation, coding tools to 883

structure the data, and visualization libraries like matplotlib. This stage establishes a clear plan, showing 884

how the overall query will be tackled in logical steps. 885

2) Execution & Self-Debugging: The model begins executing the tasks, providing explanations and outputs 886

at every stage to ensure clarity. Task 1 - Retrieving Data: The model constructs a SQL query to retrieve 887

the required information from the database. It explains its reasoning: to determine the century of each 888

painting, it converts the inception year into century values. The result is a list of paintings, each associated 889

with its image path and century. Task 2 - Image Analysis: With the retrieved data, the model analyzes 890

each painting to determine if it depicts war. It applies image analysis tools to interpret the visual content 891

of the paintings. The reasoning here is clear—war-related imagery, such as battles or soldiers, must be 892

identified to answer the query. The output is a dataset indicating whether each painting depicts war. Task 3 893

- Data Preparation: The model filters and aggregates the data, counting the number of paintings depicting 894

war for each century. It explains that grouping the paintings by century allows for easy comparison of 895

trends across time periods. The result is a concise summary: 1 painting from the 16th century 896

and 2 from the 18th century are identified as depicting war. Task 4 - Data Visualization: 897

Finally, the model prepares a bar chart to visualize the results. It explains its reasoning for choosing this 898

visualization: bar charts effectively compare counts across categories, in this case, centuries. A Python 899

script is provided, showing how the chart was generated, and the output is saved as an image for user 900

reference. 901

3) Decision Making: When the tasks are completed, the model reflects on its work and provides a final 902
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output based on its thought as Summary:"The number of paintings depicting war has been903

plotted for the 16th and 18th centuries.", "Details": "The analysis identified 1904

painting from the 16th century and 2 paintings from the 18th century that depict war.905

The plot visualizes these findings. [..]". Throughout the workflow, the model demonstrates a906

commitment to transparency.907

At every stage, M2EX provides reasoning to justify its actions, from choosing SQL for retrieval to908

selecting a bar chart for visualization. Intermediate outputs, like the dataset of war paintings and the909

Python plotting code, are made visible, ensuring the user can trace the steps taken. The decision making910

phase wraps up the process by summarizing findings, clarifying the approach, and sharing the final911

visual result. This shows that M2EX not only answers the query effectively but also ensures its steps are912

understandable, logical, and well-documented, building trust in its analysis.

Figure 4: Optimization of M2EX: Smart replanning.
913

Example 2 - Smart Replanning: What is depicted on the oldest Renaissance painting in the database?
(see Figure 4).

Contrary to the previous example, M2EX here involves smart replanning - a major optimization technique914

of M2EX. The main idea is to dynamically adapt the planning in case some tasks of the workflow fail or915

do not produce any results. Here’s a breakdown of each step:916

1) Planning & Expert Model Allocation: M2EX outputs the initial workflow plan that has 2 tasks. The917

first task involves retrieving the image path and the year of the oldest Renaissance painting in the database918

using a "text2SQL" expert model. It also involves an "image_analysis" expert model in the second task,919

which aims to determine what is depicted in the image.920

2) Execution and Self-Debugging: M2EX takes the information about the planned workflow as well as921

task dependencies and puts it into action. In Task 1, it comes with a reasoning statement to generate the922

SQL query as: SELECT img_path, strftime(’%Y’, inception) AS year FROM paintings WHERE923

movement = ’Renaissance’ ORDER BY inception ASC LIMIT 1. Then it executes the query over the924

Artwork database and retrieves the specific image path and year for the oldest Renaissance painting as925

[’img_path’: ’images/img_0.jpg’, ’year’: ’1438’]. This allows the model to access the actual926

painting data in the subsequent task.927
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Figure 5: Optimization of M2EX: Parallel planning.

In Task 2, M2EX utilizes the "image_analysis" expert model (i.e. visual question answering based on 928

BLIP) to examine the contents of img_0.jpg to answer the question: What is depicted in the image? The 929

output of this task is transferred as a final result to the decision making component. At this point, the 930

model’s "thought" process in this component becomes evident. It reasons that while it knows that img_- 931

0.jpg is a painting, the details about what is depicted in the painting have not been provided. Therefore, 932

the model decides to not provide a final answer to the user and does replanning. 933

The replanning capability is a crucial aspect of the M2EX’s approach. Rather than blindly accepting 934

the final answer which does not produce a satisfiable or correct result, the model recognizes the need to 935

replan and calls the "image_analysis" module again. Since the model already knows which image in the 936

database contains the oldest Renaissance painting, it smartly plans the "image_analysis" task as Task 3, 937

by reformulating the question as What is specifically depicted in the painting? M2EX then executes the 938

task, and receives the more concrete answer "umbrellas". 939

Moving forward, the decision making component confirms the details about the painting. Here, it 940

verifies that the information it has gathered so far aligns with the natural language question and makes 941

sense as a comprehensive understanding of the oldest Renaissance painting. The key aspect is the model’s 942

ability to replan effectively and to strategically leverage the available information to avoid repeating 943

tasks. 944

Example 3 - Parallel Planning: In the Renaissance, find the total number of paintings depicting war and
the number of paintings depicting swords (see Figure 5).

The figure illustrates how M2EX processes a complex query about Renaissance paintings, focusing on 945

identifying how many paintings depict war and how many depict swords. The pipeline is structured to 946

combine parallel task execution with step-by-step explanations, ensuring clarity and efficiency throughout 947

the process. 948

The process begins in the Planning & Expert Model Allocation, where the model breaks down the user’s 949

query into distinct subtasks. These subtasks are assigned to specialized modules: Task 1 "text2SQL": 950

This task retrieves image paths and relevant metadata for Renaissance paintings from a database using 951

a SQL query. Task 2 "image_analysis": This task examines whether each painting depicts war. Task 3 952

"image_analysis": Simultaneously, another module analyzes whether each painting depicts a sword. Task 953

4 "data_preparation": This task consolidates the results from Task 2 and Task 3 to count and summarize 954

the paintings. 955
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The execution phase begins with Task 1, where the model generates and runs a SQL query. The956

reasoning provided for this step explains how the schema is understood and how the query ensures that957

only Renaissance paintings are retrieved. The output of Task 1 includes image paths and metadata, which958

are then sent to the next stage.959

At this point, the model showcases its parallel planning capability. Tasks 2 and 3 are performed960

concurrently: For Task 2, the system uses image analysis to determine if each painting depicts war. For961

Task 3, a similar image analysis process identifies paintings that depict swords. Running these tasks962

in parallel significantly speeds up the workflow, as they operate independently of each other. Once the963

image analysis tasks are complete, the model transitions to Task 4, where it aggregates the results. The964

reasoning here details how the system compiles two lists - one for paintings depicting war and one for965

those depicting swords. Afterwards, M2EX counts the entries in each list. The final results are prepared966

for the decision making module.967

In the decision making phase, the model reflects on its findings. It confirms that sufficient data was968

processed to answer the query and provides a summary: "There is 1 painting depicting war and969

38 paintings depicting swords."970

M2EX offers details, explaining how the analysis was conducted and highlighting the disparity between971

the two categories of paintings. The system further provides an explanation of its methodology, emphasiz-972

ing how it worked systematically to answer the query. This demonstrates M2EX’s ability to manage tasks973

efficiently through parallel execution and to ensure transparency through reasoned explanations at every974

step. By combining these capabilities, the system provides a clear, accurate, and well-supported response975

to the user’s query.976

Note that we did not compare M2EX with NeuralSQL on ArtWork dataset, as such a comparison would977

be unfair due to NeuralSQL’s inability to support plotting.978

E Error Analysis979
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Figure 6: Error analysis on different datasets: (a) CAESURA on ArtWork, (b) M2EX on ArtWork, (c) CAESURA
on RotoWire, (d) M2EX on RotoWire, and (e) M2EX on EHRXQA.
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Error Analysis on the ArtWork Dataset As illustrated in Figure 6 (a), a total of 20 errors are identified 980

out of 30 inference tasks for CAESURA. Of these, 14 errors occur within CAESURA’s sequential 981

workflow. The errors include three single-modal questions and 11 multi-modal questions. Among the 982

three single-modal, one task could not be resolved due to insufficient data available in the data pool. 983

Following this failure, CAESURA attempts to replan twice but ultimately generates an incorrect plan, 984

and consequently results in an erroneous response. The remaining two errors in single-modal tasks were 985

classified as Plot Generation Errors, which are caused by inconsistencies in the time axis units of the plot 986

output. 987

For 11 errors in multi-modal questions, five are related to single-value outputs, four to plots, and three 988

to data structures. All of these errors are attributed to incorrect outputs generated by the image analysis 989

model. After further research, we found two ambiguous tasks in classifying the error categories. (1) Plot 990

the number of paintings that depict war for each year and (2) What is depicted on the oldest religious 991

artwork in the database? Both tasks failed due to improperly parsed sub question for the image analysis 992

task, specifically the oversimplified term “war.” While this term is semantically related to the correct 993

natural language question, “Does the image depict war?”, it does not fully capture the intent of the task. 994

As a result, it cannot be classified as a completely faulty question. Notably, the M2EX model generated 995

correct results for these tasks, underscoring the limitations of CAESURA’s approach in handling subtle 996

semantic distinctions. 997

In questions which require a parallel workflow - including two data structures, plot | plot, and plot | data 998

structure outputs — errors are observed at the early planning stage. Our analysis reveals that CAESURA 999

encounters significant challenges in generating accurate plans for embarrassingly parallel tasks. For two 1000

of these tasks, the system fails to generate any plan at all. For the remaining four tasks, CAESURA can 1001

provide partial results for some subtasks, but other subtasks are left unanswered, reflecting a broader 1002

issue in its ability to manage parallel planning. Our M2EX system successfully generates the appropriate 1003

plans for all tasks, as shown in Figure 6 (b). In addition, all text-to-SQL steps, data preparation pipelines, 1004

and plot outputs, where required, are validated as correct. As illustrated in Figure 6(b), the only source 1005

of errors is the inaccurate output of the image analysis model, which accounted for 11 errors. No other 1006

errors are located in the text-to-SQL task, plot generation, or task planning deficiencies. This analysis 1007

highlights the image analysis model as the bottleneck in system performance, underscoring the need for 1008

further refinement in its predictive accuracy. 1009

Error Analysis on the RotoWire Dataset Figure 6 (c) reveals that CAESURA encounters 9 errors 1010

across 12 inference tasks on the RotoWire dataset. These tasks are evenly divided between single-modal 1011

and multi-modal categories. Among the three single-modal tasks, one stumbles due to an SQL query 1012

missing essential filter clauses, resulting in inaccurate structured data. The other two, focused on plotting, 1013

fail to generate visualizations consistent with the analytical findings. 1014

In the multi-modal group, six tasks face challenges. A task requiring a single-value output is derailed 1015

by suboptimal text analysis. Additionally, the Bart model’s limited text comprehension hampers two tasks 1016

expecting data structure outputs and two others involving plots, all undermined by faulty text interpretation. 1017

Another task, aimed at producing a structured output, falters during the planning stage because the strategy 1018

cannot be refined within the permitted attempts. 1019

In contrast, our M2EX system, as illustrated in Figure 6 (d), excels by devising suitable plans for all 1020

tasks and accurately resolving every single-modal task. However, it encounters issues in four multi-modal 1021

tasks: two demanding data structures and one plotting task succumb to flawed text analysis, while a 1022

fourth task needing a structured output fails during post-data preparation. Beyond these, no errors arise in 1023

text-to-SQL conversions or plot generation. This comparison underscores M2EX’s greater resilience while 1024

highlighting text analysis as a shared weakness. CAESURA, however, suffers from additional pipeline 1025

limitations. 1026

Error Analysis on the EHRXQA Dataset Since NeuralSQL is a one-step approach lacking task 1027

planning and explainability, we are unable to localize the source of errors as systematically as in the 1028

M2EX or CAESURA systems. Consequently, we focus our error analysis solely on the M2EX system 1029

using the EHRXQA dataset. 1030
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Figure 6 (e) presents the distribution of 49 errors across various steps, categorized by their respective1031

scopes: Image Single-1 (23 errors), Image Single-2 (17 errors), and Image+Table Single (9 errors). Among1032

these, 36 errors are associated with the categorical scope, with 20 attributed to Image Single-1 and 16 to1033

Image Single-2. In contrast, errors linked to the binary output type are primarily found in the Image+Table1034

Single scope. Specifically, Image Single-1 contributes three binary errors, Image Single-2 accounts for one,1035

and Image+Table Single includes nine, summing up to 13 binary errors out of the total 49. Considering1036

the uneven distribution of errors across various output types and scopes, we identified inaccurate image1037

analysis — primarily driven by the M3AE model (Chen et al., 2022) — as the main source of errors. Our1038

analysis reveals that errors linked to categorical output types (36) are nearly three times higher than those1039

associated with binary output types (13). This suggests that the error pattern is less related to the task1040

difficulty across different scopes and more influenced by the output type, as binary questions demonstrate1041

a statistically higher success rate compared to categorical ones. Notably, the Image + Table Single scope1042

exclusively utilizes binary output types.1043

To gain a deeper understanding, a step-by-step error analysis reveals that out of the 23 errors in the1044

Image Single-1 scope, 22 are due to inaccuracies in image analysis, while only one is related to a misstep1045

in the text-to-SQL process. The specific question text for this case is: “Catalog all the anatomical findings1046

seen in the image, given the first study of patient 11801290 on the first hospital visit.” The generated1047

SQL query fails to include the condition specifying the first study, resulting in an incorrect output. In the1048

Image Single-2 category, 16 out of 17 total errors are due to inaccurate image analysis, with one error1049

attributed to the text-to-SQL step. The specific query in question is: “Does the second-to-last study of1050

patient 16345504 this year reveal still-present fluid overload/heart failure in the right lung compared to1051

the first study this year?”. The text-to-SQL task fails to correctly retrieve the first and last study of this1052

year as required, instead erroneously returning multiple studies from the current year. In the Image+Table1053

Single scope, all nine errors involve binary output types. Of these, six result from inaccurate image1054

analysis, one from incomplete planning, and two from an incorrect text-to-SQL step. The error caused1055

by incomplete planning occurs with the question: “Did patient 19055351 undergo the combined right1056

and left heart cardiac catheterization procedure within the same month after a chest x-ray revealed any1057

anatomical findings until 2104?”. In this case, the plan omits the necessary image analysis step, leading1058

to an incorrect final output. During the reasoning stage, instances were identified where an empty output1059

produced a no response that coincidentally aligned with the ground truth. However, M2EX’s explainability1060

highlights this as a misclassification, as the absence of output was not due to correct reasoning.1061

Two errors in the Image+Table Single category are attributed to text-to-SQL misbehavior. The specific1062

questions causing these errors are: "Was patient 12724975 diagnosed with hypoxemia until 1 year ago,1063

and did a chest x-ray reveal any tubes/lines in the abdomen during the same period?” and "Was patient1064

10762986 diagnosed with a personal history of tobacco use within the same month after a chest x-ray1065

showing any abnormalities in the aortic arch until 1 year ago?" In both cases, the SQL queries fail to1066

correctly apply the condition (since current time) until 1 year ago, instead treating 1 year ago as a fixed1067

point in time.1068

These findings highlight the pivotal role of accurate image analysis in multi-modal data exploration sys-1069

tems. Particularly, they emphasize a formidable challenge associated with categorical outputs. Moreover,1070

the findings underscore the necessity of robust planning and effective SQL query generation to achieve1071

optimal system performance. Addressing these challenges requires advancements in visual reasoning,1072

temporal logic comprehension, and SQL generation, all of which are essential for mitigating errors and1073

enhancing system accuracy.1074
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