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Abstract

Leveraging the strong generalization capabil-001
ities of Large Language Models (LLMs) for002
data augmentation is an effective means to ad-003
dress the data sparsity of few-shot named en-004
tity recognition (FS-NER). Typically, existing005
methods manage to select appropriate demon-006
strations from a large amount of labeled data to007
be filled into the context of LLMs, thereby sig-008
nificantly enhancing the ability for in-context009
learning (ICL) in FS-NER. However, on the010
one hand, we have not yet figured out how011
demonstrations affect ICL in FS-NER so that012
we cannot do targeted optimization. On the013
other hand, labeled data is not abundant to se-014
lect demonstrations from in real low-resource015
scenarios. In this study, we first systematically016
explore the impact of demonstrations on the017
ICL for FS-NER from 5 perspectives: sentence018
inclusion, number of demonstrations, label ac-019
curacy, label diversity, and label coverage. We020
find that label diversity and label coverage are021
important factors for ICL in FS-NER. So, we022
propose three metrics to quantify them: La-023
bel Space Per Instance (LSPI), Label Coverage024
(LC), and Label Measure(LM). Second, focus-025
ing on improving LSPI, LC, and LM, we devise026
a method named label subset partition (LSP) to027
augment demonstrations. It’s an out-of-the-box028
augmentation method which is training-free,029
prompt-agnostic, and model-agnostic. Experi-030
ments on extensive NER datasets have demon-031
strated that LSP can effectively improve the032
performance of ICL for FS-NER.033

1 Introduction034

Named entity recognition (NER) aims to recog-035

nize pre-defined named entities in unstructured036

text, which is a fundamental task for other NLP037

(Natural Language Processing) downstream appli-038

cations like information retrieval (IE) and ques-039

tion answering (QA). Due to the high labor cost of040

high-quality labeled data, NER technology in low-041

resource scenarios (or FS-NER) has been widely042

# demonstrations
1) Sentence: Good news for Milan is that Udinese's German striker Oliver 
Bierhoff is out through injury.
Output: [('Milan', 'ORG'), ('Udinese', 'ORG'), ('German', 'MISC'), ('Oliver 
Bierhoff', 'PER')]
2) Sentence: Only France and Britain backed Fischler’s proposal.
Output: [('France' , 'LOC'), ('Fischler', 'PER')]

…
# Query
Sentence: EU rejects German call to boycott British lamb.
Output: 

# Instruction
You are a professional and helpful crowdsourcing data annotator using 
English with the help of description of types.
Identify the entities and recognize their types in the sentence.
The output should be a string in the format of the tuple list,  like'[(type 0, 
entity 0), (type 1, entity 1), ...]'.

# types
1) PER, indicates person...
2) ORG, indicates organization...
3) LOC, indicates location...
4) MISC, indicates miscellaneous...

Figure 1: The prompt template for FS-NER. Instruc-
tion zone is used to describe tasks. Type zone illustrates
all the labels of the NER task. Demonstration zone
shows some demonstrations for reference. Query zone
is the target instance that needs to be annotated.

explored, particularly in recent years (Huang et al., 043

2021; Huang et al., 2022; Moscato et al., 2023). 044

Thanks to the abundant pre/post-trained knowledge, 045

the in-context learning (ICL) ability has been ob- 046

served in large language models (LLMs) (Dong 047

et al., 2024) and widely explored in FS-NER (San- 048

toso et al., 2024; Zhang et al., 2023). 049

Compared to the zero-shot setting, performances 050

of structured prediction like NER can be greatly 051

improved in ICL by filling demonstrations into the 052

context window of LLMs as references (as shown 053

in Figure 1) under few-shot settings (Han et al., 054

2024; Han et al., 2024). How do demonstrations 055

boost ICL? Min et al. (2022) have explored the 056

role of demonstrations in ICL on classification and 057

multi-choice tasks (e.g., sentiment analysis and 058

question answering). They have identified that the 059

label space, the distribution of the input text, and 060

the format of the input-label pairs are crucial learn- 061

ing signals provided by demonstrations for ICL. 062

However, unlike classification and multi-choice 063

tasks, structured prediction tasks have complex out- 064
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put space and they are enhanced with the help of065

structure information in the input (Dev et al., 2021).066

Therefore, we cannot easily generalize the find-067

ings from Min et al. (2022) to structured prediction068

tasks. In this work, we take the FS-NER task as an069

example of structured prediction tasks. We manage070

to systematically explore the impact of demonstra-071

tions on the ICL for FS-NER, so as to do targeted072

optimization1 for ICL on FS-NER and provide mo-073

tivation for future works.074

In Section 3, we conduct explorations from 5075

aspects: sentence inclusion, number of demonstra-076

tions, label accuracy, label diversity, and label cov-077

erage. In addition, we introduce 3 novel metrics to078

measure label diversity and label coverage: Label079

Space Per Instance (LSPI), Label Coverage (LC),080

and Label Measure (LM). It should be noted that081

LM is a metric that combines LSPI and LC, which082

has a high correlation with the micro-F1 score. Our083

experiments indicate that an appropriate number084

of demonstrations, accurate labels, diverse labels,085

and labels with high coverage to the test set are086

essential for ICL in FS-NER.087

Based on the above conclusion, we propose La-088

bel Subset Partition (LSP) in Section 4 to augment089

demonstrations to improve label diversity and label090

coverage when keeping an appropriate number of091

accurate demonstrations. LSP augments demon-092

strations by decomposing the original labels into093

different label subsets, allowing demonstrations094

with original labels to be transformed into multiple095

copies with different label subsets. Furthermore,096

it’s an out-of-the-box demonstration augmentation097

method which is training-free, prompt-agnostic,098

and model-agnostic. Experiments show that LSP099

can improve LM so that it can improve ICL ability100

on FS-NER.101

To sum up, our contributions include: (1) To102

the best of our knowledge, we investigate factors103

of demonstrations that matter for ICL on FS-NER104

for the first time. (2) We observe that the label105

diversity and the label coverage are crucial for ICL106

in FS-NER. Meanwhile, we devise 3 metrics (i.e.,107

LSPI, LC, and LM) to measure the label diversity108

and the label coverage. (3) We propose LSP, an out-109

of-the-box demonstration augmentation method, to110

improve LM and the ICL performance on FS-NER.111

1Targeted optimization means designing optimization
strategies directly based on the metrics that perform poorly in
benchmarking (Qian et al., 2023).

2 Related Work 112

2.1 Few-shot NER 113

Few-shot NER (i.e., FS-NER) identifies entities us- 114

ing only a small number of labeled data (Moscato 115

et al., 2023). Recent research can be roughly cate- 116

gorized into algorithm-based and data-based ones. 117

2.1.1 Algorithm-based Methods 118

Algorithm-based methods primarily focus on how 119

to construct and train models in few-shot settings 120

to achieve high performance. They are typically 121

grounded in transfer learning or meta-learning. 122

Transfer learning is used to transfer knowledge 123

from resource-rich domains(Zhang et al., 2024; 124

Zhang et al., 2024), languages(Rahimi et al., 2019; 125

Wang et al., 2022), and tasks (Radford et al.; Brown 126

et al., 2020) to low-resource scenarios. Due to the 127

extensive pre/post-training knowledge, pre-trained 128

models (i.e., PTMs) and large language models 129

(i.e., LLMs) are commonly employed as the back- 130

bone in transfer learning. For example, the In- 131

Context Learning (i.e., ICL) capability of LLMs is 132

leveraged to conduct FS-NER(Wang et al., 2023a; 133

Wu et al., 2024) with suitable demonstrations re- 134

trieved from a large amount of labeled data. How- 135

ever, those methods contradict the real scene that 136

there is only a small amount of labeled data avail- 137

able in low-resource scenarios. Meta-learning 138

enables models to "learn how to learn", allowing 139

models to rapidly adapt to new tasks with only 140

a minimal number of data. For instance, Model- 141

Agnostic Meta-Learning (i.e., MAML) (Li et al., 142

2022; Ma et al., 2022b) and Prototypical Networks 143

(de Lichy et al., 2021; Tong et al., 2021). 144

2.1.2 Data-based Methods 145

Data-based methods focus on how to manipulate 146

data to increase the size of the available training cor- 147

pora, in order to address the issue of data scarcity. 148

These methods can be primarily categorized into 149

four strategies: active learning, distant supervision, 150

self-training, and data augmentation. Active learn- 151

ing is a strategy of selecting the most informative 152

example for manual annotation, to balance model 153

performance and annotation cost (Agrawal et al., 154

2021; Rouzegar and Makrehchi, 2024). Distant 155

supervision methods leverage external resources, 156

such as ontologies and knowledge bases, to gen- 157

erate weakly labeled examples from unannotated 158

data or to identify potential entities through heuris- 159

tic rules (Liang et al., 2020; Qu et al., 2023). Self- 160
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training methods utilize the model’s inherent ca-161

pabilities to generate labels for unannotated data,162

subsequently employing these labels to further en-163

hance the model (Fu et al., 2023; Xie et al., 2024).164

Data augmentation methods generate synthesized165

data to increase the available dataset by employ-166

ing heuristic rules (Dai and Adel, 2020; Liu et al.,167

2021), PTMs (Liu et al., 2022; Song et al., 2024)168

or LLMs (Santoso et al., 2024; Xie et al., 2024).169

Here, our work is a data augmentation method that170

enhances the NER performance of LLMs by syn-171

thesizing higher-quality NER examples from the172

original labeled data.173

2.2 Exploration on ICL174

In-context learning (ICL) has been the focus of175

significant studies to utilize LLMs since its intro-176

duction (Sanh et al., 2022; Dong et al., 2024). It is177

widely used for various tasks especially in few-shot178

settings (Hu et al., 2022; Cahyawijaya et al., 2024).179

Some work has been done to understand why in-180

context learning works. For example, Xie et al.181

(2022) explains ICL as implicit Bayesian inference.182

Min et al. (2022) provides an empirical analysis183

that investigates why ICL works on 6 tasks (e.g.,184

sentiment analysis and question answering) except185

for FS-NER. Thus, in this work, we especially ex-186

plore why ICL is effective on FS-NER based on187

the demonstrations in the LLMs’ context window.188

3 Exploration on Demonstrations189

So as to thoroughly investigate how demonstrations190

impact the performance of ICL on FS-NER, we191

conduct a series of experiments in this section from192

5 aspects: sentence inclusion, number of demon-193

strations, label accuracy, label diversity, and label194

coverage. The experiment setup is detailed in Ap-195

pendix A. As shown in Figure 1, a demonstration196

consists of a sentence and its corresponding out-197

put. The output should be recognized from the198

sentence during inference contains entity mentions199

(e.g., "Milan") and their labels (e.g., "ORG").200

3.1 Sentence Inclusion201

Intuitively, there must be a strong correlation be-202

tween the sentence and its output in a demonstra-203

tion, because the entity mentions and labels in the204

output are meaningful only when we consider the205

contextual semantics of the sentence. Nevertheless,206

how much does the sentence inclusion of demon-207

strations matter to ICL on FS-NER? We use the208

prompt template shown in Figure 1 and experiment209

with masked sentences in demonstrations by re- 210

placing the words with "***". In Table 1, we can 211

see that the FS-NER performance of the LLMs 212

does not decrease drastically even if the sentence 213

is masked, and in some cases it even increases. 214

Hence, we can draw a counterintuitive conclusion: 215

sentence inclusion may not directly affect the effec- 216

tiveness of demonstrations. The learning signal for 217

ICL on FS-NER is mainly provided by the output 218

(i.e., the pairs composed of entity mentions and 219

labels). 220

3.2 Number of Demonstrations 221

According to previous works (Ma et al., 2023; Han 222

et al., 2024; Wu et al., 2024) and Appendix C, 223

the performance of FS-NER using k-shot settings 224

usually improves with increasing k. By intuition, 225

the larger k, the more demonstrations there are in 226

the context window. Therefore, an intuitive ques- 227

tion is: does simply duplicating demonstrations 228

to increase the number of demonstrations improve 229

ICL capability on FS-NER? We conduct a sim- 230

ple experiment to investigate the question by di- 231

rectly duplicating demonstrations n times. Specif- 232

ically, we first use Algorithm 2 (Ma et al., 2023) 233

to sample k-shot instances as base demonstrations. 234

Then, we duplicate them n times and fill the du- 235

plicated demonstrations into the context window. 236

As shown in Figure 2 and Figure 7, we can see 237

that the FS-NER performance of Qwen (Bai et al., 238

2023) and DeepSeek (DeepSeek-AI, 2024) slightly 239

improved compared to not duplicating when the 240

number of duplications is within 2. However, du- 241

plicating demonstrations can cause fluctuations for 242

Mixtral (Jiang et al., 2024) and ultimately lead to 243

deterioration in most cases. This may be due to 244

Mixtral’s inability to handle constantly growing 245

contexts. In summary, the results indicate that sim- 246

ply increasing the number of demonstrations does 247

not consistently improve ICL ability on FS-NER. 248

3.3 Label Accuracy 249

Label accuracy of the output in a demonstration 250

may potentially affect ICL ability on FS-NER, as 251

incorrect labels introduce noise into the context, 252

misleading LLMs with wrong learning signals. To 253

validate such a hypothesis, we adjust the accuracy 254

of the labels in demonstrations from 100% to 0% 255

using a simple heuristic method shown in Algo- 256

rithm 3. For example, when the label accuracy is 257

75%, 25% of entities (e.g., "Udinese" whose gold 258

label is "ORG") in the output need to be randomly 259
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datasets Onto5-EN Movie Onto5-ZH CMeEE-V2
methods k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5
Qwen 35.19±1.48 38.48±2.07 67.27±1.79 64.68±2.54 38.27±4.59 40.48±1.65 43.48±0.94 42.79±0.60

w/ mask 34.74±1.34 39.49±2.56 67.24±0.92 64.00±2.61 38.38±2.54 34.63±3.05 46.09±1.00 45.91±1.35

Mixtral 28.33±1.00 19.08±1.30 67.22±2.17 71.03±0.70 26.84±1.57 10.28±3.67 15.94±2.41 31.05±1.06

w/ mask 26.39±2.95 16.52±1.87 68.25±1.47 71.02±1.04 23.14±4.41 19.47±6.02 31.10±1.71 29.00±1.13

DeepSeek 58.37±5.71 59.59±3.91 76.48±1.18 79.89±2.08 59.39±3.18 57.93±2.58 52.53±3.14 51.45±1.89

w/ mask 55.56±4.26 57.10±3.40 73.07±1.86 73.97±1.64 54.49±2.32 53.50±3.28 47.21±3.93 46.75±2.47

Table 1: Micro-F1 (%) results w/o mask and w/ mask using different LLMs in (k=1, 5)-shot settings. Red represents
degradation. Green represents an increase.
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Figure 2: Micro-F1 (%) results with different duplicat-
ing times on Onto5-EN when we only duplicate demon-
strations. Detailed results are shown in Appendix E.1.
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Figure 3: Micro-F1 (%) results with different label ac-
curacy on Onto5-EN. Detailed results shown in Ap-
pendix E.2.

assigned an incorrect label (e.g., "PER") to it. The260

experimental results are shown in Figure 3 and261

Figure 8. We can observe that the FS-NER per-262

formance of the two LLMs declines as the label263

accuracy decreases, particularly in 5-shot setting.264

Note that when label accuracy is 0%, LLMs can265

still correctly recognize some entities due to their266

strong generalization, though such performance is267

far from that when the accuracy is 100%. Thus, we268

can validate our hypothesis that label accuracy is269

positively correlated with ICL ability on FS-NER.270

3.4 Label Diversity, Coverage and Measure271

In addition to the number of demonstrations men-272

tioned in Section 3.2, the differences among demon-273

strations under various k-shot settings also include274

label diversity and label coverage. Before introduc- 275

ing them, we first introduce the concept of label 276

counter. The label counter of a demonstration is 277

a counter recording the numbers of different la- 278

bels in the output. It can, to some extent, reflect 279

the label distribution of demonstrations. For ex- 280

ample, for the 1st demonstration in Figure 1, its 281

label counter is {"ORG": 2, "MISC": 1, "PER": 282

1}, which means that there are two "ORG" labels, 283

a "MISC" label and a "PER" label in this demon- 284

stration. Similarly, the label counter for the 2nd 285

demonstration is {"LOC":1, "PER": 1}. Note that 286

the label counter is order-agnostic, e.g., {"LOC":1, 287

"PER": 1} is equivalent to {"PER": 1, "LOC":1}. 288

Label Diversity. Label diversity reflects the di- 289

versity of label counters in a context window. We 290

believe that more diverse label counters in a context 291

window may provide LLMs with richer reference 292

information. To measure the label diversity, we de- 293

fine the LSPI (i.e., label space per instance) metric: 294

LSPI =
nld

nd
(1) 295

where LSPI ∈ [0, 1], nld is the number of unique 296

label counters in a context window and nd is the 297

total number of demonstrations in the context win- 298

dow. For example, assuming there are only two 299

demonstrations in a context window, whose label 300

counters are {"LOC":1, "PER": 1} and {"PER": 1, 301

"LOC":1}, respectively. Therefore, nld is 1 and nd 302

is 2. LSPI represents the average number of unique 303

label counters that each demonstration can provide, 304

namely diversity. The larger the LSPI, the more 305

diverse the label counter (or label distribution) in a 306

context window. 307

Label Coverage. Label coverage indicates the 308

degree to which the label counters in a context win- 309

dow cover the label counters in the test set2. We 310

2In practical situations, the test set are not accessible during
inference. Therefore, label coverage can only be measured to
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dataset k-shot LSPI LC LM1↑ LM0.5↑

Onto5-EN

1 50.00 1.01 1.97 4.65
3 40.38 2.49 4.69 9.98
5 46.05 3.56 6.61 13.59
7 44.55 2.49 4.71 10.16

Movie

1 50.00 3.97 7.35 15.05
3 41.67 4.82 8.63 16.47
5 42.59 6.88 11.85 20.90
7 34.15 6.98 11.59 19.20

Onto5-ZH

1 50.00 1.72 3.36 7.63
3 47.92 2.61 4.95 10.72
5 48.21 4.17 7.68 15.49
7 50.00 8.73 14.87 25.70

CMeEE-V2

1 50.00 4.29 7.89 15.96
3 50.00 5.95 10.63 20.15
5 41.67 7.69 12.98 22.11
7 50.00 8.64 14.33 25.54

Table 2: LSPI(%), LC(%), and LM(%) results in (k=1,
3, 5, 7)-shot settings on 4 datasets. We use prompt
template shown in Figure 1.

hypothesize that the more label counters of demon-311

strations appear in the test set, the more informa-312

tion of the test set is exposed to LLMs to learn, and313

the more likely LLMs are to output correct label314

counters. To measure label coverage in a context315

window, we define the LC (i.e., label coverage) as:316

LC =
nco

nt
(2)317

where LC ∈ [0, 1], nco is the co-occurrence num-318

ber of label counters in the context window and319

the test set. For example, if the label counter (e.g.,320

{"LOC":1, "PER": 1}) of a demonstration in the321

context window also appears in the test set, then322

add one to nco. nt is the number of instances in323

the test set3. LC measures the probability of label324

counters in the test set that are also present in the325

context window, namely coverage. The larger the326

LC, the higher the label coverage.327

Label Measure. To comprehensively consider328

label diversity and label coverage, we combine LC329

with LSPI to form the LM (i.e., label measure)330

metric:331

LMβ =
(1 + β2)× LSPI × LC

β2 × LSPI + LC
(3)332

where LMβ ∈ [0, 1], β ∈ R is a weighted factor.333

We set it to 1 (i.e., LM1) or 0.5 (i.e., LM0.5).334

It’s noted that LSPI, LC, and LM are model-335

agnostic. LSPI only measures the distribution of336

analyze ICL performance in this study.
3We set it to 200 in experiments. See Appendix A.3.

metrics models Onto5-EN Movie Onto5-CH CMeEE-V2

LM1

Qwen 0.706 -0.258 -0.508 0.314
Mixtral -0.591 0.365 -0.300 0.904

DeepSeek 0.587 0.965 0.567 0.223

LM0.5

Qwen 0.689 -0.426 -0.451 0.433
Mixtral -0.604 0.417 -0.355 0.911

DeepSeek 0.609 0.938 0.514 0.329

Table 3: The Pearson correlation coefficient between
LM and micro-F1 on 4 datasets (p < 0.05).

label counters in a context window. LC only mea- 337

sures the overlapping of label counters between 338

demonstrations and the test set. In Table 2, we 339

can observe that as k increases, LSPI mostly de- 340

creases, LC mostly increases, and LM shows a 341

fluctuating upward trend. As shown in Table 3, 342

LM1 and LM0.5 exhibit a moderate or higher de- 343

gree of correlations4 with F1 scores across nearly 344

all datasets when using 3 different LLMs. The neg- 345

ative outcomes in Table 3 may be attributable to 346

the increase of k in k-shot NER, which leads to an 347

extended context length and consequently a decline 348

in the performance of LLMs when processing long 349

contexts. Based on these observations, we can con- 350

clude that both label diversity and label coverage 351

exhibit a moderate to high degree of correlation 352

with the performance of ICL on FS-NER. 353

4 Label Subset Partition 354

It can be inferred from Section 3 that an appropriate 355

number of demonstrations, accurate labels, diverse 356

labels, and high-coverage labels are essential to 357

ensure the high performance of ICL on FS-NER. 358

Based on such a conclusion, we propose a novel 359

method named label subset partition (i.e., LSP) to 360

augment demonstrations in the LLMs’ context win- 361

dow, improving label diversity and label coverage 362

while keeping an appropriate number of accurate 363

demonstrations. A detailed motivation is explained 364

in Appendix D. Meanwhile, the experiment setup 365

is same to Section 3 (detailed in Appendix A). 366

4.1 Methodology 367

As illustrated in Figure 4, LSP augments a demon- 368

stration by partitioning the label set of size s into 369

multiple exclusive label subsets of size k (k < s) 370

as many as possible5 and thus for a sentence to 371

produce a separate demonstration for each label 372

subset. In detail, step 1, we randomly partition the 373

4The absolute value of a Pearson correlation coefficient
between 0.4 and 0.6 indicates a moderate correlation, while an
absolute value greater than 0.6 signifies a strong correlation.

5The remaining labels less than k still form a label subset.

5



Demonstrations (Before)
1) Sentence: Good news for Milan is that Udinese's German striker 
Oliver Bierhoff is out in Serie A through injury.
Output: [('Milan', 'ORG'), ('Udinese', 'ORG'), ('German', 'GPE'), 
('Oliver Bierhoff', 'PER'), ('Serie A', 'MISC')]
...

Labels
1) PER, indicates person ...
2) ORG, indicates organization...
3) LOC, indicates location…
4) GPE, indicates geo-political entity...
5) MISC, indicates miscellaneous...

Subset 1
1) PER
2) ORG

...

Demonstrations (After)
1) Sentence: Good news for ...
Output: [('Milan', 'ORG'), ('Udinese', 'ORG'), ('Oliver Bierhoff', 'PER')]
2) Sentence: Good news for ...
Output:  [('German', 'GPE')]
3) Sentence: Good news for ...
Output: [('German', 'MISC')]
4) Sentence: Good news for ...
Output: [('Oliver Bierhoff', 'PER')]
5) Sentence: Good news for ...
Output: [('Milan', 'ORG'), ('Udinese', 'ORG'), ('German', 'MISC')]
6) Sentence: Good news for ...
Output:  [('German', 'GPE')]
...

Subset 1
Sentence: Good news for ...
Output: [('Milan', 'ORG'), ('Udinese', 'ORG'), ('Oliver Bierhoff', 'PER')]

...

partition 1

partition 2

Subset 2
Sentence: Good news for ...
Output: [('German', 'GPE')]

partition n

Label 
Subset 
Partition

Subset 3
1) MISC

Subset 3
Sentence: Good news for ...
Output: [('Serie A', 'MISC')]

Subset 2
1) LOC
2) GPE

Subset 1
1) PER
2) LOC

Subset 1
Sentence: Good news for ...
Output: [('Oliver Bierhoff', 'PER')]

Subset 2
Sentence: Good news for ...
Output: [('Milan', 'ORG'), ('Udinese', 'ORG'), ('Serie A', 'MISC')]

Subset 3
1) GPE

Subset 3
Sentence: Good news for ...
Output: [('German', 'GPE')]

Subset 2
1) ORG
2) MISC

Figure 4: Overview of our proposed LSP.

original label set of size s into multiple label sub-374

sets Li of size k (k ≤ ⌊ s2⌋
6) as many as possible,375

where Li ∩ Lj = ∅ if i ̸= j7. For example, in376

the top right of Figure 4, we partition the original377

label set (i.e., [PER, ORG, LOC, GPE, MISC]) of378

size 5 into three label subsets, including two label379

subsets of size k = 2 (i.e., [PER, ORG] and [LOC,380

GPE]) and a label subset (i.e., [MISC]) composed381

of the remaining one label. Step 2, for each label382

subset, we filter out entities that do not belong to383

this label subset in the output. For example, "Ger-384

man" with the "GPE" label is filtered out when we385

use the label subset [PER, ORG]. Now, we can ob-386

tain ⌈ sk⌉ (i.e., ⌈52⌉ = 3) new demonstrations with387

distinct outputs, e.g., "[’Milan’, ’ORG’], [’Udi-388

nese’, ’ORG’], [’Oliver Bierhoff’, ’PER’]" for the389

1st demonstration and "[’German’, ’GPE’]" for the390

2nd demonstration. Step 3, we can repeat such391

partition process n times to ensure that no identi-392

cal subset exists in all partitions. For example, in393

the 2nd partition process, "PER" and "LOC" are394

grouped together, while they are not in the same395

label subset in the 1st partition process. Step 4,396

we concatenate all demonstrations from different397

label subsets and fill them into the context. It can398

be observed that the original single demonstration399

has been expanded to 6 (i.e., ⌈ sk⌉ × n) demonstra-400

tions. It’s worth noting that LSP is an augmentation401

method that operates only on demonstrations. So,402

we don’t need to train LLMs (i.e., training-free),403

6We consider that the entity labels of a demonstration are
usually sparse, with no more than half of the total types.

7In set partitioning, each set don’t intersect with each other.

or design specific prompts (i.e., prompt-agnostic). 404

It can also be applied to any LLMs (i.e., model- 405

agnostic). The detailed algorithm is shown in Al- 406

gorithm 1 in Appendix B.1. 407

4.2 Comparison with different ICL Methods 408

We compare LSP with other ICL methods for FS- 409

NER: Vanilla (Ma et al., 2023) use the prompt- 410

template shown in Figure 1. It simultaneously 411

outputs entity mentions across all types for each 412

query. Vanilla+rep purely duplicates demonstra- 413

tions multiple times based on the Vanilla method. 414

We duplicate demonstrations 1 time here. Multi- 415

qa (Xie et al., 2023) method processes each query 416

in a batch using a multi-turn question-answer style. 417

Single-type (Wang et al., 2023a) method processes 418

and outputs entities for only one type at a time, 419

subsequently aggregating the results from all types. 420

Self-consistency (Wang et al., 2023b) selects the 421

final answer as the most common one across output 422

entities. In order to establish a similar few-shot ex- 423

perimental setting, we remove the step of retrieving 424

the optimal demonstrations from a large amount of 425

labeled data from Multi-qa and Single-type. For 426

LSP, we set the size of a label subset to half of 427

the original label size (i.e., p = 0.58). For LSP+2, 428

we partition label subsets 2 times9. As shown in 429

Table 4, we can observe that: (1) LSP generally 430

achieves the best results compared to other ICL 431

methods for FS-NER, which demonstrates the su- 432

periority of LSP. (2) After repeating partitioning, 433

8See detail in Section 4.3.1.
9See detail at Section 4.3.2
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datasets Onto5-EN Movie Onto5-ZH CMeEE-V2
models methods k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5

Qwen

vanilla 35.19±1.48 38.48±2.07 67.27±1.79 64.68±2.54 38.27±4.59 40.48±1.65 43.48±0.94 42.79±0.60
vanilla+rep 36.92±1.36 42.19±1.33 66.01±1.40 68.29±1.83 39.35±3.78 37.93±3.16 43.57±1.31 43.06±0.64

multi-qa 35.46±3.28 40.64±1.11 66.32±2.30 64.12±1.40 37.51±2.77 36.71±2.83 42.51±1.10 41.80±0.98
single-type 18.11±1.23 22.04±1.17 34.19±1.19 41.20±0.57 39.03±3.71 37.88±2.36 34.19±1.19 41.20±0.57

self-consistency 35.60±1.24 38.10±3.34 67.74±0.57 65.69±1.30 34.19±1.19 41.20±0.57 44.90±1.06 43.88±0.71
LSP 39.37±2.01 43.09±2.06 65.58±1.09 67.33±0.62 41.15±4.73 43.88±3.98 45.86±2.49 44.82±1.16

LSP+2 40.58±2.87 44.81±3.14 67.59±1.55 69.15±1.93 42.76±1.03 40.36±5.20 44.98±0.22 41.39±0.93

Mixtral

vanilla 28.33±1.00 19.08±1.30 67.22±2.17 71.03±0.70 26.84±1.57 10.28±3.67 15.94±2.41 31.05±1.06
vanilla+rep 27.07±1.56 19.64±1.15 68.71±0.71 71.10±2.69 28.63±1.89 16.16±2.45 2.80±2.69 5.22±1.47

multi-qa 26.87±3.35 18.91±1.09 61.13±0.69 66.93±0.89 28.54±1.36 15.97±1.90 27.05±0.97 27.62±1.88
single-type 4.82±0.17 5.34±0.47 11.31±0.54 12.99±0.42 11.31±0.54 12.99±0.42 11.31±0.54 12.99±0.42

self-consistency 30.53±2.86 24.48±0.60 65.95±0.84 69.73±1.25 29.65±3.29 4.53±1.64 17.74±1.65 30.22±0.58
LSP 29.96±2.68 21.11±0.21 69.09±1.31 72.52±2.43 28.42±2.21 14.57±4.55 14.65±1.34 20.95±1.96

LSP+2 26.07±0.78 11.41±4.74 69.85±1.81 57.89±1.97 24.88±3.01 1.06±1.50 0.00±0.00 3.04±0.51

DeepSeek

vanilla 58.37±5.71 59.59±3.91 76.48±1.18 79.89±2.08 59.39±3.18 57.93±2.58 52.53±3.14 51.45±1.89
vanilla+rep 59.95±5.07 59.48±3.29 77.65±1.49 78.33±0.99 57.73±2.08 60.66±2.36 51.87±1.69 51.78±1.65

multi-qa 55.61±4.80 56.19±3.12 69.65±1.31 70.69±1.46 50.45±2.57 52.20±2.23 44.78±2.24 45.03±0.93
single-type 28.30±5.20 31.42±3.42 61.28±2.23 62.62±2.67 36.00±1.16 37.81±0.85 37.56±1.42 39.08±0.86

self-consistency 59.14±5.45 58.09±1.73 76.43±2.71 78.69±1.56 59.93±1.16 59.71±2.52 52.33±2.98 52.18±1.68
LSP 58.69±5.33 61.32±2.64 76.66±2.00 77.36±0.87 57.87±4.68 60.88±1.93 50.92±2.11 51.30±2.71

LSP+2 59.81±4.14 61.00±4.27 77.81±2.26 77.62±3.40 61.94±3.32 59.66±1.33 51.88±2.02 53.17±2.19

Table 4: Micro-F1 (%) results using different ICL methods and different LLMs in (k=1, 5)-shot settings on 4
datasets. Bold results represent the best method using the same LLMs.

LSP shows better results when using Qwen and434

DeepSeek, though this observation does not apply435

to Mixtral. We conjecture that the extended context436

length, resulting from the subset partition and ex-437

pansion of demonstrations, leads to a degradation438

in the performance of Mixtral. (3) Compared to439

using LLMs with larger parameters like DeepSeek,440

the performance improvement of LSP is more sig-441

nificant when using LLMs with smaller parameters442

like Qwen.443

4.3 Analysis444

4.3.1 Size of Label Subsets445

We conduct experiments to explore the optimal size446

of label subsets. Given that the original label sets447

of different datasets vary in size, we use subset pro-448

portion p to determine the size of label subsets. If449

the size of the original label set is s and the size of450

a label subset is k, the subset proportion is defined451

as p = k
s . Due to the non-overlapping nature of any452

two subsets (i.e., Li ∩ Lj = ∅ if i ̸= j) when the453

subset proportion is set to exceed 0.5, the sizes of454

the subsets become uneven (e.g., 0.6 for one label455

subset and 0.4 for the other). Thus, we set the p456

from 0.1 to 0.5 here. From Figure 5 and Figure 9,457

it can be observed that as the proportion increases458

from 0.1 to 0.5, the micro-F1 score generally ex-459

hibits an upward trend. It can also be determined460

that the model performance is generally optimal461

when p = 0.5. We speculate that the larger the462

size of the label subset, the richer the combinations463
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Figure 5: Micro-F1 (%) results with different subset
proportions on Onto5-EN. Detailed results are shown in
Appendix E.3.

of labels in a demonstration, and the more infor- 464

mation available for ICL. Consequently, we select 465

p = 0.5 as the optimal configuration for LSP. 466

4.3.2 Partition Times 467

As mentioned in Section 4.1, we can repeatedly 468

partition label subsets n times. So, in this section, 469

we aim to investigate the optimal partition times. 470

In Figure 6 and Figure 10, we can observe that, 471

across nearly all datasets, appropriately increasing 472

partition times improves the FS-NER performance 473

of Qwen and DeepSeek using 1-shot and 5-shot set- 474

ting. This is because the more partition times is, the 475

more label subsets can cover more combinations 476

of the original labels. However, this conclusion 477

is only valid for Mixtral under the 1-shot setting. 478

When using the 5-shot setting, the FS-NER perfor- 479

mance of Mixtral deteriorates with the increasing 480
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Figure 6: Micro-F1 (%) results with different partition
times on Onto5-EN. Detailed results are shown in Ap-
pendix E.4.

settings 1-shot 5-shot
dataset methods LSPI LC LM1↑ LSPI LC LM1↑

Onto5-EN

vanilla 50.00 1.01 1.97 46.05 3.56 6.61
vanilla+rep 33.33 1.01 1.95 30.70 3.56 6.38

LSP 90.00 9.59 17.33 75.13 15.71 25.99
LSP+2 65.00 11.87 20.07 57.28 20.98 30.71

Movie

vanilla 50.00 3.97 7.35 42.59 6.88 11.85
vanilla+rep 33.33 3.97 7.09 28.40 6.88 11.08

LSP 80.95 7.43 13.61 55.73 14.36 22.83
LSP+2 58.33 11.32 18.96 36.96 16.00 22.33

Onto5-ZH

vanilla 50.00 1.72 3.33 48.21 1.25 2.44
vanilla+rep 33.33 1.72 3.27 32.14 1.25 2.41

LSP 85.86 15.34 21.48 85.15 12.29 21.48
LSP+2 62.88 21.32 31.84 70.51 22.94 34.62

CMeEE-V2

vanilla 50.00 0.75 1.48 41.67 1.23 2.39
vanilla+rep 33.33 0.75 1.47 32.45 1.23 2.37

LSP 80.56 4.05 7.71 71.96 5.66 10.49
LSP+2 59.72 4.37 8.14 46.57 6.53 11.45

Table 5: LSPI(%), LC(%) and LM(%) for different ICL
methods on 4 datasets

partition times, due to its inability to handle the in-481

creasing context length. Based on our observation,482

we choose n = 2 as the optimal configuration for483

LSP.484

4.3.3 Why is LSP effective485

To explain why LSP is effective, we adopt LSPI,486

LC, and LM1 to measure label diversity and la-487

bel coverage of our proposed LSP. From Ta-488

ble 5, we can see that, compared to Vanilla10489

and Vanilla+rep, LSP can improve LSPI, LC and490

LM1. When we partition label subsets 2 times (i.e.,491

LSP+2), LM1 is getting greater. This trend indi-492

cates that LSP augments demonstrations by increas-493

ing label diversity and coverage. This suggests that494

LSP can improve ICL performance on FS-NER by495

increasing label diversity and coverage, providing496

LLMs with more diverse and targeted label infor-497

mation for inference, thereby enhancing their ICL498

ability on FS-NER.499

10The demonstrations used in vanilla, multi-qa, single-type
and self-consistency are the same, so their LSPI, LC and LM
are the same.

k-shot methods APL SPI↓ t-∆(%) F1(%)↑ F1-∆(%)

1
vanilla 1475 0.764 \ 35.19 \
LSP 1920 0.891 16.63 39.37 11.88

LSP+2 3164 1.389 81.83 40.58 15.32

5
vanilla 3717 1.611 \ 38.48 \
LSP 5229 2.192 36.10 43.09 11.98

LSP+2 9724 4.160 158.28 44.81 16.45

Table 6: Efficiency cost for different methods using
Qwen on Onto5-EN. APL indicates average prompt
length. SPI means seconds per instance. t-∆ represents
the degree of improvement of each variant relative to
vanilla on SPI. F1-∆ represents the degree of improve-
ment of each variant relative to vanilla on F1.

4.3.4 Efficiency Cost 500

To balance FS-NER performance and computa- 501

tional cost, we measure prompt length, inference 502

speed, and micro-F1 using different methods. In 503

Table 6 and Table 9, it can be observed that: (1) 504

When using Qwen on general domain datasets like 505

Onto5-EN and Onto5-ZH, the increase in inference 506

time is tolerable, compared to the FS-NER perfor- 507

mance improvement brought about by LSP. For ex- 508

ample, LSP achieve an improvement of 11.88% on 509

F1 when it only spends an additional 16.63% of in- 510

ference time under the 5-shot setting on Onto5-EN. 511

Similarly, LSP+2 spends an additional 19.83% on 512

inference costs in exchange for a 11.73% F1 boost, 513

when using the 5-shot setting on Onto5-ZH. (2) 514

When using Qwen on domain-specific datasets like 515

Movie and CMeEE-V2, the inference consumption 516

increases, but the desired performance improve- 517

ment is not achieved. For example, we consume 518

an additional 111.51% of inference time but only 519

achieve a 6.91% F1 improvement using the 5-shot 520

setting on Movie. 521

5 Conclusion 522

In this paper, we systematically explore the impact 523

of demonstrations on the ICL on FS-NER. To mea- 524

sure label diversity and label coverage, we devise 525

LSPI, LC, and LM metrics. We find that an appro- 526

priate number of demonstrations, accurate labels, 527

diverse labels, and labels with high coverage of the 528

test set are essential to ensure the performance of 529

ICL on FS-NER. Based on this conclusion, we pro- 530

pose LSP to augment demonstrations in the context 531

window of LLMs. Extensive experiments prove the 532

superiority of LSP. 533
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Limitation534

This paper only explores the effect of demonstra-535

tions for ICL on FS-NER, excluding instructions,536

labels, and queries. We are not yet clear whether537

instructions, labels, demonstrations, and queries538

affect each other for ICL on FS-NER. So, we leave539

this to future work. In addition, all conclusions540

from this study may not generalize for other struc-541

tured prediction tasks (e.g., event extraction, coref-542

erence resolution).543

According to the analysis section, LSP improves544

FS-NER performance at the cost of inference con-545

sumption. This means that LSP is not a universal546

method and should be used selectively considering547

specific usage scenarios.548

In our study, we observed that the performances549

of Mixtral are generally worse than those of Qwen550

in most cases. And in most charts, the performance551

trend of Mixtral is inconsistent with that of Qwen.552

This may be due to differences in their abilities553

caused by different pre-training processes, or it554

may be performance bias caused by quantization.555

However, those observation do not affect our con-556

clusion that LSP benefit the ICL performance on557

FS-NER for different LLMs.558
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A Experiments Setup866

A.1 Models867

Due to limited hardware resources, we locally de-868

ploy 4-bit GPTQ quantized Qwen1.5-32B-Chat11869

(i.e., Qwen) (Bai et al., 2023) and Mixtral-8x7B-870

Instruct-v0.112 (i.e., Mixtral) (Jiang et al., 2024) on871

2 V100-32G GPUs using vLLM13 which is a fast872

library for LLM inference and serving. For model873

with larger parameter sizes, we use DeepSeek-V3874

(i.e., DeepSeek) (DeepSeek-AI, 2024) API14.875

A.2 Datasets876

In our work, we use 4 datasets to carry out877

experiments. For English datasets, we use878

OntoNotes5-EN15 (Hovy et al., 2006) (i.e., Onto5-879

EN) and MIT-Movie16 (i.e, Movie) (Liu et al.,880

2013). For Chinese datasets, we use OntoNotes5-881

ZH17 (Hovy et al., 2006) (i.e., Onto5-ZH) and882

CMeEE-V218 (Zhang et al., 2022). Onto5-EN883

and Onto5-ZH are datasets in the general domain.884

Movie is a dataset in the movie domain. CMeEE-885

V2 is a dataset in the domain of biomedicine. Spe-886

cific statistics are illustrated in Table 7. It’s noted887

that #train is the official training split. We did not888

train any model in our work.889

A.3 Settings890

Three standard metrics including precision (P), re-891

call (R), and micro-averaging F1-score (micro-F1)892

are used to evaluate performance. Aiming to re-893

duce evaluation costs, we used 3 random seeds894

(i.e., 22, 32, 42) to extract 3 test subsets of size895

200 from different datasets and let each model vari-896

ant run once on those test subsets. In other words,897

each model variant was run 3 times on each dataset,898

and the average results were reported in all of our899

experiments.900

B Algorithm901

B.1 Augment demonstrations by LSP902

We explain the methodology of LSP in Section 4.1.903

The specific algorithm is shown in Algorithm 1.904

11https://huggingface.co/Qwen/Qwen1.5-32B-Chat-
GPTQ-Int4

12https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-
v0.1-GPTQ

13https://docs.vllm.ai/en/stable/
14https://api-docs.deepseek.com/
15https://catalog.ldc.upenn.edu/LDC2013T19
16https://sls.csail.mit.edu/downloads/movie/
17https://catalog.ldc.upenn.edu/LDC2013T19
18https://tianchi.aliyun.com/dataset/95414

datasets # train # dev # test # types
Onto5-EN 59924 8528 8262 18
Movie 6900 760 1521 12
Onto5-ZH 37557 6217 4293 18
CMeEE-V2 15000 5000 3000 9

Table 7: Statistics of datasets in our experiments. #
indicates the number of corresponding entries.

Algorithm 1 Label subset partition to augment
demonstrations

Input: demonstrations Sk = {(Xi,Yi)}N1 , labels
LD, partition times n, subset partition propor-
tion p

Output: augmented demonstrations Sa
1: Initialize Sa = ∅
2: Label subset size k = ⌈|LD| × p⌉
3: for i in n do
4: Shuffle LD, s = 0 ▷ s is the start position
5: while s ≤ |LD| do
6: Ls ← LD [s : s+ k] ▷ Take k labels

in order as label subset from LD
7: s← s+ k
8: for (X ,Y) in Sk do
9: Initialize Ŷ = ∅

10: for yi in Y do ▷ yi = (myi , lyi) is
a label-mention pair

11: Ŷ ← Ŷ ∪ yi if lyi ∈ Ls ▷ filter
out labels that do not belong to Ls

12: end for
13: Sa ← Sa ∪ (X , Ŷ) ▷ Add a new

demonstration
14: end for
15: end while
16: end for

return Sa

From line 3 to line 16, we partition original labels 905

(i.e., LD) n times. In detail, from line 4 to line 7, 906

we obtain a label subset Ls of size k. From line 8 to 907

line 13, we add new demonstrations whose labels 908

in the output belong to Ls to Sa. It’s worth noting 909

that a demonstration (X ,Y) contains a sentence 910

X and an output Y = {yi}m1 , where the output is 911

composed of m label-mention pairs. For example, 912

(’Milan’, ’MISC’) is a label-mention pair yi = 913

(myi , lyi) (i.e., myi is ’Milan’ and lyi is ’MISC’) in 914

the output of a demonstration. The time complexity 915

of this algorithm is O(n4). If we partition 1 time, 916

the time complexity of this algorithm is O(n3). 917

12

https://huggingface.co/Qwen/Qwen1.5-32B-Chat-GPTQ-Int4
https://huggingface.co/Qwen/Qwen1.5-32B-Chat-GPTQ-Int4
https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GPTQ
https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GPTQ
https://docs.vllm.ai/en/stable/
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Algorithm 2 Greedy algorithm to sample k-shot
demonstrations

Input: shot k, dataset D = {(Xi,Yi)}N1 , labels
LD

Output: k-shot demonstrations Sk
1: Initialize Sk = ∅, Countli = 0(∀li ∈ LD)
2: for l in LD do
3: while Countl < k do
4: Sample (X ,Y) from D \ Sk that Y in-

cludes l
5: Sk ← Sk ∪ (X ,Y)
6: Update all Countli(∀li ∈ LD)
7: end while
8: end for
9: for (X ,Y) in Sk do

10: Sk = Sk \ (X ,Y)
11: Update all Countli(∀li ∈ LD)
12: if Any Countli < k then
13: Sk ← Sk ∪ (X ,Y)
14: end if
15: end for

return Sk

B.2 Demonstration sampling918

We sample demonstrations from different datasets919

using Algorithm 2 (Ma et al., 2022a). From line 1920

to line 8, we sample an instance that includes class l921

if the number of all the l-class entities is less than k.922

From line 9 to line 15, we try to remove redundant923

instances from the k-shot demonstrations Sk. Note924

that the actual sample number of each label can be925

larger than k using this greedy sampling strategy.926

The time complexity of this algorithm is O(n3).927

B.3 Control Label Accuracy928

In Section 3.3, we control the accuracy of demon-929

strations using Algorithm 3. From line 3 to line930

6, we randomly select n = |Y| × (1 − β) pairs931

as incorrect pairs Yw. From line 7 to line 11, we932

randomly replace the label with another label for933

each mention in Yw. It’s worth noting that a demon-934

stration (X ,Y) contains a sentence x and an out-935

put Y = {yi}n1 , where the output is composed936

of n label-mention pairs. For example, (’Milan’,937

’MISC’) is a label-mention pair yi = (myi , lyi)938

(i.e., myi is ’Milan’ and lyi is ’MISC’) in the out-939

put of a demonstration. The time complexity of940

this algorithm is O(n2). It is worth noting that941

when the number of labels is small (e.g., less than942

2), the number of correct labels is almost the same943

Algorithm 3 Get demonstrations with accuracy β

Input: demonstrations Sk = {(Xi,Yi)}M1 , labels
L, accuracy β

Output: demonstrations Sβ with accuracy β
1: Initialize Sβ = ∅
2: for (X ,Y) in Sk do
3: Shuffle all label-mention pairs in Y
4: n← |Y| × (1− β) ▷ number of incorrect

pairs
5: Yw ← Y [: n] ▷ first n pairs of Y are

wrong pairs
6: Yc ← Y [n :] ▷ remaining pairs of Y are

correct pairs
7: for yi in Yw do ▷ yi = (myi , lyi) is a

label-mention pair
8: replace lyi with other label lj ∈ L that

lj ̸= lyi
9: end for

10: Y ← Yw ∪ Yc
11: Sβ ← Sβ ∪ (X ,Y)
12: end for

return Sβ

under different accuracy settings. Therefore, we 944

ensure that demonstration with less than 2 labels 945

only accounted for 30% when we sample k-shot 946

demonstrations using Algorithm 2. 947

C Preliminary Experiment 948

We conduct a preliminary experiment to explore the 949

impact of k on NER performance using different 950

k-shot settings. In Table 8, we can observe that 951

as k increases, the NER performances generally 952

improve on 4 datasets. 953

D Motivation behind LSP 954

It can be inferred from Section 3 that an appropriate 955

number of demonstrations, accurate labels, diverse 956

labels, and high-coverage labels are essential to 957

ensure the high performance of ICL on FS-NER. 958

Therefore, if we can maximize label diversity (mea- 959

sured by LSPI = nld
nd

) and label coverage (mea- 960

sured by LC = nco
nt

) in the appropriate number of 961

correct demonstrations, we may be able to improve 962

ICL performance on FS-NER. LMβ is the combi- 963

nation of LSPI and LC. Without loss of generality, 964

let’s discuss the case where β = 1. 965

According to GM-HM Inequality (i.e., 2
( 1
a
+ 1

b
)
≤ 966
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√
ab). We can carry out the following derivation:967

LM1 =
2

( 1
LSPI + 1

LC )
968

≤
√
LSPI × LC969

⇒ 1

LM1
=

1

2
(

1

LSPI
+

1

LC
)970

≥ 1√
LSPI × LC

971

=
1√

nldnco

ndnt

972

where nt is a constant value. Hence, if we want973

to improve LM1, we should improve nldnco

nd
. As974

described in Section 3.4, both nld and nco are deter-975

mined by the number of label counters in a context976

window. On the one hand, the more unique label977

counter in a context window, the bigger nld is. On978

the other hand, the more unique label counter in a979

context window, the more likely it is to have the980

same label counter as in the test set (i.e., the bigger981

nco is).982

Based on the above reasoning, we need to enrich983

the label counters as many as possible. Conse-984

quently, we propose LSP that can augment demon-985

strations by partitioning the label set of size s into986

multiple exclusive label subsets of size k (k < s) as987

many as possible. Those label subsets can construct988

diverse label counters for each demonstration in a989

context window to improve nld and nco, thereby990

improve LM1.991

In addition to LSP, there is another intuitive992

method to improve nld and nco: directly construct993

different label combinations based on the labels994

of each demonstration to construct label coun-995

ters. However, such a method cannot generalize996

to demonstrations at the paragraph level because997

longer demonstrations have more types (i.e., la-998

bels) of entities. Assuming we are performing a999

paragraph level NER task, a demonstration has a1000

very long text containing l types of entities. For this1001

demonstration, we can take 1 to l labels to construct1002

a label counter. There is a total of 2l − 119 con-1003

struction ways. Here comes a question: when we1004

use datasets like mit-movie (l = 12) or Ontonotes51005

(l = 18), there are so many label counters that we1006

cannot fill all augmented demonstrations into the1007

context window. Considering the generalization to1008

paragraph-level tasks, we did not use this intuitive1009

construction method instead of LSP.1010

19C0
l + C1

l + . . .+ Cl
l = 2l

E Detaild Results 1011

Due to page length limitations, we present detailed 1012

experimental result figures and tables in this Ap- 1013

pendix Section. 1014

E.1 The Number of Demonstrations 1015

The detailed performance with different duplicating 1016

numbers on 4 datasets is shown in Figure 7. We can 1017

draw the same conclusion as Section 3.2: Simply 1018

duplicating demonstrations to increase the number 1019

of demonstrations does not necessarily improve 1020

ICL ability on FS-NER. 1021

E.2 Label Accuracy 1022

The detailed performance with different label ac- 1023

curacy on 4 datasets is shown in Figure 8. We can 1024

draw the same conclusion as Section 3.3: Label 1025

accuracy is positively correlated with ICL ability 1026

on FS-NER. 1027

E.3 The Size of Label Subsets 1028

The detailed results with different subset propor- 1029

tions on 4 datasets are shown in Figure 9. Similarly 1030

to Section 4.3.1, we can observe that the model 1031

performance is generally optimal when p = 0.5. 1032

Consequently, we select p = 0.5 as the optimal 1033

configuration for LSP. 1034

E.4 The Partition Times 1035

The detailed results with partition times on 4 1036

datasets are shown in Figure 10. We can observe 1037

the same trend shown in Section 4.3.2. 1038

E.5 Efficiency Cost 1039

The detailed results on efficiency cost using Qwen 1040

are shown in Table 9. The same observation can be 1041

found in Section 4.3.4. 1042
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models k-shot Onto5-EN Movie Onto5-ZH CMeEE-V2

Qwen

1 34.72±1.26 67.27±1.79 38.27±4.59 43.48±0.94
3 34.36±2.01 70.60±1.93 39.28±4.84 45.34±0.81
5 38.87±2.45 64.68±2.54 40.48±1.65 42.79±0.60
7 34.66±2.80 69.92±1.09 37.11±3.72 45.50±0.84

Mixtral

1 28.33±1.00 67.22±2.17 26.84±1.57 15.94±2.41
3 29.03±2.49 72.09±1.66 24.85±0.20 29.87±2.32
5 19.08±1.30 71.03±0.70 10.28±3.67 31.05±1.06
7 16.07±1.08 69.27±2.03 21.25±3.03 32.23±1.67

DeepSeek

1 58.37±5.71 76.48±1.18 59.39±3.18 52.53±3.14
3 59.10±2.43 78.35±1.88 58.03±1.85 52.70±1.73
5 59.59±3.91 79.89±2.08 57.93±2.58 51.45±1.89
7 60.65±3.38 79.74±1.82 60.18±1.54 53.65±0.84

Table 8: Micro-F1 (%) results using different LLMs in (k=1, 3, 5, 7)-shot settings on 4 datasets. We use the prompt
template shown in Figure 1. Bold results represent the best setting using the same LLMs.

datasets k-shot methods APL SPI↓ t-∆(%) F1↑ F1-∆(%)

Onto5-EN

1
vanilla 1475 0.764 \ 35.19 \
LSP 1920 0.891 16.63 39.37 11.88

LSP+2 3164 1.389 81.83 40.58 15.32

5
vanilla 3717 1.611 \ 38.48 \
LSP 5229 2.192 36.10 43.09 11.98

LSP+2 9724 4.160 158.28 44.81 16.45

Movie

1
vanilla 817 0.455 \ 67.27 \
LSP 961 0.506 11.24 65.58 -2.51

LSP+2 1420 0.688 51.39 67.59 0.48

5
vanilla 1751 0.825 \ 64.68 \
LSP 2176 0.976 18.25 67.33 4.10

LSP+2 4101 1.745 111.51 69.15 6.91

Onto5-ZH

1
vanilla 1163 0.807 \ 38.27 \
LSP 1511 0.924 14.50 41.15 7.53

LSP+2 2592 0.967 19.83 42.76 11.73

5
vanilla 3237 1.812 \ 40.48 \
LSP 4455 2.372 30.91 43.88 8.40

LSP+2 9116 3.273 80.63 40.36 -0.30

CMeEE-V2

1
vanilla 2286 1.478 \ 43.48 \
LSP 4557 2.516 70.23 45.86 5.47

LSP+2 8366 7.605 414.55 44.98 3.45

5
vanilla 1992 1.366 \ 42.79 \
LSP 2973 1.729 26.57 44.82 4.74

LSP+2 5424 4.764 248.76 41.39 -3.27

Table 9: Efficiency cost for different methods using Qwen on 4 datasets. APL indicates average prompt length. SPI
means seconds per instance. t-∆ represents the degree of improvement of each variant relative to vanilla on SPI.
F1-∆ represents the degree of improvement of each variant relative to vanilla on F1.
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Figure 7: Micro-F1 (%) results with different duplicating times on 4 datasets when we only duplicate demonstrations.
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Figure 8: Micro-F1 (%) results with different label accuracy on 4 datasets.
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Figure 9: Micro-F1 (%) results with different subset proportions on 4 datasets when we use LSP.
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Figure 10: Micro-F1 (%) results with different partition times on 4 datasets when we use LSP.
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