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Abstract

Leveraging the strong generalization capabil-
ities of Large Language Models (LLMs) for
data augmentation is an effective means to ad-
dress the data sparsity of few-shot named en-
tity recognition (FS-NER). Typically, existing
methods manage to select appropriate demon-
strations from a large amount of labeled data to
be filled into the context of LLMs, thereby sig-
nificantly enhancing the ability for in-context
learning (ICL) in FS-NER. However, on the
one hand, we have not yet figured out how
demonstrations affect ICL in FS-NER so that
we cannot do targeted optimization. On the
other hand, labeled data is not abundant to se-
lect demonstrations from in real low-resource
scenarios. In this study, we first systematically
explore the impact of demonstrations on the
ICL for FS-NER from 5 perspectives: sentence
inclusion, number of demonstrations, label ac-
curacy, label diversity, and label coverage. We
find that label diversity and label coverage are
important factors for ICL in FS-NER. So, we
propose three metrics to quantify them: La-
bel Space Per Instance (LSPI), Label Coverage
(LC), and Label Measure(LM). Second, focus-
ing on improving LSPI, LC, and LM, we devise
a method named label subset partition (LSP) to
augment demonstrations. It’s an out-of-the-box
augmentation method which is training-free,
prompt-agnostic, and model-agnostic. Experi-
ments on extensive NER datasets have demon-
strated that LSP can effectively improve the
performance of ICL for FS-NER.

1 Introduction

Named entity recognition (NER) aims to recog-
nize pre-defined named entities in unstructured
text, which is a fundamental task for other NLP
(Natural Language Processing) downstream appli-
cations like information retrieval (IE) and ques-
tion answering (QA). Due to the high labor cost of
high-quality labeled data, NER technology in low-
resource scenarios (or FS-NER) has been widely

# Instruction

You are a professional and helpful crowdsourcing data annotator using
English with the help of description of types.

Identify the entities and recognize their types in the sentence.

The output should be a string in the format of the tuple list, like'[(type o,
entity 0), (type 1, entity 1), ...]".

# types

1) PER, indicates person...

2) ORG, indicates organization...

3) LOC, indicates location...

4) MISC, indicates miscellaneous...

# demonstrations

1) Sentence: Good news for Milan is that Udinese's German striker Oliver
Bierhoff is out through injury.

Output: [('Milan', 'ORG'), (‘Udinese', 'ORG"), ('German', 'MISC"), (‘Oliver
Bierhoff', 'PER")]

2) Sentence: Only France and Britain backed Fischler’s proposal.
Output: [('France', 'LOC"), (‘'Fischler', 'PER")]

# Query

Sentence: EU rejects German call to boycott British lamb.
Output:

Figure 1: The prompt template for FS-NER. Instruc-
tion zone is used to describe tasks. Type zone illustrates
all the labels of the NER task. Demonstration zone
shows some demonstrations for reference. Query zone
is the target instance that needs to be annotated.

explored, particularly in recent years (Huang et al.,
2021; Huang et al., 2022; Moscato et al., 2023).
Thanks to the abundant pre/post-trained knowledge,
the in-context learning (ICL) ability has been ob-
served in large language models (LLMs) (Dong
et al., 2024) and widely explored in FS-NER (San-
toso et al., 2024; Zhang et al., 2023).

Compared to the zero-shot setting, performances
of structured prediction like NER can be greatly
improved in ICL by filling demonstrations into the
context window of LLLMs as references (as shown
in Figure 1) under few-shot settings (Han et al.,
2024; Han et al., 2024). How do demonstrations
boost ICL? Min et al. (2022) have explored the
role of demonstrations in ICL on classification and
multi-choice tasks (e.g., sentiment analysis and
question answering). They have identified that the
label space, the distribution of the input text, and
the format of the input-label pairs are crucial learn-
ing signals provided by demonstrations for ICL.
However, unlike classification and multi-choice
tasks, structured prediction tasks have complex out-



put space and they are enhanced with the help of
structure information in the input (Dev et al., 2021).
Therefore, we cannot easily generalize the find-
ings from Min et al. (2022) to structured prediction
tasks. In this work, we take the FS-NER task as an
example of structured prediction tasks. We manage
to systematically explore the impact of demonstra-
tions on the ICL for FS-NER, so as to do targeted
optimization' for ICL on FS-NER and provide mo-
tivation for future works.

In Section 3, we conduct explorations from 5
aspects: sentence inclusion, number of demonstra-
tions, label accuracy, label diversity, and label cov-
erage. In addition, we introduce 3 novel metrics to
measure label diversity and label coverage: Label
Space Per Instance (LSPI), Label Coverage (LC),
and Label Measure (LM). It should be noted that
LM is a metric that combines LSPI and LC, which
has a high correlation with the micro-F1 score. Our
experiments indicate that an appropriate number
of demonstrations, accurate labels, diverse labels,
and labels with high coverage to the test set are
essential for ICL in FS-NER.

Based on the above conclusion, we propose La-
bel Subset Partition (LSP) in Section 4 to augment
demonstrations to improve label diversity and label
coverage when keeping an appropriate number of
accurate demonstrations. LSP augments demon-
strations by decomposing the original labels into
different label subsets, allowing demonstrations
with original labels to be transformed into multiple
copies with different label subsets. Furthermore,
it’s an out-of-the-box demonstration augmentation
method which is training-free, prompt-agnostic,
and model-agnostic. Experiments show that LSP
can improve LM so that it can improve ICL ability
on FS-NER.

To sum up, our contributions include: (1) To
the best of our knowledge, we investigate factors
of demonstrations that matter for ICL on FS-NER
for the first time. (2) We observe that the label
diversity and the label coverage are crucial for ICL
in FS-NER. Meanwhile, we devise 3 metrics (i.e.,
LSPI, LC, and LM) to measure the label diversity
and the label coverage. (3) We propose LSP, an out-
of-the-box demonstration augmentation method, to
improve LM and the ICL performance on FS-NER.

'Targeted optimization means designing optimization
strategies directly based on the metrics that perform poorly in
benchmarking (Qian et al., 2023).

2 Related Work

2.1 Few-shot NER

Few-shot NER (i.e., FS-NER) identifies entities us-
ing only a small number of labeled data (Moscato
et al., 2023). Recent research can be roughly cate-
gorized into algorithm-based and data-based ones.

2.1.1 Algorithm-based Methods

Algorithm-based methods primarily focus on how
to construct and train models in few-shot settings
to achieve high performance. They are typically
grounded in transfer learning or meta-learning.
Transfer learning is used to transfer knowledge
from resource-rich domains(Zhang et al., 2024;
Zhang et al., 2024), languages(Rahimi et al., 2019;
Wang et al., 2022), and tasks (Radford et al.; Brown
et al., 2020) to low-resource scenarios. Due to the
extensive pre/post-training knowledge, pre-trained
models (i.e., PTMs) and large language models
(i.e., LLMs) are commonly employed as the back-
bone in transfer learning. For example, the In-
Context Learning (i.e., ICL) capability of LLMs is
leveraged to conduct FS-NER(Wang et al., 2023a;
Wu et al., 2024) with suitable demonstrations re-
trieved from a large amount of labeled data. How-
ever, those methods contradict the real scene that
there is only a small amount of labeled data avail-
able in low-resource scenarios. Meta-learning
enables models to "learn how to learn", allowing
models to rapidly adapt to new tasks with only
a minimal number of data. For instance, Model-
Agnostic Meta-Learning (i.e., MAML) (Li et al.,
2022; Ma et al., 2022b) and Prototypical Networks
(de Lichy et al., 2021; Tong et al., 2021).

2.1.2 Data-based Methods

Data-based methods focus on how to manipulate
data to increase the size of the available training cor-
pora, in order to address the issue of data scarcity.
These methods can be primarily categorized into
four strategies: active learning, distant supervision,
self-training, and data augmentation. Active learn-
ing is a strategy of selecting the most informative
example for manual annotation, to balance model
performance and annotation cost (Agrawal et al.,
2021; Rouzegar and Makrehchi, 2024). Distant
supervision methods leverage external resources,
such as ontologies and knowledge bases, to gen-
erate weakly labeled examples from unannotated
data or to identify potential entities through heuris-
tic rules (Liang et al., 2020; Qu et al., 2023). Self-



training methods utilize the model’s inherent ca-
pabilities to generate labels for unannotated data,
subsequently employing these labels to further en-
hance the model (Fu et al., 2023; Xie et al., 2024).
Data augmentation methods generate synthesized
data to increase the available dataset by employ-
ing heuristic rules (Dai and Adel, 2020; Liu et al.,
2021), PTMs (Liu et al., 2022; Song et al., 2024)
or LLMs (Santoso et al., 2024; Xie et al., 2024).
Here, our work is a data augmentation method that
enhances the NER performance of LLMs by syn-
thesizing higher-quality NER examples from the
original labeled data.

2.2 Exploration on ICL

In-context learning (ICL) has been the focus of
significant studies to utilize LL.Ms since its intro-
duction (Sanh et al., 2022; Dong et al., 2024). It is
widely used for various tasks especially in few-shot
settings (Hu et al., 2022; Cahyawijaya et al., 2024).
Some work has been done to understand why in-
context learning works. For example, Xie et al.
(2022) explains ICL as implicit Bayesian inference.
Min et al. (2022) provides an empirical analysis
that investigates why ICL works on 6 tasks (e.g.,
sentiment analysis and question answering) except
for FS-NER. Thus, in this work, we especially ex-
plore why ICL is effective on FS-NER based on
the demonstrations in the LLMs’ context window.

3 Exploration on Demonstrations

So as to thoroughly investigate how demonstrations
impact the performance of ICL on FS-NER, we
conduct a series of experiments in this section from
5 aspects: sentence inclusion, number of demon-
strations, label accuracy, label diversity, and label
coverage. The experiment setup is detailed in Ap-
pendix A. As shown in Figure 1, a demonstration
consists of a sentence and its corresponding out-
put. The output should be recognized from the
sentence during inference contains entity mentions
(e.g., "Milan") and their labels (e.g., "ORG").

3.1 Sentence Inclusion

Intuitively, there must be a strong correlation be-
tween the sentence and its output in a demonstra-
tion, because the entity mentions and labels in the
output are meaningful only when we consider the
contextual semantics of the sentence. Nevertheless,
how much does the sentence inclusion of demon-
strations matter to ICL on FS-NER? We use the
prompt template shown in Figure 1 and experiment

with masked sentences in demonstrations by re-
placing the words with "***", In Table 1, we can
see that the FS-NER performance of the LLMs
does not decrease drastically even if the sentence
is masked, and in some cases it even increases.
Hence, we can draw a counterintuitive conclusion:
sentence inclusion may not directly affect the effec-
tiveness of demonstrations. The learning signal for
ICL on FS-NER is mainly provided by the output
(i.e., the pairs composed of entity mentions and
labels).

3.2 Number of Demonstrations

According to previous works (Ma et al., 2023; Han
et al., 2024; Wu et al., 2024) and Appendix C,
the performance of FS-NER using k-shot settings
usually improves with increasing k. By intuition,
the larger k, the more demonstrations there are in
the context window. Therefore, an intuitive ques-
tion is: does simply duplicating demonstrations
to increase the number of demonstrations improve
ICL capability on FS-NER? We conduct a sim-
ple experiment to investigate the question by di-
rectly duplicating demonstrations n times. Specif-
ically, we first use Algorithm 2 (Ma et al., 2023)
to sample k-shot instances as base demonstrations.
Then, we duplicate them » times and fill the du-
plicated demonstrations into the context window.
As shown in Figure 2 and Figure 7, we can see
that the FS-NER performance of Qwen (Bai et al.,
2023) and DeepSeek (DeepSeek-Al, 2024) slightly
improved compared to not duplicating when the
number of duplications is within 2. However, du-
plicating demonstrations can cause fluctuations for
Mixtral (Jiang et al., 2024) and ultimately lead to
deterioration in most cases. This may be due to
Mixtral’s inability to handle constantly growing
contexts. In summary, the results indicate that sim-
ply increasing the number of demonstrations does
not consistently improve ICL ability on FS-NER.

3.3 Label Accuracy

Label accuracy of the output in a demonstration
may potentially affect ICL ability on FS-NER, as
incorrect labels introduce noise into the context,
misleading LLMs with wrong learning signals. To
validate such a hypothesis, we adjust the accuracy
of the labels in demonstrations from 100% to 0%
using a simple heuristic method shown in Algo-
rithm 3. For example, when the label accuracy is
75%, 25% of entities (e.g., "Udinese" whose gold
label is "ORG") in the output need to be randomly



datasets Onto5-EN Movie Onto5-ZH CMeEE-V2
methods k=1 k=5 k=1 k=1 k=5 k=1 k=5
Qwen 35.19411.48 38.4849007| 67.27 1179 64.681954| 38.271459 40.484165] 43.481094 42.7910.60
w/ mask 3"'1-7""lll.31 39.49 12.56 67.2"'1;()”\)2 6"1.00;2‘(51 38.38 +2.54 3""1.63l;;.[15 46.09 +1.00 45.91 +1.35
Mixtral 28.33:‘:1,00 19.08:‘:1,30 67.22:{:2,17 71.03:{:0,70 26.84;};1.57 ].0.28:&3.67 15.941241 31-0511406
w/ mask 26.3919.05 16.521187| 68.2511 47 71.0217 04| 23144441 19.471602] 31.1041.71 29.0047 13
DeepSeek 58.37i5,71 59~59i3.91 76.48i1,18 79~89i2.08 59439i3.18 57493i2,5g 52-53i3414 51-45i1489
w/ mask 55.5(5i4_2(; 57.1053_40 73.07:1_56 73.97:1_(54 54-49j:2.32 53-5()j:3.28 47~21i3.93 46~75i2.47

Table 1: Micro-F1 (%) results w/o mask and w/ mask using different LLMs in (k=1, 5)-shot settings. Red represents

degradation. Green represents an increase.
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Figure 2: Micro-F1 (%) results with different duplicat-
ing times on Onto5-EN when we only duplicate demon-
strations. Detailed results are shown in Appendix E.1.
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Figure 3: Micro-F1 (%) results with different label ac-
curacy on Onto5-EN. Detailed results shown in Ap-
pendix E.2.

assigned an incorrect label (e.g., "PER") to it. The
experimental results are shown in Figure 3 and
Figure 8. We can observe that the FS-NER per-
formance of the two LLMs declines as the label
accuracy decreases, particularly in 5-shot setting.
Note that when label accuracy is 0%, LLMs can
still correctly recognize some entities due to their
strong generalization, though such performance is
far from that when the accuracy is 100%. Thus, we
can validate our hypothesis that label accuracy is
positively correlated with ICL ability on FS-NER.

3.4 Label Diversity, Coverage and Measure

In addition to the number of demonstrations men-
tioned in Section 3.2, the differences among demon-
strations under various k-shot settings also include

label diversity and label coverage. Before introduc-
ing them, we first introduce the concept of label
counter. The label counter of a demonstration is
a counter recording the numbers of different la-
bels in the output. It can, to some extent, reflect
the label distribution of demonstrations. For ex-
ample, for the 1st demonstration in Figure 1, its
label counter is {"ORG": 2, "MISC": 1, "PER":
1}, which means that there are two "ORG" labels,
a "MISC" label and a "PER" label in this demon-
stration. Similarly, the label counter for the 2nd
demonstration is {"LOC":1, "PER": 1}. Note that
the label counter is order-agnostic, e.g., {"LOC":1,
"PER": 1} is equivalent to {"PER": 1, "LOC":1}.

Label Diversity. Label diversity reflects the di-
versity of label counters in a context window. We
believe that more diverse label counters in a context
window may provide LLMs with richer reference
information. To measure the label diversity, we de-
fine the LSPI (i.e., label space per instance) metric:

Lspr="4 (1)
g

where LSPI € [0, 1], nyq is the number of unique
label counters in a context window and n, is the
total number of demonstrations in the context win-
dow. For example, assuming there are only two
demonstrations in a context window, whose label
counters are {"LOC":1, "PER": 1} and {"PER": 1,
"LOC":1}, respectively. Therefore, n;; is 1 and ng
is 2. LSPI represents the average number of unique
label counters that each demonstration can provide,
namely diversity. The larger the LSPI, the more
diverse the label counter (or label distribution) in a
context window.

Label Coverage. Label coverage indicates the
degree to which the label counters in a context win-
dow cover the label counters in the test set”. We

%In practical situations, the test set are not accessible during
inference. Therefore, label coverage can only be measured to



dataset k-shot LSPI LC LM;T LMg5T
I 5000 1.0l 197 465
3 4038 249 469 998
OnoS-EN 5 4605 356 661 1359
7 4455 249 471 1016
1 5000 397 735 1505
Movie 3 4167 482 863 1647
5 4259 688 11.85  20.90
7 3415 698 1159 1920
1 5000 172 336 1763
3 4792 261 495 1072
Onto3-ZH 5 4821 417 768 1549
7 5000 873 14.87 2570
1 5000 429 789 1596
35000 595 1063  20.15
CMeEE-V2 5 4167 769 1298 2211
7 5000 864 1433 25.54

Table 2: LSPI(%), LC(%), and LM(%) results in (k=1,
3, 5, 7)-shot settings on 4 datasets. We use prompt
template shown in Figure 1.

hypothesize that the more label counters of demon-
strations appear in the test set, the more informa-
tion of the test set is exposed to LLMs to learn, and
the more likely LLMs are to output correct label
counters. To measure label coverage in a context
window, we define the LC (i.e., label coverage) as:

Lo = 2o )
n

where LC' € [0, 1], n, is the co-occurrence num-
ber of label counters in the context window and
the test set. For example, if the label counter (e.g.,
{"LOC":1, "PER": 1}) of a demonstration in the
context window also appears in the test set, then
add one to n.,. 1 is the number of instances in
the test set’. LC measures the probability of label
counters in the test set that are also present in the
context window, namely coverage. The larger the
LC, the higher the label coverage.

Label Measure. To comprehensively consider
label diversity and label coverage, we combine LC
with LSPI to form the LM (i.e., label measure)
metric:

(1+ B%) x LSPI x LC

LM =
p 32 x LSPI + LC

3)

where LMy € [0,1], 5 € R is a weighted factor.
We setitto 1 (i.e., LMy) or 0.5 (i.e., LMg5).

It’s noted that LSPI, LC, and LM are model-
agnostic. LSPI only measures the distribution of

analyze ICL performance in this study.
3We set it to 200 in experiments. See Appendix A.3.

metrics models  Onto5-EN  Movie Onto5-CH CMeEE-V2
Qwen 0.706 -0.258 -0.508 0.314
LM; Mixtral -0.591 0.365 -0.300 0.904
DeepSeek 0.587 0.965 0.567 0.223
Qwen 0.689 -0.426 -0.451 0.433
LMy 5 Mixtral -0.604 0.417 -0.355 0911
DeepSeek 0.609 0.938 0.514 0.329

Table 3: The Pearson correlation coefficient between
LM and micro-F1 on 4 datasets (p < 0.05).

label counters in a context window. LC only mea-
sures the overlapping of label counters between
demonstrations and the test set. In Table 2, we
can observe that as k increases, LSPI mostly de-
creases, LC mostly increases, and LM shows a
fluctuating upward trend. As shown in Table 3,
LM; and LMy 5 exhibit a moderate or higher de-
gree of correlations* with F1 scores across nearly
all datasets when using 3 different LLMs. The neg-
ative outcomes in Table 3 may be attributable to
the increase of k in k-shot NER, which leads to an
extended context length and consequently a decline
in the performance of LLMs when processing long
contexts. Based on these observations, we can con-
clude that both label diversity and label coverage
exhibit a moderate to high degree of correlation
with the performance of ICL on FS-NER.

4 Label Subset Partition

It can be inferred from Section 3 that an appropriate
number of demonstrations, accurate labels, diverse
labels, and high-coverage labels are essential to
ensure the high performance of ICL on FS-NER.
Based on such a conclusion, we propose a novel
method named label subset partition (i.e., LSP) to
augment demonstrations in the LLMs’ context win-
dow, improving label diversity and label coverage
while keeping an appropriate number of accurate
demonstrations. A detailed motivation is explained
in Appendix D. Meanwhile, the experiment setup
is same to Section 3 (detailed in Appendix A).

4.1 Methodology

As illustrated in Figure 4, LSP augments a demon-
stration by partitioning the label set of size s into
multiple exclusive label subsets of size k (k < s)
as many as possible’ and thus for a sentence to
produce a separate demonstration for each label
subset. In detail, step 1, we randomly partition the

“The absolute value of a Pearson correlation coefficient
between 0.4 and 0.6 indicates a moderate correlation, while an
absolute value greater than 0.6 signifies a strong correlation.

The remaining labels less than k still form a label subset.



Demonstrations (Before)

I

i

! |

1) Sentence: Good news for Milan is that Udinese's German striker | Subset 1 Subset 1 !
Oliver Bierhoff is out in Serie A through injury. 1) PER Sentence:IG(?od Hews f(v’f = - o . N !
Output: [(Milan', 'ORG'), ('Udinese', '"ORG", (German', 'GPE)), ! 2) ORG Output: [('Milan', 'ORG"), ('Udinese', 'ORG'"), (‘Oliver Bierhoff', 'PER")] |
: : IDERN ('Qaria A' 1 v |
('Oliver Bierhoff, 'PER"), (‘Serie A", 'MISC")] | Subset 2 Subset 2 !
"1 LOC Sentence: Good news for ... |

| 2) GPE Output: [('German', 'GPE")] !

Labels | |

Label 1) PER, indicates person ... | Subset 3 Subset 3 !
Subset 2) ORG, indicates organization... ; 1) MISC Sentence: Good news for ... !
Partiti 3) LOC, indicates location... | Output: [('Serie A', 'MISC')] |
artition s oq g | |

4) GPE, indicates geo-political entity... | ~~— - -~ - -------------ooooooooo oo oo

5) MISC, indicates miscellaneous... | partition 2 !

! |

Demonstrations (After) | Subset 1 Subset 1 !
1) Sentence: Good news for ... | ) PER Sentence: G‘?Od M for ... !
Output: [('Milan', 'ORG"), ('Udinese', 'ORG", (‘Oliver Bierhoff, 'PER")] | 2)LOC Output: [(‘Oliver Bierhoff, 'PER")] !
2) Sentence: Good news for ... ! Subset 2 Subset 2 !
Output: [(‘German','GPE] 1) ORG Sentence: Good news for ... !
3) Sentence: Good news for ... | 2) MISC Output: [('Milan', 'ORG"), (‘'Udinese', 'ORG"), ('Serie A', 'MISC')] I
Output: [('German', 'MISC")] | |
4) Sentence: Good news for ... | Subset 3 Subset 3 !
Output: [('Oliver Bierhoff', 'PER")] ! 1) GPE Sentence: Good news for ... !
5) Sentence: Good news for ... ! Output: [('German', 'GPE")] |
Output: [('Milan', 'ORG"), (‘'Udinese', 'ORG"), (German', 'MISC')] =~~~ -~ - oo oo !
6) Sentence: Good news for... I T e e e e e e

Output: [('German', 'GPE')]

Figure 4: Overview of our proposed LSP.

original label set of size s into multiple label sub-
sets £; of size k (k < [5]°) as many as possible,
where £; N L; = 0 if i # j7. For example, in
the top right of Figure 4, we partition the original
label set (i.e., [PER, ORG, LOC, GPE, MISC]) of
size 5 into three label subsets, including two label
subsets of size k = 2 (i.e., [PER, ORG] and [LOC,
GPE]) and a label subset (i.e., [MISC]) composed
of the remaining one label. Step 2, for each label
subset, we filter out entities that do not belong to
this label subset in the output. For example, "Ger-
man" with the "GPE" label is filtered out when we
use the label subset [PER, ORG]. Now, we can ob-
tain [£] (i.e., [3] = 3) new demonstrations with
distinct outputs, e.g., "[’Milan’, ’ORG’], ['Udi-
nese’, ’ORG’], ['Oliver Bierhoff’, ’PER’]" for the
1st demonstration and "[’German’, ’GPE’]" for the
2nd demonstration. Step 3, we can repeat such
partition process n times to ensure that no identi-
cal subset exists in all partitions. For example, in
the 2nd partition process, "PER" and "LOC" are
grouped together, while they are not in the same
label subset in the 1st partition process. Step 4,
we concatenate all demonstrations from different
label subsets and fill them into the context. It can
be observed that the original single demonstration
has been expanded to 6 (i.e., [ £ | x n) demonstra-
tions. It’s worth noting that LSP is an augmentation
method that operates only on demonstrations. So,
we don’t need to train LLMs (i.e., training-free),

We consider that the entity labels of a demonstration are
usually sparse, with no more than half of the total types.
"In set partitioning, each set don’t intersect with each other.

or design specific prompts (i.e., prompt-agnostic).
It can also be applied to any LLMs (i.e., model-
agnostic). The detailed algorithm is shown in Al-
gorithm 1 in Appendix B.1.

4.2 Comparison with different ICL. Methods

We compare LSP with other ICL methods for FS-
NER: Vanilla (Ma et al., 2023) use the prompt-
template shown in Figure 1. It simultaneously
outputs entity mentions across all types for each
query. Vanilla+rep purely duplicates demonstra-
tions multiple times based on the Vanilla method.
We duplicate demonstrations 1 time here. Multi-
ga (Xie et al., 2023) method processes each query
in a batch using a multi-turn question-answer style.
Single-type (Wang et al., 2023a) method processes
and outputs entities for only one type at a time,
subsequently aggregating the results from all types.
Self-consistency (Wang et al., 2023b) selects the
final answer as the most common one across output
entities. In order to establish a similar few-shot ex-
perimental setting, we remove the step of retrieving
the optimal demonstrations from a large amount of
labeled data from Multi-qa and Single-type. For
LSP, we set the size of a label subset to half of
the original label size (i.e., p = 0.5%). For LSP+2,
we partition label subsets 2 times’. As shown in
Table 4, we can observe that: (1) LSP generally
achieves the best results compared to other ICL
methods for FS-NER, which demonstrates the su-
periority of LSP. (2) After repeating partitioning,

8See detail in Section 4.3.1.
°See detail at Section 4.3.2



datasets Onto5-EN Movie Onto5-ZH ‘ CMeEE-V2
models methods k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5

vanilla 35. 19t1 48 38.4812,07 67.27¢1 79 64.68t2.54 38.27i4,59 40.4811.65 43.48i0.94 42-79t0.60
vanilla+rep 36-92i1.36 42.1911.33 66.01i1.4o 68.29t].g3 39-35i3.78 37-9313.16 43.57¢1.31 43-06t0.64
QWCH multi—qa 35.4613‘28 40.64i1,11 66A32i2_30 64.12i]‘40 37.5112‘77 36.7li2,33 42A51i1_10 41.80i0‘93
single-type 18114103 22.0441.17 | 34.1921.19 41204057 | 39.03:371  37.881236 | 34.19+1.19 41204057
SC]f—COl’lSiStenCy 35.60i1.24 38.1()1,3_34 67.74i0_57 65.69i1_3(] 34-19t1.19 41 .2010_57 44490il.06 43.88i()_71
LSP 39371201 43.091206 | 65.58+100 67.331062 | 41.15:473 43.88.308 | 45861249 44.82.1 16
LSP+2 40.58:287 44.81:314 | 67.594155 69.154103 | 42761103 40.364520 | 44981022 41.39:093
vanilla 28.3311.00 19.0811,30 67.221217 71‘0310.70 26.8411.57 10.2813,67 15.941241 31-0511.06

Vanilla+rep 27-07i1.56 19.6411,15 68.7li0.71 71-10t2.69 28.63i1.39 16.1612‘45 2-80t2.69 5.22¢1_47
Mixtral multi—qa 26.875.35 lg.glil,og 6l~13i0.69 66.93i0.gg 28.54&1,36 15-9711.90 27-0510.97 27.62i1.gg
single-type 4.82i0, 17 5.34i()‘47 11.3 1i0.54 12-99i0.42 11.31 +0.54 12.99i()‘42 11.3 1i0.54 12-99i0.42
self—consistency 30-53:2.86 244810.60 65A95i0_34 69.73i]_25 29.65i3.29 4~53i1.64 17474il .65 30.22¢0_53
LSP 29.96:268 2111021 | 69.090131 72524243 | 2842221 14.57.455 | 14.652134 20954106

LSP+2 26.075078 11414474 | 69851181 57.89:197 | 24.88:301  1.06:150 | 0.005000  3.044051
vanilla 58.3715.7] 59.591349] 76‘4811_13 79.8912.08 59.3913.13 57.9312453 52.5313.14 51‘4511_39
Vanilla+rep 59.9515.07 59.4813,29 776511,49 78.33i0.99 57.7312.03 60.6612,36 518711,69 51-7811.65
DeepSeek multi—qa 55.61i4,30 56.1913,12 69.65i1.31 70-69t].46 50-45i2.57 52.2012,23 44.78i2.24 45.03¢0.93
single-type 28.305,20 31-4213.42 61.28i2_23 62.624:2.67 36-00i1.16 37.8li0,g5 37.56i1_42 39-08t0.86
self—consistency 59-1415,45 58-091173 76443i2_71 78.69i1_56 59-9311,16 59-711252 52A33i2_gg 52.18i1_53

LSP 58.694533 61.324264 | 76.661200 77.361087 | 57.871468 60.8811.93 | 50.924511 51301271
LSP+2 59.81u414 61.002427 | 77.814226 77.621340 | 61944332 59.664133 | 51.881002 53.1712.19

Table 4: Micro-F1 (%) results using different ICL methods and different LLMs in (k=1, 5)-shot settings on 4

datasets. Bold results represent the best method using the same LLMs.

LSP shows better results when using Qwen and
DeepSeek, though this observation does not apply
to Mixtral. We conjecture that the extended context
length, resulting from the subset partition and ex-
pansion of demonstrations, leads to a degradation
in the performance of Mixtral. (3) Compared to
using LLMs with larger parameters like DeepSeek,
the performance improvement of LSP is more sig-
nificant when using LLMs with smaller parameters
like Qwen.

4.3 Analysis
4.3.1 Size of Label Subsets

We conduct experiments to explore the optimal size
of label subsets. Given that the original label sets
of different datasets vary in size, we use subset pro-
portion p to determine the size of label subsets. If
the size of the original label set is s and the size of
a label subset is k, the subset proportion is defined
asp = % Due to the non-overlapping nature of any
two subsets (i.e., £; N L; = () if ¢ # j) when the
subset proportion is set to exceed 0.5, the sizes of
the subsets become uneven (e.g., 0.6 for one label
subset and 0.4 for the other). Thus, we set the p
from 0.1 to 0.5 here. From Figure 5 and Figure 9,
it can be observed that as the proportion increases
from 0.1 to 0.5, the micro-F1 score generally ex-
hibits an upward trend. It can also be determined
that the model performance is generally optimal
when p = 0.5. We speculate that the larger the
size of the label subset, the richer the combinations
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Figure 5: Micro-F1 (%) results with different subset
proportions on Onto5-EN. Detailed results are shown in
Appendix E.3.

of labels in a demonstration, and the more infor-
mation available for ICL. Consequently, we select
p = 0.5 as the optimal configuration for LSP.

4.3.2 Partition Times

As mentioned in Section 4.1, we can repeatedly
partition label subsets n times. So, in this section,
we aim to investigate the optimal partition times.
In Figure 6 and Figure 10, we can observe that,
across nearly all datasets, appropriately increasing
partition times improves the FS-NER performance
of Qwen and DeepSeek using 1-shot and 5-shot set-
ting. This is because the more partition times is, the
more label subsets can cover more combinations
of the original labels. However, this conclusion
is only valid for Mixtral under the 1-shot setting.
When using the 5-shot setting, the FS-NER perfor-
mance of Mixtral deteriorates with the increasing



1-shot 5-shot

@
~

models

I models [

+ | I Qwen
!
1

I I I ; Qwen
|
1

=]
o
——

T

1~ Mixtral
Deepseek

I H 1

I Mixtral
{— Deepseek

@
o]

=]
ES
[ —
"

=)
w
N W R~ U o
: .

micro-fl (%)
micro-fl (%)

® ©@ @ @ © © © °

o

©
N

1
.1 1

.0 B

2 4 6
partition times

=)
-
——

=

2 4
partition times

o

Figure 6: Micro-F1 (%) results with different partition
times on Onto5-EN. Detailed results are shown in Ap-
pendix E.4.

settings 1-shot 5-shot
dataset methods | LSPI LC LM;? |LSPI LC LM;?
vanilla 50.00 1.01 1.97 | 46.05 356  6.61
OntoS-EN vanilla+rep | 33.33  1.01 1.95 | 30.70 356 6.38

LSP 90.00 9.59 17.33 | 75.13 1571 25.99
LSP+2 65.00 11.87 20.07 | 57.28 20.98 30.71
vanilla 50.00 397 735 | 4259 688 11.85

vanilla+rep | 33.33 397 7.09 | 2840 6.88 11.08

Movie LSP 8095 743 1361 | 5573 1436 22.83
LSP+2 | 5833 1132 1896 | 3696 1600 2233
vanilla | 5000 172 333 | 4821 125 244
vanillatrep | 3333 172 327 |3214 125 241
Onto3-ZH "1 gp 7 | 8586 1534 2148 | 8515 1229 21.48
LSP+2 | 62.88 2132 31.84 | 70.51 2294 34.62
vanilla | 5000 075 148 | 4167 123 239
OMeEE.y, Vanillatrep | 3333075 147 | 3245 123 237

LSP 80.56 4.05 771 | 7196 5.66 10.49
LSP+2 59.72 437 814 | 46,57 653 1145

Table 5: LSPI(%), LC(%) and LM(%) for different ICL
methods on 4 datasets

partition times, due to its inability to handle the in-
creasing context length. Based on our observation,
we choose n = 2 as the optimal configuration for
LSP.

4.3.3 Why is LSP effective

To explain why LSP is effective, we adopt LSPI,
LC, and LM; to measure label diversity and la-
bel coverage of our proposed LSP. From Ta-
ble 5, we can see that, compared to Vanilla'®
and Vanilla+rep, LSP can improve LSPI, LC and
LM;. When we partition label subsets 2 times (i.e.,
LSP+2), LM; is getting greater. This trend indi-
cates that LSP augments demonstrations by increas-
ing label diversity and coverage. This suggests that
LSP can improve ICL performance on FS-NER by
increasing label diversity and coverage, providing
LLMs with more diverse and targeted label infor-
mation for inference, thereby enhancing their ICL
ability on FS-NER.

'The demonstrations used in vanilla, multi-qa, single-type
and self-consistency are the same, so their LSPI, LC and LM
are the same.

k-shot methods APL SPI| t-A(%) F1(%)! F1-A(%)
vanilla 1475 0.764 \ 35.19 \

1 LSP 1920 0.891 16.63 39.37 11.88
LSP+2 3164 1.389 81.83 40.58 15.32
vanilla 3717 1.611 \ 38.48 \

5 LSP 5229 2192  36.10 43.09 11.98
LSP+2 9724 4.160 158.28 44.81 16.45

Table 6: Efficiency cost for different methods using
Qwen on Onto5-EN. APL indicates average prompt
length. SPI means seconds per instance. t-A represents
the degree of improvement of each variant relative to
vanilla on SPI. F1-A represents the degree of improve-
ment of each variant relative to vanilla on F1.

4.3.4 Efficiency Cost

To balance FS-NER performance and computa-
tional cost, we measure prompt length, inference
speed, and micro-F1 using different methods. In
Table 6 and Table 9, it can be observed that: (1)
When using Qwen on general domain datasets like
Onto5-EN and Onto5-ZH, the increase in inference
time is tolerable, compared to the FS-NER perfor-
mance improvement brought about by LSP. For ex-
ample, LSP achieve an improvement of 11.88% on
F1 when it only spends an additional 16.63% of in-
ference time under the 5-shot setting on Onto5-EN.
Similarly, LSP+2 spends an additional 19.83% on
inference costs in exchange for a 11.73% F1 boost,
when using the 5-shot setting on Onto5-ZH. (2)
When using Qwen on domain-specific datasets like
Movie and CMeEE-V2, the inference consumption
increases, but the desired performance improve-
ment is not achieved. For example, we consume
an additional 111.51% of inference time but only
achieve a 6.91% F1 improvement using the 5-shot
setting on Movie.

5 Conclusion

In this paper, we systematically explore the impact
of demonstrations on the ICL on FS-NER. To mea-
sure label diversity and label coverage, we devise
LSPI, LC, and LM metrics. We find that an appro-
priate number of demonstrations, accurate labels,
diverse labels, and labels with high coverage of the
test set are essential to ensure the performance of
ICL on FS-NER. Based on this conclusion, we pro-
pose LSP to augment demonstrations in the context
window of LLMs. Extensive experiments prove the
superiority of LSP.



Limitation

This paper only explores the effect of demonstra-
tions for ICL on FS-NER, excluding instructions,
labels, and queries. We are not yet clear whether
instructions, labels, demonstrations, and queries
affect each other for ICL on FS-NER. So, we leave
this to future work. In addition, all conclusions
from this study may not generalize for other struc-
tured prediction tasks (e.g., event extraction, coref-
erence resolution).

According to the analysis section, LSP improves
FS-NER performance at the cost of inference con-
sumption. This means that LSP is not a universal
method and should be used selectively considering
specific usage scenarios.

In our study, we observed that the performances
of Mixtral are generally worse than those of Qwen
in most cases. And in most charts, the performance
trend of Mixtral is inconsistent with that of Qwen.
This may be due to differences in their abilities
caused by different pre-training processes, or it
may be performance bias caused by quantization.
However, those observation do not affect our con-
clusion that LSP benefit the ICL performance on
FS-NER for different LLMs.
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A Experiments Setup
A.1 Models

Due to limited hardware resources, we locally de-
ploy 4-bit GPTQ quantized Qwen1.5-32B-Chat!!
(i.e., Qwen) (Bai et al., 2023) and Mixtral-8x7B-
Instruct-v0.1'2 (i.e., Mixtral) (Jiang et al., 2024) on
2 V100-32G GPUs using vLLM'? which is a fast
library for LLM inference and serving. For model
with larger parameter sizes, we use DeepSeek-V3
(i.e., DeepSeek) (DeepSeek-Al, 2024) API'4,

A.2 Datasets

In our work, we use 4 datasets to carry out
experiments.  For English datasets, we use
OntoNotes5-EN'3 (Hovy et al., 2006) (i.e., Onto5-
EN) and MIT-Movie'® (i.e, Movie) (Liu et al.,
2013). For Chinese datasets, we use OntoNotes5-
ZH'? (Hovy et al., 2006) (i.e., Onto5-ZH) and
CMeEE-V2!® (Zhang et al., 2022). Onto5-EN
and Onto5-ZH are datasets in the general domain.
Movie is a dataset in the movie domain. CMeEE-
V2 is a dataset in the domain of biomedicine. Spe-
cific statistics are illustrated in Table 7. It’s noted
that #train is the official training split. We did not
train any model in our work.

A.3 Settings

Three standard metrics including precision (P), re-
call (R), and micro-averaging F1-score (micro-F1)
are used to evaluate performance. Aiming to re-
duce evaluation costs, we used 3 random seeds
(i.e., 22, 32, 42) to extract 3 test subsets of size
200 from different datasets and let each model vari-
ant run once on those test subsets. In other words,
each model variant was run 3 times on each dataset,
and the average results were reported in all of our
experiments.

B Algorithm

B.1 Augment demonstrations by LSP

We explain the methodology of LSP in Section 4.1.
The specific algorithm is shown in Algorithm 1.

"https://huggingface.co/Qwen/Qwen1.5-32B-Chat-
GPTQ-Int4
https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-
v0.1-GPTQ
Bhttps://docs.vlim.ai/en/stable/
“https://api-docs.deepseek.com/
Shttps://catalog.ldc.upenn.edu/LDC2013T19
nhttps://sls.csail.mit.edu/downloads/movie/
Yhttps://catalog.1dc.upenn.edu/LDC2013T19
Bhttps://tianchi.aliyun.com/dataset/95414
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datasets #train #dev #test # types
Onto5-EN 59924 8528 8262 18
Movie 6900 760 1521 12
Onto5-ZH 37557 6217 4293 18
CMeEE-V2 15000 5000 3000 9

Table 7: Statistics of datasets in our experiments. #
indicates the number of corresponding entries.

Algorithm 1 Label subset partition to augment
demonstrations

Input: demonstrations S = {(A}, yz)}{v , labels
Lp, partition times n, subset partition propor-
tion p

Output: augmented demonstrations S,

1: Initialize S, = 0

2: Label subset size k = [|Lp| X p]

3: for ¢ in n do

4: Shuffle Lp, s = 0 > s is the start position

5

6

while s < |Lp| do
Ls < Lp[s:s+k] »>Take k labels
in order as label subset from Lp

7: s s+k

8 for (X,)) in S do

9: Initialize Y = ()

10: for y; in Y do > y; = (my,, 1) is

a label-mention pair
Y YUy ifly, € Ly filter
out labels that do not belong to L

12: end for
13: Su— SU(X,Y) > Addanew
demonstration
14: end for
15: end while
16: end for
return S,

From line 3 to line 16, we partition original labels
(i.e., Lp) n times. In detail, from line 4 to line 7,
we obtain a label subset £ of size k. From line 8 to
line 13, we add new demonstrations whose labels
in the output belong to L, to S,. It’s worth noting
that a demonstration (X', ))) contains a sentence
X and an output Y = {y;}}", where the output is
composed of m label-mention pairs. For example,
(’Milan’, "MISC’) is a label-mention pair y; =
(my,, ly,) (.e., my, is "Milan’ and [, is "MISC’) in
the output of a demonstration. The time complexity
of this algorithm is O(n?). If we partition 1 time,
the time complexity of this algorithm is O(n?).


https://huggingface.co/Qwen/Qwen1.5-32B-Chat-GPTQ-Int4
https://huggingface.co/Qwen/Qwen1.5-32B-Chat-GPTQ-Int4
https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GPTQ
https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GPTQ
https://docs.vllm.ai/en/stable/
https://api-docs.deepseek.com/
https://catalog.ldc.upenn.edu/LDC2013T19
https://sls.csail.mit.edu/downloads/movie/
https://catalog.ldc.upenn.edu/LDC2013T19
https://tianchi.aliyun.com/dataset/95414

Algorithm 2 Greedy algorithm to sample k-shot
demonstrations

Input: shot &, dataset D = {(&;, yl)}iv , labels
Lp

Output: k-shot demonstrations Sy,

1: Initialize Sy, = (), Count;, = 0(VI; € Lp)

2: for [ in ﬁp do

3: while Count; < k do

4 Sample (X,)) from D \ S, that ) in-

cludes [

5: Sk S U (X,)Y)
6: Update all Count;, (VI; € Lp)
7: end while
8: end for
9: for (X,)) in Sy do
10: Sp=8\(X,))
11: Update all Count;, (Vl; € Lp)
12: if Any Count;,; < k then
13: Sk%SkU(X,y)
14: end if
15: end for
return S

B.2 Demonstration sampling

We sample demonstrations from different datasets
using Algorithm 2 (Ma et al., 2022a). From line 1
to line 8, we sample an instance that includes class /
if the number of all the /-class entities is less than k.
From line 9 to line 15, we try to remove redundant
instances from the k-shot demonstrations Sj. Note
that the actual sample number of each label can be
larger than k using this greedy sampling strategy.
The time complexity of this algorithm is O(n?).

B.3 Control Label Accuracy

In Section 3.3, we control the accuracy of demon-
strations using Algorithm 3. From line 3 to line
6, we randomly select n = |Y| x (1 — f3) pairs
as incorrect pairs ),,. From line 7 to line 11, we
randomly replace the label with another label for
each mention in ). It’s worth noting that a demon-
stration (X, ))) contains a sentence x and an out-
put ¥ = {y;}{, where the output is composed
of n label-mention pairs. For example, ("Milan’,
"MISC’) is a label-mention pair y; = (my,,ly,)
(i.e., my, is "Milan’ and [, is "MISC’) in the out-
put of a demonstration. The time complexity of
this algorithm is O(n?). It is worth noting that
when the number of labels is small (e.g., less than
2), the number of correct labels is almost the same
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Algorithm 3 Get demonstrations with accuracy

Input: demonstrations Sy, = {(X;,);)}17, labels
L, accuracy /3
Output: demonstrations Sg with accuracy 3

1: Initialize Sg = ()

2: for (X, y) in S; do

3: Shuffle all label-mention pairs in Y

4 n < |Y| x (1 — 3) > number of incorrect
pairs

5: Vw < V[ n] > first n pairs of ) are
wrong pairs

6: V.« Y[n: > remaining pairs of ) are

correct pairs
for y; in Y, do
label-mention pair

>y = (my,,l,)isa

8: replace [,, with other label [; € L that
lj 7 Ly,
9: end for
10: y — yw U yc
11: Sﬁ(—SﬂU(X,y)
12: end for
return Sg

under different accuracy settings. Therefore, we
ensure that demonstration with less than 2 labels
only accounted for 30% when we sample k-shot
demonstrations using Algorithm 2.

C Preliminary Experiment

We conduct a preliminary experiment to explore the
impact of k on NER performance using different
k-shot settings. In Table 8, we can observe that
as k increases, the NER performances generally
improve on 4 datasets.

D Motivation behind LSP

It can be inferred from Section 3 that an appropriate
number of demonstrations, accurate labels, diverse
labels, and high-coverage labels are essential to
ensure the high performance of ICL on FS-NER.
Therefore, if we can maximize label diversity (mea-
sured by LSPI = Z—Zj) and label coverage (mea-
sured by LC = "n—ct") in the appropriate number of
correct demonstrations, we may be able to improve
ICL performance on FS-NER. L Mg is the combi-
nation of LSPI and LC. Without loss of generality,
let’s discuss the case where 8 = 1.

According to GM-HM Inequality (i.e., =

(2+3)

<



v ab). We can carry out the following derivation:
2

LMy = 1 1

(zspr + 10)

< VLSPI x LC

IR NS P S
LM, 2'LSPI LC
S
~ VLSPI x LC
1

ngnt

where n; is a constant value. Hence, if we want
to improve LM, we should improve “%<2. As
described in Section 3.4, both n;4 and n., are deter-
mined by the number of label counters in a context
window. On the one hand, the more unique label
counter in a context window, the bigger n;q is. On
the other hand, the more unique label counter in a
context window, the more likely it is to have the
same label counter as in the test set (i.e., the bigger
Neo 18).

Based on the above reasoning, we need to enrich
the label counters as many as possible. Conse-
quently, we propose LSP that can augment demon-
strations by partitioning the label set of size s into
multiple exclusive label subsets of size k (k < s) as
many as possible. Those label subsets can construct
diverse label counters for each demonstration in a
context window to improve n;q and n.,, thereby
improve LM;.

In addition to LSP, there is another intuitive
method to improve nyq and n.,: directly construct
different label combinations based on the labels
of each demonstration to construct label coun-
ters. However, such a method cannot generalize
to demonstrations at the paragraph level because
longer demonstrations have more types (i.e., la-
bels) of entities. Assuming we are performing a
paragraph level NER task, a demonstration has a
very long text containing [ types of entities. For this
demonstration, we can take 1 to [ labels to construct
a label counter. There is a total of 2/ — 1'% con-
struction ways. Here comes a question: when we
use datasets like mit-movie (! = 12) or Ontonotes5
(I = 18), there are so many label counters that we
cannot fill all augmented demonstrations into the
context window. Considering the generalization to
paragraph-level tasks, we did not use this intuitive
construction method instead of LSP.

e+l .. 40l =2
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E Detaild Results

Due to page length limitations, we present detailed
experimental result figures and tables in this Ap-
pendix Section.

E.1 The Number of Demonstrations

The detailed performance with different duplicating
numbers on 4 datasets is shown in Figure 7. We can
draw the same conclusion as Section 3.2: Simply
duplicating demonstrations to increase the number
of demonstrations does not necessarily improve
ICL ability on FS-NER.

E.2 Label Accuracy

The detailed performance with different label ac-
curacy on 4 datasets is shown in Figure 8. We can
draw the same conclusion as Section 3.3: Label
accuracy is positively correlated with ICL ability
on FS-NER.

E.3 The Size of Label Subsets

The detailed results with different subset propor-
tions on 4 datasets are shown in Figure 9. Similarly
to Section 4.3.1, we can observe that the model
performance is generally optimal when p = 0.5.
Consequently, we select p = 0.5 as the optimal
configuration for LSP.

E.4 The Partition Times

The detailed results with partition times on 4
datasets are shown in Figure 10. We can observe
the same trend shown in Section 4.3.2.

E.5 Efficiency Cost

The detailed results on efficiency cost using Qwen
are shown in Table 9. The same observation can be
found in Section 4.3.4.



models  k-shot  Onto5-EN Movie Onto5-ZH CMeEE-V2
1 34.7241 26 67.27+179 38.27+4.59 43.48.0.94

Qwen 3 34.36.501 70.60.1 .93 39.28.4.84 45.344081
5 38.87i245 64681054  4048.16s 4279060

7 34.66.2 80 69.92.41 09 3711372 45.50.0.84

1 28332100 672217 2684s157 15944

. 3 29.03.5.49 72.09.1.66 24.85.0.20 29.8749.3>
Mixtral 5 19.0841 30 71.0340.70 10.28.43.67 31.0541.06
7 16.0741.08 69.2747.03 21.2543.03 32.23.1.67

1 5837u571 76482115 59.39.315  52.5313.14

3 50100043  7835e1ss  58.03a185  52.70.173

DeepSeek 5 59.59.301  79.89.205  57.93.255  51.45.180
7 60.65.3 .33 79.7441 8> 60.18.154 53.65.0.84

Table 8: Micro-F1 (%) results using different LLMs in (k=1, 3, 5, 7)-shot settings on 4 datasets. We use the prompt
template shown in Figure 1. Bold results represent the best setting using the same LLMs.

datasets k-shot methods APL SPI| t-A(%) F11 F1-A(%)

vanilla 1475 0764  \  35.19 \

1 LSP 1920 0891 16.63 3937  11.88

LSP+2 3164 1389 81.83 4058 1532

Onto3-EN vanilla 3717 1611\ 3848 \
5 LSP 5229 2192 36.10 4309  11.98

LSP+2 9724 4.160 15828 44.81 1645

vanilla 817 0.455 v 6727 \

1 LSP 961 0506 1124 6558  -2.51

Movie LSP+2 1420 0.688 5139 67.59 048
vanilla 1751 0.825 V6468 \

5 LSP 2176 0976 1825 6733  4.10

LSP+2 4101 1.745 11151 69.15 691

vanilla 1163 0.807 v 3827 \

1 LSP 1511 0924 1450 41.15  7.53

LSP+2 2592 0967 1983 4276  11.73

Onto>-ZH vanilla 3237 1.812 \ 40.48 \
5 LSP 4455 2372 3091 4388 840

LSP+2 9116 3273 80.63 4036  -0.30

vanilla 2286 1.478 \ 43.48 \

1 LSP 4557 2516 7023 4586  5.47

LSP+2 8366 7.605 41455 4498  3.45

CMeEE-V2 vanilla 1992 1366  \ 4279 \
5 LSP 2973 1729 2657 4482 474

LSP+2 5424 47764 24876 41.39 -3.27

Table 9: Efficiency cost for different methods using Qwen on 4 datasets. APL indicates average prompt length. SPI
means seconds per instance. t-A represents the degree of improvement of each variant relative to vanilla on SPI.
F1-A represents the degree of improvement of each variant relative to vanilla on F1.
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Figure 7: Micro-F1 (%) results with different duplicating times on 4 datasets when we only duplicate demonstrations.
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Figure 8: Micro-F1 (%) results with different label accuracy on 4 datasets.
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Figure 9: Micro-F1 (%) results with different subset proportions on 4 datasets when we use LSP.
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Figure 10: Micro-F1 (%) results with different partition times on 4 datasets when we use LSP.
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