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Abstract

Kullback-Leibler (KL) divergence is one of the most important measures to cal-
culate the difference between probability distributions. In this paper, we theo-
retically study several properties of KL divergence between multivariate Gaus-
sian distributions. Firstly, for any two 𝑛-dimensional Gaussian distributions
N1 and N2, we prove that when 𝐾𝐿 (N2 | |N1) ≤ 𝜀 (𝜀 > 0) the supremum of
𝐾𝐿 (N1 | |N2) is (1/2)

(
(−𝑊0 (−𝑒−(1+2𝜀) ))−1 + log(−𝑊0 (−𝑒−(1+2𝜀) )) − 1

)
, where

𝑊0 is the principal branch of Lambert 𝑊 function. For small 𝜀, the supremum
is 𝜀 + 2𝜀1.5 + 𝑂 (𝜀2). This quantifies the approximate symmetry of small KL
divergence between Gaussian distributions. We further derive the infimum of
𝐾𝐿 (N1 | |N2) when 𝐾𝐿 (N2 | |N1) ≥ 𝑀 (𝑀 > 0). We give the conditions when the
supremum and infimum can be attained. Secondly, for any three 𝑛-dimensional
Gaussian distributions N1, N2, and N3, we theoretically show that an upper bound
of 𝐾𝐿 (N1 | |N3) is 3𝜀1+3𝜀2+2√𝜀1𝜀2+𝑜(𝜀1) +𝑜(𝜀2) when 𝐾𝐿 (N1 | |N2) ≤ 𝜀1 and
𝐾𝐿 (N2 | |N3) ≤ 𝜀2 (𝜀1, 𝜀2 ≥ 0). This reveals that KL divergence between Gaussian
distributions follows a relaxed triangle inequality. Note that, all these bounds in
the theorems presented in this work are independent of the dimension 𝑛. Finally,
we discuss several applications of our theories in deep learning, reinforcement
learning, and sample complexity research.

1 Introduction

A statistical divergence measures the “distance” between probability distributions. Let 𝑋 be a space
of probability distributions with the same support. A statistical divergence 𝐷 : 𝑋 × 𝑋 → R+ (R+
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is the set of non-negative real numbers) should satisfy (a) non-negativity: 𝐷 (𝑝, 𝑞) ≥ 0 and (b)
identity of indiscernibles: 𝐷 (𝑝, 𝑝) = 0, where 𝑝, 𝑞 are probability densities. Another stricter concept,
statistical distance, also measures the distance between probability distributions. A statistical distance
should satisfy two additional properties, including (c) symmetry: 𝐷 (𝑝, 𝑞) = 𝐷 (𝑞, 𝑝) and (d) triangle
inequality: 𝐷 (𝑝, 𝑞) ≤ 𝐷 (𝑝, 𝑔) + 𝐷 (𝑔, 𝑞), where 𝑝, 𝑞 and 𝑔 are probability densities.

Kullback-Leibler (KL) divergence, also referred to as relative entropy [31], is applied broadly
in many fields, such as machine learning [10, 23], information theory [15], and statistics [45].
The KL divergence between two continuous probability densities 𝑝(𝑥) and 𝑞(𝑥) is defined as
𝐾𝐿 (𝑝(𝑥) | |𝑞(𝑥)) =

∫
𝑝(𝑥) log 𝑝 (𝑥 )

𝑞 (𝑥 ) d𝑥. KL divergence is not a proper distance [31]. First, KL
divergence is not symmetric. It might happen that the forward KL divergence2 𝐾𝐿 (𝑝 | |𝑞) is very
small but the reverse KL divergence 𝐾𝐿∗ (𝑝 | |𝑞) = 𝐾𝐿 (𝑞 | |𝑝) is very large. Second, KL divergence
does not satisfy the triangle inequality. This hinders the application of KL divergence in many
contexts.

KL divergence also has connections with other information measures. For example, by taking the
second-order Taylor expansion, KL divergence can be approximated with fisher information matrix
[31]. Therefore, KL divergence is locally approximately symmetric when two distributions are close
to each other.

Meanwhile, Gaussian distribution is one of the most important distributions and is central to statistics.
It is also pervasive in many fields. The probability density function of an 𝑛-dimensional Gaussian
distribution is N(µ,𝚺) = ((2𝜋)𝑛/2 |𝚺 |1/2)−1 exp

(
−(1/2) (x − µ)⊤𝚺−1 (x − µ)

)
. Here µ ∈ R𝑛 is the

mean and 𝚺 ∈ S𝑛
++ is the covariance matrix, where S𝑛

++ is the space of symmetric positive definite
𝑛 × 𝑛 matrices. Gaussian distribution is the basis for more complicated distributions such as Gaussian
Mixture Model [10]. In this paper, we refer to Gaussian distribution as Gaussian for brevity.

The KL divergence between two 𝑛-dimensional Gaussians N1, N2 has the following closed form [45]

𝐾𝐿 (N1 (µ1,𝚺1) | |N2 (µ2,𝚺2)) =
1
2

(
log

|𝚺2 |
|𝚺1 |

+ Tr(𝚺−1
2 𝚺1) + (µ2 − µ1)⊤𝚺−1

2 (µ2 − µ1) − 𝑛
)

(1)

where the logarithm is taken to base 𝑒 and Tr is the trace of matrix. Like many other distributions,
KL divergence between Gaussians is neither symmetric nor satisfies the triangle inequality.

In this work, we investigate the following two research problems, which are motivated by our research
on out-of-distribution detection with flow-based model [57].

1. How to quantify the relation between forward and reverse KL divergences between Gaussian
distributions?

2. Does the KL divergence between Gaussian distributions satisfy some property similar to
triangle inequality?

Contributions. The contributions of this work are as follows. Let N𝑖 (µ𝑖 ,𝚺𝑖) (𝑖 ∈ {1, 2, 3}) be any
three 𝑛-dimensional Gaussians.

1. We prove that when 𝐾𝐿 (N1 | |N2) ≤ 𝜀 (𝜀 ≥ 0) the supremum of 𝐾𝐿 (N2 | |N1) is
(1/2)

(
(−𝑊0 (−𝑒−(1+2𝜀) ))−1 + log(−𝑊0 (−𝑒−(1+2𝜀) )) − 1

)
, where𝑊0 is the principal branch

of Lambert 𝑊 function. We give the conditions when the supremum can be attained. For
small 𝜀, the supremum is 𝜀 + 2𝜀1.5 +𝑂 (𝜀2). This quantifies the approximate symmetry of
small KL divergence between Gaussians.

2. We find the infimum of 𝐾𝐿 (N1 | |N2) if 𝐾𝐿 (N2 | |N1) ≥ 𝑀 (𝑀 > 0). We also give the
conditions when the infimum can be attained.

3. We find an upper bound of 𝐾𝐿 (N1 | |N3) if 𝐾𝐿 (N1 | |N2) ≤ 𝜀1 and 𝐾𝐿 (N2 | |N3) ≤ 𝜀2 for
𝜀1, 𝜀2 ≥ 0. For small 𝜀1 and 𝜀2, the upper bound is 3𝜀1 + 3𝜀2 + 2√𝜀1𝜀2 + 𝑜(𝜀1) + 𝑜(𝜀2) .
This indicates that KL divergence between Gaussians follows a relaxed triangle inequality.

4. All the bounds in our theorems are independent of the dimension 𝑛. This is a critical property
in contexts where dimensionality has a fundamental impact.

5. The theorems proved in this paper can extend the applications of KL divergence in many
contexts. We discuss the motivation application in out-of-distribution detection with flow-
based model and multiple applications in reinforcement learning and sample complexity
research.

2We can choose to call 𝐾𝐿 (𝑝 | |𝑞) or 𝐾𝐿 (𝑞 | |𝑝) as forward KL divergence.
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The rest part of this paper is organized as follows. In Section 2 we discuss related work. In Section 3
we prepare lemmas and notations. In Section 4 we investigate the supremum (infimum) of reverse KL
divergence between Gaussians when forward KL divergence is bounded. In Section 5 we investigate
the relaxed triangle inequality of KL divergence between Gaussians. In Section 6, we discuss
applications. Finally, we conclude in Section 7. We put long proofs in Appendix.

2 Related work

KL divergence has a wide range of applications [15, 10, 23, 45, 20, 25, 3]. Researchers have
investigated KL divergence between many distributions, including Markov sources [47], GMM
models [18, 27], multivariate generalized Gaussians [11], discrete normal distributions [42], etc. In
[45], a bound of KL divergence between Gaussians is given. As far as we know, no related work
focuses on the similar properties of KL divergence between Gaussians as in this paper.

KL divergence is one member of more general divergences such as Bregman divergence [12, 7, 21,
53], 𝑓 -divergence [5, 45, 4], Rényi divergence [48, 45, 54], and ( 𝑓 , Γ)-divergence [9]. Bregman
divergence defines a class of divergences [7] in vector space. KL divergence between multinomial
distributions is a special form of Bregman divergence when the convex function for Bregman
divergence is chosen as

∑𝑛
𝑖=1 𝑝𝑖 log 𝑝𝑖 , where 𝑝𝑖 ≥ 0 define a multinomial distribution. Frigyik et.

al. [21] extends vector Bregman divergence to functional Bregman divergence in 𝐿 𝑝 . Similarly, KL
divergence is a special form of functional Bregman divergene. (Functional) Bregman divergence also
satisfies generalized Pythagoras theorem [7, 21].

The asymmetry of KL divergence has restricted the application of KL divergence in practical
applications. Many other divergences have been investigated [46, 16, 2, 43, 26, 17, 7, 22, 56, 55].
Pardo gives a comprehensive survey on a wide range of statistical divergences in his book [45].

3 Lemmas and Notations

Table 1: Notations.

𝑓 (𝑥) 𝑥 − log 𝑥 (𝑥 ∈ R++)
𝑊 (𝑥) the Lambert𝑊 function
𝑊0 (𝑥) the principal branch (branch 0) of𝑊 (𝑥)
𝑊−1 (𝑥) the branch −1 of𝑊 (𝑥)
𝑤1 (𝑡) the smaller solution of 𝑓 (𝑥) = 1 + 𝑡 (𝑡 ≥ 0)
𝑤2 (𝑡) the larger solution of 𝑓 (𝑥) = 1 + 𝑡 (𝑡 ≥ 0)

f̄ (𝑥1, . . . , 𝑥𝑛)
∑𝑛
𝑖=1 𝑓 (𝑥𝑖)

𝜆 the eigenvalue of matrix
N(0, 𝐼) standard Gaussian distribution, dimension 𝑛 is eliminated for brevity

We introduce the following Lambert𝑊 function before our theoretical results.

Definition 1 Lambert 𝑊 Function[32, 14]. The inverse function of function 𝑦 = 𝑥𝑒𝑥 is called
Lambert𝑊 function 𝑦 = 𝑊 (𝑥).

When 𝑥 ∈ R, 𝑊 is a multivalued function with two branches 𝑊0,𝑊−1, where 𝑊0 is the principal
branch (also called branch 0) and𝑊−1 is the branch −1. Figure A.1 in Appendix A shows the graph
of𝑊0 and𝑊−1.

Lemmas. Function 𝑓 (𝑥) = 𝑥−log 𝑥 (𝑥 ∈ R++) (R++ is the set of positive real numbers) lies in the core
of our problems. In Lemma B.1 in Appendix B, we prove several properties of 𝑓 (𝑥). We show that
the inverse function of 𝑓 is 𝑓 −1 (𝑥) = −𝑊 (−𝑒−𝑥) (𝑥 ≥ 1). Equation 𝑓 (𝑥) = 𝑥 − log 𝑥 = 1 + 𝑡 (𝑡 ≥ 0)
has two solutions 𝑤1 (𝑡) = −𝑊0 (−𝑒−(1+𝑡 ) ) ∈ (0, 1] and 𝑤2 (𝑡) = −𝑊−1 (−𝑒−(1+𝑡 ) ) ∈ [1, +∞). We
treat 𝑤1 (𝑡), 𝑤2 (𝑡) as functions of 𝑡.

Table 1 summarizes some notations used in this paper. Please see Table A.1 in Appendix A for a full
list of notations.
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4 Bounds of Forward and Reverse KL Divergence Between Gaussians

In this section, we investigate the relation between forward and reverse KL divergences between
Gaussians. These conclusions quantify the approximate symmetry of small KL divergence between
Gaussians.

4.1 Supremum of Reverse KL Divergence Between Gaussians

The following Theorem 1 gives the supremum of reverse KL divergence when forward KL divergence
is bounded by a number 𝜀.

Theorem 1 For any two 𝑛-dimensional Gaussian distributions N(µ1,𝚺1) and N(µ2,𝚺2), if
𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≤ 𝜀 (𝜀 ≥ 0), then

𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1)) ≤
1
2

(
1

−𝑊0 (−𝑒−(1+2𝜀) )
− log

1
−𝑊0 (−𝑒−(1+2𝜀) )

− 1
)

The supremum is attained when the following two conditions hold.

(1) There exists only one eigenvalue 𝜆 𝑗 of 𝐵−1
2 𝚺1 (𝐵−1

2 )⊤ or 𝐵−1
1 𝚺2 (𝐵−1

1 )⊤ equal to
−𝑊0 (−𝑒−(1+2𝜀) ) and all other eigenvalues 𝜆𝑖 (𝑖 ≠ 𝑗) are equal to 1, where 𝐵1 = 𝑃1𝐷

1/2
1 , 𝑃1

is an orthogonal matrix whose columns are the eigenvectors of 𝚺1, 𝐷1 = 𝑑𝑖𝑎𝑔(𝜆1, . . . , 𝜆𝑛)
whose diagonal elements are the corresponding eigenvalues, 𝐵2 is defined in the similar
way as 𝐵1 except on 𝚺2.

(2) µ1 = µ2.

Overview of Proof of Theorem 1. Please see Appendix D for the full proof. Here we give the
overview of the proof. Theorem 1 can be proved by solving the following optimization problem P1

analytically.

P1 : maximize 𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1)) (2)
s.t. 𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≤ 𝜀 (3)

The proof consists of the following several steps.

1. Invertible linear transformation. We apply a linear transformation to N(µ1,𝚺1) and
N(µ2,𝚺2) such that one of them is transformed to a standard Gaussian. In this way,
we can simplify the objective function and the constraint in P1. Note that diffeomorphism
preserves KL divergence [41] (see Proposition D.1 in Appendix D). In the end, we use the
inverse linear transformation to transform N(µ1,𝚺1) and N(µ2,𝚺2) back.

2. Reducing to new optimization problem. We reduce P1 to the following core optimization
problem P2.

P2 : maximize f̄ ( 1
𝑥1
, . . . ,

1
𝑥𝑛

) (4)

s.t. f̄ (𝑥1, . . . , 𝑥𝑛) ≤ 𝑛 + 𝜀′ (5)

where f̄ (𝑥1, . . . , 𝑥𝑛) =
∑𝑛

𝑖=1 𝑓 (𝑥𝑖) =
∑𝑛

𝑖=1 𝑥𝑖 − log 𝑥𝑖 (𝑥𝑖 ∈ (0,∞)).
3. Investigating 𝑓 (𝑥). 𝑓 (𝑥) lies in the core of the problem. We have proven several properties

of 𝑓 (𝑥) in Section 3. A fundamental property of 𝑓 (𝑥) (stated in Lemma B.1a) is that 𝑓 (𝑥) is
strictly convex and takes its minimum value 1 at 𝑥 = 1. These lemmas allow us to conduct
further analysis in other parts of this paper.

4. Allocating 𝜀′. In problem P2, the supremum of f̄ ( 1
𝑥1
, . . . , 1

𝑥𝑛
) is affected by the domain

of each dimension, which is in turn determined by how 𝜀′ is allocated to these dimensions.
We call (𝜀1, · · · , 𝜀𝑛) where

∑𝑛
1 𝜀𝑖 = 𝜀

′ as an allocation. We prove that f̄ ( 1
𝑥1
, . . . , 1

𝑥𝑛
) takes

its maximum when 𝜀′ is allocated to only one dimension (i.e., an “extreme” allocation).
In other words, there exists one 𝜀 𝑗 = 𝜀′ and 𝜀𝑖 = 0 for all 𝑖 ≠ 𝑗 . The key is to prove the
convexity of function Δ(𝜀) = 𝑓 ( 1

𝑤1 (𝜀) ) − 𝑓 (𝑤1 (𝜀)), where 𝑤1 (𝜀) = −𝑊0 (−𝑒−(1+𝜀) ).

In summary, we use a linear transformation to simplify problem P1 into standard Gaussian case.
Then we deal with the simplified problem in the following Lemma 1, which accomplishes the above
steps 2 ∼ 4. Theorem 1 can be seen as the generalization of Lemma 1.
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Lemma 1 Let N(0, 𝐼) be 𝑛-dimensional standard Gaussian distribution, 𝜀 be a positive number. For
any 𝑛-dimensional Gaussian distribution N(µ,𝚺),

(a) If 𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) ≤ 𝜀, then

𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺)) ≤ 1
2

(
1

−𝑊0 (−𝑒−(1+2𝜀) )
− log

1
−𝑊0 (−𝑒−(1+2𝜀) )

− 1
)

(b) If 𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺)) ≤ 𝜀, then

𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) ≤ 1
2

(
1

−𝑊0 (−𝑒−(1+2𝜀) )
− log

1
−𝑊0 (−𝑒−(1+2𝜀) )

− 1
)

Proof 1 Please see Section C in the Appendix for details. □

To further investigate the bound in Theorem 1, we expand the Lambert𝑊 function using the series
presented in [19, 14] for small 𝜀. This result is stated in the following Theorem 2, which can help
users to apply our theorem conveniently.

Theorem 2 For any two 𝑛-dimensional Gaussian distributions N(µ1,𝚺1), N(µ2,𝚺2), and a small
positive number 𝜀, if 𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≤ 𝜀, then

𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1)) ≤ 𝜀 + 2𝜀1.5 +𝑂 (𝜀2)

Proof 2 Please see Appendix E for details. □

Theorem 1 holds for any two Gaussians N(µ1,𝚺1) and N(µ2,𝚺2). According to the proof of
Theorem 1 (Lemma 1), one of N(µ1,𝚺1) and N(µ2,𝚺2) can be fixed. Thus, it is not hard to extend
Lemma 1 to the case where the fixed Gaussian is not standard. We can apply linear transformation on
the fixed Gaussian (see Equation (D.46)) as what we have done in the main proof of Theorem 1 (see
Appendix D). Other parts of the proof are the same. Therefore, we obtain the following corollary.

Corollary 1 Theorem 1 and Theorem 2 hold when one of N(µ1,𝚺1) and N(µ2,𝚺2) is fixed.

Remark 1 The supremum in Theorem 1 is small (zero) when 𝜀 is small (zero). Figure A.2 in Appendix
A shows the graph of the supremum of KL divergence. Due to the strict conditions, it is hard to reach
the supremum in typical applications (e.g. in machine learning). Notably, the bound is independent
of the dimension 𝑛. This is critical in high-dimensional problems (see motivation application in
Section 6). We also note that the condition 𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≤ 𝜀 in Theorem 1 is strict in
high-dimensional problems.

Remark 2 Theorem 1 gives the strict conditions when the supremum can be attained. We can benefit
from these strict conditions in applications. When the forward KL divergence is small, we want a
guarantee that the reverse KL divergence is also small such that bounding forward KL divergence
also bounds the reverse KL divergence. Theorem 1 has the following two meanings.

1. The supremum of reverse KL divergence 𝜀 + 2𝜀1.5 +𝑂 (𝜀2) is small, implying that the worst
case is acceptable.

2. The strict conditions for reaching the supremum imply that the worst case barely happens
in practice. When these strict conditions do not hold, the reverse KL divergence is smaller
than the supremum, which is what we want in practice.

Toy Examples.

Figure 1 shows some toy examples in one dimensional case. The black line represents stan-
dard Gaussian distribution N0 (0, 1). All other four Gaussian distributions N𝑖 (1 ≤ 𝑖 ≤ 4,
in colored lines) have the same forward KL divergence 𝐾𝐿 (N𝑖 | |N0) = 0.01. The second
distribution has the maximized reverse KL divergence 𝐾𝐿 (N0 | |N1 (0, 0.901732)) ≈ 0.01148,
which is equal to the supremum 1

2

(
1

−𝑊0 (−𝑒−(1+2×0.01) ) − log 1
−𝑊0 (−𝑒−(1+2×0.01) ) − 1

)
. Other reverse

KL divergences are 𝐾𝐿 (N0 | |N2 (0, 1.101612)) ≈ 0.00879, 𝐾𝐿 (N0 | |N3 (0.14143, 1)) ≈ 0.01,
𝐾𝐿 (N0 | |N4 (0.1, 1.071532)) ≈ 0.00892.
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Figure 1: One dimensional toy examples.

4.2 Infimum of Reverse KL Divergence Between Gaussians

In this subsection, we give the infimum of 𝐾𝐿 (N2 | |N1) when 𝐾𝐿 (N1 | |N2) ≥ 𝑀 (𝑀 > 0). The result
is presented in Theorem 3.

Theorem 3 For any two 𝑛-dimensional Gaussian distributionss N(µ1,𝚺1) and N(µ2,𝚺2), if
𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≥ 𝑀 (𝑀 > 0), then

𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1)) ≥
1
2

(
1

−𝑊−1 (−𝑒−(1+2𝑀 ) )
− log

1
−𝑊−1 (−𝑒−(1+2𝑀 ) )

− 1
)

The infimum is attained when the following two conditions hold.

(1) There exists only one eigenvalue 𝜆 𝑗 of 𝐵−1
2 𝚺1 (𝐵−1

2 )⊤ or 𝐵−1
1 𝚺2 (𝐵−1

1 )⊤ equal to
−𝑊−1 (−𝑒−(1+2𝑀 ) ) and all other eigenvalues 𝜆𝑖 (𝑖 ≠ 𝑗) are equal to 1, where 𝐵1 =

𝑃1𝐷
1/2
1 , 𝑃1 is an orthogonal matrix whose columns are the eigenvectors of 𝚺1, 𝐷1 =

𝑑𝑖𝑎𝑔(𝜆1, . . . , 𝜆𝑛) whose diagonal elements are the corresponding eigenvalues, 𝐵2 is defined
in the similar way as 𝐵1 except on 𝚺2.

(2) µ1 = µ2.

Proof 3 Theorem 1 and Theorem 3 form a duality. These two theorems can be proved independently
in a similar way and also be derived from each other. We give two proofs of Theorem 3 in Appendix
F. The first proof presented in Appendix F.1 has the similar structure as that of Theorem 1, except
that Theorem 3 uses𝑊−1. The second proof shown in Appendix F.2 derives Theorem 3 from Theorem
1.These two proofs can verify each other. □

5 Relaxed Triangle Inequality

In this section, we give a dimension-free bound of 𝐾𝐿 (N1 | |N3) when 𝐾𝐿 (N1 | |N2) and 𝐾𝐿 (N2 | |N3)
are bounded for any three Gaussians N1, N2, and N3. Proving the relaxed triangle inequality is much
more difficult. The main result is presented in Theorem 4 and 5. We use two key Lemmas G.5 and 2
to accomplish the key steps of the proof.
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Theorem 4 For any three 𝑛-dimensional Gaussians N(µ𝑖 ,𝚺𝑖) (𝑖 ∈ {1, 2, 3}) such that
𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≤ 𝜀1 and 𝐾𝐿 (N (µ2,𝚺2) | |N (µ3,𝚺3)) ≤ 𝜀2 for 𝜀1, 𝜀2 ≥ 0,

𝐾𝐿 (N (µ1,𝚺1) | |𝚺(µ3,𝚺3)) < 𝜀1 + 𝜀2 +
1
2

©­«𝑊−1 (−𝑒−(1+2𝜀1 ) )𝑊−1 (−𝑒−(1+2𝜀2 ) ) +𝑊−1 (−𝑒−(1+2𝜀1 ) )

+𝑊−1 (−𝑒−(1+2𝜀2 ) ) + 1 −𝑊−1 (−𝑒−(1+2𝜀2 ) )
(√︁

2𝜀1 +
√︄

2𝜀2

−𝑊0 (−𝑒−(1+2𝜀2 ) )

)2ª®¬
Overview of Proof of Theorem 4

The proof of Theorem 4 is the most technical part of this paper. Please see Appendix I for details.
Here we give the overview of the proof.

We want to solve the following optimization problem P3 analytically.

P3 : maximize 𝐾𝐿 (N (µ1,𝚺1) | |N (𝚺(µ3,𝚺3))
s.t. 𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≤ 𝜀1

𝐾𝐿 (N (µ2,𝚺2) | |N (µ3,𝚺3)) ≤ 𝜀2

Unfortunately, it is hard to find the supremum due to the complexity caused by Lambert𝑊 function.
So we relax the constraints to simplify the problem. The proof mainly consists of the following four
steps.

1. Invertible linear transformation. The first step is similar to that of Theorem 1. We apply
a linear transformation on N1, N2, and N3 simultaneously such that N2 is converted to
standard Gaussian. The transformed problem will be proved in Lemma 2 (shown below). In
the end, these three Gaussians are transformed back to general case.

2. Relaxing constraints. In the proof of Lemma 2, we relax the constraints and finally reduce
to the following core problem P4.

P4 : maximize
𝑛∑︁
𝑖=1

𝜆1,[𝑖 ]𝜆
′
2, [𝑖 ] − log𝜆1,[𝑖 ]𝜆

′
2, [𝑖 ] (6)

s.t. 𝜆1, [𝑖 ] − log𝜆1,[𝑖 ] = 1 + 𝜀1, [𝑖 ] (1 ≤ 𝑖 ≤ 𝑛)
𝑛∧
𝑖=1
𝜀1, [𝑖 ] ≥ 0 ∧

𝑛∑︁
𝑖=1

𝜀1, [𝑖 ] = 2𝜀1

𝜆′2, [𝑖 ] − log𝜆′2, [𝑖 ] = 1 + 𝜀2, [𝑖 ] (1 ≤ 𝑖 ≤ 𝑛)
𝑛∧
𝑖=1
𝜀2, [𝑖 ] ≥ 0 ∧

𝑛∑︁
𝑖=1

𝜀2, [𝑖 ] = 2𝜀2

where 𝜆1, [𝑖 ] and 𝜆′2, [𝑖 ] are the eigenvalues of 𝚺1 and 𝚺−1
2 arranged in decreasing order,

respectively. 𝜀1, [𝑖 ] and 𝜀2, [𝑖 ] are arranged in decreasing order too.
3. Allocating 2𝜀1 and 2𝜀2. The value of objective function in P4 is determined by 𝜆1,[𝑖 ] and
𝜆′2, [𝑖 ] , which are in turn determined by how 2𝜀1 and 2𝜀2 are allocated to (𝜀1, [1] , · · · , 𝜀1, [𝑛])
and (𝜀2, [1] , · · · , 𝜀2, [𝑛]), respectively. We prove that an “extreme allocation” can maximize
the objective function. In other words, the objective function in Equation (6) takes its
maximum when 𝜀1, [1] = 2𝜀1, 𝜀2, [1] = 2𝜀2, and 𝜀1,[𝑖 ] = 𝜀2, [𝑖 ] = 0 for 1 < 𝑖 ≤ 𝑛. In the
proof, we use a key Lemma G.5 to deal with the 2-dimensional case (𝑛 = 2). Finally, we
extend to arbitrary dimensional cases.

4. Dealing with 2-dimensional case. The proof of Lemma G.5 is the most technical part in this
work. In the proof, concentrating 𝜀1 and 𝜀2 is much harder than that in the last section for
Theorem 1. 𝑓 (𝑥) = 𝑥− log 𝑥 is a transcendental function whose inverse function is expressed
by Lambert𝑊 function. This makes even a 2-dimensional case of problem P4 hard to solve.
Our proof of Lemma G.5 is like coordinate descent but much difficult. We show that, for any
fixed “non-extreme allocation” of 2𝜀1 (i.e., (𝜀1,[1] , 𝜀1, [2]) where 𝜀1, [2] > 0), there exists
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a “more extreme” allocation of 2𝜀2 (i.e., (𝜀2, [1] , 𝜀2, [2]) where 𝜀2, [2] > 0) that maximizes
the objective function. Note that it is hard to state that (𝜀2, [1] , 𝜀2, [2]) is “more extreme”
than (𝜀1, [1] , 𝜀1, [2]) because 𝜀1 ≠ 𝜀2. Then we fix (𝜀2, [1] , 𝜀2, [2]) and find a “more extreme”
allocation of 2𝜀1 (𝜀′1,[1] , 𝜀

′
1,[2]) to lift the objective function further. Using these iterations,

we can construct an infinite sequence of allocations whose limitation is an “extreme” one
(i.e., 𝜀1, [1] = 2𝜀1, 𝜀2, [1] = 2𝜀2). Then we prove the extreme allocation can make the
objective function reach its supremum. In Appendix G we present the key Lemma G.5
and its proof. We also give its proof sketch before the long proof. Essentially, Lemma
G.5 plays the most vital role in eliminating the dimension 𝑛 in case of 𝑛 = 2 from the
bound in 2-dimensional case. Finally, we will make the bound in high-dimensional problem
dimension-free as well.

In summary, we apply a linear transformation to simplify the problem. Then we solve the simplified
problem in the following Lemma 2, accomplishing the above steps 2 ∼ 4. Theorem 4 can be seen as
the generalization of Lemma 2.

Lemma 2 For any two 𝑛-dimensional Gaussian distributions N(µ1,𝚺1) and N(µ2,𝚺2) such that
𝐾𝐿 (N (µ1,𝚺1) | |N (0, 𝐼)) ≤ 𝜀1, 𝐾𝐿 (N (0, 𝐼) | |N (µ2,𝚺2)) ≤ 𝜀2 (𝜀1, 𝜀2 ≥ 0),

𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) < 𝜀1 + 𝜀2 +
1
2

©­«𝑊−1 (−𝑒−(1+2𝜀1 ) )𝑊−1 (−𝑒−(1+2𝜀2 ) ) +𝑊−1 (−𝑒−(1+2𝜀1 ) )

+𝑊−1 (−𝑒−(1+2𝜀2 ) ) + 1 −𝑊−1 (−𝑒−(1+2𝜀2 ) )
(√︁

2𝜀1 +
√︄

2𝜀2

−𝑊0 (−𝑒−(1+2𝜀2 ) )

)2ª®¬
Proof 4 Please see Appendix H for details. □

Remark 3 The bound in Lemma 2 is dimension-free and becomes 0 when 𝜀1 = 𝜀2 = 0.

Similarly, we can expand Lambert𝑊 function by series [19, 14] and simplify the bound in Theorem
4 as follows [36].

Theorem 5 For any three 𝑛-dimensional Gaussian distributions N(µ𝑖 ,𝚺𝑖) (𝑖 ∈ {1, 2, 3}) such that
𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≤ 𝜀1 and 𝐾𝐿 (N (µ2,𝚺2) | |N (µ3,𝚺3)) ≤ 𝜀2 for small 𝜀1, 𝜀2 ≥ 0,

𝐾𝐿 (N (µ1,𝚺1) | |N (µ3,𝚺3)) < 3𝜀1 + 3𝜀2 + 2
√
𝜀1𝜀2 + 𝑜(𝜀1) + 𝑜(𝜀2)

Proof 5 Please see Appendix J for details. □

Finally, in the proof of Theorem 4, we use invertible linear transformation to convert N2 to standard
Gaussian while preserving KL divergence. This proof also applies to the case when N(µ2,𝚺2) is
fixed. Therefore, we obtain the following corollary.

Corollary 2 Theorem 4 and 5 hold when N(µ2,𝚺2) is fixed.

Remark 4 Our theorem is different from existing generalized Pythagoras inequalities satisfied by
KL divergence. Please see Appendix K.1 for more discussion.

6 Discussion and Applications

In our theorems, we allow all parameters are unknown or one Gaussian is fixed. Therefore, our
theorems are suitable for problems where the parameters can vary. This is common in deep learning
where the parameters are learned from data. In this section, we discuss motivation application and
other applications ranging from anomaly detection to reinforcement learning to sample complexity
research.
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6.1 Motivation Application: Anomaly Detection with Flow-based Model

The research problems in this paper are motivated by our research on deep anomaly detection using
flow-based model [57] 3. Flow-based model assigns higher likelihoods to Out-of-Distribution (OOD)
data than In-Distribution (ID) data (i.e., training data) [39, 51, 13, 52, 40, 30]. For example, Glow
[29] assigns higher likelihoods for SVHN when trained on CIFAR-10. Furthermore, we cannot
sample OOD data from the model. Existing explanation is based on the discrepancy of typical set
and high probability density regions of model distribution [40]. Such typicality-based explanation
and OOD detection method fail when OOD data has coinciding likelihoods with ID data [40].

We focus on two research problems in this context. (1) why we cannot sample OOD data from flow-
based model with prior regardless of when OOD data have higher, lower, or coinciding likelihoods?
(2) How to detect OOD data using flow-based model? We investigate these problems from a statistical
divergence perspective. Let 𝑧 = 𝑓 (𝑥) be the flow-based model mapping data 𝑥 in data space to
representation 𝑧 in latent space. Suppose the prior distribution 𝑝𝑟

𝑍
is the most commonly used

Gaussian distribution. Let 𝑋1 ∼ 𝑝𝑋 (𝑥), 𝑋2 ∼ 𝑞𝑋 (𝑥) be the distributions of ID and OOD datasets,
respectively. 𝑍1 = 𝑓 (𝑋1) ∼ 𝑝𝑍 (𝑧), 𝑍2 = 𝑓 (𝑋2) ∼ 𝑞𝑍 (𝑧) be the distributions of representations of
ID and OOD datasets, respectively. Let 𝑝𝑟

𝑋
be the model induced distribution such that 𝑍𝑟 ∼ 𝑝𝑟

𝑍

and 𝑋𝑟 = 𝑓 −1 (𝑍𝑟 ) ∼ 𝑝𝑟
𝑋

. Flow-based model is usually trained by maximum likelihood estimation,
which is equal to minimizing forward KL divergence 𝐾𝐿 (𝑝𝑋 | |𝑝𝑟𝑋) [44, 23]. We conduct generalized
Shapiro-Wilk test for multivariate normality on representations. As shown in the original Table C.3
in [57] (also in supplementary material), 𝑝𝑍 is Gaussian-like for all datasets. 𝑞𝑍 is also Gaussian-like
for OOD datasets with higher or coinciding likelihoods except for just one case. These results allow
us to approximate 𝑝𝑍 and 𝑞𝑍 with Gaussians when possible.

The theorems proved in this paper provide solid theoretical guarantee for our analysis and algorithm.
On one hand, flow-based model preserves KL divergence (see Proposition D.1 in Appendix D), so
𝐾𝐿 (𝑝𝑍 | |𝑝𝑟𝑍 ) which equals 𝐾𝐿 (𝑝𝑋 | |𝑝𝑟𝑋) is minimized. According to the approximate symmetry
of small KL divergence (Theorem 1), we can know 𝐾𝐿 (𝑝𝑟

𝑍
| |𝑝𝑍 ) is small too. So we can assume

𝑝𝑟
𝑍
≈ 𝑝𝑍 when 𝐾𝐿 (𝑝𝑍 | |𝑝𝑟𝑍 ) is sufficiently small. On the other hand, we can also assume that the

distributions of ID and OOD data are far from each other. This implies that 𝐾𝐿 (𝑝𝑋 | |𝑞𝑋) equaling
𝐾𝐿 (𝑝𝑍 | |𝑞𝑍 ) can be any large. This implies 𝐾𝐿 (𝑝𝑟

𝑍
| |𝑞𝑍 ) ≈ 𝐾𝐿 (𝑝𝑍 | |𝑞𝑍 ) is large too. Specially,

when 𝑞𝑍 is Gaussian-like, we can apply the relaxed triangle inequality (Theorem 4) and infer
that 𝐾𝐿 (𝑝𝑟

𝑍
| |𝑞𝑍 ) must be large. Note that, when 𝑞𝑍 is not Gaussian-like, we can still apply the

theorems presented in this paper to perform analysis on the lower bound of KL divergence (see
original Theorem 5 in [57]). Overall, the large KL divergence between 𝑝𝑟

𝑍
and 𝑞𝑍 reveals why we

cannot sample OOD data from flow-based model with prior. It is also notable that flow-based model
constructs diffeomorphism between data and latent space with thousands of dimensions. Thus, it is
critical that the bounds found in this paper are dimension-free. Furthermore, we decompose the KL
divergence further into group-wise KL divergence and mutual information. Based on these analysis,
we propose an unified OOD detection algorithm KLODS both for group (GAD) and point-wise (PAD)
anomaly detection. We conduct extensive experiments to compare our method with 13 baseline
methods including 𝑡-test, KS-test, MMD [24], KSD [35], Annulus Method [13], typicality test [40],
the state-of-the-art (SOTA) GAD method GOD2KS [28], input complexity compensated likelihood
[50], last-scale likelihood [49], ODIN [34], Joint confidence loss [33], and DoSE [37]. Experimental
results demonstrate the superiority of our method. For example, as shown in Table 2, our method
outperforms the SOTA group-wise anomaly detection method GOD2KS on flow-based model by
9.1% AUROC. Our method also outperforms the SOTA point-wise anomaly detection method DoSE
with Glow by 5.2% AUROC. More details of the algorithm and experimental results on both group
and point-wise anomaly detection can be refered to [57].

6.2 Applications of Approximate Symmetry of Small KL divergence

Theorem 1 can be also applied widely in deep reinforcement learning and sample complexity research.
In many contexts, researchers are hindered by the asymmetry of KL divergence. Theorem 1 on the
approximate symmetry of KL divergence between Gaussians brings the following convenience to us.

1. Minimizing one of forward and reverse KL divergences also bounds another.
2. We can exchange forward and reverse KL divergences for small 𝜀.

3We append an anonymous version of our work [57] in the supplementary material for convinience.
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Table 2: Group-wise anomaly detection Results (AUROC and AUPR in percentage) of our method
KLODS and the SOTA method GOD2KS on Glow with batch sizes 5 and 10. We run our method for
5 times. Results of GOD2KS are referred from [28]. The higher the better.

ID OOD
batch size=5 batch size=10

KLODS GOD2KS KLODS GOD2KS
AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

FashionMNIST
MNIST 99.8±0.0 99.8±0.0 98 98 100.0±0.0 100.0±0.0 100 100
KMNIST 99.9±0.0 99.9±0.0 97 96 100.0±0.0 100.0±0.0 100 100
Omniglot 100.0±0.0 100.0±0.0 100 100 100.0±0.0 100.0±0.0 100 100

SVHN

CelebA 100.0±0.0 100.0±0.0 100 99 100.0±0.0 100.0±0.0 100 100
CIFAR-10 100.0±0.0 100.0±0.0 92 84 100.0±0.0 100.0±0.0 99 98
CIFAR-100 100.0±0.0 100.0±0.0 93 86 100.0±0.0 100.0±0.0 99 98
LSUN 100.0±0.0 100.0±0.0 99 98 100.0±0.0 100.0±0.0 100.0 100.0

CIFAR-10
CelebA 99.2±0.1 99.4±0.1 86 92 100.0±0.0 100.0±0.0 96 98
SVHN 97.6±0.2 97.8±0.2 96 98 99.8±0.0 99.8±0.0 100 100
LSUN 100.0±0.0 100.0±0.0 60 58 100.0±0.0 100.0±0.0 58 56

CelebA

CIFAR-10 99.6±0.0 99.6±0.0 84 73 100.0±0.0 100.0±0.0 94 91
CIFAR-100 99.8±0.0 99.8±0.0 82 71 100.0±0.0 100.0±0.0 94 90
SVHN 100.0±0.0 100.0±0.0 97 98 100.0±0.0 100.0±0.0 100 100
LSUN 100.0±0.0 100.0±0.0 85 75 100.0±0.0 100.0±0.0 96 92
average 99.7 99.7 90.6 87.6 100.0 100.0 95.4 94.5

We summarize the applications of Theorem 1 briefly in the following. The details of these applications
are discussed in Appendix L.1.

Providing Theoretical Guarantee for Continuous Gaussian Policy in Reinforcement Learning.
In [38], Nair et al. propose AWAC method to accelerate online reinforcement learning with offline
datasets. They obtain theoretical guarantee in offline reinforcement learning for discrete policies.
Theorem 1 can extend their guarantee to continuous Gaussian policy.

Bringing New Insights to Existing Reinforcement Learning Algorithm. In [1], Abdolmaleki et al.
propose the MPO algorithm for reinforcement learning. They use Expectation-Maximization (EM)
to solve control problems and use constraints on KL terms in both E and M-steps. Theorem 1 can
eliminate such a difference for continuous Gaussian policies.

Bridging Research on Sample Complexity of Learning Gaussian Distribution. Theorem 1 can
bridge existing research on sample complexity of Gaussian distribution. Researchers have proposed
algorithms for learning a multivariate Gaussian distribution with error bounds in forward and reverse
KL divergence separately so far [6, 8]. Theorem 1 can eliminate the difference between forward and
reverse KL divergence in this scenario.

6.3 Application of Relaxed Triangle Inequality

Extending One-step Safety Guarantee to Multiple Steps in Reinforcement Learning. The relaxed
triangle inequality (Theorem 5) has been applied in safe reinforcement learning. Liu et al. propose
an Expectation-Maximization style approach for learning safe policy in reinforcement learning [36].
They utilize our relaxed triangle inequality to extend one-step robustness guarantee to multiple steps.
In the original Proposition 4 in [36], they simplify the bound in Theorem 4 in case 𝜀1 = 𝜀2. Please
see Appendix L.2 for details.

7 Conclusion

In this paper, we research the properties of KL divergence between Gaussians. First, we find the
supremum of reverse KL divergence 𝐾𝐿 (N2 | |N1) if the forward KL divergence 𝐾𝐿 (N1 | |N2) ≤ 𝜀
(𝜀 > 0). This conclusion quantifies the approximate symmetry of small KL divergence between
Gaussians. We also find the infimum of 𝐾𝐿 (N2 | |N1) if 𝐾𝐿 (N1 | |N2) ≥ 𝑀 (𝑀 > 0). We give
the conditions when the supremum and infimum can be attained. Second, we find a bound for
𝐾𝐿 (N1 | |N3) when 𝐾𝐿 (N1 | |N2) and 𝐾𝐿 (N2 | |N3) are bounded. This indicates that KL divergence
between Gaussians follows a relaxed triangle inequality. All the bounds in this paper are independent
of the dimension of distributions. Finally, we discuss the applications of our theorems in deep
anomaly detection, reinforcement learning, and sample complexity research.
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