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Abstract001

Recent advances in LLMs, particularly in lan-002
guage reasoning and tool integration, have003
rapidly sparked the real-world development of004
Language Agents. Among these, travel plan-005
ning represents a prominent domain, combining006
academic challenges with practical value due to007
its complexity and market demand. However,008
existing benchmarks fail to reflect the diverse,009
real-world requirements crucial for deployment.010
To address this gap, we introduce ChinaTravel,011
a benchmark specifically designed for authentic012
Chinese travel planning scenarios. We col-013
lect the travel requirements from questionnaires014
and propose a compositionally generalizable015
domain-specific language that enables a scal-016
able evaluation process, covering feasibility,017
constraint satisfaction, and preference compar-018
ison. Empirical studies reveal the potential019
of neuro-symbolic agents in travel planning,020
achieving a constraint satisfaction rate of 27.9%,021
significantly surpassing purely neural models022
at 2.6%. Moreover, we identify key challenges023
in real-world travel planning deployments, in-024
cluding open language reasoning and unseen025
concept composition. These findings highlight026
the significance of ChinaTravel as a pivotal mile-027
stone for advancing language agents in complex,028
real-world planning scenarios.029

1 Introduction030

A long-standing goal in AI is to build planning031

agents that are reliable and general, able to assist hu-032

mans in real-world environments. Recently, Large033

Language Models (LLMs) (Brown et al., 2020;034

Ouyang et al., 2022; Achiam et al., 2023) have035

demonstrated remarkable potential in achieving036

human-level understanding and planning capabil-037

ities. This has sparked the rapid development of038

a field called Language Agents, employing LLMs039

to perceive the surroundings, reason the solutions,040

and take appropriate actions, ultimately building an041

autonomous planning agent (Shinn et al., 2024; Yao042

et al., 2023; Xi et al., 2023). Equipping LLMs born 043

from web-scale corpora, language agents demon- 044

strate a proficient ability to understand general 045

natural language instructions and collect domain- 046

specific information via tools (Yao et al., 2022; 047

Xie et al., 2023; Jimenez et al., 2024). It allevi- 048

ates the need for intensive domain-specific goal 049

definition and model deployment with traditional 050

rule-based or reinforcement-learning-based agents, 051

showing few-shot generalization across various do- 052

mains. This presents a solid step toward the goal 053

of building general artificial intelligence. 054

Travel planning stands out as a significant do- 055

main, presenting both academic challenges and 056

practical value due to its inherent complexity and 057

real-world relevance. However, LLMs are still not 058

able to accurately solve complex combinatorial op- 059

timization problems and tend to provide infeasible 060

plans in travel planning. In a recently proposed 061

U.S. domestic benchmark TravelPlanner (Xie et al., 062

2024) with intercity itinerary planning, the ad- 063

vanced LLM, GPT-4, only achieves a success rate 064

of 0.6%. This result is disappointing and might 065

make one pessimistic about the capabilities of Lan- 066

guage Agents in travel planning. However, a few 067

months later, Hao et al. (2024) introduced a neural- 068

symbolic solution, which incorporates formal verifi- 069

cation tools into language agents and achieved a 97% 070

success rate on the LLM-synthesized queries from 071

TravelPlanner benchmark. Despite this progress, 072

travel queries posed by humans present significantly 073

greater challenges than synthesized queries. The 074

open-ended expression styles of humans, character- 075

ized by ambiguous phrasing and context-dependent 076

meanings, make understanding these requirements 077

difficult for LLMs. Furthermore, the diverse nature 078

of user needs renders constraint verification based 079

on predefined concepts hard to scale, limiting its 080

applicability to evaluating human queries. 081

In this work, we introduce ChinaTravel, tai- 082

lored to authentic Chinese travel requirements. It 083
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I am in Shanghai now and 

would like to go to Beijing for 

2 days, visit some museums, 

and taste some Beijing cuisine. 

My budget is 5,000 yuan and 

I hope to visit as many 

attractions as possible. Please 

give me a travel plan.User

Agent

GPT DeepSeek GLM

…

FlightSearch() TrainSearch()

AttractionSearch() RestaurantSearch()

AccommodationSearch() RouteSearch()

Tool Use Information

Itinerary PlanPlanning

[1] visit some museums…

There are some museums in Beijing:

    - The Palace Museum

    - National Museum of China

    - Beijing Capital Museum

    …

[2] taste some Beijing cuisine…

There are some restaurants:

    - Dadong Duck

    - Siji Minfu

    - Xiaodiao Litang

    …

[4] visit as many attractions as possible

- select adjacent attractions

- choose convenient transportation

…

[3] budget is 5000 yuan…

The cross-city transportation costs 

about 1,500, and the accommodation 

costs about 500, leaving me with a 

budget of about 3,000.

- The budget is sufficient to try 

different foods

[Day 1, Activity 1]

Train, G104, 06:27 → 13:12, cost: 693

Shanghai Hongqiao Railway Station 

→ Beijingnan Railway Station

[Day 1, Activity 2]

The Palace Museum, 14:00 → 17:30

Transports: Metro, Beijingnan Railway 

Station→ The Palace Museum, cost 3, 

13:15 → 13:50, walking: 1.5km

[Day 1, Activity 3]

Siji Minfu, 17:45 → 18:45, cost 180, 

Transports: Walking, The Palace 

Museum → Siji Minfu, cost 0, 

17:30 → 17:45, walking: 0.8km

[Day 1, Activity 4]

Wangfujing Street, 17:45 → 18:45, 

Transports: Taxi, The Palace Museum 

→ Wangfujing Street, cost 16, 

17:30 → 17:45, 

…

[Day 1, Activity 6]

Beijing XX hotel, room: 1, cost: 580  

Transports: …

[Day 2, Activity 1]

Chenji century-old Luzhu, 08:10 → 

08:40, cost: 32

Transports: Walking, Beijing XX hotel 
→ Chenji century-old Luzhu, 0.4km

08:00 → 08:06

[Day 2, Activity 2]

National Museum of China, 09:15 → 

11:45, cost: 0

Transports: Metro, Chenji century-old 

Luzhu → National Museum of China, 

cost 3, 08:40 → 09:15, walking: 1.2km

…

[Day 2, Activity 4]

Beijing Capital Museum

…

[Day 2, Activity 5]

Train, G153, 16:30 → 22:27, cost: 576

Beijingnan Railway Station→Shanghai 

Hongqiao Railway Station

Transports: Metro, Beijing Capital 

Museum → Beijingnan Railway Station, 

cost: 4, 15:30 → 16:02, walking: 0.8km

Figure 1: Overview of ChinaTravel. Given a query, language agents employ various tools to gather information
and plan a multi-day multi-POI itinerary. The agents are expected to provide a feasible and reasonable plan
while satisfying the hard logical constraints and soft preference requirements. To provide convenience for global
researchers, we provide an English translation of the original Chinese information here.

concentrates on multi-point-of-interest (multi-POI)084

itineraries within specified cities (as illustrated in085

Fig. 1), which are in higher demand compared to086

the intercity itineraries provided by TravelPlanner.087

The main contributions of this work are as follows:088

1. Comprehensive Evaluation Framework: It089

provides a sandbox enriched with authentic travel090

data, a domain-specific language for scalable re-091

quirements definition and automated evaluation,092

and diverse metrics covering feasibility, constraint093

satisfaction, and preference ranking.094

2. Integration of Synthetic and Human Queries:095

The benchmark includes both LLM-generated and096

human-derived queries, offering a realistic and097

open testbed for evaluating agents’ capabilities in098

addressing diverse travel requirements.099

3. Empirical Neuro-Symbolic Insights: Our100

experiments reveal that neuro-symbolic agents sig-101

nificantly outperform pure LLM-based solutions,102

achieving a constraint satisfaction rate of 27.9%103

compared to 2.60% by purely neural methods, thus104

highlighting their promise for travel planning.105

4. Identified Challenges for Future Research:106

We pinpoint key challenges of open-ended require-107

ments: open language reasoning, and unseen con-108

cept composition, providing a foundation for ad-109

vancing agents toward real-world applicability.110

Overall, ChinaTravel provides a challenging yet111

meaningful testbed for evaluating language agents112

in travel planning, serving as a critical bridge be-113

tween academic research and practical applications.114

2 ChinaTravel Benchmark 115

Motivated by the significant travel demand in China, 116

this benchmark offers a sandbox environment for 117

generating multi-day, multi-POI itineraries for spec- 118

ified cities. ChinaTravel is designed to serve as a 119

comprehensive and scalable benchmark for evalu- 120

ating language agents in travel planning, including 121

arrangements for attractions, restaurants, accommo- 122

dations, and transportation between events. 123

2.1 Environment Information 124

ChinaTravel provides a sandbox with real-world 125

travel information. We collect information from 126

10 of the most popular cities in China. It includes 127

720 airplanes and 5,770 trains connecting these 128

cities, with records detailing departure and arrival 129

times, origins, destinations, and ticket prices. Ad- 130

ditionally, the dataset contains 3,413 attractions, 131

4,655 restaurants, and 4,124 hotels, each annotated 132

with name, location, opening hours, and per-person 133

prices. Type annotations for these POIs are in- 134

cluded to meet user needs. Fig. 2 has demonstrated 135

the travel information from Beijing and Nanjing, 136

two of the most popular cities in China. For a more 137

realistic interaction, we simulate the API interface 138

of real market applications to query real-time in- 139

formation. The detailed designs of the sandbox 140

are available in App. B.1. Environmental con- 141

straints act as a feasibility metric, ensuring that the 142

generated plans are both valid and effective. For 143

example, POIs in the plan must exist in the desig- 144
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Beijing

Chengdu

Chongqing

Guangzhou

Hangzhou

Nanjing

Shanghai

Shenzhen

Suzhou

Wuhan

Attraction

Accommodation

Restaurant

Metro

Attraction

Accommodation

Restaurant

Metro

Figure 2: Overview of ChinaTravel Sandbox Environment. Our sandbox incorporates travel information from
10 of the most popular cities in China, offering comprehensive information on attractions, accommodations, and
restaurants essential for travel planning. Here is the visualization of information from Beijing and Nanjing.

Evaluation Metrics Environment Constraints

Cross-city Transportation Available Trains or Airplanes across cities.
Correct information of cost and schedule.

Inner-city Transportation Available Metro, Taxi or Walking between different positions.
Correct information of cost, distance and duration

Attractions Available Attractions in the target city, visiting in their open time.
Attraction choices should not be repeated throughout the trip.
Correct information of cost.

Restaurants Available Restruants in the target city, visiting in their open time.
Restaurant choices should not be repeated throughout the trip.
Breakfast, lunch, and dinner are served at their designated meal times.
Correct information of cost.

Accommodation Available Accommodation in the target city.
Room information to meet headcounts.

Time The given activity events occur in chronological order.
Space Events at different positions should provide transport information.

Table 1: Descriptions of Environment Constraints for two benchmarks. Constraints in black are common in both
TravelPlanner and ChinaTravel. Metrics in brown are the metrics only in our benchmark.

nated city, transportation options must be viable,145

and time information must remain accurate. Tab. 1146

summarizes the environmental constraints.147

2.2 Logical Constraint148

A crucial ability for travel planning is to effectively149

satisfy personalized user needs. We extend the logi-150

cal constraints from TravelPlanner (Xie et al., 2024)151

and present a Domain-Specific Language (DSL)152

to support general reasoning in logical constraints.153

ChinaTravel’s DSL is a general set of pre-defined154

concept functions with built-in implementations155

and is listed in Tab. 2. TravelPlanner relies on156

5 pre-defined concepts {total budget, room rules,157

room types, cuisines, and transportation types}, to158

evaluate the logical constraints, where each concept159

is equivalent to a specific logical requirement. We160

find that this approach limits the ability to validate161

diverse logical needs in an open-world context. For 162

example, such an evaluation cannot express that 163

the dining expenses should be within 1000 yuan or 164

that arriving in Shanghai should be before 6 PM on 165

the second day, despite the generated plan already 166

including the expenses for each activity and time 167

information of the return flight. Each new logical 168

requirement necessitates human intervention for 169

definition. To address this issue, our approach is 170

grounded in a DSL-based solution that leverages 171

basic concept functions and syntax to express and 172

fulfill various logical requirements. 173
174

# Dining expenses <= 1000 CNY. 175
dining_cost = 0 176
for act_i in allactivities(plan): 177

typ = activity_type(act_i) 178
if typ=="breakfast" or typ=="lunch" or 179

typ=="dinner": dining_cost = 180
dining_cost + activity_cost(act_i) 181

return dining_cost <= 1000 182183
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Name Syntax Description

variables 𝑥, 𝑦, 𝑧, · · · Variables that refer to activities in the travel planning domain.
not 𝑛𝑜𝑡 𝑒𝑥𝑝𝑟 The negation of an Boolean-valued expression.
and,or 𝑒𝑥𝑝𝑟1 and 𝑒𝑥𝑝𝑟2 The conjunction/disjunction of an Boolean-valued expression.
<, >,== 𝑒𝑥𝑝𝑟1 < 𝑒𝑥𝑝𝑟2 Return an expression with built-in number comparison functions.
+,−, ∗, / 𝑒𝑥𝑝𝑟1 + 𝑒𝑥𝑝𝑟2 Return an expression with built-in number calculation functions.
attributes 𝑐𝑜𝑠𝑡 (𝑣𝑎𝑟) A function that takes activities as inputs and returns the attributes,

such as cost, type or time.
relation 𝑑𝑖𝑠𝑡 (𝑒𝑥𝑝𝑟1, 𝑒𝑥𝑝𝑟2) A function that takes locations as inputs and returns the distance.
effect 𝑣𝑎𝑟 = 𝑒𝑥𝑝𝑟 An assignment affects a variable 𝑣𝑎𝑟 with the expression 𝑒𝑥𝑝𝑟.
union, inter,
diff

𝑢𝑛𝑖({𝑣𝑎𝑟}1, {𝑣𝑎𝑟}2) Return a set with the built-in union/intersection/difference oper-
ations of given two sets.

enumerate for 𝑣𝑎𝑟 in {𝑣𝑎𝑟} Enumerate all variables in the collection {𝑣𝑎𝑟}.
when if 𝑒𝑥𝑝𝑟 : effect The conditional effect takes a Boolean-valued condition of the

expression 𝑒𝑥𝑝𝑟 , and the effect effect.

Table 2: ChinaTravel’s Domain-Specific Language (DSL) for logical constraints.

184
# Arriving in Shanghai should be before185

6 PM on the second day.186
return_time = 0187
for act_i in day_activities(plan , 2):188

typ = activity_type(act_i)189
dest = transport_destination(act_i)190
if (typ=="train" or typ=="airplane")191

and des=="Shanghai": return_time192
== activity_endtime(act_i)193

return return_time < "18:00"194195

The DSL can represent varying requirements196

through concept composition in a Python format,197

and perform automated validation of plans using198

a Python compiler. This strategy maximizes the199

evaluation capability of the ChinaTravel benchmark.200

The App. B.2 provides a more detailed definition201

and implementation of concept functions.202

2.3 Preference Requirement203

Travel requirements encompass not only hard log-204

ical constraints but also soft preferences. The205

term “soft" implies that these preferences cannot be206

addressed as boolean constraint satisfaction prob-207

lems, instead, they involve quantitative compar-208

isons based on continuous values. This distinction209

highlights the unique nature of preference-based210

requirements compared to logical constraints. Com-211

mon preferences identified through surveys include212

maximizing the number of attractions visited, mini-213

mizing travel time between destinations, and visit-214

ing positions near the specific POI, among others.215

In ChinaTravel, we formalize such preferences as216

minimization or maximization objectives via our217

DSL, thereby providing an automated evaluation.218

219
# The number of attractions visited 220
count = 0 221
for act_i in all_activities(plan): 222

if activity_type(act_i)=="attraction": 223
count = count + 1 224

return count 225226

2.4 Benchmark Construction 227

ChinaTravel provides user queries reflecting diverse 228

requirements through a four-stage process that inte- 229

grates LLM-based generation with questionnaires. 230

Stage I: Manual design of database and APIs. 231

We collect travel information for multi-day, multi- 232

POI itineraries across attractions, accommodations, 233

and transportation. We define essential POI fea- 234

tures, such as cuisine types and hotel characteristics, 235

to construct the database from public information. 236

APIs are designed to support agent queries via regu- 237

lar expressions and modeled after commercial APIs 238

to ensure realism. See App. B.1 for details. 239

Stage II: Automatic data generation with LLMs. 240

We define common travel information (e.g., origin, 241

destination, days, number of people) and logical 242

constraints to model travel tasks. To enable scalable 243

queries, query skeletons are randomly constructed 244

from this information and transformed into natural 245

language queries using advanced LLMs. The gen- 246

erated queries are categorized into two difficulty 247

levels: Easy, with 1 logical requirement beyond 248

basic constraints like people number and trip du- 249

ration, and Medium, with 3–5 additional logical 250

requirements. We encourage the LLM to generate 251
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diverse, human-like expressions, such as turning252

"Taste Beijing cuisine" into "Try local food in Bei-253

jing." See App. B.3 for an example snippet and254

more details.255

Stage III: Quality control and auto-validation.256

To ensure data quality, we manually check whether257

the generated queries conform to symbolic skele-258

tons, and re-calibrate natural language descriptions259

that contain ambiguities. Based on the symbolic260

skeletons of queries, we could verify whether the261

plan can pass the required logical constraints by262

executing the DSL code via Python compiler. Build-263

ing on this, we ensure that each query has at least264

one solution that satisfies the logical constraints by265

implementing a heuristic search algorithm.266

Stage IV: Open requirements from humans.267

After the first round of closed-loop development268

with LLM, including data generation and anno-269

tation, baseline development, and evaluation, we270

further collected travel requirements from more271

than 250 humans through questionnaires. Based272

on a new round of quality control on these data,273

a more challenging set with 154 queries is con-274

structed. These queries even include unseen logical275

constraints in the deployment process, such as ‘de-276

parture time’ and ‘dining cost’, reflecting the real277

challenges of neural-symbolic systems in travel278

planning. We carefully annotate the required log-279

ical constraints for each query based on the DSL,280

enabling the automated evaluation of these challeng-281

ing samples and forming the Human level dataset.282

To support global research on travel planning,283

we provide an English version of all queries in284

ChinaTravel. However, we recommend that re-285

searchers primarily use the Chinese version, as it286

better captures the expression from native speakers.287

3 Empirical Study288

LLMs. We test both state-of-the-art proprietary289

and open LLMs: OpenAI GPT-4o, DeepSeek-V2.5,290

as well as Qwen-2.5-7B (Bai et al., 2023). The first291

two models are chosen for their strong performance,292

while the latter is selected for their Chinese language293

capabilities and ability to perform inference with294

limited local computational resources.295

Metrics. We examine the Delivery Rate (DR),296

Environmental Pass Rate (CPR), Logical Pass297

Rate (LPR), and Final Pass Rate (FPR) from Trav-298

elPlan (Xie et al., 2024). Furthermore, we design299

a novel metric, Conditional Logical Pass Rate (C-300

I am in Shanghai now and 

would like to go to Beijing for 

2 days, visit some museums, 

and taste some Beijing cuisine. 

My budget is 5,000 yuan and 

I hope to visit as many 

attractions as possible. 

Please give me a travel plan.User

Personal Requirements

𝒙. 𝐭𝐲𝐩𝐞 = 𝐦𝐮𝐬𝐞𝐮𝐦𝐬,
∃ 𝒙 ∈ 𝐀𝐭𝐭𝐫𝐚𝐜𝐭𝐢𝐨𝐧_𝐯𝐢𝐬𝐢𝐭𝐞𝐝

𝒙. 𝐜𝐮𝐢𝐬𝐢𝐧𝐞 = 𝐁𝐞𝐢𝐣𝐢𝐧𝐠 𝐂𝐮𝐢𝐬𝐢𝐧𝐞,
∃ 𝒙 ∈ 𝐑𝐞𝐬𝐭𝐫𝐚𝐮𝐧𝐭𝐬_𝐯𝐢𝐬𝐢𝐭𝐞𝐝

𝐭𝐨𝐭𝐚𝐥_𝐛𝐮𝐝𝐠𝐞𝐭 ≤ 𝟓𝟎𝟎𝟎
maximize 𝐀𝐭𝐭𝐫𝐚𝐜𝐭𝐢𝐨𝐧_𝐯𝐢𝐬𝐢𝐭𝐞𝐝

Current Plan

[Day 1, Activity 1]

Train, G104, 06:27 → 13:12, cost: 693

Shanghai Hongqiao Railway Station 

→ Beijingnan Railway Station

[Day 1, Activity 2]

The Palace Museum, 14:00 → 17:30

…

[Day 1, Activity 3]

Current time: 17:30 

Current position: The Palace Museum

1. What type of place should we visit next, 

attractions, restaurants or hotels?

2. Which POI should we visit next?

LLM 

Extraction

(1) Siji Minfu, Beijing Cuisine

(2) Beijing Pie, Beijing Cuisine

…

(x) Xinrongji, Jiangzhe Cuisine

…
DFS

Validated Plan

Plan Verification

Failed
Completed 

Plan

Planning step by step:

RestaurantSearch()

It is 17:30 now. We 

can find a restaurant 

to have dinner.

Siji Minfu is a well-

known restaurant with 

delicious Peking duck

LLM-based 

choice

LLM-based 

ranking

Figure 3: NeSy Planning with depth-first-search solver.

LPR), evaluating the success rate of plans that first 301

fulfill environmental constraints prior to logical 302

constraints. It ensures that logical requirements are 303

met within a realistic travel context, eliminating 304

cases where unrealistic or incorrect information 305

might lead to shortcutting logical constraints, such 306

as misreporting costs to fit budget requirements. By 307

introducing C-LPR, we aim to enhance the feasibil- 308

ity and meaningfulness of constraint satisfaction. 309

C-LPR=

∑
𝑝∈𝑃 𝟙passed(𝐸𝑛𝑣,𝑝) ·

∑
𝑐∈𝐶𝑝

𝟙passed(𝐶𝑝 , 𝑝)∑
𝑝∈𝑃 ∈ |𝐶𝑝 |

310

𝑃 is the plan set, 𝐶𝑝 is the set of constraints for plan 311

𝑝, and passed(𝑐, 𝑝) indicates whether 𝑝 satisfies 𝑐. 312

Methods. We evaluate the performance of both 313

pure-LLM-based and neuro-symbolic solutions on 314

the ChinaTravel benchmark. For the former, we 315

primarily test the well-known method, ReAct (Yao 316

et al., 2023), and its Act-only ablation. We exclude 317

Reflexion (Shinn et al., 2024) due to its performance 318

being similar to ReAct on the TravelPlanner (Xie 319

et al., 2024) and the high economic overhead asso- 320

ciated with the larger input token size. For the latter, 321

we adapt existing neuro-symbolic pipelines (Hao 322

et al., 2024; Pan et al., 2023; Deng et al., 2024) 323

using our proposed DSL to handle the complexities 324

of multi-day, multi-POI itineraries. 325

3.1 Neuro-Symbolic Planning 326

This subsection presents a neuro-symbolic solution 327

as a preliminary baseline for ChinaTravel. This 328

solution consists of two stages. Stage 1: NL2DSL 329

translation translates natural language queries into 330
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LLMs DR EPR LPR C-LPR FPR
Micro Macro Micro Macro

Easy (#300)

Act 70.4 49.9 0 64.6 30.8 0 0
97.5 70.8 0.0 86.8 68.8 0.0 0.0

ReAct 43.3 40.8 0.0 41.9 19.6 0.0 0.0
95.4 48.2 0.0 71.3 32.9 0.0 0.0

ReAct (one-shot) 77.5 68.3 6.25 74.1 52.5 5.77 5.42
94.2 68.1 0 89.4 70.8 0 0

NeSy Planning 78.6 75.9 50.6 79.7 64.6 48.6 48.0
75.0 73.6 64.0 73.5 63.3 61.7 60.6
72.3 67.0 34.0 70.4 49.6 32.6 28.3

NeSy Planning*
(Oracle Translation)

82.6 81.7 75.0 82.2 75.3 75.0 74.0
66.6 66.7 66.0 64.6 63.6 64.6 62.6
69.3 69.3 59.3 70.2 59.6 59.3 57.9

Medium (#150)

Act 72.7 52.3 0 63.5 15.3 0 0
97.4 70.5 0 89.3 55.3 0 0

ReAct
41.3 35.2 0 37.6 4.0 0 0
92.0 54.8 0 78.6 22.7 0 0

ReAct (one-shot) 82.7 77.1 3.33 82.6 48.7 2.95 1.33
94.7 69.2 0.67 91.8 64.0 0.53 0

NeSy Planning
71.3 71.9 69.3 69.4 50.0 69.3 46.7
68.0 68.0 68.0 64.1 46.6 64.1 46.7
53.3 45.9 16.0 49.2 33.3 14.8 8.50

NeSy Planning*
(Oracle Translation)

68.6 65.4 54.0 66.2 61.3 52.5 54.0
60.8 59.4 54.9 60.3 58.2 60.3 56.9
53.3 51.3 36.6 51.9 43.3 34.8 34.6

Human (#154)

ReAct 36.4 29.5 0.65 35.2 16.2 0.38 0
96.1 50.5 0 72.4 32.5 0 0

ReAct (one-shot) 55.2 57.3 2.60 64.6 44.2 1.71 2.60
69.5 46.3 0 63.6 46.8 0 0

NeSy Planning
45.4 46.6 40.9 40.9 33.1 35.3 27.9
45.4 50.1 45.4 40.9 29.8 38.5 27.9
42.8 47.4 42.2 36.2 27.2 34.4 25.3

NeSy Planning*
(Oracle Translation)

50.6 48.9 36.3 45.9 40.2 32.0 35.0
52.6 46.9 42.9 47.6 40.9 43.9 40.9
41.5 41.1 31.1 36.5 33.7 25.0 28.5

Table 3: Main results of different LLMs and planning strategies on the ChinaTravel benchmark.
LLMs: : DeepSeek-V2.5, : GPT-4o-2024-08-06, :Qwen2.5-7B.
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Figure 4: Challenges in the Neuro-Symbolic Planning.

logical, preference-based DSL requirements. We331

use Reflexion (Shinn et al., 2024) and a DSL syn-332

tax checker to iteratively assist the LLM (5 rounds333

in experiments). Stage 2: Interactive search uses334

a neuro-symbolic solver to sequentially arrange335

activities, guided by a symbolic sketch and LLM-336

driven POI recommendations, generating a multi-337

day itinerary with DSL validation. If constraints338

are violated, the process backtracks until a feasible339

solution is found. To ensure fairness, the symbolic340

sketch search is limited to 5 minutes per query,341

excluding LLM inference time. To observe the342

performance across the two stages, we also evalu-343

ated the planning results based on the Oracle DSL.344

App. C includes pseudo-code and LLM prompts.345

3.2 Main Results346

Based on the results presented in Table 3, we have347

the following observations and analyses:348

Pure LLMs struggle in ChinaTravel. The DR349

evaluates an agent’s ability to generate valid JSON350

plans (see Fig. 1). While high DRs indicate that351

advanced LLMs can produce structured outputs for352

travel planning, the near-zero EPR (Environmental353

Constraints Pass Rate) reveals their inability to354

gather and strictly adhere to required information.355

The sole exception is the DeepSeek model, which356

achieves the 5% EPR and 4.33% FPR, likely due to357

its strong capability to follow Chinese requirements.358

ReAct (one-shot, GPT-4o) excels in Macro LPR359

but achieves no FPR, suggesting it circumvents360

constraints via shortcuts. Our proposed C-LPR361

metric offers a more reliable measure of logical362

constraints, serving as a supplement to FPR.363

Nesy Planning provides a promising solution.364

Figure 5: Syntax errors across reflexion rounds 𝜏.

Our NeSy Planning framework integrates sym- 365

bolic programs to orchestrate travel planning and 366

tool management while utilizing LLMs to extract 367

language-based requirements and prioritize POIs. 368

By separating planning (flexible natural language 369

handling) from grounding (precise execution), the 370

framework enhances adaptability and ensures com- 371

pliance with constraints. Across all data subsets, 372

NeSy methods outperform pure-LLM approaches. 373

With GPT-4o as the backend, it achieves FPRs of 374

60.6%, 46.6%, and 27.9% on three subsets, high- 375

lighting the effectiveness of NeSy solutions for 376

travel planning with complex constraints. 377

Challenges Persist for Nesy Planning. The per- 378

formance gap between standard and oracle modes 379

underscores the importance of DSL translation in 380

NeSy planning. Inadequate translations may result 381

in plan searches failing to meet user requirements, 382

while incorrect translations can misguide the search, 383

making feasible solutions unattainable. Among the 384

three LLMs, GPT-4o performs the best, with mini- 385

mal gaps between modes, indicating its relatively 386

accurate DSL generation effectively supports the 387

search process. We conclude with three challenges 388

and provide the corresponding cases in the Fig. 4. 389
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(1) DSL Syntax Compliance: As shown in Fig. 5,390

while the reflexion process with syntax checker391

significantly reduces syntax errors, the Qwen-7B392

model demonstrates weaker compliance than GPT-393

4o and DeepSeek, directly resulting in its lower394

performance in the Tab. 3. (2) Open Language395

Reasoning: Although GPT-4o exhibits relatively396

fewer syntax errors in translation, it still struggles397

with diverse queries and context-dependent mean-398

ings. For instance, when a user requests "local399

cuisine," GPT-4o maps it to本帮菜, ignoring the400

logical connection that in Beijing, it should align401

with北京菜. (3) Unseen Concept Composition:402

Real-world requirements derived from human data403

are inherently diverse and complex, making expect-404

ing models to encounter all possible needs during405

development impractical. A more feasible way is to406

emulate human reasoning by generalizing existing407

knowledge to novel problems. Based on our DSL408

design, LLMs can express new logical requirements409

through combinations of concept functions. How-410

ever, compositional reasoning remains a challenge.411

For example, GPT-4o misinterpreted a return time412

constraint as applying to all activities instead of413

correctly limiting only the return train’s departure414

time to before 19:00.415

In summary, ChinaTravel poses significant chal-416

lenges for current agents. Neuro-symbolic agents417

outperform pure-LLM approaches in constraint sat-418

isfaction, showing strong potential for real-world419

travel planning. With realistic queries and a versa-420

tile DSL for constraint validation, we highlight the421

critical challenges while providing a foundation for422

advancing neuro-symbolic systems in practice.423

3.3 Ablation Study with Preference424

The comparison of preferences should be conducted425

under the premise that both environmental and logi-426

cal constraints are satisfied. Given the limited FPR427

achieved by existing methods on the challenging428

ChinaTravel, we perform a separate analysis of pref-429

erence optimization in this section. Specifically,430

we sampled 50 queries from the easy subset that431

NeSy-DeepSeek-Oracle successfully passed as seed432

samples. Based on these, six subsets were created433

by introducing common preferences identified from434

user surveys. Three comparative scenarios were435

designed to explore the roles of LLMs and symbolic436

search in optimizing preferences during NeSy Plan-437

ning: (1) Baseline Query (BQ): Results obtained by438

directly querying the seed samples without prefer-439

ence requirements. (2) Preference-Enhanced Query440

R1

R2

R3

NeSy Planning BQ PEQ PDS

Daily attractions ↑ 0.75 0.79 1.63

Transport time ↓ 38.5 41.9 26.5

Transport time to rest. ↓ 22.2 26.8 22.8

Food cost ratio ↑ 0.19 0.29 0.32

Hotel cost ↓ 1350 559 519

Distance to POI ↓ 30.9 30.6 26.1

Figure 6: Ablation on preference ranking.

(PEQ): Results based on seed samples augmented 441

with natural language preference expressions (e.g., 442

“visit more attractions"), evaluating whether em- 443

bedding preferences into POI recommendations 444

via LLMs improves outcomes. (3) Preference- 445

Driven Search (PDS): Results using both natural 446

language and DSL-based expressions, where the 447

agent, within the 5-minute search time limit, com- 448

putes the preference concept for solutions that pass 449

environmental and logical constraints and retains 450

plans that maximize or minimize the preference 451

objective. The results are provided in Fig. 6. 452

From the results(Fig. 6, where ↑ indicates maxi- 453

mization), PEQ outperforms BQ in preference op- 454

timization. This ablation demonstrates that LLMs 455

can effectively capture natural language needs dur- 456

ing the POI ranking stage, contributing to preference 457

improvements. However, on P2, PEQ underper- 458

forms BQ, indicating that LLMs can sometimes 459

have a negative impact. This may be due to the 460

complexity of the preference in P2, which involves 461

minimizing transport time to restaurants, leading to 462

misinterpretation. PDS achieves more significant 463

improvements in preference optimization, relying 464

on DSL-based preference calculations that filter 465

plans more effectively over extended search times. 466

This supports the scalability of DSL in preference 467

optimization but also highlights the pressing need 468

for more efficient algorithms. 469

4 Conclusion 470

We present ChinaTravel, a benchmark for multi- 471

day multi-POI travel planning focused on authentic 472

Chinese needs. We address the limitations of pre- 473

vious benchmarks by incorporating open-ended 474

and diverse human queries, capturing real-world 475

user needs. Additionally, we propose a scalable 476

evaluation framework based on DSL, enabling com- 477

prehensive assessments of feasibility, constraint 478

satisfaction, and preference comparison. These 479

advancements provide a foundation for developing 480

language agents capable of meeting diverse user re- 481

quirements and delivering reliable travel solutions. 482
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5 Limitations483

Our research represents a significant step forward484

in evaluating the travel planning capabilities of485

language agents, but it is not without challenges.486

One limitation lies in its focus on Chinese travel487

planning. Due to the inherent differences in natural488

language, the translated versions of queries may489

fail to fully capture the challenges of understanding490

requirements in Chinese queries, potentially limit-491

ing its applicability in a global context. However,492

given the substantial demand within China’s travel493

market, we believe a benchmark tailored to Chinese494

travel planning is both necessary and socially valu-495

able. Although our benchmark is comprehensive, it496

may not encompass the full range of requirements497

encountered in real-world scenarios. The high cost498

of collecting authentic data has limited the number499

of human queries in our study. To address this,500

future work will focus on combining LLMs with501

real user queries to automate the generation of a502

wider variety of human-like queries. Continuous503

refinement and expansion of our benchmark are504

crucial for more accurately reflecting the realistic505

travel planning needs.506
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A Discussion with Related Work 671

LLM-based Agents have demonstrated significant 672

capability in understanding complex instructions 673

and employing domain-specific tools to complete 674

tasks, showcasing their potential in fields such as vi- 675

sual reasoning (Gupta and Kembhavi, 2023), health- 676

care (Zhang et al., 2023) and robotics (Liu et al., 677

2024). This reduces the reliance of previous agents 678

on domain-specific efforts, that is, either mainly 679

following domain-specific rules to plan (rule-based 680

agents, such as DeepBlue (Campbell et al., 2002) 681

and Eliza (Sharma et al., 2017)) or mainly learning 682

from domain-specific data to plan (reinforcement- 683

learning-based agents, such as AlphaGo (Silver 684

et al., 2017) and Atari DQN (Mnih et al., 2013)). 685

While the language agents have shown promising 686

results in some domains, most of their planning 687

scenarios are limited to simple tasks with single 688

objective function and fail in the travel planning 689

benchmark with complex logical constraints on the 690

results. 691

Neuro-Symbolic Learning explores to combine 692

traditional symbolic reasoning with learning to en- 693

hance the reliability (Manhaeve et al., 2018; Wang 694

et al., 2019; Dai et al., 2019). In the era of large 695

language models, Pan et al. (2023) presents the 696

LogicLM integrates LLMs with separate symbolic 697

solvers for various logical reasoning tasks. They 698
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first utilize LLMs to translate a natural language699

problem into a symbolic formulation. Afterward, a700

deterministic symbolic solver performs inference701

on the formulated problem to ensure the correct-702

ness of the results. Deng et al. (2024) supplement703

LogicLM with a Self-Refinement Module to en-704

hance the reliability of LLM translation. In the705

travel planning domain, Hao et al. (2024) presents706

a framework with a similar pipeline. It first ex-707

tracts the logical constraints from natural language708

queries and then formalizes them into SMT code.709

Thanks to SMT solvers being sound and complete,710

this neuro-symbolic solution guarantees the gener-711

ated plans are correct and has basically solved the712

TravelPlanner benchmark with a 97% pass rate.713

Travel Planning is a time-consuming task even714

for humans, encompassing travel-related informa-715

tion gathering, POI selection, route mapping, and716

customization to meet diverse user needs (Halder717

et al., 2024). Natural languages are one of the most718

common ways for users to express their travel re-719

quirements. However, the ambiguity and complex-720

ity of travel requirements make it still challenging721

for LLMs to generate accurate and reliable travel722

plans. Xie et al. (2024) presents the TravelPlanner723

benchmark for cross-city travel planning and re-724

veals the inadequacies of pure-LLM-driven agents.725

TravelPlanner generates user queries through LLMs726

and provides a rigorous evaluation mechanism to727

verify whether the provided plans can meet the728

logical constraints in the queries. It has become729

a pivotal benchmark for language agents in real-730

world travel planning. Tang et al. (2024) study731

the open-domain urban itinerary planning where732

a single-day multi-POI plan is required. They in-733

tegrates spatial optimization with large language734

models and present a system IttNera, to provide735

customized urban itineraries based on user needs.736

A concurrent work, TravelAgent (Chen et al., 2024),737

also considers a multi-day multi-POI travel plan-738

ning problem for the specified city. It constructs739

an LLM-powered system to provide personalized740

plans. However, due to the high cost of collecting741

and annotating real travel needs, they evaluate the742

proposed TravelAgent in only 20 queries. This also743

demonstrates the necessity of introducing a new744

benchmark for travel planning.745

B Detailed Design of ChinaTravel 746

B.1 Sandbox Information 747

We started collecting travel information with the mo- 748

tivation of planning a multi-day, multi-POI itinerary 749

in four aspects: attractions, accommodation, activi- 750

ties, and transportation. Developers first determine 751

the POI description information that needs to be ob- 752

tained from the user’s perspective, such as cuisine 753

and hotel features. Based on this feature set, we 754

collect public information to construct the database. 755

For the design of APIs, we directly support queries 756

based on the regular expressions from agents. At 757

the same time, we expect the design of APIs to have 758

similar features and characteristics to existing com- 759

mercial APIs, enabling our dataset to be applicable 760

to more realistic scenarios. The information our 761

database contains is shown in Table 4 and the APIs 762

we offer is in Table 5 763

B.2 Concept Function 764

We defined 35 concept functions. Their definition 765

and implementation is in Table 6, 7, 8 and 9. 766

B.3 Query Synthesis 767

We designed common travel information (origin, 768

destination, days, number of people) and logical 769

constraints based on the nature of travel tasks. To 770

facilitate scalable queries for ChinaTravel, we ran- 771

domly constructed query skeletons from the afore- 772

mentioned information and used advanced LLMs 773

to generate natural language queries from these 774

skeletons. The automatically generated data is 775

categorized into two difficulty levels: In the Easy 776

level, user inputs encompass a single logical require- 777

ment, sourced from categories such as transporta- 778

tion, restaurants, attractions, and accommodations. 779

In the Medium level, user inputs involve 2 to 5 780

logical requirements, introducing more complex 781

constraints. During the generation, we encourage 782

the LLMs to provide varied and human-like ex- 783

pressions, necessitating a deeper understanding and 784

processing to accurately interpret and fulfill the 785

user’s needs. For instance, the logical requirement 786

"taste Beijing cuisine" could correspond to the nat- 787

ural language query: "Try local food in Beijing." 788

We utilize prompt engineering to guide LLMs in 789

refining natural language expressions to facilitate 790

automated generation. One of the prompts is shown 791

in Figure 7. Several examples of generated data is 792

in Figure 8. 793
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Tool Information

Attractions Name, Type, Latitude, Longitude, Opentime, Endtime, Price,
Recommendmintime, Recommendmaxtime

Accommodations Name, Name_en, Featurehoteltype, Latitude, Longitude, Price, Numbed

Restaurants Name, Latitude, Longitude, Price, Cuisinetype, Opentime, Endtime,
Recommendedfood

Transportation Transportation in specific city including walk, metro and taxi

IntercityTransport Flight: FlightID, From, To, BeginTime, EndTime, Duration, Cost
Train: TrainID, TrainType, From, To, BeginTime, EndTime, Duration, Cost

Poi Names of POIs(including intercity transportation hub) and their coordinates

Table 4: Sandbox Information

C NeSy Planning794

Since the Z3 solver from (Hao et al., 2024) would795

restructure the tool API to return travel information796

expressed in specific Z3 variables, which may not797

be feasible given that APIs in the real world are798

typically black boxes that agents can only call.799

Following their two-stage solution, we first extract800

logical constraints from natural language. Based801

on these constraints, we implement a step-by-step802

plan generation process using depth-first search,803

mimicking how humans plan to travel by arranging804

activities one by one. As shown in Fig. 3, we first805

translate the natural languages to logical constraints806

through prompting. generate the next activity type807

based on the current plan, and then recursively808

generate the next activity until the goal is reached.809

The generated plan is then used to solve the problem.810

In the second step, we define the rule-based activity811

selection and score function. For example, if the812

current time is in the [10:30, 12:30] and there is813

no scheduled lunch in the current plan, then the814

agent should find a restaurant to have lunch at this815

time. If the current time is after 22:00 and there are816

no open-time attractions nearby, the agent should817

choose to return to the hotel. For the score function,818

we select the restaurants that satisfy the required819

cuisine and sort the candidates by the price if there820

a budget constraints in the constraints 𝐶. These821

ranking functions will help us to find a feasible822

solution as soon as possible. In ChinaTravel, the823

duration arrangement of activities is continuous and824

difficult to enumerate and search. We pre-define a825

meal or a visit to an attraction as 90 minutes, and826

when there are less than 90 minutes until closing827

time, the event continues until the closing time.828

Given these designs, we adapt the neural-symbolic 829

solution into a multi-POI planning problem and 830

evaluate it in the ChinaTravel benchmark. 831

Given that some queries are particularly challeng- 832

ing due to the limited number of feasible plans, we 833

set the maximum runtime for the symbolic sketch 834

from interactive search to 5 minutes per query, 835

excluding the LLM inference time, to ensure a 836

fair comparison across different models. If a plan 837

satisfying the generated DSL validation is found 838

within the time limit, it is returned directly. Oth- 839

erwise, the program halts when the time limit is 840

reached, and the plan that satisfies environmental 841

constraints while achieving the highest number of 842

validation code successes among all intermediate 843

results is returned. In cases where no environment- 844

compliant plan is identified, the partially completed 845

plan generated up to that point is returned. 846

In the Figure 9, 10 and 11, we provide the prompts 847

of the LLM POI-ranking phases. 848
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Algorithm 1 Depth-First Greedy Search
Require: Constraints 𝐶, current plan 𝑝,

if the least activity is an intercity-transport from destination to origin then
return ConstraintValidation(p, C), p ⊲ The plan 𝑝 is finished, return the validation result.

end if
type = GetNextActivityType(p) ⊲ Select the next type of activities, e.g. lunch, attraction.
candidates = ToolUse(type) ⊲ Collect the corresponding information for the activity type
scores = LLMScore(candidates, p, C) ⊲ Score candidates through constraints C.
for activity in candidates do

p.push(activity) ⊲ Perform a greedy search with priority ranking.
flag, p = Depth-FirstGreedySearch(C, p)
if flag then

return True, p ⊲ Return the solution 𝑝 if the validation is passed.
end if
p.pop(activity)

end for
return False, p ⊲ Fail to find a solution with the given conditions.
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Tool API Docs

Attractions attractions_keys(city) Return a list of (key, type) pairs of the
attractions data.

attractions_select(city, key, func) Return a DataFrame with data filtered
by the specified key with the specified
function.

attractions_id_is_open(city, id, time) Return whether the attraction with the
specified ID is open at the specified time.

attractions_nearby(city, point, topk,
dist)

Return the top K attractions within the
specified distance of the location.

attractions_types Return a list of unique attraction types.

Accommodations accommodations_keys(city) Return a list of (key, type) pairs of the
accommodations data.

accommodations_select(city, key, func) Return a DataFrame with data filtered
by the specified key with the specified
function.

accommodations_nearby(city, point,
topk, dist)

Return the top K accommodations
within the specified distance of the loca-
tion.

Restaurants restaurants_keys(city) Return a list of (key, type) pairs of the
restaurants data.

restaurants_select(city, key, func) Return a DataFrame with data filtered
by the specified key with the specified
function.

restaurants_id_is_open(city, id, time) Return whether the restaurant with the
specified ID is open at the specified time.

restaurants_nearby(city, point, topk,
dist)

Return the top K restaurants within the
specified distance of the location.

restaurants_with_recommended_food(
city, food)

Return all restaurants with the specified
food in their recommended dishes.

restaurants_cuisine(city) Return a list of unique restaurant
cuisines.

Transportation goto(city, start, end, start_time, trans-
port_type)

Return a list of transportation options
between two locations with the specified
departure time and transportation mode.

IntercityTransport intercity_transport_select(start_city,
end_city, intercity_type, earli-
est_leave_time)

Return the intercity transportation infor-
mation between two cities.

Others notedown(description, content) Write the specified content to the note-
book

plan(query) Generates a plan based on the notebook
content and query and report the plan is
done.

next_page() Get the next page of the latest Result
history if it exists. Because of the length
limited, all returned DataFrame infor-
mation is split into 10 rows per page.

Table 5: APIs
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An Example of Prompts for Data Generation

你是一个用户，你想请ai制定一个旅行规划，请根据以下的例子构建一些自然语言的询
问，并提供对应的逻辑约束表达。注意tickets和people_number一样。
例子：
JSON：
{

"start_city": "北京",
"target_city": "南京",
"hard_logic": [

"days==2",
"people_number==1",
"tickets==1",
"{’南京大排档’} <= restaurant_names",

],
"nature_language": "当前位置北京。我一个人想去南京玩2天，想吃南京大排档，请

给我一个旅行规划。"
}
使用如下的餐饮。
店名：{}
即要求restaurant_names包含这个店。
注意，餐饮不一定完全按照提供的特征的名字来，可以使用近义词，比如如果提供的是
泳池，可以使用想在酒店游泳这样的自然语言询问
注意，你现在的出发地点为{},目标地点为{}。人数{},天数{}
现在请给一个json询问,
JSON：

# You are a user who wants to ask an AI agent to help you plan a
trip. Please construct some natural language inquiries based
on the following example and provide the corresponding

logical constraint expressions. Note that "tickets" and "
people_number" are the same.

# Example:
# JSON:
# {}
# Use the following restaurants.
# Restaurant name: {}
# This means that "restaurant_names" should include this

restaurant.
# The dining options may not always be exactly as described by

the provided features; synonyms can be used. For example , if
the hotel's feature is a pool , you could ask naturally in
language like "I want to swim in the hotel pool."

# Now , your departure location is {}, and your destination is
{}. The number of people is {}, and the number of days is {}.

# Now please provide a JSON inquiry.
# JSON:

Figure 7: An example of prompts for data generation. This example is about restaurant_name. By replacing this
with other constraints or combining multiple constraints, we can generate data with different levels of difficulty
based on different constraints.
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Examples of Generated Data

Example 1
{

"start_city": "杭州",
"target_city": "上海",
"hard_logic": [

"days==2",
"people_number==1",
"tickets==1",
"{’本帮菜’} <= food_type"

],
"nature_language": "当前位置杭州。我一个人想去上海玩2天，想尝试当地的特色

菜，请给我一个旅行规划。"
}

Example 2
{

"start_city": "深圳",
"target_city": "北京",
"hard_logic": [

"days==2",
"people_number==3",
"intercity_transport=={’airplane’}",
"tickets==3",
"rooms==3",
"room_type==1"

],
"nature_language": "当前位置深圳。我们三个人计划去北京玩两天，选择飞机出行，

开三间大床房。请给我一个旅行规划。"
}

Example 3
{

"start_city": "重庆",
"target_city": "苏州",
"hard_logic": [

"days==3",
"people_number==3",
"cost<=7300",
"{’日本料理’} <= food_type",
"intercity_transport=={’train’}",
"tickets==3",
"rooms==2",
"room_type==2"

],
"nature_language": "当前位置重庆。我们三个人计划去苏州玩三天，选择火车出行，

想吃日本料理，预算7300元，开两间双床房。请给我一个旅行规划。"
}

Figure 8: Examples of Generated Data
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Function
Name

Meaning Implementation

day_count total days in the plan def day_count(plan):
return len(plan["itinerary"])

people_count number of people in the trip def people_count(plan):
return plan["people_number"]

start_city start city of the plan def start_city(plan):
return plan["start_city"]

target_city target city of the plan def target_city(plan):
return plan["target_city"]

allactivities all the activities in the plan

def allactivities(plan):
activity_list = []
for day_activity in plan["itinerary"]:

for act in day_activity["activities"]:
activity_list.append(act)

return activity_list

allactivities_-
count

the number of activities in the
plan

def allactivities_count(plan):
count = 0
for day_activity in plan["itinerary"]:

count += \
len(day_activity["activities"])

return count

dayactivities all the activities in the specific
day [1, 2, 3, ...]

def dayactivities(plan , day):
activity_list = []
for act in plan["itinerary"]\

[day - 1]["activities"]:
activity_list.append(act)

return activity_list

activity_cost the cost of specific activity
without transport cost

def activity_cost(activity):
return activity.get("cost", 0)

activity_posi-
tion

the position name of specific
activity

def activity_position(activity):
return activity.get("position", "")

activity_price the price of specific activity def activity_price(activity):
return activity.get("price", 0)

activity_type the type of specific activity def activity_type(activity):
return activity.get("type", "")

activity_tickets the number of tickets needed
for specific activity

def activity_tickets(activity):
return activity.get("tickets", 0)

activity_trans-
ports

the transport information of
specific activity

def activity_transports(activity):
return activity.get("transports", [])

activity_-
start_time

the start time of specific activ-
ity

def activity_start_time(activity):
return activity.get("start_time")

activity_-
end_time

the end time of specific activ-
ity

def activity_end_time(activity):
return activity.get("end_time")

Table 6: Concept Function
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Function
Name

Meaning Implementation

activity_time the duration of specific activ-
ity

def activity_time(activity):
start_time = activity.get("start_time")
end_time = activity.get("end_time")
if start_time and end_time:

st_h , st_m = \
map(int , start_time.split(":"))

ed_h , ed_m = \
map(int , end_time.split(":"))

return \
(ed_m - st_m) + (ed_h - st_h) * 60

return -1

poi_recom-
mend_time

the recommend time of spe-
cific poi(attraction) in the city

def poi_recommend_time(city , poi):
select = Attractions ().select
attrction_info = \

select(city , key="name",
func=lambda x: x == poi).iloc [0]

recommend_time = \
(attrction_info["recommendmintime"]) \
* 60

return recommend_time

poi_distance the distance between two POIs
in the city

def poi_distance(city , poi1 , poi2):
start_time="00:00"
transport_type="walk"
goto = Transportation ().goto
return goto(city , poi1 , poi2 , start_time ,

transport_type)[0]["distance"]

innercity_-
transport_cost

the total cost of specific in-
nercity transport

def innercity_transport_cost(transports , mode):
cost = 0
for transport in transports:

if node is None or \
transport.get("type") == node:
cost += transport.get("cost", 0)

return cost

innercity_-
transport_price

the price of innercity transport

def innercity_transport_price(transports):
price = 0
for transport in transports:

price += transport["price"]
return price

innercity_-
transport_-
distance

the distance of innercity trans-
port

def innercity_transport_distance\
(transports , mode=None):
distance = 0
for transport in transports:

if mode is None or \
transport.get("type") == mode:
distance += \

transport.get("distance", 0)
return distance

innercity_-
transport_-
time

the duration of innercity trans-
port

def innercity_transport_time(transports):
def calc_time_delta(end_time , start_time):

hour1 , minu1 = \
int(end_time.split(":")[0]), \

int(end_time.split(":")[1])
hour2 , minu2 = \

int(start_time.split(":")[0]), \
int(start_time.split(":")[1])

return (hour1 - hour2) * 60\
+ (minu1 - minu2)

Table 7: Concept Function
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Function
Name

Meaning Implementation

metro_tickets the number of metro tickets if
the type of transport is metro

def metro_tickets(transports):
return transports [1]["tickets"]

taxi_cars the number of taxi cars if the
type of transport is taxi

def taxi_cars(transports):
return transports [0]["cars"]

room_count the number of rooms of ac-
commodation

def room_count(activity):
return activity.get("rooms", 0)

room_count the number of rooms of ac-
commodation

def room_count(activity):
return activity.get("rooms", 0)

room_type the type of room of accommo-
dation

def room_type(activity):
return activity.get("room_type", 0)

restaurant_-
type

the type of restaurant’s cuisine
in the target city

def restaurant_type(activity , target_city):
restaurants = Restaurants ()
select_food_type = \

restaurants.select(
target_city , key="name",
func=lambda x: x == activity["position"]

)["cuisine"]
if not select_food_type.empty:

return select_food_type.iloc [0]
return ""

attraction_-
type

the type of attraction in the
target city

def attraction_type(activity , target_city):
attractions = Attractions ()
select_attr_type = \

attractions.select(
target_city , key="name",
func=lambda x: x == activity["position"]

)["type"]
if not select_attr_type.empty:

return select_attr_type.iloc [0]
return ""

accommo-
dation_type

the feature of accommodation
in the target city

def accommodation_type(activity , target_city):
accommodations = Accommodations ()
select_hotel_type = \

accommodations.select(
target_city , key="name",
func=lambda x: x == activity["position"]

)["featurehoteltype"]
if not select_hotel_type.empty:

return select_hotel_type.iloc [0]
return ""

innercity_-
transport_-
type

the type of innercity transport

def innercity_transport_type(transports):
if len(transports) == 3:

return transports [1]["mode"]
elif len(transports) == 1:

return transports [0]["mode"]
return ""

intercity_-
transport_-
type

the type of intercity transport def intercity_transport_type(activity):
return activity.get("type", "")

Table 8: Concept Function
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Function
Name

Meaning Implementation

innercity_-
transport_-
start_time

the start time of innercity
transport

def innercity_transport_start_time(transports):
return transports [0]["start_time"]

innercity_-
transport_-
end_time

the end time of innercity trans-
port

def intercity_transport_end_time(transports):
return transports [-1]["end_time"]

intercity_-
transport_-
origin

the origin city of intercity
transport

def intercity_transport_origin(activity):
if "start" in activity:

for city in city_list:
if city in activity["start"]:

return city
return ""

intercity_-
transport_-
destination

tthe destination city of inter-
city transport

def intercity_transport_destination(activity):
if "end" in activity:

for city in city_list:
if city in activity["end"]:

return city
return ""

Table 9: Concept Function

Prompts for POI recommendation

NEXT_POI_TYPE_INSTRUCTION = """
You are a travel planning assistant.
The user's requirements are: {}.
Current travel plans are: {}.
Today is {}, current time is {}, current location is {}, and

POI_type_list is {}.
Select the next POI type based on the user's needs and the

current itinerary.
Please answer in the following format.
Thought: [Your reason]
Type: [type in POI_type_list]
"""

Figure 9: Prompts for next-POI-type recommendation
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Prompts for restaurants recommendation

RESTAURANT_RANKING_INSTRUCTION = """
You are a travel planning assistant.
The user's requirements are: {user_requirements }.
The restaurant info is:
{restaurant_info}
The past cost for intercity transportation and hotel

accommodations is: {past_cost }.

Your task is to select and rank restaurants based on the
user's needs and the provided restaurant information.
Consider the following factors:

1. Restaurant name
2. Cuisine type
3. Price range
4. Recommended food

Additionally , keep in mind that the user's budget is
allocated across multiple expenses , including intercity
transportation and hotel accommodations. Ensure that the
restaurant recommendations fit within the remaining
budget constraints after accounting for the past cost.

Note that the price range provided for each restaurant is
the average cost per person per meal , the remaining
budget must cover the cost of three meals per day for {
days} days.

For each day , recommend at least 6 restaurants , combining
restaurants for all days together.

Your response should follow this format:

Thought: [Your reasoning for ranking the restaurants]
RestaurantNameList: [List of restaurant names ranked by

preference , formatted as a Python list]
"""

Figure 10: Prompts for restaurant recommendation
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Prompts for attractions recommendation

ATTRACTION_RANKING_INSTRUCTION = """
You are a travel planning assistant.
The user's requirements are: {user_requirements }.
The attraction info is:
{attraction_info}
The past cost for intercity transportation and hotel

accommodations is: {past_cost }.

Your task is to select and rank attractions based on the
user's needs and the provided attraction information.
Consider the following factors:

1. Attraction name
2. Attraction type
3. Location
4. Recommended duration

Additionally , keep in mind that the user's budget is
allocated across multiple expenses , including intercity
transportation and hotel accommodations. Ensure that the
attraction recommendations fit within the remaining
budget constraints after accounting for the past cost.

For each day , recommend at least 8 attractions , combining
attractions for all days together. To ensure a
comprehensive list , consider a larger pool of candidates
and prioritize diversity in attraction type and location.

Your response should follow this format:

Thought: [Your reasoning for ranking the attractions]
AttractionNameList: [List of attraction names ranked by

preference , formatted as a Python list]

Example:
Thought: Based on the user's preference for historical sites

and natural attractions , the attractions are ranked as
follows:

AttractionNameList: ["Attraction1", "Attraction2", ...]
"""

Figure 11: Prompts for attraction recommendation
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