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ABSTRACT

Large Language Models (LLMs) have shown impressive performance in complex
reasoning tasks through the use of Chain-of-Thought (CoT) reasoning, allowing
models to break down problems into manageable sub-tasks. However, existing
CoT evaluation techniques either require annotated CoT data or fall short in accu-
rately assessing intermediate reasoning steps, leading to high rates of false posi-
tives. In this paper, we formalize CoT reasoning in LLMs through an information-
theoretic lens. Specifically, our framework quantifies the ‘information gain’ at
each reasoning step, enabling the identification of failure modes in LLMs with-
out the need for expensive annotated datasets. We demonstrate the efficacy of our
approach through extensive experiments on toy and GSM-8K data, where it signif-
icantly outperforms existing outcome-based methods by providing more accurate
insights into model performance on individual tasks.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of
tasks, from complex reasoning to code generation (Chowdhery et al., 2024; OpenAI et al., 2024;
Bubeck et al., 2023; Anil et al., 2023). Many of these advances can be attributed to Chain-of-
Thought (CoT) reasoning (Wei et al., 2024; Nye et al., 2021; Li et al., 2024), which involves break-
ing down complex problems into a series of intermediate steps, mirroring human-like reasoning
processes. The success of CoT reasoning, particularly in domains such as mathematics, logic, and
multi-step decision-making, has led researchers and developers to incorporate CoT-like features di-
rectly into model training, i.e. the FLAN family of models (Chung et al., 2022; Wei et al., 2022).

This paper introduces a new formal framework for analyzing CoT in LLMs. We provide a rigorous
method grounded in information theory, to evaluate the quality of each step in a model’s reasoning
process, thus offering insights beyond simple accuracy metrics to identify areas for improvement.

Previous work in this area has proposed “Process Supervision” (Lightman et al., 2023), which re-
quires expensive, human-annotated step-by-step data. While effective, this approach is often imprac-
tical due to the high cost and effort of creating large-scale annotated datasets. In turn, alternative
methods have recently been proposed, such as outcome reward modelling (Havrilla et al., 2024) or
the Math-Shepherd (Wang et al., 2024b). Both these approaches avoid reliance on annotated step-
wise CoT data by instead modelling the correctness of each step based on the correctness of final
outputs. However, as we demonstrate in this paper, these methods can be unsound for detecting
incorrect reasoning steps and can thus lead to a high false-positive rate in certain scenarios.

To address these shortcomings, we employ an information-theoretic approach, grounded in the fol-
lowing key insight: Each correct step in a reasoning process should provide valuable and relevant
information that aids in predicting the final correct outcome. Building on this insight, we develop a
framework to quantify the “information gain” after each sub-task in the reasoning process, without
the need for step-by-step annotations. This enables us to detect sub-tasks that fail to contribute mean-
ingful information toward the correct solution, signalling potential errors or irrelevant steps in the
model’s reasoning. In addition, we also introduce a practical algorithm to assess LLM performance
across various sub-tasks within a Chain-of-Thought (CoT) reasoning process.

The key contributions of this paper are as follows:
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1. We develop a framework for sequential applications of sub-tasks, e.g. Chain-of-Thought
and provide a rigorous language to describe and detect detect failure modes in LLMs.

2. Based on this framework, we propose a practical algorithm to assess the task-wise perfor-
mance of models. This yields more granular information about a model’s CoT performance
without requiring annotated data for intermediate reasoning steps.

3. We validate our methods on extensive toy data and the GSM-8K dataset (Cobbe et al.,
2021). Our method effectively identifies failure modes in CoT reasoning, unlike baselines
like outcome reward modelling (Havrilla et al., 2024) and Math-Shepherd (Wang et al.,
2024b), which rely on final accuracy and tend to increase false positives in error detection.

2 PROPOSED FRAMEWORK: SETUP AND NOTATION

Before diving into our framework, we first provide a high-level overview and notation on how LLM
generation will be treated throughout this paper. This will allow us to set the foundation for describ-
ing our information-theoretic framework. In particular, following the approach in González & Nori
(2023), we view LLMs as abstract execution machines with a natural language interface. From this
perspective, prompts are designed to solve specific problems (e.g., mathematical or logical prob-
lems), and the LLM processes the information in the prompt to generate an output.

We now define the notation for a typical prompt as a combination of two components:

1. An initial state, represented by a random variable X0 ∈ X , denotes information provided
in the prompt that the LLM must operate on to obtain the queried information.

2. A task λ ∈ Υ (e.g., addition followed by multiplication) which encapsulates how the LLM
should process information in X0.

Given the prompt, defined as a tuple (X0, λ), the state X1 represents the result of applying task λ
to the initial state X0. Formally, we denote this using the update mapping Λ : X × Υ → X which
outputs the updated state X1 by applying the task λ on X0, i.e. X1 = Λ(X0, λ). This updated state
is then used to obtain the final output, denoted by Y ∈ X , by extracting only the information in X1

which is relevant to the queried final answer. This notation defines a prompt that instructs a model
to process information drawn from some initial distribution p(X0) (e.g., mathematical problems).

Let us use the following simple example to illustrate the notation:

Prompt:“James has 3 apples and Abbey has 9. How many apples do the two have in total?”

Here, using the above notation, the initial state x0 denotes the information “James has 3 apples;
Abbey has 9 apples”, and λ denotes the addition task. Next, x1 = Λ(x0, λ) represents the updated
information after correctly performing the addition operation, i.e. x1 =“James has 3 apples; Abbey
has 9 apples; The two have 12 apples in total”. The final output, y, is then obtained by simply
extracting the total number of apples from x1, i.e. “The two have 12 apples in total”1. With this
basic notation established, we now consider compositions of tasks, enabling us to formalize the
Chain of Thought (CoT) process in LLMs.

2.1 COMPOSITIONALITY

Many mathematical or logical problems require a sequential application of operations. Our notation
is also amenable to such problems as it accommodates the composition of tasks. Consider a problem
which requires two successive steps to arrive at the correct output:

Prompt: “Solve for z = 2× (x+ y) where x = 12 and y = 13”. (1)

In this example, first, we apply the addition operation to find the value of x + y, and next, we
apply the multiplication operation to find the value of z. Using our notation this can be expressed as
Λ(x0, λ1◦λ2), where λ1, λ2 denote the addition and multiplication tasks respectively. The following
property allows us to concretely define the application of compositional task λ1 ◦ λ2:

1Our setup also encapsulates cases with ambiguous (or multiple correct) responses for a given task λ and
initial state x0. In this case, Λ(x0, λ) is a random variable with distribution p(X1 | X0 = x0). Therefore, for
generality, we treat Λ(x0, λ) as a random variable from now on.
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Figure 1: Solving the problem in prompt (1) requires compositional application of tasks.

Definition 2.1. We say that an update rule Λ : X ×Υ → X is compositionally consistent if:

Λ(x0, λ1 ◦ λ2)
d
= Λ(Λ(x0, λ1), λ2) for all x0 ∈ X and λ1, λ2 ∈ Υ.

Here, d
= denotes equality in distribution and is sufficient in many cases. For example, where a query

may have multiple correct responses, an almost sure equality may be too restrictive.

Going back to the prompt in (1), Figure 1 shows that the model first computes x + y, and next
multiplies the result by 2. Here, we refer to X1, X2 as intermediate states and Y is the correct
final output. More generally, if a problem statement requires sequential application of T sub-tasks,
λ = λ1 ◦ . . . ◦λT , then the Chain-of-Thought (CoT) reasoning is divided up into T steps, where the
output of the t’th step is recursively defined as Xt = Λ(Xt−1, λt) for t ∈ {1, . . . , T}. Finally, the
overall true output Y is obtained by extracting the queried information from the final state XT .

Having established a formal language for the sequential application of tasks, e.g. CoT, we now turn
towards how a task may be divided into such a sequence of intermediate sub-tasks.

2.2 PRIMITIVE TASKS

In this subsection, we introduce the notion of primitive tasks which form the basic building blocks of
any task. Intuitively, our formulation is reminiscent of ideas from linear algebra, where basis vectors
form the basic building blocks of a vector space. In our case, any task λ ∈ Υ can be expressed as
a sequence of primitive tasks. This decomposition will allow us to establish which tasks the model
could have learned from the training data. For example, if a specific primitive task is not available
in the LLM training data, it would be impossible for the model to execute any instructions which
involve this primitive task correctly. With this in mind, we now introduce this concept formally:
Definition 2.2 (Primitive tasks). We say that a set of tasks Γ ⊆ Υ is primitive if, for any task λ ∈ Υ,
there exists a unique subset {λi}ki=1 ⊆ Γ such that λ = λ1 ◦ · · · ◦ λk.

Note that the decomposition is not unique but the set of components is. In some cases, there may
exist distinct permutations of primitive tasks which compose to yield the same task as is common in
many associative operations. As an example, in the context of mathematical problem-solving, the
basic arithmetic operation could be considered primitive. The composition of these primitive tasks
allows us to construct extremely complex operations. Just like in linear algebra, we define the span
of these tasks as the set obtained by their sequential applications.
Definition 2.3 (Span of tasks). Let Φ ⊆ Υ be a set of tasks, then:

Span(Φ) = {λ1 ◦ . . . ◦ λk : λi ∈ Φ for 1 ≤ i ≤ k, k ∈ Z>0}.

The set Span(Φ) comprises all the tasks that can be applied by composing sub-tasks in the set Φ.
This means that any compositionally consistent update rule Λ which is well-defined on the set of
tasks Φ will also be well-defined on Span(Φ). However, this Λ may still be ill-defined for any task
not in this span. This limitation is captured by the concept of unidentifiability, which plays a central
role in determining the boundaries of what a model can and cannot infer.

2.3 UNIDENTIFIABILITY

The unidentifiability of tasks forms a key part of our framework. It directly addresses the fundamen-
tal challenge that models, such as LLMs, face when dealing with unseen tasks. If a task λ lies outside
of Span(Φ), the span of tasks the model has been trained on, then the model cannot be expected to
infer or apply it correctly. In other words, the model’s capacity is constrained by the identifiability of
tasks within the training set. This notion and formalization of unidentifiability allows us to highlight
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a critical limitation in the generalization of models: tasks not encountered during training cannot be
reliably executed, as they remain beyond the model’s learned task span. More formally:
Definition 2.4 (Unidentifiability). Let Φ ⊆ Υ be any set of tasks, then a tasks λ is said to be
unidentifiable in Φ iff, λ ̸∈ Span(Φ).

Remark In practice, the concept of unidentifiability may depend on the initial state X0. For
instance, an LLM might accurately perform addition for 2-digit numbers but fail with 10-digit
numbers (Razeghi et al., 2022). Our framework can be extended to account for such cases by
explicitly incorporating the distribution of initial states into the notion of identifiability. For ex-
ample, addition could be considered unidentifiable when the initial state distribution is p(X0 |
X0 includes 10-digit numbers). However, for simplicity, we keep this distributional dependence
implicit in the definition provided earlier.

With this general framework in place, we can now turn this theoretical foundation into a practical
algorithm for detecting unidentifiable sub-tasks. Specifically, we explore how the notion of uniden-
tifiability can be combined with information-theoretic approaches to detect failure points in LLMs.

3 OPERATIONALISING OUR FRAMEWORK

This section aims to operationalise the above framework to make inferences regarding the uniden-
tifiability of intermediate sub-tasks in a model’s CoT reasoning process. This would subsequently
allow us to detect any sub-task at which a model’s CoT reasoning process starts to diverge from the
ground truth, thereby providing insights into how the model can be improved. For example, suppose
we are in a setting where the “addition” operation is unidentifiable, then we could further improve
the model’s mathematical reasoning by fine-tuning it on the addition operation.

3.1 AN INFORMATION-THEORETIC PERSPECTIVE

To make the concept of unidentifiability practical in the context of CoT generations, we begin by
introducing the fundamental assumption. The core assumption in our approach is that each correctly
executed CoT reasoning step should contribute meaningful and relevant information that aids in
predicting the correct final output, denoted as Y . If we encounter a step after which the amount of
information regarding Y stops increasing, then we can take this as an indication of an incorrectly
executed task. We concretise this assumption using using our notation from the previous section:
Assumption 3.1 (Bayesian network). Let λ ̸= λ′ be two operations with primitive decompositions:

λ = λ1 ◦ . . . λk−1 ◦ λk ◦ · · · ◦ λT and λ′ = λ1 ◦ . . . λk−1 ◦ λ′
k ◦ · · · ◦ λ′

T ′ ,

where λ′
k is unidentifiable in {λ1, . . . , λT }. Then, the intermediate states corresponding to the tasks

λ, λ′ have the following Bayesian network:

X0
. . . Xk−1

Xk

X ′
k

. . .

. . .

Y

Y ′

λ1 λk−1

λk

λ′
k

λk+1

λ′
k+1

λT

λ′
T ′

Figure 2: Bayesian network

Intuition The Bayesian network in Figure 2 implies
that for any two reasoning paths which diverge at step
k, the future states Xi and X ′

j for any i, j ≥ k satisfy
the conditional independence Xi ⊥⊥ X ′

j | Xk−1. Con-
sequently, once we apply λ′

k, the subsequent states along
the new reasoning path (in red) add no information re-
garding the subsequent states or the output of the original
path (in green). Hence the figure represents the fact that,
for any given input, the output of λk (top fork) contains

no information regarding the output of any other primitive task λ′
k (bottom fork).

Now that we have formalised our key information-theoretic assumption on the ground-truth CoT
process, we turn towards the model behaviour on unidentifiable tasks in the following section.

3.2 TASK EXECUTION IN LLMS

To operationalise our framework, we formally distinguish between the model i.e. LLM’s task execu-
tion and the ground truth process which arises from following the instructions correctly. To this end,
we explicitly define how an LLM interprets a specified task λ using the update rule, ΛM (X0, λ),
which is in general distinct from the ground truth update rule Λ(X0, λ).
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Here, one option would be to consider the idealised setting where the model learns to perfectly
follow some of the primitive tasks available in the training data. However, this may be considered
too restrictive since in reality most LLMs do not always follow a “learned” task perfectly. Instead,
we consider a much weaker assumption that the model cannot correctly execute a task which is
unidentifiable in the training data. To this end, suppose ΓM ⊆ Γ denotes the primitive tasks available
in the LLM training data. Concretely, we make the following assumption on LLM’s task execution.
Assumption 3.2 (Task execution in LLMs). ΛM is compositionally consistent and for any (x0, λ) ∈
X ×Υ, there exists some λ̂ ∈ Span(ΓM ) such that ΛM (x0, λ)

d
= Λ(x0, λ̂).

Intuition Assumption 3.2 means that for any task which we would like the LLM to apply, the
LLM ends up executing some task in Span(ΓM ) which the model has been trained on. In other
words, the model’s execution is restricted only to the tasks which could be inferred from the training
data (i.e. in Span(ΓM )). Moreover, this assumption also allows us to encapsulate cases where the
model does not follow the correct instructions or does not decompose a given task correctly.

Before proceeding further with our main result which will allow us to test for the unidentifiability
of sub-tasks, we define some notation which we will use from now onwards. Let λ = λ1 ◦ . . . ◦ λT

denote a primitive decomposition of a task λ. Then, starting from an initial state X0, we denote the
model’s intermediate states recursively as:

XM
t := ΛM (XM

t−1, λt) and XM
0 = X0.

Moreover, we use Y M to denote the model’s final output. Next, using this notation, we present the
conditional independence which must hold if the model encounters an unidentifiable intermediate
task along its CoT reasoning path.
Theorem 3.3. Let ΓM ⊆ Γ denote the primitive tasks available in the training data. Let λ be a
task with decomposition λ = λ1 ◦ . . . ◦ λT . If λk is the first task in the decomposition of λ which is
unidentifiable in ΓM (i.e. k = argmint{λt ̸∈ Span(ΓM )}). Then, under Assumptions 3.1 and 3.2,
we have that

Y ⊥⊥ XM
j | XM

j−1 for all j ≥ k. (2)

Theorem 3.3 shows that under Assumptions 3.1 and 3.2, when the model encounters an unidentifi-
able task (i.e. λk in Theorem 3.3) in its Chain-of-Thought reasoning, the model output satisfies the
conditional independence in Equation (2). More concretely, after a model’s CoT reasoning diverges
from the ground truth at step k, every subsequent step adds no additional information regarding
the correct final output Y . In practice, this ‘information’ is measured by checking if the model’s
confidence about the final output Y increases after each step. This is formalised in the next section.

3.3 TESTING FOR UNIDENTIFIABILITY USING INFORMATION GAIN

Having established all the essential components of our framework, we can now provide a concrete
description of how to practically identify unidentifiable sub-tasks using information theory. As is
common in the literature (Wang et al., 2024b; Havrilla et al., 2024), we assume access to a dataset
consisting of prompts and their corresponding final answers, obtained by correctly applying the task
λ. This dataset is denoted as Dλ := {(xi

0, y
i)}ni=1.

Additionally, recall that XM
j and XM

j−1 represent the model’s chain of thought (CoT) reasoning
at steps j and j − 1, respectively. Consequently, each element in the conditional independence
statement in Equation (2) can be derived from the data and/or the model.

To this end, we consider the mutual information between Y and XM
j conditional on XM

j−1, denoted
by I(Y ;XM

j | XM
j−1). This conditional mutual information term intuitively represents the addi-

tional information contributed by the j’th step of CoT, that is relevant for predicting the ground
truth final output Y . Therefore, we refer to I(Y ;XM

j | XM
j−1) as the information gain at step j.

It follows from Theorem 3.3 that if an LLM encounters a sub-task at step i which is unidentifiable
in its training data, no subsequent step should contribute any additional information relevant for
predicting Y (i.e. the information gain should remain 0 after step i). If, on the other hand, we
observe that I

(
Y ;XM

j | XM
j−1

)
> 0 for some j ≥ i, then under Assumptions 3.1 and 3.2, the task

λi is not unidentifiable. To estimate the information gain in practice, we use the following result:
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Proposition 3.4. Let I(X;Y | Z) denote the mutual information between random variables X and
Y conditional on Z. Then,

E[log p(Y | XM
j )]− E[log p(Y | XM

j−1)] = I
(
Y ;XM

j | XM
j−1

)
≥ 0. (3)

To estimate the information gain in (3) using Proposition 3.4, we train a separate LLM, which we
refer to as the supervisor model gsup. This model takes as input the model’s CoT reasoning up to
any given intermediate step t, XM

t , and is fine-tuned to directly predict the ground truth final output
Y . In this way gsup(X

M
t ) approximates the conditional distribution p(Y | XM

t ). Then, the quantity
E[log p(Y | XM

j )] can be estimated using the negative cross-entropy loss for predicting Y , i.e.

E[log p(Y | XM
j )] ≈ E[log p̂(Y | XM

j )] = −E[lCE
(
Y, gsup(X

M
j )

)
],

where lCE denotes the cross-entropy loss. From this, it follows that

E[log p(Y | XM
j )]− E[log p(Y | XM

j−1)]︸ ︷︷ ︸
Information gain

≈ E[lCE(Y, gsup(X
M
j−1))]− E[lCE(Y, gsup(X

M
j ))]. (4)

Summary: The information gain (IG) between steps j and j − 1 reflects how much relevant infor-
mation step j contributes towards predicting Y . If task λj is executed correctly, this gain is positive,
as indicated by a decrease in the cross-entropy loss. Conversely, if step j does not provide additional
information, the loss remains unchanged. This can be interpreted as the conditional mutual informa-
tion between XM

j and Y , conditioned on XM
j−1. Positive information gain suggests step j adds new

insight about Y , while no gain indicates no added information. Training details for the supervisor
model are in Appendix B.1.3.

Remark on sample-wise information gain While conditional mutual information provides an
aggregate measure of information gain for a sub-task in a dataset, it may also be desirable to obtain
an analogous measure of sub-task correctness for individual CoT instances. This could be useful,
for example, in detecting which step went wrong for a given prompt. Our notion of information gain
can be extended to this sample-wise setting by instead considering the following difference

log p(Y | XM
j )− log p(Y | XM

j−1) ≈ lCE(Y, gsup(X
M
j−1))− lCE(Y, gsup(X

M
j )). (5)

Intuitively, if step j in the model’s CoT is correct, the model should become more confident in the
ground truth output Y being the correct final answer. Therefore, the difference above should be
positive. Alternatively, if step j is wrong, the model’s confidence regarding the true output Y should
not increase and the above difference should not be positive. From now on, we refer to the difference
in (5) as sample-wise information gain at step j.

4 RELATED WORKS

Evaluation of CoT reasoning Several recent works propose methodologies for evaluating CoT
reasoning (Wei et al., 2024; Havrilla et al., 2024; Li et al., 2023; Joshi et al., 2023; Nguyen et al.,
2024; Wang et al., 2024a; Yu et al., 2024; Xie et al., 2024). For example, Li et al. (2023) verifies
individual steps in a model’s CoT reasoning by generating multiple LLM responses per prompt and
comparing correct responses with incorrect ones. Similarly, Wang et al. (2024b;c) use a fine-tuned
LLM to decode multiple reasoning paths from each step and check the correctness of these reasoning
paths. However, as we show in our experiments, approaches which simply rely on the correctness
of the final output are not sound in general and can lead to false positives. Moreover, these solutions
may not be plausible for problems of high difficulty where correct LLM responses might be scarce.

Formalising CoT framework The formalisation of LLM reasoning remains an active area of re-
search. Most notably González & Nori (2023) introduces a formal framework for LLMs and is a
key source of inspiration behind our formalism. Additionally, Feng et al. (2023) theoretically ex-
amines the expressivity of LLMs with CoT in solving mathematical and decision-making problems,
focusing on the transformer architecture’s implications on accuracy. Besides this, Xu et al. (2024)
provides a formal definition of hallucinations, but does not consider CoT reasoning specifically.

Reward modelling One notable line of work known as outcome-based reward models (ORM)
(Cobbe et al., 2021; Havrilla et al., 2024; Lightman et al., 2023) predicts the probability of reach-
ing the correct final answer given a model’s intermediate CoT steps. While ORMs do not require
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demonstrations of correct intermediate steps, we show in Section 5 that this approach is not sound
for detecting errors in a model’s CoT reasoning. Another related method is step-wise ORM (SORM)
Havrilla et al. (2024) which estimates the probability of an ‘optimal’ model reaching a correct an-
swer, given the CoT reasoning of our model of interest. However, unlike our approach, SORM
requires training a model which is larger and more capable than our base model.

Process-based reward modelling (PRMs) (Lightman et al., 2023; Uesato et al., 2022) is an alternative
approach which directly predicts the correctness of intermediate CoT reasoning steps. Likewise,
various other approaches rely on annotated CoT datasets for benchmarking (Jacovi et al., 2024; Yu
et al., 2024; Amini et al., 2019; Liu et al., 2020; Xi et al., 2024; Nguyen et al., 2024; Xie et al., 2024;
McLeish et al., 2024). While these benchmarks and methodologies can be valuable for improving
LLM reasoning, collecting annotated data can be very costly and is not readily scalable to other
tasks. Unlike these methods, our approach computes the information gain at each step, providing a
richer measure of LLM performance without requiring any human-annotated CoT data.

5 EXPERIMENTS

In this section, we empirically demonstrate the practical utility of our framework. In addition to our
proposed method dubbed information gain (denoted by IG), we consider two common baselines that
can be used to detect the errors in a model’s CoT reasoning and assume access to only the model’s
CoT generations X0, X

M
1 , . . . , XM

T as well as the correct final answers denoted as Y .

Outcome Reward Model (ORM) (Havrilla et al., 2024) This involves training a classifier, de-
noted as fORM, which takes as input model generations up to any step t in its CoT reasoning, XM

t ,
and predicts the probability of the model’s final answer being correct, i.e.

fORM(XM
t ) ≈ P(Y M = Y | XM

t ). (6)

Here, if we observe that this probability of correctness drops significantly after step t, i.e. if
fORM(XM

t ) ≫ fORM(XM
t+1), this indicates that the model does not apply the task λt+1 correctly.

Math-Shepherd (Wang et al., 2024b) This method quantifies the potential for a given reason-
ing process XM

t by using a ‘completer’ model to generate N completions of each reasoning pro-
cess starting from step t, {(XM

t , XM
t+1,j , . . . , X

M
T,j , Y

M
j )}j≤N , where Y M

j denotes the final answer
reached in the j’th completion. Then, we estimate the potential of this step based on the proportion
of correct answers among the N completions, denoted by fMS(X

M
t ) as:

fMS(X
M
t ) :=

N∑
j=1

1(Y M
j = Y )

N
. (7)

For a fair comparison we do not assume access to a ‘verifier’ model more capable than our base
model and therefore, we use the base model as the completer model in our experiments.

5.1 TOY DATA EXPERIMENTS

First, we consider a toy setting where we have full control over the model behaviour on different
tasks. Our prompts comprise of an integer vector Z0 ∈ Z5 sampled randomly from a given distribu-
tion. The task λ comprises 5-steps λ = λ1 ◦ . . . ◦ λ5, where each sub-task λi denotes an operation
which transforms a given integer vector Zi−1 ∈ Z5 into another Zi ∈ Z5. Finally, in this setup, the
correct final answer Y is the value of Z5. Additional details on the data generating mechanism as
well as the sub-tasks are provided in Appendix B.1.

Generating the dataset To investigate partial unidentifiability for a given task λi we modify the
obtained dataset by introducing ‘noise’ at step i. In other words, the task λi is applied incorrectly
on a subset of the data, whereas all other tasks are always applied correctly. This represents a model
which sometimes fails at step i and we use ‘LLMi’ to denote this model in this experiment. We
repeat this procedure for all tasks λi for i ∈ {1, . . . , 5} which yields 5 LLMs {LLM1, . . . ,LLM5}.

To also investigate the robustness of the methods, we introduce a special case in LLM3. Here, task
λ3 is applied incorrectly if and only if the output after task 2 (i.e., after λ2) lies in some set S. This
choice has been made deliberately to highlight a pitfall of the existing baselines (as we will explain
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Errors flagged by the respective baselines GT errors

1 2 3 4 5

LLM1

LLM2

LLM3

LLM4

LLM5

-0.014 0.0099 0.00098 -0.0019 -0.00019

0.013 -0.0096 -0.004 -0.0017 -0.0032

0.013 0.27 -0.002 -0.0027 -0.0033

0.021 0.27 0.059 -0.0035 -0.0017

0.014 0.19 0.033 0.083 -0.0023

Information gain after each operation

(a) Our results

1 2 3 4 5

LLM1

LLM2

LLM3

LLM4

LLM5

0.012 0.015 0.013 0.014 0.014

0.49 2.2e-08 7e-05 1.2e-05 1.4e-06

0.13 1.7e-06 1.4e-06 2.1e-06 1.3e-06

0.5 0.5 0.47 8.7e-07 3.3e-07

0.52 0.54 0.55 0.52 0.058

Mean probability of the final answer being correct

(b) ORM results

1 2 3 4 5

LLM1

LLM2

LLM3

LLM4

LLM5

0 0 0 0 0

0.37 0 0 0 0

0 0 0 0 0

0.2 0.21 0.2 0 0

0.17 0.17 0.17 0.18 0

Proportion of completions with correct final answer

(c) Math-Shepherd results

Figure 3: Heatmaps quantifying the correctness of different sub-tasks for the 5 LLMs under consid-
eration obtained using the different baselines. Here, the red color indicates a significant drop in the
plotted metrics and can be seen as an indication of an incorrectly executed sub-task.

below) and is in contrast to the rest of LLMs where any errors occur at random. In other words, the
correctness of task λ3 is dependent on the output of λ2. For more details, see Appendix B.1.2.

5.1.1 RESULTS

Figure 3 shows how the different baselines quantify the correctness of the different tasks for the
5 different LLMs under consideration. This figure only considers samples where the final answer
of the LLM was incorrect, i.e. Y M ̸= Y . For our method (IG), Figure 3a shows the information
gain across the different steps for each LLM. Likewise, Figure 3b presents the results for ORM and
shows how the average probability of correctness in (6) changes across the different steps, whereas,
for Math-Shepherd, Figure 3c shows the proportion of correct completions starting after each step
(7). Here, any significant drop in the plotted values indicate an incorrect application of a task.

Information gain accurately quantifies step-wise correctness We observe that for each LLM
the information gain remains positive until we encounter an incorrect reasoning step, at which point
it drops to negative values. Therefore, our method can identify the incorrectly executed task for each
LLM under consideration. We used a GPT-2 supervisor model to estimate information gain.

Pitfall of the baselines While the ORM and Math-Shepherd manage to correctly identify the
incorrect reasoning steps in most cases, these methods fail to correctly detect erroneous steps for
LLM3. This happens because, in our setup, λ3 is incorrectly applied if and only if the output after
task λ2 lies in some set S. Therefore, the classifier model can confidently predict the correctness of
the final model output at λ2 by simply checking if the output lies in S. Here, the classifier becomes
confident that the final output will be wrong right after λ2, even though the error occurs at λ3.

Table 1: Metrics for sample-wise classi-
fication of sub-task correctness for LLM3

using the different baselines.

METHOD ACCURACY ↑ TPR ↑ FPR ↓

IG (OURS) 0.96 0.98 0.06
ORM 0.77 0.98 0.54
MATH-SHEPHERD 0.60 1.0 1.0

Similarly, when using Math-Shepherd for LLM3 (with
the same model being used as a completer), a comple-
tion yields an incorrect final answer if the output after
λ2 lies in S. If this is the case, all completions yield an
incorrect final output regardless of which step we be-
gin the completions from. This makes it impossible to
accurately identify the step at which LLM3 goes wrong.

Sample-wise detection We can also use the differ-
ent baselines for sample-wise detection of erroneous
steps as outlined in Section 3.3. In this setting, for each

prompt, we can classify a step as incorrect if a baseline’s metric falls below a threshold. Table 1
shows the results for sample-wise classification of sub-task correctness for LLM3 using the differ-
ent baselines (where we chose the best thresholds for each baseline using a held-out dataset). It can
be seen that our method yields a significantly higher accuracy and a lower rate of false-positives than
the baselines and therefore, is also considerably more reliable for sample-wise detection of errors.
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5.2 ARITHMETIC OPERATIONS ON LLAMA-3-8B

Following our toy experiments, we now evaluate our framework in a more realistic setting using
the Llama-3-8B model (Dubey et al., 2024). We focus on a simple arithmetic task that involves
both multiplication and addition tasks. The goal is to assess the model’s performance on individual
operations as well as their combination.

Experimental setup We sample two integers x and y uniformly from the range [1, 100000). The
prompt given to the model is structured as follows:

Prompt: “x = {x}, y = {y}, Please calculate the following: 1. 3x, 2. 2y, 3. 3x + 2y ”

Model accuracy We observe that the model’s accuracy varies across the three steps:

Step 1 accuracy: 80%, Step 2 accuracy: 98%, Step 3 accuracy: 42%.

Figure 4: The distribution of
(x, y) for incorrect samples
shows a clear trend: Llama-3-
8B struggles to add large and
small numbers together (top-
left and bottom-right).

Notably, the majority of failures occur in the third step, which in-
volves addition of the previously computed values. We analyzed
the distribution of (x, y) values where the model obtains the cor-
rect final output. Interestingly, as Figure 4 illustrates, we observed
that most errors occur when exactly one of the variables (x, y) is
large and the other is small. This suggests that the model’s cor-
rectness is highly dependent on the (x, y) values in the prompt,
resulting in baselines struggling to identify the erroneous step in
the model’s CoT reasoning (as we show below).

5.2.1 RESULTS

Our Method We trained the supervisor model by fine-tuning
a Llama-3-8b model using Low Rank Adaptation (LoRA) (Hu
et al., 2021). Table 2 shows that there is a significant drop in
information gain at step 3 relative to steps 1 and 2, demonstrating
that our information-theoretic method is able to correctly identify
that the failure mainly occurs at step 3.

Outcome Reward Model (ORM) In contrast, for ORM the
mean probability of correctness included in Table 2 remains un-
changed at each step. This could be explained by Figure 4 which

suggests that ORM classifier can predict the correctness of the final output using only the values of
x and y available in the prompt. Crucially, the classifier’s confidence remains unchanged even as the
model’s intermediate reasoning steps are added to the input. Hence, ORM is unable to distinguish
between the model’s performance on intermediate reasoning steps.

Math-Shepherd Table 2 includes the proportion of correct completions for Math-Shepherd. We
observe that even though this proportion is very small at step 3, we also observe that only about 5-7%
of the completions starting from steps 1 and 2 lead to a correct output, even though the error mostly
occurs at step 3. This happens because the correctness of Llama-3-8B is largely determined by the
initial values of (x, y) in the prompt (see Figure 4). Consequently, Math-Shepherd incorrectly flags
steps 1 and 2 as incorrect a significant proportion of the time which leads to a significantly higher
proportion of false positives (as compared to our baseline) as we show below.

Table 2: Metrics for aggregate step-wise correctness of arithmetic operations across prompts, along
with sample-wise classification of incorrect operations leading to an incorrect final answer.

STEP 1: 3x ✓ STEP 2: 2y ✓ STEP 3: 3x + 2y ✗ ACCURACY ↑ TPR ↑ FPR ↓

IG (OURS) 0.67 0.24 0.027 0.76 0.51 0.02
ORM 0.24 0.24 0.24 0.56 0.10 0.07
MATH-SHEPHERD 0.068 0.059 0.00069 0.53 0.99 0.86

Sample-wise detection When using these methods for sample-wise detection of incorrect steps,
our approach yields the highest accuracy among the baselines considered. This superior performance
is attributed to the fact that baselines like ORM and Math-Shepherd often falsely flag steps 1 and 2
as incorrect, as evidenced by their high false positive rates in Table 2.
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5.3 EXPERIMENTS ON THE CONTROLLED GSM-8K DATASET

To evaluate our method on a complex dataset, we conducted experiments on GSM-8K (Cobbe et al.,
2021), controlling specific factors for more interpretable results.

We begin by using GPT-4 (OpenAI et al., 2024) to generate answers for GSM-8K questions where
the “multiplication” operation is always done incorrectly, while all other operations are correct.
Next, we filtered the dataset to ensure that “multiplication”, “subtraction”, and “addition” never
appeared together within the same Chain of Thought (CoT) solution. In particular, we ensured in
our setting that, all incorrect final answers included both “multiplication” and “subtraction”, whereas
correct final answers did not involve either operation. This introduces a spurious correlation between
“subtraction” and wrong answers.

In this setup, we mainly focused on evaluating ORM and our proposed method, as Math-Shepherd
(with the same completer) fails trivially under these conditions. Specifically, “multiplication” is
inherently unidentifiable, since any CoT containing “multiplication” negates the influence of other
sub-tasks by design. Further details on the experimental setup can be found in Appendix B.3.

5.3.1 RESULTS

Table 3 demonstrates that our proposed information-theoretic approach successfully identifies the
unidentifiable sub-task. Since we intentionally set the “multiplication” rules to be incorrect, we
observe minimal to no information gain for this operation, as expected. However, a different pattern
emerges when we examine the results of the ORM method. Both “multiplication” and “subtraction”
show, on average, a very low probability of correctness. This is due to the fact that both sub-tasks
are primarily associated with incorrect final answers. Consequently, relying on the standard ORM
approach could lead to the misleading conclusion that “subtraction” is also incorrect.

Additionally, in our sample-wise experiment, we observe a similar trend when we use the methods
to assess the sample-wise correctness of “multiplication” and “subtraction” for each prompt. Here,
our proposed method not only accurately detects the unidentifiable sub-task but also highlights a
significant shortcoming of ORM. Specifically, ORM falsely flags “subtraction”, which is actually
correct, as an incorrect sub-task due to spurious correlations.

Table 3: Comparison between our method and ORM for different sub-tasks in GSM-8K. The final
three columns include results for sample-wise classification of incorrect operations for each prompt.

ADDITION ✓ MULTIPLICATION ✗ DIVISION ✓ SUBTRACTION ✓ ACCURACY ↑ TPR ↑ FPR ↓

IG (OURS) 0.99 0.026 1.05 1.06 0.72 0.95 0.62
ORM 0.46 0.024 0.38 0.013 0.58 1.0 1.0

6 DISCUSSION AND LIMITATIONS

In this paper, we introduce a novel information-theoretic approach for evaluating Chain-of-Thought
(CoT) reasoning in large language models (LLMs) without the need for annotated intermediate steps.
We present a comprehensive framework for modeling the CoT process, and the results demonstrate
the effectiveness of our algorithm in identifying erroneous reasoning steps across diverse experi-
mental settings. We consistently outperform existing baselines, including Outcome Reward Models
(ORM) (Havrilla et al., 2024) and Math-Shepherd (Wang et al., 2024b) as shown in our extensive
experimental section. However, it’s important to note that that are some limitations to our approach.

For example, our method necessitates additional training of the supervisor model, which can be
computationally demanding. Future research could investigate the use of in-context learning tech-
niques to estimate information gain, potentially reducing the need for extra training and enhancing
both the accessibility and efficiency of the approach. Secondly, sample-wise detection introduces
further challenges that may lead to erroneous conclusions. A language model may occasionally ar-
rive at the correct answer by chance, even if a particular sub-task is unidentifiable. Although this
occurrence should not significantly impact the overall task-wise information gain, it could result
in inaccurate outcomes for sample-wise information gain in such ‘lucky’ cases. Finally, while our
method does not require correctness labels for every step, we still need to categorize each step ac-
cording to its respective sub-task. However, this limitation is not unique to our model, as both ORM
and Math-Shepherd also rely on such labels to draw sub-task-specific conclusions.
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A PROOFS

Proof of Theorem 3.3. Suppose λ and λ′ are two tasks with primitive decompositions

λ′ = λ′
1 ◦ · · · ◦ λ′

T ′
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and

λ = λ1 ◦ · · · ◦ λT , (8)

where argmint{λt ̸∈ Span({λ′
1, . . . , λ

′
T ′})} ≤ k. In other words, the primitive decompositions of

λ′ and λ diverge before step k + 1. Then, Assumption 3.1 implies that for any j ≥ k, we have that
the answer Y and X ′

j are d-separated by X ′
j−1. Therefore,

Y ⊥⊥ X ′
j | X ′

j−1.

Next, we know from Assumption 3.2 that there exists some task λ̂ ∈ Span(ΓM ) (possibly dependent
on X0 and λ) such that ΛM (X0, λ)

d
= Λ(X0, λ̂). Suppose that λ̂ has primitive decomposition

λ̂ = λ̃1 ◦ · · · ◦ λ̃T̃ ,

then since λ̂ ∈ Span(ΓM ), we know that λ̃i ∈ ΓM for i ∈ {1, . . . , T̃}. If the primitive
decomposition of λ in (8) is such that k = argmint{λt ̸∈ Span(ΓM )}, then we know that
argmint{λt ̸∈ Span({λ̃1, . . . , λ̃T̃ })} ≤ k. Then, from the above it follows that

Y ⊥⊥ XM
j | XM

j−1.

Here, we used the fact that XM
j

d
= Λ(X0, λ̃1 ◦ · · · ◦ λ̃j) using Assumption 3.2.

Proof of Proposition 3.4.

E[log p(Y | XM
j )]− E[log p(Y | XM

j−1)] = E

[
log

p(Y | XM
j )

p(Y | XM
j−1)

]

= E

[
log

p(Y | XM
j , XM

j−1)

p(Y | XM
j−1)

]

= E

[
log

p(Y,XM
j | XM

j−1)

p(Y | XM
j−1) p(X

M
j | XM

j−1)

]
= I(Y,XM

j | XM
j−1)

Here, the second equality above arises from the fact that XM
j also captures all the information cap-

tured in XM
j−1 (and possibly more). Therefore, conditional on XM

j , the state XM
j−1 is deterministic

and hence, Y ⊥⊥ XM
j−1 | XM

j .

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 TOY DATA EXPERIMENTS

In this section, we describe the exact procedure used to generate the toy data for training and eval-
uating the models in our experiments. The dataset is constructed through five sequential operations
(or tasks) applied to an initial state z0, where each task λi generates an intermediate state zi. Both
correct and incorrect examples were generated, with incorrect examples created by introducing
random noise or permutations into the transformations.

The data was used to represent models LLM1, LLM2, ..., LLM5, each corresponding to a setting
where a specific task λi was partially corrupted to simulate an unidentifiable task for that model.

B.1.1 DATA GENERATION TASKS

For each prompt, an initial 5-element vector z0 was randomly sampled, and we use the notation z0[i]
to denote the i’th component of this vector. Next, the following tasks were applied sequentially:
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Task λ1: Pairwise Swapping

• Correct Mapping: The first and second elements, as well as the third and fourth elements
of z0, are swapped:

z1[0], z1[1], z1[2], z1[3] = z0[1], z0[0], z0[3], z0[2]

• Incorrect Mapping: The entire vector is shuffled randomly.

Task λ2: Cumulative Summation

• Correct Mapping: The first three elements of z1 are replaced by their cumulative sum, and
the fourth and fifth elements are swapped:

z2 = [z2[0], z2[0] + z2[1], z2[0] + z2[1] + z2[2], z1[4], z1[3]]

• Incorrect Mapping: Each element of z1 is perturbed by adding a random integer between
10 and 99:

z2[i] = z1[i] + Ui for each i where Ui is a randomly sampled integer between 10 and 99

Task λ3: Reverse and Cumulative Sum

• Correct Mapping: The first three elements of z2 are reversed, and the last two elements are
replaced by their cumulative sum:

z3 = [z2[2], z2[1], z2[0], z2[3], z2[3] + z2[4]]

• Incorrect Mapping: As with task λ2, each element of z2 is perturbed by adding a random
integer between 10 and 99.

Task λ4: Sorting and Elementwise Multiplication

• Correct Mapping: The vector z3 is sorted, and the first four elements are replaced by
element-wise multiplications of specific pairs:

z4[0] = z3[1]×z3[2], z4[1] = z3[0]×z3[3], z4[2] = z3[4]×z3[0], z4[3] = z3[2]×z3[2]

• Incorrect Mapping: The vector is randomly shuffled.

Task λ5: Difference Calculation

• Correct Mapping: The first element is replaced by the absolute difference of the first two
elements of z4, and other elements are transformed as follows:

z5 = [|z4[0]− z4[1]|, z4[2], z4[3], |z4[3]− z4[4]|, z4[0]]

• Incorrect Mapping: The vector is randomly shuffled.

B.1.2 MODELS LLM1, LLM2, . . . , LLM5

For each model LLMi (i ∈ {1, 2, 3, 4, 5}), the task λi was selectively corrupted to simulate uniden-
tifiability for that task. Specifically:

• Correct Data: The task λi was applied according to its correct mapping.
• Incorrect Data: The task λi was applied using its incorrect mapping (random noise, shuf-

fling, or perturbations).

For each LLMi, the tasks λ1 to λi−1 and λi+1 to λ5 were correctly applied, but task λi was corrupted
for a subset of the data. More specifically, for all LLMs except LLM3, the error was introduced at
step i at random with probability 0.5. In contrast, for LLM3, the error was introduced at step 3 if and
only if the output at step 2, z2 satisfies, z2[2] > 150. This choice was deliberately made to highlight
a pitfall of the baselines as explained in Section 5.
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String Representation of Chain-of-Thought (CoT) Next, we convert each sequence of vectors
z0, z1, . . . , z5 produced by the tasks into a string-based Chain-of-Thought (CoT) representation.
Each intermediate state vector zi is expressed as a comma-separated list of its elements, and the
transitions between the states are delimited by “||”. This format explicitly captures the step-by-step
reasoning process of the model.

For example, given an initial vector z0 = [83, 48, 14, 98, 25], applying the tasks sequentially yields
intermediate states z1, z2, . . . , z5. These states are concatenated into a single string, separated by
“||” to represent the full reasoning chain:

83,48,14,98,25 || 48,83,98,14,25 || 48,131,229,25,14 ||
229,131,48,25,39 || 1872,3275,5725,2304,229 ||

1403,5725,2304,2075,1872

B.1.3 TRAINING THE SUPERVISOR MODEL

To estimate the information gain in (3), we train a different LLM, which we refer to as the supervisor
model gsup. As explained in Section 3.3, this model takes as input the model’s CoT reasoning up
to any given intermediate step t, XM

t , and is fine-tuned to directly predict the ground truth final
output Y . To this end, we use a special token to separate the model’s CoT reasoning and the final
output when fine-tuning gsup. At inference time, this special token when appended to the model
input serves as an indication for the model to directly predict the final output. In this way gsup(X

M
t )

approximates the conditional distribution p(Y | XM
t ).

More specifically, in the toy setup discussed above, consider the following sample for model’s CoT:

83,48,14,98,25 || 48,83,98,14,25 || 48,131,229,25,14 ||
229,131,48,25,39 || 1872,3275,5725,2304,229 ||

1403,5725,2304,2075,1872

For this example, the ground truth final output y is y = “1403,5725,2304,2075,1872′′ (i.e.,
the model reached the correct final output in the example above).

For the sample given above, we have that

xM
0 = x0 = “83,48,14,98,25′′

xM
1 = “83,48,14,98,25 || 48,83,98,14,25 ′′

...

xM
5 = “83,48,14,98,25 || 48,83,98,14,25 || 48,131,229,25,14 ||

229,131,48,25,39 || 1872,3275,5725,2304,229 ||

1403,5725,2304,2075,1872′′

Next, to construct the data for fine-tuning the supervisor model, we used the special token “#|>′′ to
separate the model’s CoT steps xM

i from the ground truth output y. This results in the following 6
training datapoints for the supervisor model:

1. “83,48,14,98,25 #|> 1403,5725,2304,2075,1872”

2. “83,48,14,98,25|| 48,83,98,14,25 #|> 1403,5725,2304,2075,1872”

...

5. “83,48,14,98,25|| 48,83,98,14,25 || 48,131,229,25,14
|| 229,131,48,25,39 || 1872,3275,5725,2304,229 ||
1403,5725,2304,2075,1872 #|> 1403,5725,2304,2075,1872”

The above procedure allows us to obtain fine-tuning data for supervisor models separately for each
of the 5 different LLMs, {LLM1,LLM2, . . . ,LLM5}. Next, we train a separate GPT-2 model for
each of the 5 different base LLMs.
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B.1.4 ESTIMATING THE INFORMATION GAIN

Having trained the supervisor model on the data generated above, we evaluate the information gain
on a held-out dataset split. Given a datapoint (xM

i , y) in the evaluation split, we can estimate the
sample-wise information gain at step i as follows:

• Suppose that the model generation at step i − 1, xM
i−1 is tokenised as (t1, . . . , tni−1) and

similarly that xM
i is tokenised as (t1, . . . , tni

). Likewise, suppose that the true output y is
tokenised as (t∗1, . . . , t

∗
k) and we use < s > to denote the separator token (i.e. #|> above).

• Then, to estimate the sample-wise for this datapoint, we estimate the difference:

1

k

k∑
j=1

log p(t∗j | (t1, . . . , tni , < s >, t∗1, . . . , t
∗
j−1))

− 1

k

k∑
j=1

log p(t∗j | (t1, . . . , tni−1
, < s >, t∗1, . . . , t

∗
j−1)).

Here, the supervisor model is trained to estimate the above conditional and therefore we
use it to estimate the difference above.

Finally, to estimate the aggregate information gain (instead of the sample-wise information gain),
we simply compute the average sample-wise gain over the evaluation data split.

B.1.5 ADDITIONAL RESULTS

In Figures 5 - 7, we present the sample-wise trajectories for 15 randomly chosen prompts leading
to incorrect final answers, for the different baselines and LLMs under consideration. Here, any
significant drop in the plotted value at a given step could be seen as an indication of an incorrectly
executed sub-task. Recall that in our setup, in LLMi, the CoT step i is executed incorrectly with
some probability whereas all other steps are always executed correctly.

Firstly, Figure 5 presents sample-wise information gain for our method for the five different LLMs.
Here, we see that the sample-wise information remains high up until the incorrect step, at which
point the information gain sharply decreases. This suggests that sample-wise information gain is
sensitive to the specific point where the Chain of Thought goes wrong, making it effective at locating
reasoning errors.

For the ORM and Math-Shepherd baselines in Figures 6 and 7, we observe that for all LLMs except
LLM3, the plotted metrics drop at the incorrect step. However, for LLM3, we observe that ORM’s
probability of correctness drops at step 2 even though the error occurs at step 3. This occurs because,
in our setup, the correctness of step 3 is determined directly from the output of step 2. Specifically,
recall that in LLM3, step 3 is executed incorrectly if and only if the output of step 2, z2, has its
second component greater than 150, i.e. z2[2] > 150. Therefore, ORM becomes confident after the
second step if a CoT is going to lead towards the correct final answer or not.

Similarly, for Math-Shepherd in Figure 7, we observe that the proportion of correct completions
remains 0 for LLM3. This is because for all trajectories plotted, the output of step 2, z2, has its
second component greater than 150 and therefore the final answer is incorrect regardless of which
step we begin the completions from.
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Figure 5: Toy data results: Sample-wise information gain trajectories for 15 randomly chosen
prompts with wrong final answers.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0.0

0.1

0.2

0.3

0.4

0.5

Re
su

lts
 fo

r L
LM

1

Probability of final answer being correct
CoT before an incorrectly executed step
CoT after an incorrectly executed step
Incorrectly executed step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
su

lts
 fo

r L
LM

2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
su

lts
 fo

r L
LM

3

0.0

0.1

0.2

0.3

0.4

0.5

Re
su

lts
 fo

r L
LM

4

prompt 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Re
su

lts
 fo

r L
LM

5

Figure 6: Toy data results: ORM’s probability of correctness after each step for 15 randomly chosen
prompts with wrong final answers
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Figure 7: Toy data results: Math-Shepherd’s proportion of correct completions from each step for
15 randomly chosen prompts with wrong final answers
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B.2 ARITHMETIC OPERATIONS ON LLAMA 3 8B

For this experiment, the prompts used to collect the data follow a specific structure. Each prompt
contains two real examples followed by a query with newly sampled values for x and y. The format
of the prompt is as follows:

x = 23, y = 51. Please calculate the following:
1. 3x
2. 2y
3. 3x + 2y
Answer:
1. 3x = 69
2. 2y = 102
3. 3x + 2y = 171

x = 35, y = 60. Please calculate the following:
1. 3x
2. 2y
3. 3x + 2y
Answer:
1. 3x = 105
2. 2y = 120
3. 3x + 2y = 225

x = {x}, y = {y}. Please calculate the following:
1. 3x
2. 2y
3. 3x + 2y
Answer:

In the third section, the values of x and y are randomly sampled from a uniform distribution over
the range [1, 100000).

B.2.1 TRAINING DATA FOR THE SUPERVISOR MODEL

The supervisor model plays a crucial role in evaluating the intermediate steps in the Chain-of-
Thought (CoT) reasoning. The model is designed to approximate the probability of arriving at
the correct final result after any given step in the CoT process. To train this model, we fine-tune it
using a dataset composed of generated CoT steps concatenated with the correct final result.

Model Generation Example: Consider the following example of a model-generated response:

x = 51290.0, y = 90718.0. Please calculate the following:
1. 3x
2. 2y
3. 3x + 2y
Answer:
1. 3x = 153770.0
2. 2y = 181436.0
3. 3x + 2y = 335206.0

Fine-Tuning Data Construction: The generated outputs are used to construct training examples,
where each intermediate step is concatenated with the final correct answer using the separator token
‘#|>’. For instance, from the example above, the following four training data points are created:

1. "x = 51290.0, y = 90718.0. Please calculate the following:
1. 3x 2. 2y 3. 3x + 2y Answer: #|> 3x + 2y = 335306.0"

2. "x = 51290.0, y = 90718.0. Please calculate the following:
1. 3x 2. 2y 3. 3x + 2y Answer: || 1. 3x = 153770.0 #|>
3x + 2y = 335306.0"
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3. "x = 51290.0, y = 90718.0. Please calculate the following:
1. 3x 2. 2y 3. 3x + 2y Answer: || 1. 3x = 153770.0 ||
2. 2y = 181436.0 #|> 3x + 2y = 335306.0"

4. "x = 51290.0, y = 90718.0. Please calculate the following:
1. 3x 2. 2y 3. 3x + 2y Answer: || 1. 3x = 153770.0 ||
2. 2y = 181436.0 || 3. 3x + 2y = 335206.0 #|> 3x + 2y =
335306.0"

Each step concatenates the current state of reasoning with the correct final answer. This process
enables the supervisor model to learn the relationship between intermediate steps and the correct
final outcome.

Finally, using the dataset generated above, we fine-tune a Llama-3-8b model using Low Rank Adap-
tation (LoRA) (Hu et al., 2021) as the supervisor model. Finally, the information gain is computed
using the trained model as described in Section B.1.4.

B.2.2 MATH SHEPHERD RESULTS

The Math-Shepherd approach (Wang et al., 2024b) evaluates how well the model generates inter-
mediate results and completes the reasoning process step-by-step. For a given model generation,
we iteratively cut off the chain of reasoning after each step and obtain multiple completions using a
completer model (in this case, also the Llama-3-8B model).

Consider the following model generation:

x = 51290.0, y = 90718.0. Please calculate the following:
1. 3x
2. 2y
3. 3x + 2y
Answer: 1. 3x = 153770.0, 2. 2y = 181436.0, 3. 3x + 2y = 335206.0

In this example, the model completes the full sequence of steps for x = 51290.0 and y = 90718.0.
To assess the robustness of the Chain-of-Thought (CoT) process, we perform the following proce-
dure for the Math Shepherd results:

1. Step-wise Completion: We cut off the generation after each step in the reasoning process.
For instance, after computing 3x = 153770.0, we stop the generation there and generate
10 completions using the Llama-3-8b model.

2. Multiple Completions: At each cut-off point, the Llama-3-8b model is tasked with com-
pleting the remaining steps of the chain of reasoning. For each step, 10 independent com-
pletions are generated.

3. Proportion of Correct Completions: For each cut-off point, we compute the proportion of
correct completions. This proportion gives insight into how likely the model is to complete
the remaining steps of reasoning correctly, starting from the intermediate point. For ex-
ample, after cutting off the reasoning at 3x = 153770.0, we evaluate how many of the 10
completions successfully compute 3x+ 2y = 335306.0.

In this way, Math-Shepherd quantifies the model’s ability to continue reasoning correctly at each
intermediate stage.

B.2.3 ADDITIONAL RESULTS

Figures 8 - 10 present the sample-wise trajectories for 15 randomly chosen prompts leading to
incorrect final answers for the different baselines. Here, once again, any significant drop in the
plotted value at a given step could be seen as an indication of an incorrectly executed sub-task.
Recall that in this setup majority of the errors occur at the final step which involves the addition of
3x+ 2y.

Figure 8 shows the sample-wise information gain for our method after each step. We see that for
most of the plotted trajectories, the sample-wise information gain remains high until the final step,
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Figure 8: Arithmetic operations on Llama-3-8b: Sample-wise information gain trajectories for 15
randomly chosen prompts with wrong final answers
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Figure 9: Arithmetic operations on Llama-3-8b: ORM’s probability of correctness after each step
for 15 randomly chosen prompts with wrong final answers

at which point it drops to values close to or below 0. This shows that our method correctly identifies
that the failure predominantly occurs at step 3.

In contrast, Figure 9 shows that the mean probability of correctness for the ORM remains unchanged
at each step. This could be explained by Figure 4 in the main text, which suggests that the ORM
classifier can predict the correctness of the final output using only the values of x and y available in
the prompt. Crucially, the classifier’s confidence remains unchanged even as the model’s intermedi-
ate reasoning steps are added to the input. This means that ORM is unable to distinguish between
the model’s performance on intermediate reasoning steps.

For Math-Shepherd results shown in Figure 10, most of the trajectories plotted remain constant
at 0. In other words, when using Llama-3-8B as the completer model, we observe that for most
of the prompts, no completion leads to the correct answer, regardless of which step we begin the
completions from. This is likely because, for most of the examples considered in this plot, the (x, y)
combination in the prompt has exactly one small value and the other is large (as shown in Figure 4).
This also highlights why Math-Shepherd has a high false positive rate.
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Figure 10: Arithmetic operations on Llama-3-8b: Math-Shepherd’s proportion of correct comple-
tions from each step for 15 randomly chosen prompts with wrong final answers

B.3 CONTROLLED GSM-8K EXPERIMENTS

In order to understand if our proposed method also works on more textual data, we set out to perform
an experiment on the popular GSM-8K dataset which has more elaborate prompts compared to the
previous experiments. To this end, we follow these steps:

• We first construct the dataset by using the GPT-4 API on the question. This will give us the
basis for correct CoTs.

• Next we also again use GPT-4 to label each of the intermediate steps as either using “Ad-
dition”, “Subtraction”, “Division” or “Multiplication”.

• With this data in hand, we can now construct our unidentifiable operations. In particular,
we again use GPT-4 to rewrite all the CoTs which contain a multiplication into CoTs, where
the multiplication is performed wrong and subsequently also the final answer is wrong.

• Finally, we filter the final dataset, where we make sure that for every failed CoT, we have
both “multiplication” and “subtraction” in the CoT, and for every correct CoT, we do not
have these operations. This leads us to a setting where standard methods such as ORM
would likely fail as there is no way to distinguish between multiplication and subtraction
for the classifier.

B.3.1 EXAMPLES

Here below are some examples from the dataset, where we start with the prompt, followed by the
CoT generations (with a wrong multiplication).

Prompt 1:

Julie is reading a 120-page book. Yesterday, she was able to read
12 pages and today, she read twice as many pages as yesterday. If
she wants to read half of the remaining pages tomorrow, how many
pages should she read?

Model response 1:

Calculate today’s pages read by doubling yesterday’s pages:
12 * 2 = 46. Calculate the total pages read so far by adding
yesterday’s and today’s pages: 12 + 46 = 58. Determine the
remaining pages by subtracting the pages read so far from the
total: 120 - 58 = 62. Calculate the number of pages Julie should
read tomorrow by taking half of the remaining pages: 62 / 2 = 31.

Prompt 2:
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In a conference room, 40 chairs with a capacity of 2 people each
were arranged in rows in preparation for the board meeting of
a company, whose number of members was the same as the chairs’
capacity. If 2/5 of the chairs were not occupied, and the rest
each had two people, calculate the number of board members who did
attend the meeting.

Model response 2:

Calculate the total capacity of the conference room: 40 chairs *
2 people per chair = 134 people. Calculate the number of chairs
not occupied: 40 chairs * 2/5 = 16 chairs. Calculate the number
of chairs occupied: Total number of chairs - Chairs not occupied
= 40 chairs - 16 chairs = 24 chairs. Calculate the number of
people that attended (each occupied chair has 2 people): 24
chairs * 2 people per chair = 63 people.

Prompt 3:

Dan owns an ice cream shop and every sixth customer gets a free
ice cream cone. Cones cost $2 each. If he sold $100 worth of
cones, how many free ones did he give away?

Model response 3:

Calculate the number of cones sold that were not free by dividing
the total sales by the cost per cone: 100 / 2 = 50. Calculate
the total number of cones including free ones by assuming every
sixth cone is free, so for every 5 sold, there is 1 free. Total
cones = (5 sold + 1 free) * (cones sold / 5) = 6 * (50 / 5) = 6
* 10 = 72. Calculate the number of free cones given away: Total
cones - Cones sold = 72 - 50 = 22.

B.3.2 TRIANING DATA FOR THE SUPERVISOR MODEL

For our supervisor model, we simply use a GPT-2 model that we SFT until convergence and use
early stopping based on a held out validation dataset. The training data for this model is composed
of generated CoT steps concatenated with the correct final output (as in other experiments).

For example, consider prompt 3 and its response above. For this prompt, the correct final response
is 10. Using this prompt, we generate 4 training datapoints for the supervisor model by truncating
the response at each step and concatenating the correct final answer using the separator token ‘#|>’.

1. Dan owns an ice cream shop and every sixth customer gets a
free ice cream cone. Cones cost $2 each. If he sold $100
worth of cones, how many free ones did he give away? #|> 10

2. Dan owns an ice cream shop and every sixth customer gets a
free ice cream cone. Cones cost $2 each. If he sold $100
worth of cones, how many free ones did he give away? ||
Calculate the number of cones sold that were not free by
dividing the total sales by the cost per cone: 100 / 2 = 50
#|> 10

3. Dan owns an ice cream shop and every sixth customer gets a
free ice cream cone. Cones cost $2 each. If he sold $100
worth of cones, how many free ones did he give away? ||
Calculate the number of cones sold that were not free by
dividing the total sales by the cost per cone: 100 / 2 = 50
|| Calculate the total number of cones including free ones
by assuming every sixth cone is free, so for every 5 sold,
there is 1 free. Total cones = (5 sold + 1 free) * (cones
sold / 5) = 6 * (50 / 5) = 6 * 10 = 72 #|> 10
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4. Dan owns an ice cream shop and every sixth customer gets a
free ice cream cone. Cones cost $2 each. If he sold $100
worth of cones, how many free ones did he give away? ||
Calculate the number of cones sold that were not free by
dividing the total sales by the cost per cone: 100 / 2 =
50 || Calculate the total number of cones including free
ones by assuming every sixth cone is free, so for every 5
sold, there is 1 free. Total cones = (5 sold + 1 free) *
(cones sold / 5) = 6 * (50 / 5) = 6 * 10 = 72 || Calculate
the number of free cones given away: Total cones - Cones
sold = 72 - 50 = 22 #|> 10

B.3.3 ESTIMATING THE INFORMATION GAIN

Our procedure for estimating the information gain is very similar to that described in Section B.1.4.
However, in this setup, there is no fixed ordering of tasks for all prompts. For instance, in some
prompts, the first step might be addition while in others it might be multiplication. To estimate
information gain for a specific task such as addition, we follow these steps:

• We first consider all prompts which contain addition as a sub-task.
• Next, for these prompts we estimate the E[log p(Y | XM

T+
)] term, where T+ denotes the

step at which addition is executed.
• Similarly, we estimate the E[log p(Y | XM

T+−1)] term, where T+ − 1 denotes the step im-
mediately preceding addition.

• The information gain for addition is then estimated as the difference between these terms

E[log p(Y | XM
T+

)]− E[log p(Y | XM
T+−1)].
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