
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNDERSTANDING CHAIN-OF-THOUGHT IN LLMS
THROUGH INFORMATION THEORY

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have shown impressive performance in complex
reasoning tasks through the use of Chain-of-Thought (CoT) reasoning, allowing
models to break down problems into manageable sub-tasks. However, existing
CoT evaluation techniques either require annotated CoT data or fall short in accu-
rately assessing intermediate reasoning steps, leading to high rates of false posi-
tives. In this paper, we formalize CoT reasoning in LLMs through an information-
theoretic lens. Specifically, our framework quantifies the ‘information gain’ at
each reasoning step, enabling the identification of failure modes in LLMs with-
out the need for expensive annotated datasets. We demonstrate the efficacy of our
approach through extensive experiments on toy and GSM-8K data, where it signif-
icantly outperforms existing outcome-based methods by providing more accurate
insights into model performance on individual tasks.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of
tasks, from complex reasoning to code generation (Chowdhery et al., 2024; OpenAI et al., 2024;
Bubeck et al., 2023; Anil et al., 2023). Many of these advances can be attributed to Chain-of-
Thought (CoT) reasoning (Wei et al., 2024; Nye et al., 2021; Li et al., 2024), which involves break-
ing down complex problems into a series of intermediate steps, mirroring human-like reasoning
processes. The success of CoT reasoning, particularly in domains such as mathematics, logic, and
multi-step decision-making, has led researchers and developers to incorporate CoT-like features di-
rectly into model training, i.e. the FLAN family of models (Chung et al., 2022; Wei et al., 2022).

This paper introduces a new formal framework for analyzing CoT in LLMs. We provide a rigorous
method grounded in information theory, to evaluate the quality of each step in a model’s reasoning
process, thus offering insights beyond simple accuracy metrics to identify areas for improvement.

Previous work in this area has proposed “Process Supervision” (Lightman et al., 2023), which re-
quires expensive, human-annotated step-by-step data. While effective, this approach is often imprac-
tical due to the high cost and effort of creating large-scale annotated datasets. In turn, alternative
methods have recently been proposed, such as outcome reward modelling (Havrilla et al., 2024) or
the Math-Shepherd (Wang et al., 2024b). Both these approaches avoid reliance on annotated step-
wise CoT data by instead modelling the correctness of each step based on the correctness of final
outputs. However, as we demonstrate in this paper, these methods can be unsound for detecting
incorrect reasoning steps and can thus lead to a high false-positive rate in certain scenarios.

To address these shortcomings, we employ an information-theoretic approach, grounded in the fol-
lowing key insight: Each correct step in a reasoning process should provide valuable and relevant
information that aids in predicting the final correct outcome. Building on this insight, we develop a
framework to quantify the “information gain” after each sub-task in the reasoning process, without
the need for step-by-step annotations. This enables us to detect sub-tasks that fail to contribute mean-
ingful information toward the correct solution, signalling potential errors or irrelevant steps in the
model’s reasoning. In addition, we also introduce a practical algorithm to assess LLM performance
across various sub-tasks within a Chain-of-Thought (CoT) reasoning process.

The key contributions of this paper are as follows:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1. We develop a framework for sequential applications of sub-tasks, e.g. Chain-of-Thought
and provide a rigorous language to describe and detect detect failure modes in LLMs.

2. Based on this framework, we propose a practical algorithm to assess the task-wise perfor-
mance of models. This yields more granular information about a model’s CoT performance
without requiring annotated data for intermediate reasoning steps.

3. We validate our methods on extensive toy data and the GSM-8K dataset (Cobbe et al.,
2021). Our method effectively identifies failure modes in CoT reasoning, unlike baselines
like outcome reward modelling (Havrilla et al., 2024) and Math-Shepherd (Wang et al.,
2024b), which rely on final accuracy and tend to increase false positives in error detection.

2 PROPOSED FRAMEWORK: SETUP AND NOTATION

Before diving into our framework, we first provide a high-level overview and notation on how LLM
generation will be treated throughout this paper. This will allow us to set the foundation for describ-
ing our information-theoretic framework. In particular, following the approach in González & Nori
(2023), we view LLMs as abstract execution machines with a natural language interface. From this
perspective, prompts are designed to solve specific problems (e.g., mathematical or logical prob-
lems), and the LLM processes the information in the prompt to generate an output.

We now define the notation for a typical prompt as a combination of two components:

1. An initial state, represented by a random variable X0 ∈ X , denotes information provided
in the prompt that the LLM must operate on to obtain the queried information.

2. A task λ ∈ Υ (e.g., addition followed by multiplication) which encapsulates how the LLM
should process information in X0.

Given the prompt, defined as a tuple (X0, λ), the state X1 represents the result of applying task λ
to the initial state X0. Formally, we denote this using the update mapping Λ : X × Υ → X which
outputs the updated state X1 by applying the task λ on X0, i.e. X1 = Λ(X0, λ). This updated state
is then used to obtain the final output, denoted by Y ∈ X , by extracting only the information in X1

which is relevant to the queried final answer. This notation defines a prompt that instructs a model
to process information drawn from some initial distribution p(X0) (e.g., mathematical problems).

Let us use the following simple example to illustrate the notation:

Prompt:“James has 3 apples and Abbey has 9. How many apples do the two have in total?”

Here, using the above notation, the initial state x0 denotes the information “James has 3 apples;
Abbey has 9 apples”, and λ denotes the addition task. Next, x1 = Λ(x0, λ) represents the updated
information after correctly performing the addition operation, i.e. x1 =“James has 3 apples; Abbey
has 9 apples; The two have 12 apples in total”. The final output, y, is then obtained by simply
extracting the total number of apples from x1, i.e. “The two have 12 apples in total”1. With this
basic notation established, we now consider compositions of tasks, enabling us to formalize the
Chain of Thought (CoT) process in LLMs.

2.1 COMPOSITIONALITY

Many mathematical or logical problems require a sequential application of operations. Our notation
is also amenable to such problems as it accommodates the composition of tasks. Consider a problem
which requires two successive steps to arrive at the correct output:

Prompt: “Solve for z = 2× (x+ y) where x = 12 and y = 13”. (1)

In this example, first, we apply the addition operation to find the value of x + y, and next, we
apply the multiplication operation to find the value of z. Using our notation this can be expressed as
Λ(x0, λ1◦λ2), where λ1, λ2 denote the addition and multiplication tasks respectively. The following
property allows us to concretely define the application of compositional task λ1 ◦ λ2:

1Our setup also encapsulates cases with ambiguous (or multiple correct) responses for a given task λ and
initial state x0. In this case, Λ(x0, λ) is a random variable with distribution p(X1 | X0 = x0). Therefore, for
generality, we treat Λ(x0, λ) as a random variable from now on.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Solving the problem in prompt (1) requires compositional application of tasks.

Definition 2.1. We say that an update rule Λ : X ×Υ → X is compositionally consistent if:

Λ(x0, λ1 ◦ λ2)
d
= Λ(Λ(x0, λ1), λ2) for all x0 ∈ X and λ1, λ2 ∈ Υ.

Here, d
= denotes equality in distribution and is sufficient in many cases. For example, where a query

may have multiple correct responses, an almost sure equality may be too restrictive.

Going back to the prompt in (1), Figure 1 shows that the model first computes x + y, and next
multiplies the result by 2. Here, we refer to X1, X2 as intermediate states and Y is the correct
final output. More generally, if a problem statement requires sequential application of T sub-tasks,
λ = λ1 ◦ . . . ◦λT , then the Chain-of-Thought (CoT) reasoning is divided up into T steps, where the
output of the t’th step is recursively defined as Xt = Λ(Xt−1, λt) for t ∈ {1, . . . , T}. Finally, the
overall true output Y is obtained by extracting the queried information from the final state XT .

Having established a formal language for the sequential application of tasks, e.g. CoT, we now turn
towards how a task may be divided into such a sequence of intermediate sub-tasks.

2.2 PRIMITIVE TASKS

In this subsection, we introduce the notion of primitive tasks which form the basic building blocks of
any task. Intuitively, our formulation is reminiscent of ideas from linear algebra, where basis vectors
form the basic building blocks of a vector space. In our case, any task λ ∈ Υ can be expressed as
a sequence of primitive tasks. This decomposition will allow us to establish which tasks the model
could have learned from the training data. For example, if a specific primitive task is not available
in the LLM training data, it would be impossible for the model to execute any instructions which
involve this primitive task correctly. With this in mind, we now introduce this concept formally:
Definition 2.2 (Primitive tasks). We say that a set of tasks Γ ⊆ Υ is primitive if, for any task λ ∈ Υ,
there exists a unique subset {λi}ki=1 ⊆ Γ such that λ = λ1 ◦ · · · ◦ λk.

Note that the decomposition is not unique but the set of components is. In some cases, there may
exist distinct permutations of primitive tasks which compose to yield the same task as is common in
many associative operations. As an example, in the context of mathematical problem-solving, the
basic arithmetic operation could be considered primitive. The composition of these primitive tasks
allows us to construct extremely complex operations. Just like in linear algebra, we define the span
of these tasks as the set obtained by their sequential applications.
Definition 2.3 (Span of tasks). Let Φ ⊆ Υ be a set of tasks, then:

Span(Φ) = {λ1 ◦ . . . ◦ λk : λi ∈ Φ for 1 ≤ i ≤ k, k ∈ Z>0}.

The set Span(Φ) comprises all the tasks that can be applied by composing sub-tasks in the set Φ.
This means that any compositionally consistent update rule Λ which is well-defined on the set of
tasks Φ will also be well-defined on Span(Φ). However, this Λ may still be ill-defined for any task
not in this span. This limitation is captured by the concept of unidentifiability, which plays a central
role in determining the boundaries of what a model can and cannot infer.

2.3 UNIDENTIFIABILITY

The unidentifiability of tasks forms a key part of our framework. It directly addresses the fundamen-
tal challenge that models, such as LLMs, face when dealing with unseen tasks. If a task λ lies outside
of Span(Φ), the span of tasks the model has been trained on, then the model cannot be expected to
infer or apply it correctly. In other words, the model’s capacity is constrained by the identifiability of
tasks within the training set. This notion and formalization of unidentifiability allows us to highlight

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

a critical limitation in the generalization of models: tasks not encountered during training cannot be
reliably executed, as they remain beyond the model’s learned task span. More formally:
Definition 2.4 (Unidentifiability). Let Φ ⊆ Υ be any set of tasks, then a tasks λ is said to be
unidentifiable in Φ iff, λ ̸∈ Span(Φ).

Remark In practice, the concept of unidentifiability may depend on the initial state X0. For
instance, an LLM might accurately perform addition for 2-digit numbers but fail with 10-digit
numbers (Razeghi et al., 2022). Our framework can be extended to account for such cases by
explicitly incorporating the distribution of initial states into the notion of identifiability. For ex-
ample, addition could be considered unidentifiable when the initial state distribution is p(X0 |
X0 includes 10-digit numbers). However, for simplicity, we keep this distributional dependence
implicit in the definition provided earlier.

With this general framework in place, we can now turn this theoretical foundation into a practical
algorithm for detecting unidentifiable sub-tasks. Specifically, we explore how the notion of uniden-
tifiability can be combined with information-theoretic approaches to detect failure points in LLMs.

3 OPERATIONALISING OUR FRAMEWORK

This section aims to operationalise the above framework to make inferences regarding the uniden-
tifiability of intermediate sub-tasks in a model’s CoT reasoning process. This would subsequently
allow us to detect any sub-task at which a model’s CoT reasoning process starts to diverge from the
ground truth, thereby providing insights into how the model can be improved. For example, suppose
we are in a setting where the “addition” operation is unidentifiable, then we could further improve
the model’s mathematical reasoning by fine-tuning it on the addition operation.

3.1 AN INFORMATION-THEORETIC PERSPECTIVE

To make the concept of unidentifiability practical in the context of CoT generations, we begin by
introducing the fundamental assumption. The core assumption in our approach is that each correctly
executed CoT reasoning step should contribute meaningful and relevant information that aids in
predicting the correct final output, denoted as Y . If we encounter a step after which the amount of
information regarding Y stops increasing, then we can take this as an indication of an incorrectly
executed task. We concretise this assumption using using our notation from the previous section:
Assumption 3.1 (Bayesian network). Let λ ̸= λ′ be two operations with primitive decompositions:

λ = λ1 ◦ . . . λk−1 ◦ λk ◦ · · · ◦ λT and λ′ = λ1 ◦ . . . λk−1 ◦ λ′
k ◦ · · · ◦ λ′

T ′ ,

where λ′
k is unidentifiable in {λ1, . . . , λT }. Then, the intermediate states corresponding to the tasks

λ, λ′ have the following Bayesian network:

X0
. . . Xk−1

Xk

X ′
k

. . .

. . .

Y

Y ′

λ1 λk−1

λk

λ′
k

λk+1

λ′
k+1

λT

λ′
T ′

Figure 2: Bayesian network

Intuition The Bayesian network in Figure 2 implies
that for any two reasoning paths which diverge at step
k, the future states Xi and X ′

j for any i, j ≥ k satisfy
the conditional independence Xi ⊥⊥ X ′

j | Xk−1. Con-
sequently, once we apply λ′

k, the subsequent states along
the new reasoning path (in red) add no information re-
garding the subsequent states or the output of the original
path (in green). Hence the figure represents the fact that,
for any given input, the output of λk (top fork) contains

no information regarding the output of any other primitive task λ′
k (bottom fork).

Now that we have formalised our key information-theoretic assumption on the ground-truth CoT
process, we turn towards the model behaviour on unidentifiable tasks in the following section.

3.2 TASK EXECUTION IN LLMS

To operationalise our framework, we formally distinguish between the model i.e. LLM’s task execu-
tion and the ground truth process which arises from following the instructions correctly. To this end,
we explicitly define how an LLM interprets a specified task λ using the update rule, ΛM (X0, λ),
which is in general distinct from the ground truth update rule Λ(X0, λ).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Here, one option would be to consider the idealised setting where the model learns to perfectly
follow some of the primitive tasks available in the training data. However, this may be considered
too restrictive since in reality most LLMs do not always follow a “learned” task perfectly. Instead,
we consider a much weaker assumption that the model cannot correctly execute a task which is
unidentifiable in the training data. To this end, suppose ΓM ⊆ Γ denotes the primitive tasks available
in the LLM training data. Concretely, we make the following assumption on LLM’s task execution.
Assumption 3.2 (Task execution in LLMs). ΛM is compositionally consistent and for any (x0, λ) ∈
X ×Υ, there exists some λ̂ ∈ Span(ΓM) such that ΛM (x0, λ)

d
= Λ(x0, λ̂).

Intuition Assumption 3.2 means that for any task which we would like the LLM to apply, the
LLM ends up executing some task in Span(ΓM) which the model has been trained on. In other
words, the model’s execution is restricted only to the tasks which could be inferred from the training
data (i.e. in Span(ΓM)). Moreover, this assumption also allows us to encapsulate cases where the
model does not follow the correct instructions or does not decompose a given task correctly.

Before proceeding further with our main result which will allow us to test for the unidentifiability
of sub-tasks, we define some notation which we will use from now onwards. Let λ = λ1 ◦ . . . ◦ λT

denote a primitive decomposition of a task λ. Then, starting from an initial state X0, we denote the
model’s intermediate states recursively as:

XM
t := ΛM (XM

t−1, λt) and XM
0 = X0.

Moreover, we use Y M to denote the model’s final output. Next, using this notation, we present the
conditional independence which must hold if the model encounters an unidentifiable intermediate
task along its CoT reasoning path.
Theorem 3.3. Let ΓM ⊆ Γ denote the primitive tasks available in the training data. Let λ be a
task with decomposition λ = λ1 ◦ . . . ◦ λT . If λk is the first task in the decomposition of λ which is
unidentifiable in ΓM (i.e. k = argmint{λt ̸∈ Span(ΓM)}). Then, under Assumptions 3.1 and 3.2,
we have that

Y ⊥⊥ XM
j | XM

j−1 for all j ≥ k. (2)

Theorem 3.3 shows that under Assumptions 3.1 and 3.2, when the model encounters an unidentifi-
able task (i.e. λk in Theorem 3.3) in its Chain-of-Thought reasoning, the model output satisfies the
conditional independence in Equation (2). More concretely, after a model’s CoT reasoning diverges
from the ground truth at step k, every subsequent step adds no additional information regarding
the correct final output Y . In practice, this ‘information’ is measured by checking if the model’s
confidence about the final output Y increases after each step. This is formalised in the next section.

3.3 TESTING FOR UNIDENTIFIABILITY USING INFORMATION GAIN

Having established all the essential components of our framework, we can now provide a concrete
description of how to practically identify unidentifiable sub-tasks using information theory. As is
common in the literature (Wang et al., 2024b; Havrilla et al., 2024), we assume access to a dataset
consisting of prompts and their corresponding final answers, obtained by correctly applying the task
λ. This dataset is denoted as Dλ := {(xi

0, y
i)}ni=1.

Additionally, recall that XM
j and XM

j−1 represent the model’s chain of thought (CoT) reasoning
at steps j and j − 1, respectively. Consequently, each element in the conditional independence
statement in Equation (2) can be derived from the data and/or the model.

To this end, we consider the mutual information between Y and XM
j conditional on XM

j−1, denoted
by I(Y ;XM

j | XM
j−1). This conditional mutual information term intuitively represents the addi-

tional information contributed by the j’th step of CoT, that is relevant for predicting the ground
truth final output Y . Therefore, we refer to I(Y ;XM

j | XM
j−1) as the information gain at step j.

It follows from Theorem 3.3 that if an LLM encounters a sub-task at step i which is unidentifiable
in its training data, no subsequent step should contribute any additional information relevant for
predicting Y (i.e. the information gain should remain 0 after step i). If, on the other hand, we
observe that I

(
Y ;XM

j | XM
j−1

)
> 0 for some j ≥ i, then under Assumptions 3.1 and 3.2, the task

λi is not unidentifiable. To estimate the information gain in practice, we use the following result:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Proposition 3.4. Let I(X;Y | Z) denote the mutual information between random variables X and
Y conditional on Z. Then,

E[log p(Y | XM
j)]− E[log p(Y | XM

j−1)] = I
(
Y ;XM

j | XM
j−1

)
≥ 0. (3)

To estimate the information gain in (3) using Proposition 3.4, we train a separate LLM, which we
refer to as the supervisor model gsup. This model takes as input the model’s CoT reasoning up to
any given intermediate step t, XM

t , and is fine-tuned to directly predict the ground truth final output
Y . In this way gsup(X

M
t) approximates the conditional distribution p(Y | XM

t). Then, the quantity
E[log p(Y | XM

j)] can be estimated using the negative cross-entropy loss for predicting Y , i.e.

E[log p(Y | XM
j)] ≈ E[log p̂(Y | XM

j)] = −E[lCE
(
Y, gsup(X

M
j)

)
],

where lCE denotes the cross-entropy loss. From this, it follows that

E[log p(Y | XM
j)]− E[log p(Y | XM

j−1)]︸ ︷︷ ︸
Information gain

≈ E[lCE(Y, gsup(X
M
j−1))]− E[lCE(Y, gsup(X

M
j))]. (4)

Summary: The information gain (IG) between steps j and j − 1 reflects how much relevant infor-
mation step j contributes towards predicting Y . If task λj is executed correctly, this gain is positive,
as indicated by a decrease in the cross-entropy loss. Conversely, if step j does not provide additional
information, the loss remains unchanged. This can be interpreted as the conditional mutual informa-
tion between XM

j and Y , conditioned on XM
j−1. Positive information gain suggests step j adds new

insight about Y , while no gain indicates no added information. Training details for the supervisor
model are in Appendix B.1.3.

Remark on sample-wise information gain While conditional mutual information provides an
aggregate measure of information gain for a sub-task in a dataset, it may also be desirable to obtain
an analogous measure of sub-task correctness for individual CoT instances. This could be useful,
for example, in detecting which step went wrong for a given prompt. Our notion of information gain
can be extended to this sample-wise setting by instead considering the following difference

log p(Y | XM
j)− log p(Y | XM

j−1) ≈ lCE(Y, gsup(X
M
j−1))− lCE(Y, gsup(X

M
j)). (5)

Intuitively, if step j in the model’s CoT is correct, the model should become more confident in the
ground truth output Y being the correct final answer. Therefore, the difference above should be
positive. Alternatively, if step j is wrong, the model’s confidence regarding the true output Y should
not increase and the above difference should not be positive. From now on, we refer to the difference
in (5) as sample-wise information gain at step j.

4 RELATED WORKS

Evaluation of CoT reasoning Several recent works propose methodologies for evaluating CoT
reasoning (Wei et al., 2024; Havrilla et al., 2024; Li et al., 2023; Joshi et al., 2023; Nguyen et al.,
2024; Wang et al., 2024a; Yu et al., 2024; Xie et al., 2024). For example, Li et al. (2023) verifies
individual steps in a model’s CoT reasoning by generating multiple LLM responses per prompt and
comparing correct responses with incorrect ones. Similarly, Wang et al. (2024b;c) use a fine-tuned
LLM to decode multiple reasoning paths from each step and check the correctness of these reasoning
paths. However, as we show in our experiments, approaches which simply rely on the correctness
of the final output are not sound in general and can lead to false positives. Moreover, these solutions
may not be plausible for problems of high difficulty where correct LLM responses might be scarce.

Formalising CoT framework The formalisation of LLM reasoning remains an active area of re-
search. Most notably González & Nori (2023) introduces a formal framework for LLMs and is a
key source of inspiration behind our formalism. Additionally, Feng et al. (2023) theoretically ex-
amines the expressivity of LLMs with CoT in solving mathematical and decision-making problems,
focusing on the transformer architecture’s implications on accuracy. Besides this, Xu et al. (2024)
provides a formal definition of hallucinations, but does not consider CoT reasoning specifically.

Reward modelling One notable line of work known as outcome-based reward models (ORM)
(Cobbe et al., 2021; Havrilla et al., 2024; Lightman et al., 2023) predicts the probability of reach-
ing the correct final answer given a model’s intermediate CoT steps. While ORMs do not require

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

demonstrations of correct intermediate steps, we show in Section 5 that this approach is not sound
for detecting errors in a model’s CoT reasoning. Another related method is step-wise ORM (SORM)
Havrilla et al. (2024) which estimates the probability of an ‘optimal’ model reaching a correct an-
swer, given the CoT reasoning of our model of interest. However, unlike our approach, SORM
requires training a model which is larger and more capable than our base model.

Process-based reward modelling (PRMs) (Lightman et al., 2023; Uesato et al., 2022) is an alternative
approach which directly predicts the correctness of intermediate CoT reasoning steps. Likewise,
various other approaches rely on annotated CoT datasets for benchmarking (Jacovi et al., 2024; Yu
et al., 2024; Amini et al., 2019; Liu et al., 2020; Xi et al., 2024; Nguyen et al., 2024; Xie et al., 2024;
McLeish et al., 2024). While these benchmarks and methodologies can be valuable for improving
LLM reasoning, collecting annotated data can be very costly and is not readily scalable to other
tasks. Unlike these methods, our approach computes the information gain at each step, providing a
richer measure of LLM performance without requiring any human-annotated CoT data.

5 EXPERIMENTS

In this section, we empirically demonstrate the practical utility of our framework. In addition to our
proposed method dubbed information gain (denoted by IG), we consider two common baselines that
can be used to detect the errors in a model’s CoT reasoning and assume access to only the model’s
CoT generations X0, X

M
1 , . . . , XM

T as well as the correct final answers denoted as Y .

Outcome Reward Model (ORM) (Havrilla et al., 2024) This involves training a classifier, de-
noted as fORM, which takes as input model generations up to any step t in its CoT reasoning, XM

t ,
and predicts the probability of the model’s final answer being correct, i.e.

fORM(XM
t) ≈ P(Y M = Y | XM

t). (6)

Here, if we observe that this probability of correctness drops significantly after step t, i.e. if
fORM(XM

t) ≫ fORM(XM
t+1), this indicates that the model does not apply the task λt+1 correctly.

Math-Shepherd (Wang et al., 2024b) This method quantifies the potential for a given reason-
ing process XM

t by using a ‘completer’ model to generate N completions of each reasoning pro-
cess starting from step t, {(XM

t , XM
t+1,j , . . . , X

M
T,j , Y

M
j)}j≤N , where Y M

j denotes the final answer
reached in the j’th completion. Then, we estimate the potential of this step based on the proportion
of correct answers among the N completions, denoted by fMS(X

M
t) as:

fMS(X
M
t) :=

N∑
j=1

1(Y M
j = Y)

N
. (7)

For a fair comparison we do not assume access to a ‘verifier’ model more capable than our base
model and therefore, we use the base model as the completer model in our experiments.

5.1 TOY DATA EXPERIMENTS

First, we consider a toy setting where we have full control over the model behaviour on different
tasks. Our prompts comprise of an integer vector Z0 ∈ Z5 sampled randomly from a given distribu-
tion. The task λ comprises 5-steps λ = λ1 ◦ . . . ◦ λ5, where each sub-task λi denotes an operation
which transforms a given integer vector Zi−1 ∈ Z5 into another Zi ∈ Z5. Finally, in this setup, the
correct final answer Y is the value of Z5. Additional details on the data generating mechanism as
well as the sub-tasks are provided in Appendix B.1.

Generating the dataset To investigate partial unidentifiability for a given task λi we modify the
obtained dataset by introducing ‘noise’ at step i. In other words, the task λi is applied incorrectly
on a subset of the data, whereas all other tasks are always applied correctly. This represents a model
which sometimes fails at step i and we use ‘LLMi’ to denote this model in this experiment. We
repeat this procedure for all tasks λi for i ∈ {1, . . . , 5} which yields 5 LLMs {LLM1, . . . ,LLM5}.

To also investigate the robustness of the methods, we introduce a special case in LLM3. Here, task
λ3 is applied incorrectly if and only if the output after task 2 (i.e., after λ2) lies in some set S. This
choice has been made deliberately to highlight a pitfall of the existing baselines (as we will explain

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Errors flagged by the respective baselines GT errors

1 2 3 4 5

LLM1

LLM2

LLM3

LLM4

LLM5

-0.014 0.0099 0.00098 -0.0019 -0.00019

0.013 -0.0096 -0.004 -0.0017 -0.0032

0.013 0.27 -0.002 -0.0027 -0.0033

0.021 0.27 0.059 -0.0035 -0.0017

0.014 0.19 0.033 0.083 -0.0023

Information gain after each operation

(a) Our results

1 2 3 4 5

LLM1

LLM2

LLM3

LLM4

LLM5

0.012 0.015 0.013 0.014 0.014

0.49 2.2e-08 7e-05 1.2e-05 1.4e-06

0.13 1.7e-06 1.4e-06 2.1e-06 1.3e-06

0.5 0.5 0.47 8.7e-07 3.3e-07

0.52 0.54 0.55 0.52 0.058

Mean probability of the final answer being correct

(b) ORM results

1 2 3 4 5

LLM1

LLM2

LLM3

LLM4

LLM5

0 0 0 0 0

0.37 0 0 0 0

0 0 0 0 0

0.2 0.21 0.2 0 0

0.17 0.17 0.17 0.18 0

Proportion of completions with correct final answer

(c) Math-Shepherd results

Figure 3: Heatmaps quantifying the correctness of different sub-tasks for the 5 LLMs under consid-
eration obtained using the different baselines. Here, the red color indicates a significant drop in the
plotted metrics and can be seen as an indication of an incorrectly executed sub-task.

below) and is in contrast to the rest of LLMs where any errors occur at random. In other words, the
correctness of task λ3 is dependent on the output of λ2. For more details, see Appendix B.1.2.

5.1.1 RESULTS

Figure 3 shows how the different baselines quantify the correctness of the different tasks for the
5 different LLMs under consideration. This figure only considers samples where the final answer
of the LLM was incorrect, i.e. Y M ̸= Y . For our method (IG), Figure 3a shows the information
gain across the different steps for each LLM. Likewise, Figure 3b presents the results for ORM and
shows how the average probability of correctness in (6) changes across the different steps, whereas,
for Math-Shepherd, Figure 3c shows the proportion of correct completions starting after each step
(7). Here, any significant drop in the plotted values indicate an incorrect application of a task.

Information gain accurately quantifies step-wise correctness We observe that for each LLM
the information gain remains positive until we encounter an incorrect reasoning step, at which point
it drops to negative values. Therefore, our method can identify the incorrectly executed task for each
LLM under consideration. We used a GPT-2 supervisor model to estimate information gain.

Pitfall of the baselines While the ORM and Math-Shepherd manage to correctly identify the
incorrect reasoning steps in most cases, these methods fail to correctly detect erroneous steps for
LLM3. This happens because, in our setup, λ3 is incorrectly applied if and only if the output after
task λ2 lies in some set S. Therefore, the classifier model can confidently predict the correctness of
the final model output at λ2 by simply checking if the output lies in S. Here, the classifier becomes
confident that the final output will be wrong right after λ2, even though the error occurs at λ3.

Table 1: Metrics for sample-wise classi-
fication of sub-task correctness for LLM3

using the different baselines.

METHOD ACCURACY ↑ TPR ↑ FPR ↓

IG (OURS) 0.96 0.98 0.06
ORM 0.77 0.98 0.54
MATH-SHEPHERD 0.60 1.0 1.0

Similarly, when using Math-Shepherd for LLM3 (with
the same model being used as a completer), a comple-
tion yields an incorrect final answer if the output after
λ2 lies in S. If this is the case, all completions yield an
incorrect final output regardless of which step we be-
gin the completions from. This makes it impossible to
accurately identify the step at which LLM3 goes wrong.

Sample-wise detection We can also use the differ-
ent baselines for sample-wise detection of erroneous
steps as outlined in Section 3.3. In this setting, for each

prompt, we can classify a step as incorrect if a baseline’s metric falls below a threshold. Table 1
shows the results for sample-wise classification of sub-task correctness for LLM3 using the differ-
ent baselines (where we chose the best thresholds for each baseline using a held-out dataset). It can
be seen that our method yields a significantly higher accuracy and a lower rate of false-positives than
the baselines and therefore, is also considerably more reliable for sample-wise detection of errors.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.2 ARITHMETIC OPERATIONS ON LLAMA-3-8B

Following our toy experiments, we now evaluate our framework in a more realistic setting using
the Llama-3-8B model (Dubey et al., 2024). We focus on a simple arithmetic task that involves
both multiplication and addition tasks. The goal is to assess the model’s performance on individual
operations as well as their combination.

Experimental setup We sample two integers x and y uniformly from the range [1, 100000). The
prompt given to the model is structured as follows:

Prompt: “x = {x}, y = {y}, Please calculate the following: 1. 3x, 2. 2y, 3. 3x + 2y ”

Model accuracy We observe that the model’s accuracy varies across the three steps:

Step 1 accuracy: 80%, Step 2 accuracy: 98%, Step 3 accuracy: 42%.

Figure 4: The distribution of
(x, y) for incorrect samples
shows a clear trend: Llama-3-
8B struggles to add large and
small numbers together (top-
left and bottom-right).

Notably, the majority of failures occur in the third step, which in-
volves addition of the previously computed values. We analyzed
the distribution of (x, y) values where the model obtains the cor-
rect final output. Interestingly, as Figure 4 illustrates, we observed
that most errors occur when exactly one of the variables (x, y) is
large and the other is small. This suggests that the model’s cor-
rectness is highly dependent on the (x, y) values in the prompt,
resulting in baselines struggling to identify the erroneous step in
the model’s CoT reasoning (as we show below).

5.2.1 RESULTS

Our Method We trained the supervisor model by fine-tuning
a Llama-3-8b model using Low Rank Adaptation (LoRA) (Hu
et al., 2021). Table 2 shows that there is a significant drop in
information gain at step 3 relative to steps 1 and 2, demonstrating
that our information-theoretic method is able to correctly identify
that the failure mainly occurs at step 3.

Outcome Reward Model (ORM) In contrast, for ORM the
mean probability of correctness included in Table 2 remains un-
changed at each step. This could be explained by Figure 4 which

suggests that ORM classifier can predict the correctness of the final output using only the values of
x and y available in the prompt. Crucially, the classifier’s confidence remains unchanged even as the
model’s intermediate reasoning steps are added to the input. Hence, ORM is unable to distinguish
between the model’s performance on intermediate reasoning steps.

Math-Shepherd Table 2 includes the proportion of correct completions for Math-Shepherd. We
observe that even though this proportion is very small at step 3, we also observe that only about 5-7%
of the completions starting from steps 1 and 2 lead to a correct output, even though the error mostly
occurs at step 3. This happens because the correctness of Llama-3-8B is largely determined by the
initial values of (x, y) in the prompt (see Figure 4). Consequently, Math-Shepherd incorrectly flags
steps 1 and 2 as incorrect a significant proportion of the time which leads to a significantly higher
proportion of false positives (as compared to our baseline) as we show below.

Table 2: Metrics for aggregate step-wise correctness of arithmetic operations across prompts, along
with sample-wise classification of incorrect operations leading to an incorrect final answer.

STEP 1: 3x ✓ STEP 2: 2y ✓ STEP 3: 3x + 2y ✗ ACCURACY ↑ TPR ↑ FPR ↓

IG (OURS) 0.67 0.24 0.027 0.76 0.51 0.02
ORM 0.24 0.24 0.24 0.56 0.10 0.07
MATH-SHEPHERD 0.068 0.059 0.00069 0.53 0.99 0.86

Sample-wise detection When using these methods for sample-wise detection of incorrect steps,
our approach yields the highest accuracy among the baselines considered. This superior performance
is attributed to the fact that baselines like ORM and Math-Shepherd often falsely flag steps 1 and 2
as incorrect, as evidenced by their high false positive rates in Table 2.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.3 EXPERIMENTS ON THE CONTROLLED GSM-8K DATASET

To evaluate our method on a complex dataset, we conducted experiments on GSM-8K (Cobbe et al.,
2021), controlling specific factors for more interpretable results.

We begin by using GPT-4 (OpenAI et al., 2024) to generate answers for GSM-8K questions where
the “multiplication” operation is always done incorrectly, while all other operations are correct.
Next, we filtered the dataset to ensure that “multiplication”, “subtraction”, and “addition” never
appeared together within the same Chain of Thought (CoT) solution. In particular, we ensured in
our setting that, all incorrect final answers included both “multiplication” and “subtraction”, whereas
correct final answers did not involve either operation. This introduces a spurious correlation between
“subtraction” and wrong answers.

In this setup, we mainly focused on evaluating ORM and our proposed method, as Math-Shepherd
(with the same completer) fails trivially under these conditions. Specifically, “multiplication” is
inherently unidentifiable, since any CoT containing “multiplication” negates the influence of other
sub-tasks by design. Further details on the experimental setup can be found in Appendix B.3.

5.3.1 RESULTS

Table 3 demonstrates that our proposed information-theoretic approach successfully identifies the
unidentifiable sub-task. Since we intentionally set the “multiplication” rules to be incorrect, we
observe minimal to no information gain for this operation, as expected. However, a different pattern
emerges when we examine the results of the ORM method. Both “multiplication” and “subtraction”
show, on average, a very low probability of correctness. This is due to the fact that both sub-tasks
are primarily associated with incorrect final answers. Consequently, relying on the standard ORM
approach could lead to the misleading conclusion that “subtraction” is also incorrect.

Additionally, in our sample-wise experiment, we observe a similar trend when we use the methods
to assess the sample-wise correctness of “multiplication” and “subtraction” for each prompt. Here,
our proposed method not only accurately detects the unidentifiable sub-task but also highlights a
significant shortcoming of ORM. Specifically, ORM falsely flags “subtraction”, which is actually
correct, as an incorrect sub-task due to spurious correlations.

Table 3: Comparison between our method and ORM for different sub-tasks in GSM-8K. The final
three columns include results for sample-wise classification of incorrect operations for each prompt.

ADDITION ✓ MULTIPLICATION ✗ DIVISION ✓ SUBTRACTION ✓ ACCURACY ↑ TPR ↑ FPR ↓

IG (OURS) 0.99 0.026 1.05 1.06 0.72 0.95 0.62
ORM 0.46 0.024 0.38 0.013 0.58 1.0 1.0

6 DISCUSSION AND LIMITATIONS

In this paper, we introduce a novel information-theoretic approach for evaluating Chain-of-Thought
(CoT) reasoning in large language models (LLMs) without the need for annotated intermediate steps.
We present a comprehensive framework for modeling the CoT process, and the results demonstrate
the effectiveness of our algorithm in identifying erroneous reasoning steps across diverse experi-
mental settings. We consistently outperform existing baselines, including Outcome Reward Models
(ORM) (Havrilla et al., 2024) and Math-Shepherd (Wang et al., 2024b) as shown in our extensive
experimental section. However, it’s important to note that that are some limitations to our approach.

For example, our method necessitates additional training of the supervisor model, which can be
computationally demanding. Future research could investigate the use of in-context learning tech-
niques to estimate information gain, potentially reducing the need for extra training and enhancing
both the accessibility and efficiency of the approach. Secondly, sample-wise detection introduces
further challenges that may lead to erroneous conclusions. A language model may occasionally ar-
rive at the correct answer by chance, even if a particular sub-task is unidentifiable. Although this
occurrence should not significantly impact the overall task-wise information gain, it could result
in inaccurate outcomes for sample-wise information gain in such ‘lucky’ cases. Finally, while our
method does not require correctness labels for every step, we still need to categorize each step ac-
cording to its respective sub-task. However, this limitation is not unique to our model, as both ORM
and Math-Shepherd also rely on such labels to draw sub-task-specific conclusions.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
Hajishirzi. Mathqa: Towards interpretable math word problem solving with operation-based for-
malisms. CoRR, abs/1905.13319, 2019. URL http://arxiv.org/abs/1905.13319.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, Eric Chu, Jonathan H. Clark,
Laurent El Shafey, Yanping Huang, Kathy Meier-Hellstern, Gaurav Mishra, Erica Moreira, Mark
Omernick, Kevin Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang,
Gustavo Hernandez Abrego, Junwhan Ahn, Jacob Austin, Paul Barham, Jan Botha, James Brad-
bury, Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng, Colin Cherry, Christo-
pher A. Choquette-Choo, Aakanksha Chowdhery, Clément Crepy, Shachi Dave, Mostafa De-
hghani, Sunipa Dev, Jacob Devlin, Mark Dı́az, Nan Du, Ethan Dyer, Vlad Feinberg, Fangxi-
aoyu Feng, Vlad Fienber, Markus Freitag, Xavier Garcia, Sebastian Gehrmann, Lucas Gonzalez,
Guy Gur-Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jeffrey Hui,
Jeremy Hurwitz, Michael Isard, Abe Ittycheriah, Matthew Jagielski, Wenhao Jia, Kathleen Ke-
nealy, Maxim Krikun, Sneha Kudugunta, Chang Lan, Katherine Lee, Benjamin Lee, Eric Li,
Music Li, Wei Li, YaGuang Li, Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu, Freder-
ick Liu, Marcello Maggioni, Aroma Mahendru, Joshua Maynez, Vedant Misra, Maysam Mous-
salem, Zachary Nado, John Nham, Eric Ni, Andrew Nystrom, Alicia Parrish, Marie Pellat, Mar-
tin Polacek, Alex Polozov, Reiner Pope, Siyuan Qiao, Emily Reif, Bryan Richter, Parker Riley,
Alex Castro Ros, Aurko Roy, Brennan Saeta, Rajkumar Samuel, Renee Shelby, Ambrose Slone,
Daniel Smilkov, David R. So, Daniel Sohn, Simon Tokumine, Dasha Valter, Vijay Vasudevan,
Kiran Vodrahalli, Xuezhi Wang, Pidong Wang, Zirui Wang, Tao Wang, John Wieting, Yuhuai
Wu, Kelvin Xu, Yunhan Xu, Linting Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven Zheng,
Ce Zheng, Weikang Zhou, Denny Zhou, Slav Petrov, and Yonghui Wu. Palm 2 technical report,
2023. URL https://arxiv.org/abs/2305.10403.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi,
Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
with gpt-4, 2023. URL https://arxiv.org/abs/2303.12712.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sashank Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay,
Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope,
James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm
Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra,
Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Bar-
ret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: scaling language modeling with pathways.
J. Mach. Learn. Res., 24(1), mar 2024. ISSN 1532-4435.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pel-
lat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin,
Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned language
models, 2022. URL https://arxiv.org/abs/2210.11416.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

11

http://arxiv.org/abs/1905.13319
https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vı́tor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: A theoretical perspective. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=qHrADgAdYu.

Javier González and Aditya V Nori. Beyond words: A mathematical framework for interpreting
large language models. arXiv preprint arXiv:2311.03033, 2023.

Alexander Havrilla, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
Maksym Zhuravinskyi, Eric Hambro, and Roberta Raileanu. GLore: When, where, and
how to improve LLM reasoning via global and local refinements. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
LH6R06NxdB.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. CoRR, abs/2106.09685,
2021. URL https://arxiv.org/abs/2106.09685.

Alon Jacovi, Yonatan Bitton, Bernd Bohnet, Jonathan Herzig, Or Honovich, Michael Tseng,
Michael Collins, Roee Aharoni, and Mor Geva. A chain-of-thought is as strong as its weakest
link: A benchmark for verifiers of reasoning chains, 2024.

Nitish Joshi, Hanlin Zhang, Koushik Kalyanaraman, Zhiting Hu, Kumar Chellapilla, He He, and
Li Erran Li. Improving multi-hop reasoning in LLMs by learning from rich human feedback.
In Neuro-Symbolic Learning and Reasoning in the era of Large Language Models, 2023. URL
https://openreview.net/forum?id=wxfqhp9bNR.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
large language models better reasoners with step-aware verifier, 2023.

13

https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=qHrADgAdYu
https://openreview.net/forum?id=qHrADgAdYu
https://openreview.net/forum?id=LH6R06NxdB
https://openreview.net/forum?id=LH6R06NxdB
https://arxiv.org/abs/2106.09685
https://openreview.net/forum?id=wxfqhp9bNR

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems, 2024. URL https://arxiv.org/abs/2402.12875.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A chal-
lenge dataset for machine reading comprehension with logical reasoning. CoRR, abs/2007.08124,
2020. URL https://arxiv.org/abs/2007.08124.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R. Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, and Tom Goldstein. Transform-
ers can do arithmetic with the right embeddings, 2024.

Minh-Vuong Nguyen, Linhao Luo, Fatemeh Shiri, Dinh Q. Phung, Yuan-Fang Li, Thuy-
Trang Vu, and Gholamreza Haffari. Direct evaluation of chain-of-thought in multi-hop rea-
soning with knowledge graphs. ArXiv, abs/2402.11199, 2024. URL https://api.
semanticscholar.org/CorpusID:267751000.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language models,
2021. URL https://arxiv.org/abs/2112.00114.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,

14

https://arxiv.org/abs/2402.12875
https://arxiv.org/abs/2007.08124
https://api.semanticscholar.org/CorpusID:267751000
https://api.semanticscholar.org/CorpusID:267751000
https://arxiv.org/abs/2112.00114

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Yasaman Razeghi, Robert L. Logan IV au2, Matt Gardner, and Sameer Singh. Impact of pretraining
term frequencies on few-shot reasoning, 2022. URL https://arxiv.org/abs/2202.
07206.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022.

Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokked transformers are implicit reasoners: A
mechanistic journey to the edge of generalization, 2024a.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations, 2024b.
URL https://arxiv.org/abs/2312.08935.

Zihan Wang, Yunxuan Li, Yuexin Wu, Liangchen Luo, Le Hou, Hongkun Yu, and Jingbo Shang.
Multi-step problem solving through a verifier: An empirical analysis on model-induced process
supervision, 2024c. URL https://arxiv.org/abs/2402.02658.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=gEZrGCozdqR.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN 9781713871088.

Zhiheng Xi, Wenxiang Chen, Boyang Hong, Senjie Jin, Rui Zheng, Wei He, Yiwen Ding, Shichun
Liu, Xin Guo, Junzhe Wang, Honglin Guo, Wei Shen, Xiaoran Fan, Yuhao Zhou, Shihan Dou,
Xiao Wang, Xinbo Zhang, Peng Sun, Tao Gui, Qi Zhang, and Xuanjing Huang. Training large
language models for reasoning through reverse curriculum reinforcement learning, 2024.

Xuan Xie, Jiayang Song, Zhehua Zhou, Yuheng Huang, Da Song, and Lei Ma. Online safety analysis
for llms: a benchmark, an assessment, and a path forward, 2024.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is inevitable: An innate limitation of
large language models, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models, 2024.

A PROOFS

Proof of Theorem 3.3. Suppose λ and λ′ are two tasks with primitive decompositions

λ′ = λ′
1 ◦ · · · ◦ λ′

T ′

15

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2202.07206
https://arxiv.org/abs/2202.07206
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2402.02658
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

and

λ = λ1 ◦ · · · ◦ λT , (8)

where argmint{λt ̸∈ Span({λ′
1, . . . , λ

′
T ′})} ≤ k. In other words, the primitive decompositions of

λ′ and λ diverge before step k + 1. Then, Assumption 3.1 implies that for any j ≥ k, we have that
the answer Y and X ′

j are d-separated by X ′
j−1. Therefore,

Y ⊥⊥ X ′
j | X ′

j−1.

Next, we know from Assumption 3.2 that there exists some task λ̂ ∈ Span(ΓM) (possibly dependent
on X0 and λ) such that ΛM (X0, λ)

d
= Λ(X0, λ̂). Suppose that λ̂ has primitive decomposition

λ̂ = λ̃1 ◦ · · · ◦ λ̃T̃ ,

then since λ̂ ∈ Span(ΓM), we know that λ̃i ∈ ΓM for i ∈ {1, . . . , T̃}. If the primitive
decomposition of λ in (8) is such that k = argmint{λt ̸∈ Span(ΓM)}, then we know that
argmint{λt ̸∈ Span({λ̃1, . . . , λ̃T̃ })} ≤ k. Then, from the above it follows that

Y ⊥⊥ XM
j | XM

j−1.

Here, we used the fact that XM
j

d
= Λ(X0, λ̃1 ◦ · · · ◦ λ̃j) using Assumption 3.2.

Proof of Proposition 3.4.

E[log p(Y | XM
j)]− E[log p(Y | XM

j−1)] = E

[
log

p(Y | XM
j)

p(Y | XM
j−1)

]

= E

[
log

p(Y | XM
j , XM

j−1)

p(Y | XM
j−1)

]

= E

[
log

p(Y,XM
j | XM

j−1)

p(Y | XM
j−1) p(X

M
j | XM

j−1)

]
= I(Y,XM

j | XM
j−1)

Here, the second equality above arises from the fact that XM
j also captures all the information cap-

tured in XM
j−1 (and possibly more). Therefore, conditional on XM

j , the state XM
j−1 is deterministic

and hence, Y ⊥⊥ XM
j−1 | XM

j .

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 TOY DATA EXPERIMENTS

In this section, we describe the exact procedure used to generate the toy data for training and eval-
uating the models in our experiments. The dataset is constructed through five sequential operations
(or tasks) applied to an initial state z0, where each task λi generates an intermediate state zi. Both
correct and incorrect examples were generated, with incorrect examples created by introducing
random noise or permutations into the transformations.

The data was used to represent models LLM1, LLM2, ..., LLM5, each corresponding to a setting
where a specific task λi was partially corrupted to simulate an unidentifiable task for that model.

B.1.1 DATA GENERATION TASKS

For each prompt, an initial 5-element vector z0 was randomly sampled, and we use the notation z0[i]
to denote the i’th component of this vector. Next, the following tasks were applied sequentially:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Task λ1: Pairwise Swapping

• Correct Mapping: The first and second elements, as well as the third and fourth elements
of z0, are swapped:

z1[0], z1[1], z1[2], z1[3] = z0[1], z0[0], z0[3], z0[2]

• Incorrect Mapping: The entire vector is shuffled randomly.

Task λ2: Cumulative Summation

• Correct Mapping: The first three elements of z1 are replaced by their cumulative sum, and
the fourth and fifth elements are swapped:

z2 = [z2[0], z2[0] + z2[1], z2[0] + z2[1] + z2[2], z1[4], z1[3]]

• Incorrect Mapping: Each element of z1 is perturbed by adding a random integer between
10 and 99:

z2[i] = z1[i] + Ui for each i where Ui is a randomly sampled integer between 10 and 99

Task λ3: Reverse and Cumulative Sum

• Correct Mapping: The first three elements of z2 are reversed, and the last two elements are
replaced by their cumulative sum:

z3 = [z2[2], z2[1], z2[0], z2[3], z2[3] + z2[4]]

• Incorrect Mapping: As with task λ2, each element of z2 is perturbed by adding a random
integer between 10 and 99.

Task λ4: Sorting and Elementwise Multiplication

• Correct Mapping: The vector z3 is sorted, and the first four elements are replaced by
element-wise multiplications of specific pairs:

z4[0] = z3[1]×z3[2], z4[1] = z3[0]×z3[3], z4[2] = z3[4]×z3[0], z4[3] = z3[2]×z3[2]

• Incorrect Mapping: The vector is randomly shuffled.

Task λ5: Difference Calculation

• Correct Mapping: The first element is replaced by the absolute difference of the first two
elements of z4, and other elements are transformed as follows:

z5 = [|z4[0]− z4[1]|, z4[2], z4[3], |z4[3]− z4[4]|, z4[0]]

• Incorrect Mapping: The vector is randomly shuffled.

B.1.2 MODELS LLM1, LLM2, . . . , LLM5

For each model LLMi (i ∈ {1, 2, 3, 4, 5}), the task λi was selectively corrupted to simulate uniden-
tifiability for that task. Specifically:

• Correct Data: The task λi was applied according to its correct mapping.
• Incorrect Data: The task λi was applied using its incorrect mapping (random noise, shuf-

fling, or perturbations).

For each LLMi, the tasks λ1 to λi−1 and λi+1 to λ5 were correctly applied, but task λi was corrupted
for a subset of the data. More specifically, for all LLMs except LLM3, the error was introduced at
step i at random with probability 0.5. In contrast, for LLM3, the error was introduced at step 3 if and
only if the output at step 2, z2 satisfies, z2[2] > 150. This choice was deliberately made to highlight
a pitfall of the baselines as explained in Section 5.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

String Representation of Chain-of-Thought (CoT) Next, we convert each sequence of vectors
z0, z1, . . . , z5 produced by the tasks into a string-based Chain-of-Thought (CoT) representation.
Each intermediate state vector zi is expressed as a comma-separated list of its elements, and the
transitions between the states are delimited by “||”. This format explicitly captures the step-by-step
reasoning process of the model.

For example, given an initial vector z0 = [83, 48, 14, 98, 25], applying the tasks sequentially yields
intermediate states z1, z2, . . . , z5. These states are concatenated into a single string, separated by
“||” to represent the full reasoning chain:

83,48,14,98,25 || 48,83,98,14,25 || 48,131,229,25,14 ||
229,131,48,25,39 || 1872,3275,5725,2304,229 ||

1403,5725,2304,2075,1872

B.1.3 TRAINING THE SUPERVISOR MODEL

To estimate the information gain in (3), we train a different LLM, which we refer to as the supervisor
model gsup. As explained in Section 3.3, this model takes as input the model’s CoT reasoning up
to any given intermediate step t, XM

t , and is fine-tuned to directly predict the ground truth final
output Y . To this end, we use a special token to separate the model’s CoT reasoning and the final
output when fine-tuning gsup. At inference time, this special token when appended to the model
input serves as an indication for the model to directly predict the final output. In this way gsup(X

M
t)

approximates the conditional distribution p(Y | XM
t).

More specifically, in the toy setup discussed above, consider the following sample for model’s CoT:

83,48,14,98,25 || 48,83,98,14,25 || 48,131,229,25,14 ||
229,131,48,25,39 || 1872,3275,5725,2304,229 ||

1403,5725,2304,2075,1872

For this example, the ground truth final output y is y = “1403,5725,2304,2075,1872′′ (i.e.,
the model reached the correct final output in the example above).

For the sample given above, we have that

xM
0 = x0 = “83,48,14,98,25′′

xM
1 = “83,48,14,98,25 || 48,83,98,14,25 ′′

...

xM
5 = “83,48,14,98,25 || 48,83,98,14,25 || 48,131,229,25,14 ||

229,131,48,25,39 || 1872,3275,5725,2304,229 ||

1403,5725,2304,2075,1872′′

Next, to construct the data for fine-tuning the supervisor model, we used the special token “#|>′′ to
separate the model’s CoT steps xM

i from the ground truth output y. This results in the following 6
training datapoints for the supervisor model:

1. “83,48,14,98,25 #|> 1403,5725,2304,2075,1872”

2. “83,48,14,98,25|| 48,83,98,14,25 #|> 1403,5725,2304,2075,1872”

...

5. “83,48,14,98,25|| 48,83,98,14,25 || 48,131,229,25,14
|| 229,131,48,25,39 || 1872,3275,5725,2304,229 ||
1403,5725,2304,2075,1872 #|> 1403,5725,2304,2075,1872”

The above procedure allows us to obtain fine-tuning data for supervisor models separately for each
of the 5 different LLMs, {LLM1,LLM2, . . . ,LLM5}. Next, we train a separate GPT-2 model for
each of the 5 different base LLMs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B.1.4 ESTIMATING THE INFORMATION GAIN

Having trained the supervisor model on the data generated above, we evaluate the information gain
on a held-out dataset split. Given a datapoint (xM

i , y) in the evaluation split, we can estimate the
sample-wise information gain at step i as follows:

• Suppose that the model generation at step i − 1, xM
i−1 is tokenised as (t1, . . . , tni−1) and

similarly that xM
i is tokenised as (t1, . . . , tni

). Likewise, suppose that the true output y is
tokenised as (t∗1, . . . , t

∗
k) and we use < s > to denote the separator token (i.e. #|> above).

• Then, to estimate the sample-wise for this datapoint, we estimate the difference:

1

k

k∑
j=1

log p(t∗j | (t1, . . . , tni , < s >, t∗1, . . . , t
∗
j−1))

− 1

k

k∑
j=1

log p(t∗j | (t1, . . . , tni−1
, < s >, t∗1, . . . , t

∗
j−1)).

Here, the supervisor model is trained to estimate the above conditional and therefore we
use it to estimate the difference above.

Finally, to estimate the aggregate information gain (instead of the sample-wise information gain),
we simply compute the average sample-wise gain over the evaluation data split.

B.1.5 ADDITIONAL RESULTS

In Figures 5 - 7, we present the sample-wise trajectories for 15 randomly chosen prompts leading
to incorrect final answers, for the different baselines and LLMs under consideration. Here, any
significant drop in the plotted value at a given step could be seen as an indication of an incorrectly
executed sub-task. Recall that in our setup, in LLMi, the CoT step i is executed incorrectly with
some probability whereas all other steps are always executed correctly.

Firstly, Figure 5 presents sample-wise information gain for our method for the five different LLMs.
Here, we see that the sample-wise information remains high up until the incorrect step, at which
point the information gain sharply decreases. This suggests that sample-wise information gain is
sensitive to the specific point where the Chain of Thought goes wrong, making it effective at locating
reasoning errors.

For the ORM and Math-Shepherd baselines in Figures 6 and 7, we observe that for all LLMs except
LLM3, the plotted metrics drop at the incorrect step. However, for LLM3, we observe that ORM’s
probability of correctness drops at step 2 even though the error occurs at step 3. This occurs because,
in our setup, the correctness of step 3 is determined directly from the output of step 2. Specifically,
recall that in LLM3, step 3 is executed incorrectly if and only if the output of step 2, z2, has its
second component greater than 150, i.e. z2[2] > 150. Therefore, ORM becomes confident after the
second step if a CoT is going to lead towards the correct final answer or not.

Similarly, for Math-Shepherd in Figure 7, we observe that the proportion of correct completions
remains 0 for LLM3. This is because for all trajectories plotted, the output of step 2, z2, has its
second component greater than 150 and therefore the final answer is incorrect regardless of which
step we begin the completions from.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0.0

0.1

0.2

0.3

0.4

0.5

Re
su

lts
 fo

r L
LM

1

Sample-wise information gain
CoT before an incorrectly executed step
CoT after an incorrectly executed step
Incorrectly executed step

0.0

0.1

0.2

0.3

Re
su

lts
 fo

r L
LM

2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
su

lts
 fo

r L
LM

3

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
su

lts
 fo

r L
LM

4

1 2 3 4 5
0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
su

lts
 fo

r L
LM

5

Figure 5: Toy data results: Sample-wise information gain trajectories for 15 randomly chosen
prompts with wrong final answers.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0.0

0.1

0.2

0.3

0.4

0.5

Re
su

lts
 fo

r L
LM

1

Probability of final answer being correct
CoT before an incorrectly executed step
CoT after an incorrectly executed step
Incorrectly executed step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
su

lts
 fo

r L
LM

2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
su

lts
 fo

r L
LM

3

0.0

0.1

0.2

0.3

0.4

0.5

Re
su

lts
 fo

r L
LM

4

prompt 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Re
su

lts
 fo

r L
LM

5

Figure 6: Toy data results: ORM’s probability of correctness after each step for 15 randomly chosen
prompts with wrong final answers

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

1.0

Re
su

lts
 fo

r L
LM

1

Proportion of correct completions after each step
CoT before an incorrectly executed step
CoT after an incorrectly executed step
Incorrectly executed step

0.0

0.2

0.4

0.6

0.8

1.0

Re
su

lts
 fo

r L
LM

2

0.04

0.02

0.00

0.02

0.04

Re
su

lts
 fo

r L
LM

3

0.0

0.2

0.4

0.6

0.8

1.0

Re
su

lts
 fo

r L
LM

4

prompt 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Re
su

lts
 fo

r L
LM

5

Figure 7: Toy data results: Math-Shepherd’s proportion of correct completions from each step for
15 randomly chosen prompts with wrong final answers

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

B.2 ARITHMETIC OPERATIONS ON LLAMA 3 8B

For this experiment, the prompts used to collect the data follow a specific structure. Each prompt
contains two real examples followed by a query with newly sampled values for x and y. The format
of the prompt is as follows:

x = 23, y = 51. Please calculate the following:
1. 3x
2. 2y
3. 3x + 2y
Answer:
1. 3x = 69
2. 2y = 102
3. 3x + 2y = 171

x = 35, y = 60. Please calculate the following:
1. 3x
2. 2y
3. 3x + 2y
Answer:
1. 3x = 105
2. 2y = 120
3. 3x + 2y = 225

x = {x}, y = {y}. Please calculate the following:
1. 3x
2. 2y
3. 3x + 2y
Answer:

In the third section, the values of x and y are randomly sampled from a uniform distribution over
the range [1, 100000).

B.2.1 TRAINING DATA FOR THE SUPERVISOR MODEL

The supervisor model plays a crucial role in evaluating the intermediate steps in the Chain-of-
Thought (CoT) reasoning. The model is designed to approximate the probability of arriving at
the correct final result after any given step in the CoT process. To train this model, we fine-tune it
using a dataset composed of generated CoT steps concatenated with the correct final result.

Model Generation Example: Consider the following example of a model-generated response:

x = 51290.0, y = 90718.0. Please calculate the following:
1. 3x
2. 2y
3. 3x + 2y
Answer:
1. 3x = 153770.0
2. 2y = 181436.0
3. 3x + 2y = 335206.0

Fine-Tuning Data Construction: The generated outputs are used to construct training examples,
where each intermediate step is concatenated with the final correct answer using the separator token
‘#|>’. For instance, from the example above, the following four training data points are created:

1. "x = 51290.0, y = 90718.0. Please calculate the following:
1. 3x 2. 2y 3. 3x + 2y Answer: #|> 3x + 2y = 335306.0"

2. "x = 51290.0, y = 90718.0. Please calculate the following:
1. 3x 2. 2y 3. 3x + 2y Answer: || 1. 3x = 153770.0 #|>
3x + 2y = 335306.0"

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

3. "x = 51290.0, y = 90718.0. Please calculate the following:
1. 3x 2. 2y 3. 3x + 2y Answer: || 1. 3x = 153770.0 ||
2. 2y = 181436.0 #|> 3x + 2y = 335306.0"

4. "x = 51290.0, y = 90718.0. Please calculate the following:
1. 3x 2. 2y 3. 3x + 2y Answer: || 1. 3x = 153770.0 ||
2. 2y = 181436.0 || 3. 3x + 2y = 335206.0 #|> 3x + 2y =
335306.0"

Each step concatenates the current state of reasoning with the correct final answer. This process
enables the supervisor model to learn the relationship between intermediate steps and the correct
final outcome.

Finally, using the dataset generated above, we fine-tune a Llama-3-8b model using Low Rank Adap-
tation (LoRA) (Hu et al., 2021) as the supervisor model. Finally, the information gain is computed
using the trained model as described in Section B.1.4.

B.2.2 MATH SHEPHERD RESULTS

The Math-Shepherd approach (Wang et al., 2024b) evaluates how well the model generates inter-
mediate results and completes the reasoning process step-by-step. For a given model generation,
we iteratively cut off the chain of reasoning after each step and obtain multiple completions using a
completer model (in this case, also the Llama-3-8B model).

Consider the following model generation:

x = 51290.0, y = 90718.0. Please calculate the following:
1. 3x
2. 2y
3. 3x + 2y
Answer: 1. 3x = 153770.0, 2. 2y = 181436.0, 3. 3x + 2y = 335206.0

In this example, the model completes the full sequence of steps for x = 51290.0 and y = 90718.0.
To assess the robustness of the Chain-of-Thought (CoT) process, we perform the following proce-
dure for the Math Shepherd results:

1. Step-wise Completion: We cut off the generation after each step in the reasoning process.
For instance, after computing 3x = 153770.0, we stop the generation there and generate
10 completions using the Llama-3-8b model.

2. Multiple Completions: At each cut-off point, the Llama-3-8b model is tasked with com-
pleting the remaining steps of the chain of reasoning. For each step, 10 independent com-
pletions are generated.

3. Proportion of Correct Completions: For each cut-off point, we compute the proportion of
correct completions. This proportion gives insight into how likely the model is to complete
the remaining steps of reasoning correctly, starting from the intermediate point. For ex-
ample, after cutting off the reasoning at 3x = 153770.0, we evaluate how many of the 10
completions successfully compute 3x+ 2y = 335306.0.

In this way, Math-Shepherd quantifies the model’s ability to continue reasoning correctly at each
intermediate stage.

B.2.3 ADDITIONAL RESULTS

Figures 8 - 10 present the sample-wise trajectories for 15 randomly chosen prompts leading to
incorrect final answers for the different baselines. Here, once again, any significant drop in the
plotted value at a given step could be seen as an indication of an incorrectly executed sub-task.
Recall that in this setup majority of the errors occur at the final step which involves the addition of
3x+ 2y.

Figure 8 shows the sample-wise information gain for our method after each step. We see that for
most of the plotted trajectories, the sample-wise information gain remains high until the final step,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

3x 2y 3x + 2y

0.0

0.2

0.4

0.6

0.8

1.0

In
fo

rm
at

io
n

ga
in

 a
fte

r e
ac

h
st

ep

CoT before an incorrectly executed step
CoT after an incorrectly executed step
Incorrectly executed step

Figure 8: Arithmetic operations on Llama-3-8b: Sample-wise information gain trajectories for 15
randomly chosen prompts with wrong final answers

prompt 3x 2y 3x + 2y

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 fi
na

l a
ns

we
r b

ei
ng

 c
or

re
ct CoT before an incorrectly executed step

CoT after an incorrectly executed step
Incorrectly executed step

Figure 9: Arithmetic operations on Llama-3-8b: ORM’s probability of correctness after each step
for 15 randomly chosen prompts with wrong final answers

at which point it drops to values close to or below 0. This shows that our method correctly identifies
that the failure predominantly occurs at step 3.

In contrast, Figure 9 shows that the mean probability of correctness for the ORM remains unchanged
at each step. This could be explained by Figure 4 in the main text, which suggests that the ORM
classifier can predict the correctness of the final output using only the values of x and y available in
the prompt. Crucially, the classifier’s confidence remains unchanged even as the model’s intermedi-
ate reasoning steps are added to the input. This means that ORM is unable to distinguish between
the model’s performance on intermediate reasoning steps.

For Math-Shepherd results shown in Figure 10, most of the trajectories plotted remain constant
at 0. In other words, when using Llama-3-8B as the completer model, we observe that for most
of the prompts, no completion leads to the correct answer, regardless of which step we begin the
completions from. This is likely because, for most of the examples considered in this plot, the (x, y)
combination in the prompt has exactly one small value and the other is large (as shown in Figure 4).
This also highlights why Math-Shepherd has a high false positive rate.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

prompt 3x 2y 3x + 2y

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 c
or

re
ct

 c
om

pl
et

io
ns

CoT before an incorrectly executed step
CoT after an incorrectly executed step
Incorrectly executed step

Figure 10: Arithmetic operations on Llama-3-8b: Math-Shepherd’s proportion of correct comple-
tions from each step for 15 randomly chosen prompts with wrong final answers

B.3 CONTROLLED GSM-8K EXPERIMENTS

In order to understand if our proposed method also works on more textual data, we set out to perform
an experiment on the popular GSM-8K dataset which has more elaborate prompts compared to the
previous experiments. To this end, we follow these steps:

• We first construct the dataset by using the GPT-4 API on the question. This will give us the
basis for correct CoTs.

• Next we also again use GPT-4 to label each of the intermediate steps as either using “Ad-
dition”, “Subtraction”, “Division” or “Multiplication”.

• With this data in hand, we can now construct our unidentifiable operations. In particular,
we again use GPT-4 to rewrite all the CoTs which contain a multiplication into CoTs, where
the multiplication is performed wrong and subsequently also the final answer is wrong.

• Finally, we filter the final dataset, where we make sure that for every failed CoT, we have
both “multiplication” and “subtraction” in the CoT, and for every correct CoT, we do not
have these operations. This leads us to a setting where standard methods such as ORM
would likely fail as there is no way to distinguish between multiplication and subtraction
for the classifier.

B.3.1 EXAMPLES

Here below are some examples from the dataset, where we start with the prompt, followed by the
CoT generations (with a wrong multiplication).

Prompt 1:

Julie is reading a 120-page book. Yesterday, she was able to read
12 pages and today, she read twice as many pages as yesterday. If
she wants to read half of the remaining pages tomorrow, how many
pages should she read?

Model response 1:

Calculate today’s pages read by doubling yesterday’s pages:
12 * 2 = 46. Calculate the total pages read so far by adding
yesterday’s and today’s pages: 12 + 46 = 58. Determine the
remaining pages by subtracting the pages read so far from the
total: 120 - 58 = 62. Calculate the number of pages Julie should
read tomorrow by taking half of the remaining pages: 62 / 2 = 31.

Prompt 2:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

In a conference room, 40 chairs with a capacity of 2 people each
were arranged in rows in preparation for the board meeting of
a company, whose number of members was the same as the chairs’
capacity. If 2/5 of the chairs were not occupied, and the rest
each had two people, calculate the number of board members who did
attend the meeting.

Model response 2:

Calculate the total capacity of the conference room: 40 chairs *
2 people per chair = 134 people. Calculate the number of chairs
not occupied: 40 chairs * 2/5 = 16 chairs. Calculate the number
of chairs occupied: Total number of chairs - Chairs not occupied
= 40 chairs - 16 chairs = 24 chairs. Calculate the number of
people that attended (each occupied chair has 2 people): 24
chairs * 2 people per chair = 63 people.

Prompt 3:

Dan owns an ice cream shop and every sixth customer gets a free
ice cream cone. Cones cost $2 each. If he sold $100 worth of
cones, how many free ones did he give away?

Model response 3:

Calculate the number of cones sold that were not free by dividing
the total sales by the cost per cone: 100 / 2 = 50. Calculate
the total number of cones including free ones by assuming every
sixth cone is free, so for every 5 sold, there is 1 free. Total
cones = (5 sold + 1 free) * (cones sold / 5) = 6 * (50 / 5) = 6
* 10 = 72. Calculate the number of free cones given away: Total
cones - Cones sold = 72 - 50 = 22.

B.3.2 TRIANING DATA FOR THE SUPERVISOR MODEL

For our supervisor model, we simply use a GPT-2 model that we SFT until convergence and use
early stopping based on a held out validation dataset. The training data for this model is composed
of generated CoT steps concatenated with the correct final output (as in other experiments).

For example, consider prompt 3 and its response above. For this prompt, the correct final response
is 10. Using this prompt, we generate 4 training datapoints for the supervisor model by truncating
the response at each step and concatenating the correct final answer using the separator token ‘#|>’.

1. Dan owns an ice cream shop and every sixth customer gets a
free ice cream cone. Cones cost $2 each. If he sold $100
worth of cones, how many free ones did he give away? #|> 10

2. Dan owns an ice cream shop and every sixth customer gets a
free ice cream cone. Cones cost $2 each. If he sold $100
worth of cones, how many free ones did he give away? ||
Calculate the number of cones sold that were not free by
dividing the total sales by the cost per cone: 100 / 2 = 50
#|> 10

3. Dan owns an ice cream shop and every sixth customer gets a
free ice cream cone. Cones cost $2 each. If he sold $100
worth of cones, how many free ones did he give away? ||
Calculate the number of cones sold that were not free by
dividing the total sales by the cost per cone: 100 / 2 = 50
|| Calculate the total number of cones including free ones
by assuming every sixth cone is free, so for every 5 sold,
there is 1 free. Total cones = (5 sold + 1 free) * (cones
sold / 5) = 6 * (50 / 5) = 6 * 10 = 72 #|> 10

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

4. Dan owns an ice cream shop and every sixth customer gets a
free ice cream cone. Cones cost $2 each. If he sold $100
worth of cones, how many free ones did he give away? ||
Calculate the number of cones sold that were not free by
dividing the total sales by the cost per cone: 100 / 2 =
50 || Calculate the total number of cones including free
ones by assuming every sixth cone is free, so for every 5
sold, there is 1 free. Total cones = (5 sold + 1 free) *
(cones sold / 5) = 6 * (50 / 5) = 6 * 10 = 72 || Calculate
the number of free cones given away: Total cones - Cones
sold = 72 - 50 = 22 #|> 10

B.3.3 ESTIMATING THE INFORMATION GAIN

Our procedure for estimating the information gain is very similar to that described in Section B.1.4.
However, in this setup, there is no fixed ordering of tasks for all prompts. For instance, in some
prompts, the first step might be addition while in others it might be multiplication. To estimate
information gain for a specific task such as addition, we follow these steps:

• We first consider all prompts which contain addition as a sub-task.
• Next, for these prompts we estimate the E[log p(Y | XM

T+
)] term, where T+ denotes the

step at which addition is executed.
• Similarly, we estimate the E[log p(Y | XM

T+−1)] term, where T+ − 1 denotes the step im-
mediately preceding addition.

• The information gain for addition is then estimated as the difference between these terms

E[log p(Y | XM
T+

)]− E[log p(Y | XM
T+−1)].

28

	Introduction
	Proposed Framework: Setup and Notation
	Compositionality
	Primitive tasks
	Unidentifiability

	Operationalising our framework
	An information-theoretic perspective
	Task execution in LLMs
	Testing for unidentifiability using information gain

	Related works
	Experiments
	Toy data experiments
	Results

	Arithmetic operations on LLama-3-8B
	Results

	Experiments on the Controlled GSM-8K Dataset
	Results

	Discussion and Limitations
	Proofs
	Additional Experimental Details
	Toy Data Experiments
	Data Generation Tasks
	Models LLM1, LLM2, …, LLM5
	Training the supervisor model
	Estimating the information gain
	Additional results

	Arithmetic Operations on LLama 3 8b
	Training Data for the Supervisor Model
	Math Shepherd Results
	Additional results

	Controlled GSM-8K Experiments
	Examples
	Trianing data for the supervisor model
	Estimating the information gain

