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ABSTRACT

In realistic application scenarios, existing methods for image-text modeling have
limitations in dealing with data stream: training on all data needs too much com-
putation/storage resources, and even the full access to previous data is invalid. In
this work, we thus propose a new continual image-text modeling (CITM) setting
that requires a model to be trained sequentially on a number of diverse image-text
datasets. Although recent continual learning methods can be directly applied to the
CITM setting, most of them only consider reusing part of previous data or aligning
the output distributions of previous and new models, which is a partial or indirect
way to acquire the old knowledge. In contrast, we propose a novel dynamic histor-
ical adaptation (DHA) method which can holistically and directly review the old
knowledge from a historical model. Concretely, the historical model transfers its
total parameters to the main/current model to utilize the holistic old knowledge. In
turn, the main model dynamically transfers its parameters to the historical model
at every five training steps to ensure that the knowledge gap between them is not
too large. Extensive experiments show that our DHA outperforms other represen-
tative/latest continual learning methods under the CITM setting.

1 INTRODUCTION

In the past few years, image-text modeling has drawn much attention from both academia and indus-
try with a fundamental role in various cross-modal tasks, such as image-text retrieval (Chen et al.,
2020a; Lee et al., 2018), image captioning (Vinyals et al., 2015; Jia et al., 2015), and text-image
generation (Johnson et al., 2018; Qiao et al., 2019). Although existing image-text modeling meth-
ods (Lu et al., 2019; Li et al., 2020; Lei et al., 2021; Yang et al., 2021; Ging et al., 2020; Bain et al.,
2021; Huo et al., 2021; Jia et al., 2021) have achieved great success in these tasks, most of them
assume that a full (fixed) set of image-text pairs are provided for model training, which actually
limits their deployment in realistic application scenarios. That is, the training data often comes in
a stream way, and the current widely-used paradigm for image-text modeling faces two limitations:
(1) training on all data (i.e., both previous and new data) severely increases the computational and
storage overhead; (2) the full access to previous data may be invalid.

Figure 1: The results of catastrophic
forgetting under the CITM setting.

To overcome these limitations, we thus propose a continual
image-text modeling (CITM) setting instead. Concretely,
we recollect four diverse image-text datasets respectively
from MSCOCO (Lin et al., 2014), CC3M (Sharma et al.,
2018), WIT (Srinivasan et al., 2021) and GoodNews (Biten
et al., 2019), each of which is split into the training,
validation, and test sets. We adopt the SimCLR-based
model (Chen et al., 2020b) as the basic model which is also
deployed in OpenAI CLIP (Radford et al., 2021). Under
the CITM setting, the model is sequentially trained on each
of the four image-text datasets, and is finally evaluated on
all datasets. To demonstrate the well-known catastrophic
forgetting problem, we measure the image-to-text retrieval
performance with the metric recall@1 (R@1) during sequential training on the four datasets. The
results in Figure 1 clearly show that every time the model is trained on a new dataset, its performance
on previous datasets has a distinct degradation (i.e., catastrophic forgetting).
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Figure 2: Schematic illustration of the realistic application of our proposed CITM setting in large-
scale multi-modal pre-training (like OpenAI CLIP) with the pre-training data being updated every
year. Left: The traditional setting for large-scale pre-training with annual data update. Right: Our
CITM setting for large-scale pre-training with annual data update.

Among existing continual learning methods, rehearsal-based (Chaudhry et al., 2019; Buzzega et al.,
2020) and regularization-based methods (Li & Hoiem, 2017; Rannen et al., 2017; Zhang et al.,
2020; Cha et al., 2021) can be easily applied to the CITM setting, while architecture-related meth-
ods (Mallya & Lazebnik, 2018; Mallya et al., 2018; Rosenfeld & Tsotsos, 2018) generally need
extra task-specific modules and are unsuitable for CITM with a unified architecture. In this paper,
we thus devise baseline methods for CITM mainly by deploying rehearsal-based and regularization-
based methods. Note that these two groups of continual learning methods have their own limitations.
Specifically, rehearsal-based methods set up a memory buffer to replay previous data, and only pre-
serve partial old knowledge due to the sample selection imposed on the memory buffer. Moreover,
regularized-based methods can only convey the old knowledge by aligning the output distributions
of the previous and new models, which indicates that the old knowledge from the previous model
can only be indirectly transferred through data-driven guidance. Such an indirect approach is thus
vulnerable to large domain shifts across the previous and new tasks.

To avoid the drawbacks of the above baseline methods for CITM, we thus propose a novel dynamic
historical adaptation (DHA) method which can holistically and directly review the old knowledge
from a historical model. The core idea of our DHA is to directly transfer knowledge between the
old and new models through parameter interaction. In our DHA, we name the model trained on
the current task as the main model, and the best (main) model on the last task as the historical
model. During parameter interaction, we directly transfer the parameters of the historical model
to the main model and then train the main model with modified parameters on the current task.
Meanwhile, we dynamically update the historical model with the guidance of the main model to
ensure that the knowledge gap between them is not too large. Specifically, at every five steps,
the parameters of the main model are passed to the historical model for parameter modification.
Overall, these two parameter transfer strategies make up our DHA method. Compared with existing
methods (Li & Hoiem, 2017; Chaudhry et al., 2019; Buzzega et al., 2020; Cha et al., 2021), our DHA
has two advantages: (1) DHA adopts direct parameter transfer instead of indirect model aligning
(deployed by regularization-based methods), and thus it is more robust to large domain shifts across
the previous and new tasks. (2) DHA holistically reviews the old knowledge from the historical
model, which can overcome the drawback of rehearsal-based methods for partial data selection
(i.e., partial old knowledge is reused). To our best knowledge, we are the first to propose a direct
parameter transfer method to cope with the forgetting problem in the continual learning field.

As we have mentioned, we construct a benchmark dataset for the CITM setting by recollecting
four diverse image-text datasets respectively from MSCOCO (Lin et al., 2014), CC3M (Sharma
et al., 2018), WIT (Srinivasan et al., 2021) and GoodNews (Biten et al., 2019). Under a fair setting,
we compare DHA with a number of baseline methods (Li & Hoiem, 2017; Chaudhry et al., 2019;
Buzzega et al., 2020; Cha et al., 2021) on this benchmark dataset. Extensive experiments prove that
our DHA outperforms these baseline methods under the CITM setting.

Overall, the main contributions of this paper can be summarized as follows: (1) We propose a new
continual image-text modeling (CITM) setting for image-text modeling on data stream, which has
a realistic application in large-scale multi-modal pre-training (with annual data update) as shown
in Figure 2. (2) We devise a novel dynamic historical adaptation (DHA) method under the CITM
setting. For the first time, we identify the important role of direct parameter transfer (between the
historical and main models) in continual learning. (3) We construct a benchmark dataset of four di-
verse sets of image-text pairs, which can facilitate the research on CITM. (4) Extensive experiments
demonstrate the effectiveness of our DHA under the CITM setting.
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2 RELATED WORK

Image-Text Modeling. Recent image-text modeling methods can be summarized into two groups:
single-stream and two-stream methods. (1) Single-stream methods aim to learn the unified repre-
sentation of the image-text pair with a fusion module. Most of existing single-stream methods (Lu
et al., 2019; Tan & Bansal, 2019; Zhu & Yang, 2020; Li et al., 2020; Lei et al., 2021; Yang et al.,
2021) choose to concatenate the image and text embeddings as the input of the fusion module (e.g.,
cross-attention transformer). Although model training is easy for single-stream methods, it requires
calculating the similarities of all the possible query-candidate pairs during inference. Therefore,
they suffer from heavy computation burdens. (2) Two-stream methods (Ging et al., 2020; Patrick
et al., 2020; Bain et al., 2021; Huo et al., 2021; Jia et al., 2021; Radford et al., 2021) adopt indepen-
dent image and text encoders to learn image and text embeddings that are aligned in a joint space.
Compared to single-stream methods, two-stream methods allow different depths and designs of net-
work architectures for the two modalities and enjoy much more efficient inference. In this work,
we follow the two-stream architecture for image-text modeling: ResNet50 (He et al., 2016) is used
as the image encoder, and BERT-base (Devlin et al., 2018) is used as the text encoder. We adopt
SimCLR (Chen et al., 2020b) as the basic contrastive learning method for model training.

Continual Learning. By reviewing recent progress in conventional continual learning, we can
divide main-stream approaches into three groups: (1) Rehearsal-Based Methods. Early classic
rehearsal-based method (Rebuffi et al., 2017) proposes to store part of exemplars of previous classes
in order to acquire better class means. (Chaudhry et al., 2019) finds that retraining a subset of old
data on new tasks can help address the forgetting problem and also provides several memory update
strategies. (Aljundi et al., 2019; Chaudhry et al., 2021; Buzzega et al., 2020) further explore the
approaches to selecting representative samples from old tasks. In addition, pseudo-data rehearsal
generating approaches (Shin et al., 2017; Atkinson et al., 2018; Lavda et al., 2018; Liu et al., 2020;
Ramapuram et al., 2020) are proposed to avoid extra storage and generate more representative sam-
ples for training, whereas generating pseudo-data actually increases the training time. Note that the
rehearsal-based methods suffer from the drawback that only partial historical knowledge is trans-
ferred by the memory buffer. (2) Regularization-Based Methods. This group of methods mainly
aim to distill the knowledge of the previous models. (Li & Hoiem, 2017; Rannen et al., 2017; Zhang
et al., 2020) align the output features or logits between the previous and the current models with an
extra regularization penalty. Since the domain shifts exist across different tasks, such regularization
penalty brings additional training difficulty (De Lange et al., 2021). Other methods (Aljundi et al.,
2018; Chaudhry et al., 2018; Kirkpatrick et al., 2017) constrain part of the parameters of the model.
Since most of these methods are designed for classification tasks, they are hard to be directly applied
to our CITM setting. (3) Architecture-Related Methods. This group of methods mitigate the dif-
ference in new tasks in two ways. (Mallya & Lazebnik, 2018; Mallya et al., 2018; Serra et al., 2018)
mask different parameters while training different tasks. (Aljundi et al., 2017; Rosenfeld & Tsotsos,
2018; Xu & Zhu, 2018) extend network architecture for new tasks. A potential drawback of these
methods is that they generally need extra task-specific modules and are unsuitable for CITM with a
unified architecture. Other than the above approaches with a single strategy, recent works (Buzzega
et al., 2020; Cha et al., 2021) start to design combined strategies for continual learning based on
rehearsal-based and regularization-based methods. Finally, we notice that most of existing continual
learning approaches have a common characteristic that the old knowledge is expressed with (partial)
data, which means that the model update to mitigate forgetting may be affected by partial/indirect
guidance. In contrast, our proposed DHA provides a new perspective of continual learning that the
old knowledge could be holistically preserved by direct parameter transfer.

3 PROPOSED METHOD

3.1 PRELIMINARY

We first define our proposed CITM setting formally. Given a sequence of n image-text datasets
D = {D1, D2, ..., Dn} coming from n domain sources like a stream, a model for CITM is supposed
to be sequentially trained on D. Each dataset Dt (1 ≤ t ≤ n) is defined as Dt = {(xI

i , x
T
i )}

Nt
i=1,

where xI
i and xT

i respectively denote the image and text samples in the i-th image-text pair, and
Nt denotes the number of data pairs. The image-text retrieval task (Chen et al., 2020a; Lee et al.,
2018) on each dataset Dt is denoted as Tt (1 ≤ t ≤ n). For each task Tt, a model for image-text
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retrieval typically learns to align the image and text embeddings with contrastive loss Chen et al.
(2020b). Under the CITM setting, the model only concentrates on the current task during sequential
training, leading to the catastrophic forgetting of previous knowledge. For performance evaluation,
the obtained final model (trained across all tasks) is tested on each of the n tasks.

3.2 NETWORK ARCHITECTURE

Under the CITM setting, we propose a novel dynamic historical adaptation (DHA) method which
can holistically and directly review the old knowledge from a historical model. The core idea of
our DHA is to directly transfer knowledge between the old and new models through parameter
interaction. To this end, our DHA model is devised to have two key components: the historical model
and the main model, as illustrated in Figure 3. These two models share the same architecture while
only the main model requires the backward update. We follow the two-stream network architecture
like CLIP (Radford et al., 2021), which has achieved remarkable performance in image-text retrieval
tasks. Concretely, the image encoder takes ResNet50 as the backbone and the text encoder takes
BERT-Base as the backbone, which are both initialized with unimodal pre-trained models.

Image and Text Encoders. Formally, the backbone ResNet50 of the image encoder is denoted as
f I
ResNet. Meanwhile, the backbone BERT-Base of the text encoder is denoted as fT

Bert. Given an
input text xT

i , we first tokenize it into a sequence as [tk1i , tk
2
i , ..., tk

li
i ], where li denotes the length

of xT
i . To ensure that the text and image embeddings have the same dimension, we append linear

projection layers f I
P and fT

P to ResNet50 and BERT-Base, respectively. Given an image-text pair
(xI

i , x
T
i ), the final image and text embeddings are given by:

eIi = f I
P (f

I
ResNet(x

I
i )), (1)

eTi = fT
P (fT

Bert(tk
1
i , tk

2
i , ..., tk

li
i )). (2)

Contrastive Loss Function. Since our proposed DHA has the two-stream architecture, it can be
effectively trained by the well-known contrastive learning method SimCLR (Chen et al., 2020b).
Concretely, given a batch of B image-text pairs {xI

i , x
T
i }Bi=1 during training, the loss function is

constructed as follows. For each input image xI
i , we define the contrastive loss between its image

embedding eIi and the embeddings of all positive/negative texts in the batch as an InfoNCE loss:

Li2t
c = − 1

B

B∑
i=1

log
exp(eIi · eTi /τ)

exp(eIi · eTi /τ) +
∑
j ̸=i

exp(eIi · eTj /τ)
, (3)

where τ denotes the temperature hyperparameter, and the vector similarity is measured by dot prod-
uct (·). Similarly, for each input text xT

i , the InfoNCE loss is given by:

Lt2i
c = − 1

B

B∑
i=1

log
exp(eIi · eTi /τ)

exp(eIi · eTi /τ) +
∑
j ̸=i

exp(eIj · eTi /τ)
. (4)

The total contrastive loss for training our DHA is thus defined as:

Lc = Li2t
c + Lt2i

c . (5)

In this work, for fair comparison, all the competitors for CITM adopt the same network architecture
and the same basic contrastive loss function as our DHA. More details can be found in Sec. 4.

3.3 DYNAMIC HISTORICAL ADAPTATION

As we have mentioned, our motivation of method design is to transfer the holistic knowledge con-
tained in the historical model to the new model, without suffering from the drawbacks of exist-
ing continual learning methods. Concretely, data rehearsal approaches (Chaudhry et al., 2019;
Buzzega et al., 2020) attempt to preserve the previous data distribution, but retaining a memory
buffer of limited size may cause the overfitting to the partial samples of the previous task. More-
over, regularization-based approaches (Li & Hoiem, 2017; Rannen et al., 2017; Zhang et al., 2020;
Cha et al., 2021) attempt to store the historical knowledge by aligning the historical and main mod-
els with regularization-based penalty terms, but such an indirect way to addressing the forgetting
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Figure 3: Overview of the proposed DHA method for the CITM setting. At the beginning of task Tt,
the best main model found in task Tt−1 (according to the validation performance on task Tt−1) is
used to initialize both the historical and main models. During each training iteration, the main model
first receives the transferred parameters from the historical model and then learns on the dataset of
task Tt. Moreover, for every k training iterations, the historical model is updated with the transferred
parameters of the main model.

problem is thus vulnerable to large domain shifts across the previous and new tasks. In this paper,
we thus propose a novel dynamic historical adaptation (DHA) method which can holistically and
directly review the old knowledge from a historical model. Below we introduce the details of the
two update strategies applied in our DHA throughout training.

Adaptation of Main Model with Historical Model: Since all the learned knowledge has been
held and expressed by model parameters, we believe that directly transferring the parameters of the
historical model to the main model is a direct and effective approach to preserving the historical
knowledge. The direct parameter transfer process is shown in Figure 3. Formally, let θH , θM , θ∗M
denote the parameters of the historical model, the main model, and the best main model found in
the last task, respectively. Moreover, let θiH and θiM denote the parameters of the historical model
and the main model at the end of the i-th training iteration in the current task, respectively. At
the beginning of the current task, we initialize the main model and the historical model with the
parameters of the best main model found in the last task (i.e., θ0M = θ∗M and θ0H = θ∗M ). For
each training iteration (i ≥ 1) before data load, we choose to update θi−1

M with part of θi−1
H and

obtain θ
ipre
M as the new intermediate parameters of the main model. After such parameter update,

the main model is trained on the input data and backward updated normally to obtain θiM as the final
parameters of the i-th training iteration. We define the gradient function w.r.t. θM as:

GLc(θ̂M ) =
∂Lc

∂θM

∣∣∣∣
θM=θ̂M

. (6)

The above adaptation strategy for the main model with the historical model can be formulated as:

θ
ipre
M = λ1θ

i−1
M + (1− λ1)θ

i−1
H , (7)

θiM = θ
ipre
M − ηGLc(θ

ipre
M ), (8)

where η denotes the learning rate, and λ1 denotes the weighting coefficient. By combining Eq. (7)
and Eq. (8), we have the adaptation process from θi−1

M to θiM as follows:

θiM = λ1θ
i−1
M + (1− λ1)θ

i−1
H − ηGLc

(λ1θ
i−1
M + (1− λ1)θ

i−1
H ). (9)

Dynamic Update of Historical Model: Currently, the main model has received the guidance from
the historical model. However, since the parameters of the historical model remain static in the
current task, this may cause two concerns: (1) Since the main model always learns better on the
current task as the training process goes on, the knowledge gap between the historical and main
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models is gradually enlarged. Therefore, the parameters transferred from the unchanged historical
model tend to cause degradation to the retrieval performance of the main model on the current task.
(2) Such performance degradation to the main model on the current task would finally affect the
performance of the final model (i.e. the best main model across all tasks) when it is evaluated on
this task. To address these concerns, we choose to make the parameters of the historical model
gradually change by updating it with the parameters of the main model (but not so frequently) . This
dynamic update of the historical model at the i-th training iteration is given by:

θiH =

{
λ2θ

i−1
H + (1− λ2)θ

i−1
M , if i = mk, m ∈ N

θi−1
H , otherwise

, (10)

where k denotes the step interval for model update, and λ2 denotes the weighting coefficient.

Overall, our proposed DHA is composed of the above two update strategies, which have been shown
to be effective in Sec. 4.3 and Sec. 4.4. We believe that direct parameter transfer is another promising
way to handling the continual learning problem in image-text modeling. The pseudocode of the full
algorithm for our proposed DHA is given in Appendix A.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To mimic the realistic application of the CITM setting in multi-modal per-training (like
OpenAI CLIP), we recollect four image-text datasets for benchmark construction from the following
large diverse datasets of image-text pairs: (1) MSCOCO (Lin et al., 2014) is an image-text dataset
that consists of 123, 287 images with their captions. Each image is annotated with 5 captions. Most
images are related to the nature and common objects in daily life. (2) CC3M (Sharma et al., 2018)
is a well-known image-captioning dataset for image-text pre-training. It is composed of about 3M
image-text pairs, which are collected from the Internet with weak relation between images and their
textual descriptions. (3) WIT (Srinivasan et al., 2021) is a large multimodal multilingual dataset
collected from the Wikipedia website. This dataset has a total of 11.5M images. Each image is an-
notated with the corresponding textual description or contextual information. (4) GoodNews (Biten
et al., 2019) is a large news image-captioning dataset. It is collected from the New York Times. Un-
like the other datasets, the captions in GoodNews are written by professional journalists and thus are
claimed to have implications for the style and richness of the news. In this paper, based on the afore-
mentioned four image-text datasets, our benchmark dataset of four sequential tasks is constructed
as follows: (1) For task T1, we randomly select 100, 000 images with corresponding captions from
MSCOCO as the training set, 13, 287 as the validation set, and 5, 000 as the test set. (2) For the
other tasks T2 – T4, we construct the three task-specific datasets from CC3M, WIT, and GoodNews,
respectively. Concretely, the training/validation/test set is formed to have 130, 000/13, 000/5, 000
image-text pairs uniformly for each of T2 – T4.

Evaluation Metrics. We adopt Recall@mean (R@mean) and Forgetting Rate (FR) as our evalu-
ation metrics. R@mean indicates the mean value of Recall@1, Recall@5, and Recall@10, where
Recall@K (K=1,5,10) denotes the percentage of correct matching in the top-K retrieved results.
The R@mean on each task indicates the retrieval performance of the final model on this task. More-
over, for the final model tested on task Tt, FR is defined as FRn

t =
Rt

t−Rn
t

Rt
t

, where Rt
t denotes the

R@mean of the best main model in task Tt on the test set of task Tt, and Rn
t denotes the performance

of the final model on the test set of task Tt. The average FR is FR = 1
n−1

∑n−1
t=1

Rt
t−Rn

t

Rt
t

.

4.2 IMPLEMENTATION DETAILS

Under the CITM setting, we train our DHA model on a sequence of four datasets: MSCOCO (Task
T1), CC3M (Task T2), WIT (Task T3), and GoodNews (Task T4). After the main model has com-
pleted its training on task Tt−1, we find the best main model on the validation set of Tt−1. At the
beginning of task Tt, this best main model is used to initialize both the main and history models on
this new task. For fair comparison, we set the memory buffer to have 5% samples of the train set
of each task for our DHA (if buffer is used) and all competitors. The details of the memory buffer
updating strategy are included in Appendix A. To make comprehensive study, we implement our
DHA with and without memory buffer to validate its effectiveness under the CITM setting.
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Table 1: Comparative results between our DHA and other representative/latest methods. ‘T2I’ de-
notes text-to-image retrieval and ‘I2T’ denotes image-to-text retrieval. All methods adopt the same
network architecture. ‘Mem’ denotes the data rehearsal with 5% buffer.

Method Mem Task T1 Task T2 Task T3 Task T4 Average
R@mean FR R@mean FR R@mean FR R@mean R@mean FR

T2I

Baseline N 13.64 68.30 12.78 64.82 13.63 40.25 22.62 15.67 57.79
LwF (Li & Hoiem, 2017) N 16.81 60.94 15.69 56.31 15.33 31.41 22.68 17.63 49.55
ER (Chaudhry et al., 2019) Y 16.30 62.12 16.15 55.08 14.37 36.42 21.57 17.10 51.21
DER (Buzzega et al., 2020) Y 20.52 52.31 20.92 41.74 16.31 24.07 21.04 19.70 39.37
CO2L (Cha et al., 2021) Y 19.64 54.35 18.95 46.14 16.13 24.94 22.95 19.42 41.81
DHA† (ours) N 21.31 50.48 21.82 37.15 15.64 27.09 21.37 20.04 38.24
DHA (ours) Y 24.58 42.88 22.95 33.82 16.15 24.50 21.22 21.29 33.73

I2T

Baseline N 17.26 66.48 11.55 68.60 13.48 42.02 23.72 16.50 59.03
LwF (Li & Hoiem, 2017) N 21.59 58.07 15.36 57.58 15.42 34.69 23.29 18.92 50.11
ER (Chaudhry et al., 2019) Y 21.23 58.57 15.17 57.79 14.79 37.83 22.03 18.31 51.40
DER (Buzzega et al., 2020) Y 27.55 46.49 19.08 47.31 16.34 26.43 21.99 21.24 40.08
CO2L (Cha et al., 2021) Y 26.23 49.06 17.09 52.18 16.33 27.67 23.59 20.81 42.97
DHA† (ours) N 27.91 45.80 17.69 50.28 15.60 30.11 22.02 20.81 42.06
DHA (ours) Y 32.72 36.45 21.01 39.50 16.45 24.71 22.25 23.11 33.55

We adopt BERT-Base (Devlin et al., 2018)/ResNet50 (He et al., 2016) as the backbone of text/image
encoder. They both use corresponding unimodal pre-trained models for initialization. The images
are resized to 224x224 pixels, and the max length of the text descriptions is set to 256 (tokens). We
set the learning rate at the beginning of each task to 5e-5 and multiply it by 0.1 as the validation loss
does not decrease. We adopt the optimizer Adam for gradient propagation, with the weight decay
1e−5. The batch size is set to 320 for each training iteration. λ1, λ2, and k are empirically selected
as 0.995, 0.985 and 5, respectively. The main model is trained for 15 epochs on the training set of
each task. The total training time on four datasets is around 12 hours with 8 Tesla V100 GPUs. The
dataset and code will be released soon.

4.3 MAIN RESULTS

We compare our DHA with other representative/latest methods, including the classic regularized-
based method LwF (Li & Hoiem, 2017), the classic rehearsal-based method ER (Chaudhry et al.,
2019), and two fusion methods DER (Buzzega et al., 2020) and CO2L (Cha et al., 2021) which
combine the regularized-based and rehearsal-based strategies (the implementation details of these
competitors are included in Appendix B). The basic method (denoted as ‘Baseline’) denotes training
the same network sequentially on four tasks but without any continual learning strategy. The com-
parative results in Table 1 (see more results in Appendix D) show that: (1) Our DHA beats all the
competitors according to average R@mean and average FR over all tasks. The margins between our
DHA and all the competitors are especially significant on average FR. This suggests that our direct
parameter transfer strategy used for designing DHA is indeed effective for the CITM setting. (2)
Our DHA outperforms the second best method DER by 1.59% – 1.87% on average R@mean and
5.64% – 6.53% on average FR. This further validates the effectiveness of our direct parameter trans-
fer strategy used for designing DHA. (3) Our DHA† (without memory buffer) achieves better results
than most of the other approaches. When the rehearsal-based strategy is fused, our DHA achieves
the state-of-the-art results. That is, our DHA provides a new promising approach to continual image-
text modeling. (4) On the most previous tasks (e.g., T1 and T2), our DHA performs significantly
better than all the competitors in preserving much earlier knowledge. This superior ability would
make a greater difference in realistic applications when there are more tasks in the data stream. (5)
On the newest task T4, nearly all the methods cause a drop on R@mean as compared to ‘Baseline’.
Such performance drop is mainly due to the trade-off between preserving previous knowledge and
learning the current task, which is a common practice in continual learning scenarios.

To show more detailed performance of all methods in alleviating forgetting, we provide the results
of the main model (of all methods) on task T1 during sequential training on the four tasks in Fig-
ure 4 (more results on task T2 and task T3 are shown in Appendix D). It actually shows the change
tendency of R@mean on task T1 of the main model when it is being trained on the later tasks sequen-
tially. Specifically, the left sub-figure show the text-to-image retrieval performance on task T1 when
the main model is trained from task T1 to task T4, while the right sub-figure show the corresponding
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I2T: Recall@mean of the main model on Task  

I2T: Recall@mean of the main model on Task I2T: Recall@mean of the main model on Task

T2I: Recall@mean of the main model on Task 

2T

1T

1T
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Figure 4: Illustration of the results of the main model (of all methods) on Task T1 during sequential
training on the four tasks. ‘T2I’ denotes text-to-image retrieval and ‘I2T’ denotes image-to-text
retrieval. It can be clearly seen that our DHA forgets with the lowest speed.

Table 2: Direct retrieval results on the test set of Flickr30K obtained by our DHA and other rep-
resentative methods. Note that all methods are trained on the sequence of four image-text datasets
(i.e., {MSCOCO, CC3M, WIT, GoodNews}) under the CITM setting.

Method T2I I2T
R@1 R@5 R@10 R@mean R@1 R@5 Recall@10 R@mean

Baseline 11.04 29.70 40.42 27.05 16.30 36.60 47.00 33.30
ER (Chaudhry et al., 2019) 12.46 32.74 44.30 29.83 17.90 40.80 51.30 36.67
DER (Buzzega et al., 2020) 16.52 39.28 51.46 35.93 22.70 47.60 59.40 43.23
DHA† (ours) 16.02 36.58 47.52 33.52 21.50 47.10 58.80 42.47
DHA (ours) 17.76 41.30 54.22 37.76 24.00 48.90 63.10 45.33

image-to-text performance. It can be clearly seen that: (1) Our DHA helps the main model forget
with the slowest speed during sequential training among all the methods under the CITM setting.
(2) Even without memory data, the forgetting speed of our DHA† is still slower than that of most of
the other competitors. Overall, these observations provide further evidence that our direct parameter
transfer strategy (used in DHA) is indeed effective in alleviating forgetting, and our DHA can be
deployed as a new promising approach to continual image-text modeling.

Additionally, we conduct direct retrieval experiments on the test set of Flickr30K (Young et al.,
2014), which has no overlap with the sequence of four image-text datasets (i.e., {MSCOCO, CC3M,
WIT, GoodNews}) under the CITM setting. We compare our DHA with Baseline, ER, and the
best competitor DER, which are all sequentially trained on the four datasets. The comparative
results in Table 2 show that our DHA achieves the best performance, i.e., our DHA has the strongest
generalization ability due to the direct parameter transfer strategy used for alleviating forgetting.

4.4 ABLATION STUDY

Our proposed DHA is composed of two main strategies: (1) adaptation of the main model with the
historical model (shortened as ‘Adapt with Hist’), i.e., the main model keeps reviewing the historical
knowledge by receiving the parameters of the historical model; (2) dynamic update of the historical
model (shortened as ‘Dynamic Hist’), i.e., the historical model is renewed by updating its parameters
with the parameters of the main model. To clearly show the influence of each strategy on the model
performance and also study the effect of the memory buffer, we provide the ablation study results
for our full DHA on image-to-text retrieval in Table 3. We only show the results (R@mean) of the
final model (trained across all four tasks) on each task under the CITM setting. We can observe
that: (1) The most basic method with no DHA strategies and no memory buffer has the lowest
performance on average R@mean. (2) Only adopting the strategy of ‘Adapt with Hist’ yields a
3.85% improvement on average R@mean, showing that it can well retain the knowledge of the
previous tasks. (3) Adopting both ‘Adapt with Hist’ and ‘Dynamic Hist’ strategies brings further
improvements on average R@mean. Particularly, such fusion yields performance gains on tasks T2,
T3, and T4 out of all the four tasks. This actually validates the effectiveness of ‘Dynamic Hist’:
by controlling the gap between the historical and main models, the found best main model of task
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Table 3: Ablation study results (R@mean) for our full DHA under the CITM setting. ‘Adapt with
Hist’ denotes adaptation of the main model with the historical model. ‘Dynamic Hist’ denotes
dynamic update of the historical model. ‘Mem’ denotes the data rehearsal with 5% buffer. The
second best results are highlighted by underline.

Adapt with Hist Dynamic Hist Mem Task T1 Task T2 Task T3 Task T4 Average
17.59 12.33 12.12 22.80 16.21

✓ 32.30 17.09 12.29 18.57 20.06
✓ ✓ 27.91 17.69 15.60 22.02 20.81

✓ 21.23 15.17 14.79 22.03 18.31
✓ ✓ 36.29 20.41 13.69 18.30 22.17
✓ ✓ ✓ 32.72 21.01 16.45 22.25 23.11

Table 4: Effect of step k (for updat-
ing the historical model) on the per-
formance of DHA. We only show the
results (R@mean) of the final model
(trained across all four tasks) on each
task under the CITM setting.
k T1 T2 T3 T4 Avg.

1 22.62 15.21 14.20 22.39 18.60
3 28.01 17.69 14.45 22.22 20.59
5 32.72 21.01 16.45 22.25 23.11
7 33.01 21.28 16.23 21.69 23.01
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Figure 5: Results of DHA with extra memory buffer.

Tt suffers from much less degradation (caused by ‘Adapt with Hist’) on task Tt. In other words,
adopting both of the two strategies can ensure a good trade-off between the previous tasks and the
current task during sequential training. (4) The extra memory buffer yields improvements in most
cases. Moreover, even if the memory buffer is used, the two strategies of our DHA are still effective.
This means that our DHA is complementary to the rehearsal-based methods.

We further conduct experiments to explore the effect of step k on the performance of our DHA. In-
tuitively, if k is too small, the historical model would be updated too frequently with the parameters
of the main model. Therefore, although the knowledge gap is too small to affect the performance
of the main model on the current task, the historical model is hard to preserve the historical knowl-
edge. On the contrary, if k is too large, the historical model would only have few updates with
the parameters of the main model. As a result, a huge knowledge gap between the historical and
main models would harm the performance of the main model on the current task. Overall, a good
trade-off can be ensured by selecting the best k. Indeed, this analysis is validated by the results in
Table 4. Specifically, the performance of our DHA on task T4 is the best when k = 1 and gradually
decreases when k increases from 1 to 7, while the performance on the previous tasks T1-T3 grows
higher at the same time. We thus select k = 5 with the highest average R@mean in this paper.

Finally, to investigate the effect of the buffer size, we make comparison among ER (Chaudhry et al.,
2019), DER (Buzzega et al., 2020), and our DHA with different buffer sizes (0%, 1%, 5%, and
10% of the training data). We show the comparative results (average R@mean) in Figure 5. It can
be seen that DHA beats ER and DER in all cases. Furthermore, our DHA with 1% buffer and 0%
buffer even perform better than DER and ER with up to 10% buffer, respectively. This validates the
effectiveness of direct parameter transfer (used in DHA) in continual learning.

5 CONCLUSION

In this paper, we propose a continual image-text modeling (CITM) setting, under which the model
is required to be trained sequentially on four diverse image-text datasets and finally evaluated on all
previous datasets. This new continual setting has a realistic application in large-scale image-text pre-
training. We devise an effective dynamic historical adaptation (DHA) approach to coping with the
forgetting problem in CITM. Different from existing continual learning methods, our DHA proposes
to preserve the historical knowledge with direct parameter interaction between the historical and
main models. Extensive experiments show the effectiveness of our DHA under the CITM setting.
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A FULL ALGORITHM FOR DHA

In Algorithm 1, we give the pseudocode of the full algorithm for DHA. In Algorithm 2, we show our
detailed strategy of constructing and updating memory buffer at the beginning of the current task.
The core idea of Algorithm 2 is similar to ER-ring (Chaudhry et al., 2019). However, since ER-ring
equally allocates the buffer to each class but the concept of ‘class’ does not exist in the image-text
retrieval task, we keep the buffer evenly contains image-text pairs from all the previous datasets
instead. The update strategy in Algorithm 2 is applied to all the competitors using memory buffer.

Algorithm 1 Sequential Training with DHA
Input: the dataset for sequential tasks {Di}Ti=1

the main model with parameters θmain

the historical model with parameters θhist
the best model of the last task with parameters θlast
max iterations imax in each task
hyperparameters k, λ1, λ2

Output: the learned θ∗main
initialize θmain by training the main model on D1

initialize θlast ← θmain

for Dt ∈ {D2, ..., DT } do
initialize θhist ← θlast, θmain ← θlast ▷ Initialize the main and historical models
for i← 1 to imax do

if i%k = 0 then
θihist ← λ2θ

i−1
hist + (1− λ2)θ

i−1
main ▷ Update the historical model with main model

else
θihist ← θi−1

hist ▷ Do not update the historical model
end if
update θimain according to Eq. (9)

end for
obtain the best θmain

θlast ← θmain

end for
return the found best θ∗main

Algorithm 2 Memory Buffer Update Strategy
Input: the dataset Dt−1 of task Tt−1

the memory buffer Mt−1 used in task Tt−1

the memory buffer Mt used in task Tt

the samples St
i selected from Di (1 ≤ i ≤ t) to compose buffer Mt

the buffer size |M |
the number of tasks T

Output: Mt

if t = 2 then
S2
1

|M |←− D1 ▷ Randomly select |M | samples from D1

M2 ← S2
1

else if t ≤ T then
for 1 ≤ i ≤ (t− 2) do

St
i

|M|
t−1←− St−1

i ▷ Randomly select |M |
t−1 samples from buffer Mt−1

end for

St
t−1

|M|
t−1←− Dt−1 ▷ Randomly select |M |

t−1 samples from task Tt−1

Mt ← {St
1, S

t
2, ..., S

t
t−1} ▷ Form the buffer Mt used in task Tt

end if
return Mt
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B IMPLEMENTATION DETAILS OF ALL COMPETITORS

We introduce the implementation details of all competitors for continual image-text modeling:

LwF (Li & Hoiem, 2017): We adopt the best main model in the last task as the old model, maintain
the old model in the new task, and align the output logits between the old and current main models
as the distillation regularization.

ER (Chaudhry et al., 2019): As the classic data-rehearsal approach, ER mainly reduces the catas-
trophic forgetting by reusing partial old data (from previous tasks) in the new task. We adopt Al-
gorithm 2 (similar to ER-ring) to update the memory buffer. We set the buffer size as 5% of the
training set of each task. Importantly, all the other competitors which adopt memory buffer share
exactly the same buffer setting as ER.

DER (Buzzega et al., 2020): We save logits instead of raw inputs and old models for DER. Fol-
lowing (Buzzega et al., 2020), we randomly select the previous model from 15 epochs to acquire
various expressions of the buffer. Moreover, only the logits of previous sample pairs are aligned.

CO2L (Cha et al., 2021): The data rehearsal and regularization strategies are both adopted by
CO2L. Different from DER, CO2L applies data augmentation. Hence, we adopt two augmentations
for input images in each mini-batch. Following its strategy, the sample pairs in the buffer are only
used as negative samples.

We adopt the same temperature hyperparameter and learning rate for DHA, Baseline and all the
above competitors. In this work, our DHA only adopts the same memory buffer as ER and mixes it
with new data when training on a new task.

C DOMAIN SHIFT IN THE CITM SETTING

Figure 6: Results of cross-dataset evaluation
after independent training.

To directly demonstrate the domain shift across the
four datasets used in our CITM setting, we conduct
cross-dataset evaluation experiments. Concretely,
we train the model (with the same architecture de-
scribed in Sec. 3.2) independently on the train set
of each dataset, and then evaluate it on the test sets
of all four datasets to show its performance on the
seen dataset and the other unseen datasets. As shown
in Figure 6, the model achieves the highest perfor-
mance on its seen dataset and much lower perfor-
mance on unseen datasets. Therefore, we validate
that there do exist domain shift, in other words, the
domain gap across the four datasets. Overall, our
CITM setting reasonably mimics the realistic appli-
cation scenarios of image-text modeling.

D DETAILED EVALUATION RESULTS

Table 5: Effect of coefficients λ1 and λ2 on
the performance of DHA.

λ1

λ2 0.98 0.985 0.99 0.999

0.98 20.68 21.01 20.93 20.87
0.99 21.24 22.23 21.64 21.33
0.995 22.15 23.11 22.28 22.12
0.999 21.43 22.84 21.97 22.08

More detailed experiments results are included in
this section. Firstly, we show the ablative I2T re-
sults (Average R@mean) of our DHA model with
different values of λ1 and λ2 in Table 5. Accord-
ing to their definitions in Sec. 3.3, λ1 controls the
update speed of the main model with the historical
model, and λ2 controls the update speed of the his-
torical model with the main model. Thus, the bal-
ance should be made between the two coefficients.
We can see that the best performance could be ob-
tained when λ1 = 0.995 and λ2 = 0.985. Moreover, most of the combination groups in Table 5
lead to better results than DER (Buzzega et al., 2020) (21.24), which further indicates that our DHA
is indeed a promising approach to CITM.
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Figure 7: Illustration of the results of the main model (of all methods) on Task T2 and Task T3

during sequential training on the four tasks. ‘T2I’ denotes text-to-image retrieval and ‘I2T’ denotes
image-to-text retrieval. It can be clearly seen that our DHA forgets with the lowest speed.

Secondly, we present the results on tasks T2 and T3 obtained by the main model during sequential
training in Figure 7. It can be clearly seen that our DHA still forgets with the lowest speed on tasks
T2 and T3, similar to Sec. 4.3 (see Figure 4). Importantly, by reviewing the results on tasks T1 – T3

(from Figure 4 and Figure 7), we find that DHA could address the catastrophic forgetting problem
much better on the earlier seen tasks, which is a crucial advantage for practical applications.

Finally, we provide the detailed results in terms of Recall@1, Recall@5, and Recall@10), in addi-
tion to Table 1. We can observe from Tables 6–8 that our DHA consistently has the best performance
on average recall and forgetting rate. Additionally, our DHA performs the best on all the three his-
torical tasks (i.e., T1 – T3) in terms of Recall@1, which indicates that our DHA is indeed the best
approach to CITM even with the most strict metric.

E FURTHER RESULTS FOR ABLATION STUDY

We compare the results between DHA-best-val (i.e., initializing the historical model with the best-
validated model of the last task) and DHA-last-iteration (i.e., initializing the historical model with
the last iteration model of the last task) under our framework in Table 9. It can be observed that
these two strategies achieve almost the same performance.

Furthermore, the comparative results (R@mean) between training with all data (the upper bound)
and training with DHA are presented in Table 10. We can find that there exists 5-6% gaps between
our DHA and the upper bound in terms of the average performance (over all tasks).
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Table 6: Comparative results (Recall@1 and FR) between our DHA and other representative/latest
methods. ‘T2I’ denotes text-to-image retrieval and ‘I2T’ denotes image-to-text retrieval. All meth-
ods adopt the same network architecture. ‘Mem’ denotes the data rehearsal with 5% buffer.

Task T1 Task T2 Task T3 Task T4 Average
Method Mem R@1 FR R@1 FR R@1 FR R@1 R@1 FR

T2I

Baseline N 4.61 77.73 4.92 72.82 4.62 48.09 9.72 5.97 66.21
LwF (Li & Hoiem, 2017) N 6.04 70.82 6.00 66.85 5.22 43.38 9.82 6.77 60.35
ER (Chaudhry et al., 2019) Y 5.62 72.85 5.78 67.34 4.78 45.06 9.34 6.38 61.75
DER (Buzzega et al., 2020) Y 7.65 63.04 8.24 53.91 5.64 35.17 8.68 7.55 50.71
CO2L (Cha et al., 2021) Y 7.30 64.73 6.90 59.36 5.74 37.33 9.20 7.29 53.81
DHA† (ours) N 8.03 61.21 8.74 49.89 5.73 35.98 8.73 7.81 49.03
DHA (ours) Y 9.31 55.02 9.30 43.77 5.98 25.44 8.46 8.26 41.41

I2T

Baseline N 5.88 79.48 3.88 78.77 4.72 47.20 9.74 6.06 68.48
LwF (Li & Hoiem, 2017) N 8.64 69.85 5.42 70.29 5.50 44.11 10.04 7.40 61.42
ER (Chaudhry et al., 2019) Y 7.52 73.76 5.20 70.15 5.24 45.30 9.12 6.77 63.07
DER (Buzzega et al., 2020) Y 11.40 60.22 6.98 60.83 6.02 38.07 9.20 8.40 53.04
CO2L (Cha et al., 2021) Y 10.68 62.74 6.34 62.84 6.22 34.80 9.70 8.24 53.46
DHA† (ours) N 11.42 60.15 6.60 59.33 5.56 36.12 8.74 8.08 51.86
DHA (ours) Y 14.52 49.34 8.32 48.77 6.22 34.86 9.12 9.55 44.32

Table 7: Comparative results (Recall@5 and FR) between our DHA and other representative/latest
methods. ‘T2I’ denotes text-to-image retrieval and ‘I2T’ denotes image-to-text retrieval. All meth-
ods adopt the same network architecture. ‘Mem’ denotes the data rehearsal with 5% buffer.

Task T1 Task T2 Task T3 Task T4 Average
Method Mem R@5 FR R@5 FR R@5 FR R@5 R@5 FR

T2I

Baseline N 14.36 69.62 13.62 65.62 14.32 41.84 24.38 16.67 59.03
LwF (Li & Hoiem, 2017) N 17.88 62.17 16.88 56.54 16.32 35.49 24.20 18.82 51.40
ER (Chaudhry et al., 2019) Y 17.27 63.47 17.66 54.88 15.44 37.18 23.44 18.45 51.84
DER (Buzzega et al., 2020) Y 21.93 53.61 22.80 41.93 17.52 27.36 22.86 21.28 41.71
CO2L (Cha et al., 2021) Y 20.87 55.85 20.22 47.78 17.60 30.32 25.04 20.93 44.65
DHA† (ours) N 23.11 51.11 23.67 39.03 16.48 30.38 22.92 21.55 40.17
DHA (ours) Y 26.65 43.62 24.78 34.65 16.80 30.12 22.50 22.68 36.13

I2T

Baseline N 18.40 67.22 12.12 70.19 14.32 44.41 27.47 18.08 60.61
LwF (Li & Hoiem, 2017) N 23.14 58.78 16.18 59.97 16.56 37.32 25.04 20.23 52.02
ER (Chaudhry et al., 2019) Y 23.08 58.89 16.60 58.52 15.92 38.58 24.14 19.94 52.00
DER (Buzzega et al., 2020) Y 30.42 46.63 19.64 48.71 16.54 31.25 24.06 22.67 42.20
CO2L (Cha et al., 2021) Y 28.08 49.98 18.44 53.32 17.70 32.90 25.68 22.48 45.40
DHA† (ours) N 30.36 45.39 19.22 49.88 15.72 32.47 24.40 22.43 42.58
DHA (ours) Y 35.24 37.23 22.76 40.67 17.84 28.66 24.02 24.97 35.52

Table 8: Comparative results (Recall@10 and FR) between our DHA and other representative/latest
methods. ‘T2I’ denotes text-to-image retrieval and ‘I2T’ denotes image-to-text retrieval. All meth-
ods adopt the same network architecture. ‘Mem’ denotes the data rehearsal with 5% buffer.

Task T1 Task T2 Task T3 Task T4 Average
Method Mem R@10 FR R@10 FR R@10 FR R@10 R@10 FR

T2I

Baseline N 21.96 64.06 19.80 61.37 21.96 37.11 33.76 24.37 54.18
LwF (Li & Hoiem, 2017) N 26.50 56.64 24.20 51.81 24.46 30.47 34.02 27.30 46.31
ER (Chaudhry et al., 2019) Y 26.00 57.45 25.02 50.94 22.90 33.89 31.94 26.47 47.43
DER (Buzzega et al., 2020) Y 31.98 47.67 31.72 37.31 25.76 24.77 31.58 30.26 36.58
CO2L (Cha et al., 2021) Y 30.74 50.52 29.72 40.39 25.06 29.49 34.60 30.03 40.13
DHA† (ours) N 32.80 46.33 33.06 34.51 24.71 28.06 32.46 30.76 36.30
DHA (ours) Y 37.78 38.18 34.76 29.89 25.26 25.02 32.70 32.63 31.03

I2T

Baseline N 27.50 60.52 18.64 63.75 21.40 38.93 33.94 25.37 51.77
LwF (Li & Hoiem, 2017) N 33.00 52.63 24.48 51.83 24.20 34.24 34.80 29.12 46.23
ER (Chaudhry et al., 2019) Y 33.10 52.48 23.72 52.92 23.20 35.34 32.84 28.22 46.91
DER (Buzzega et al., 2020) Y 41.30 40.71 29.60 41.41 25.34 28.54 32.42 32.14 36.89
CO2L (Cha et al., 2021) Y 39.94 42.66 26.50 47.69 25.06 29.92 35.38 31.72 40.09
DHA† (ours) N 41.96 39.76 27.26 45.01 22.72 31.15 34.16 31.53 38.64
DHA (ours) Y 48.40 30.52 31.96 35.54 25.30 29.35 33.62 34.82 31.80
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Table 9: Comparative results between DHA with the best main model (of the last task) as the histori-
cal model and DHA with the last-iteration model as the historical model. ‘T2I’ denotes text-to-image
retrieval and ‘I2T’ denotes image-to-text retrieval.

Method Task T1 Task T2 Task T3 Task T4 Average
R@mean FR R@mean FR R@mean FR R@mean R@mean FR

T2I DHA-best-val 24.58 42.88 22.95 33.82 16.15 24.50 21.22 21.29 33.73
DHA-last-iteration 24.47 43.13 23.06 33.51 16.01 25.15 21.40 21.24 33.93

I2T DHA-best-val 32.72 36.45 21.01 39.50 16.45 24.71 22.25 23.11 33.55
DHA-last-iteration 32.67 36.56 21.22 38.91 16.21 25.81 22.53 23.16 33.76

Table 10: Comparative results (R@mean) between training with all data (upper bound) and training
with DHA. ‘T2I’ denotes text-to-image retrieval and ‘I2T’ denotes image-to-text retrieval.

Method T2I I2T
Task T1 Task T2 Task T3 Task T4 Average Task T1 Task T2 Task T3 Task T4 Average

Upper bound 31.61 32.39 18.86 22.69 26.39 41.89 32.27 20.82 22.38 29.34
DHA (ours) 24.58 22.95 16.15 21.22 21.29 32.72 21.01 16.45 22.25 23.11

Table 11: Evaluation results for setting different values of λ1 for the text and image modalities.
‘T2I’ denotes text-to-image retrieval and ‘I2T’ denotes image-to-text retrieval.

Setting 1 Setting 2 Setting 3 Setting 4
λ1 for the text modality 0.993 0.993 0.995 0.995
λ1 for the image modality 0.993 0.995 0.993 0.995
T2I: average R@mean 20.77 21.16 21.45 21.29
I2T: average R@mean 21.43 22.94 23.33 23.11

Additionally, we clarify that applying the same value of λ1 for image and text modalities enables
the proposed DHA to be easily deployed in other continual learning settings. However, we should
point out that our proposed framework also provides convenience for discovering and making use
of modality-specific forgetting characteristics under the CITM setting. Due to the generality (flex-
ibility) of the proposed DHA, we can easily utilize it to cope with modality-specific forgetting (or
modality-wise domain gap) by setting different values of λ1 (in Eq. (9)) for the text and image
modalities. The obtained results are shown in Table 11. We can see that the proposed DHA leads to
further improvements when λ1 takes different values for the two modalities. This also suggests that
coping with modality-specific forgetting is indeed necessary for our CITM setting.
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