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Abstract

Data annotation generally refers to the label-001
ing or generating of raw data with relevant in-002
formation, which could be used for improv-003
ing the efficacy of machine learning models.004
The process, however, is labor-intensive and005
costly. The emergence of advanced Large Lan-006
guage Models (LLMs), exemplified by GPT-4,007
presents an unprecedented opportunity to auto-008
mate the complicated process of data annota-009
tion. While existing surveys have extensively010
covered LLM architecture, training, and gen-011
eral applications, we uniquely focus on their012
specific utility for data annotation. This survey013
contributes to three core aspects: LLM-Based014
Annotation Generation, LLM-Generated Anno-015
tations Assessment, and LLM-Generated An-016
notations Utilization. Furthermore, this survey017
includes an in-depth taxonomy of data types018
that LLMs can annotate, a comprehensive re-019
view of learning strategies for models utiliz-020
ing LLM-generated annotations, and a detailed021
discussion of the primary challenges and lim-022
itations associated with using LLMs for data023
annotation. Serving as a key guide, this sur-024
vey aims to assist researchers and practitioners025
in exploring the potential of the latest LLMs026
for data annotation, thereby fostering future027
advancements in this critical field.028

1 Introduction029

In the complex realm of machine learning and nat-030

ural language processing (NLP), data annotation031

stands out as a critical yet challenging task, extend-032

ing beyond simple label attachment to encompass033

a diverse array of fundamental or auxiliary infor-034

mation. This detailed process typically involves ❶035

categorizing raw data with class or task labels for036

basic classification, ❷ adding intermediate labels037

for contextual depth (Yu et al., 2022), ❸ assign-038

ing confidence scores to assess annotation relia-039

bility (Lin et al., 2022), ❹ applying alignment or040

preference labels to tailor outputs to specific crite-041

ria or user needs, ❺ annotating entity relationships042

to understand how entities within a dataset interact 043

with each other (Wadhwa et al., 2023), ❻ marking 044

semantic roles to define the underlying roles that 045

entities play in a sentence (Larionov et al., 2019), 046

or ❼ tagging temporal sequences to capture the 047

order of events or actions (Yu et al., 2023). 048

Despite its wide applications, data annotation 049

poses significant challenges for current machine 050

learning models due to the complexity, subjectiv- 051

ity, and diversity of data. This process requires 052

domain expertise and is resource-intensive, par- 053

ticularly when manually labeling large datasets. 054

Advanced LLMs such as GPT-4 (OpenAI, 2023), 055

Gemini (Team et al., 2023), and LLaMA-2 (Tou- 056

vron et al., 2023b) offer a promising opportunity to 057

revolutionize data annotation. LLMs serve as more 058

than just tools but play a crucial role in improv- 059

ing the effectiveness and precision of data annota- 060

tion. Their ability to automate annotation tasks (A, 061

2022), ensure consistency across large volumes of 062

data (Hou et al., 2023), and adapt through fine- 063

tuning or prompting for specific domains (Song 064

et al., 2023), significantly mitigates the challenges 065

encountered with traditional annotation methods, 066

setting a new standard for what is achievable in 067

the realm of NLP. This survey delves into the nu- 068

ances of using LLMs for data annotation, explor- 069

ing methodologies, utilizing strategies, and asso- 070

ciated challenges in this transformative approach. 071

Through this exploration, we aim to shed light on 072

the motivations behind embracing LLMs as cata- 073

lysts for redefining the landscape of data annotation 074

in machine learning and NLP. We explore the uti- 075

lization of LLMs for data annotation in this survey, 076

making four main contributions: 077

• LLM-Based Annotation Generation: We dive 078

into the process of generating annotations for var- 079

ious data types, including instruction & response, 080

rationale, pairwise feedback, textual feedback, 081

and other domain-specific data. Additionally, we 082

discuss the criteria (e.g., diversity and quality) in 083
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the annotation process.084

• Assessing LLM-Generated Annotations: We085

explore various methods for assessing the quality086

of annotations and strategies for selecting high-087

quality annotations from numerous options.088

• LLM-Generated Annotations Utilization: We089

investigate the methodologies at different stages,090

including supervised fine-tuning, alignment tun-091

ing, and inference time, to train machine learning092

models based on LLM-generated annotations.093

• Social Impact and Future Work: We discuss094

issues ranging from ethical dilemmas, such as095

bias and implications, to technical limitations,096

including hallucination and efficiency in LLM-097

generated annotations.098

Focusing on this underrepresented aspect of LLM099

application, the survey aims to serve as a valuable100

guide for academics and practitioners who intend101

to deploy LLMs for annotation purposes. Note102

that in this survey, we primarily focus on pure lan-103

guage models and do not extensively cover recently104

emerging multimodal LLMs, such as LLaVA (Liu105

et al., 2023b). Figure 1 illustrates the general struc-106

ture of this survey. Additionally, a list of potential107

tools for utilizing LLMs for annotation is included108

in Appendix A, along with explanatory examples.109

Differences from Other LLM-related Surveys.110

While existing surveys in the NLP domain ex-111

tensively cover architectural nuances (Zhao et al.,112

2023a), training methodologies (Liu et al., 2023d),113

and evaluation protocols (Chang et al., 2023)114

associated with LLMs, their main focus lies115

on the capabilities of models for specific end116

tasks such as machine translation (Min et al.,117

2021), alignment (Wang et al., 2023g), code gen-118

eration (Zan et al., 2023), and medical analy-119

sis (Thirunavukarasu et al., 2023). In contrast, this120

survey distinguishes itself by focusing primarily121

on the application of these potent next-generation122

LLMs to the intricate realm of data annotation, a123

domain that is crucial yet underexplored.124

2 Preliminaries125

In this section, we delve into our approach to the126

annotation process. We introduce two core mod-127

els: an annotator model, denoted as A, which maps128

input data to annotations, and a task learner, rep-129

resented as L, that utilizes or learns from these130

annotated data to accomplish specific tasks. Our131

primary focus is on utilizing advanced LLMs like132

GPT-4 (OpenAI, 2023) and LLaMA (Touvron et al.,133

2023a) as annotators (A), while the task learner (L)134

can be another large model (Chiang et al., 2023a) 135

or a less complex one such as BERT (Devlin et al., 136

2018), which utilizes these annotated data to per- 137

form designated tasks. LLM-generated annotations 138

encompass categorical labels and enhance raw data 139

points with a comprehensive array of auxiliary 140

signals. These annotations, including confidence 141

scores, contextual details, and other metadata, ex- 142

tend beyond traditional categorical labels. 143

3 LLM-Based Annotation Generation 144

The emergence of LLMs has sparked significant 145

interest in their capacity for high-quality, context- 146

sensitive data annotation. This section discusses 147

various kinds of annotations produced via LLMs. 148

3.1 Instruction & Response 149

Instruction and response are the two fundamental 150

components that constitute a dataset for LLM fine- 151

tuning and in-context learning (ICL). Previous NLP 152

datasets (Li et al., 2017; Wang et al., 2018; Ouyang 153

et al., 2022) mainly rely on human annotators to 154

construct. Recently, with the advent of LLMs, au- 155

tomatic and generative methods (Meng et al., 2022; 156

Ye et al., 2022a,b; Wang et al., 2024c) have gained 157

more focus in data annotation. 158

Instruction Diversity. The diversity of instruc- 159

tion has been proven crucial for LLM learning (Li 160

et al., 2023e; Song et al., 2024b,a). Recent stud- 161

ies have explored various methods to diversify and 162

augment instructions in the original datasets. For 163

example, Yoo et al. (2021) enhance data diver- 164

sity by mixing two different samples to create a 165

new one. Wang et al. (2022b) use a few manually- 166

written seed instructions and iteratively augment 167

them with a generate-then-filter pipeline. Addi- 168

tionally, Meng et al. (2023); Wang et al. (2023f) 169

train an instruction generation model in the origi- 170

nal dataset to augment the diversity of instruction. 171

Gupta et al. (2023) employ a multi-step prompting 172

method to first generate task descriptions, which 173

are then used as instance seeds to guide LLMs in 174

instruction generation. To obtain informative and 175

diverse examples, Wang et al. (2023c) propose an 176

explain-then-generate pipeline with LLMs for it- 177

erative data synthesis. Besides, Li et al. (2023a) 178

paraphrase the given sample multiple times to help 179

LLMs understand them from different perspectives. 180

Köksal et al. suggest a clustering-based data selec- 181

tion method to ensure diversity in the initial seed 182

data for augmentation. Recently, Yu et al. (2024) in- 183

troduce AttrPrompt as an effective way to balance 184
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Figure 1: The proposed taxonomy of existing research on LLM for data annotation.

diversity and cost in LLM-based data annotation.185

Response Quality. High-quality responses are es-186

sential for effective fine-tuning and ICL (Luo et al.,187

2024). To improve the quality of the generated188

response, Zhang and Yang (2023a) frame the re-189

sponse generation as reading comprehension tasks190

and create detailed prompts for LLMs. Huang et al.191

(2023) adopt self-consistency (Wang et al., 2022b)192

in response generation, selecting from the candi-193

date response with the highest confidence score.194

Furthermore, Yang et al. (2024b) propose self-195

distill and augment the instruction tuning dataset by196

rewriting the original responses. Pang et al. (2024b)197

conduct social simulations to ensure high-quality,198

human-valued responses from LLMs. Moreover,199

Liu et al. (2024) introduce a multi-step prompting200

including question analysis, answer guidance and201

safe answer production in their response generation202

pipeline. Guo et al. (2024a) enhance the LLMs out-203

puts’ quality by implementing retrieval-augmented204

ICL and providing LLMs with relevant documents.205

To ensure LLMs provide responses aligned with206

human values, Sun et al. (2024) and Wang et al.207

(2024a) conduct principle-driven prompting, guid-208

ing LLMs with well-crafted and detailed principles.209

3.2 Rationale210

The rationale reflects the detailed thought process211

and reasoning pathway an individual follows when212

solving a given question, being considered valuable213

auxiliary information for the final answer predic-214

tion. In early studies (Ling et al., 2017; Cobbe215

et al., 2021; Wei et al., 2022), the rationale in each216

dataset was annotated by human experts, signifi-217

cantly limiting its availability and scalability. Ko-218

jima et al. (2022) initially confirm the efficacy of219

the chain-of-thought (CoT) approach in LLMs and 220

boosting LLMs’ reasoning through the integration 221

of self-generated rationales. 222

Rationale Structure. Following Kojima et al. 223

(2022), there is a notable interest in abstracting the 224

reasoning process of LLMs into diverse structures 225

and format, including trees (Hao et al., 2023; Yao 226

et al., 2024), graphs (Besta et al., 2024; Yao et al., 227

2023), tables (Wang et al., 2024d), programs (Chen 228

et al., 2023e), recursion (Qi et al., 2023), and con- 229

cepts (Tan et al., 2023). 230

Rationale Quality. To produce high-quality and 231

fine-grained rationale, diverse methodologies have 232

been employed. Wang et al. (2022a) prompt frozen 233

LLMs to produce choice-specific rationales to elu- 234

cidate each choice in a sample. Wang et al. (2023b) 235

employ contrastive decoding to foster more plau- 236

sible rationales, taking into account gold-standard 237

answers. Liu et al. (2023a) curate meticulously 238

designed prompts to derive high-quality rationales 239

from GPT-4 and construct a logical CoT instruc- 240

tion tuning dataset. For attaining fine-grained ra- 241

tionales, Shridhar et al. (2023) introduce Socratic 242

CoT by decomposing the original question into a 243

series of subquestion-solution pairs and generat- 244

ing CoT for them separately. Additionally, Kang 245

et al. (2024) propose a neural reranker to acquire 246

supplementary relevant documents for rationale 247

generation in knowledge-intensive reasoning tasks. 248

Human-like Rationale. Another intriguing avenue 249

in synthesized rationale delves into making the rea- 250

soning process more human-like. Many studies em- 251

ulate human diverse thinking in problem-solving, 252

sampling multiple reasoning pathways for a given 253

question (Gao et al., 2021; Wang et al., 2022b; 254

Chen et al., 2023f; Liu et al., 2023c). Subsequent 255

3



Output B

I'm sure it's a great
way to socialize,

stay active!
User

I think the more
Honest and Accurate
output is Output A.

As an AI language model, my knowledge only goes
up until September 021, so I cannot predict ...

Generated Rationale

Suppose you are a news writer. Please
generate an affordable care act news in

NYT following the requirements below: ...

A juggler can juggle 16 balls. Half of the balls
are golf balls, and half of the golf balls are
blue. How many blue golf balls are there?

As New Zealand's state governments continue to implement the
Affordable Care Act, focus has turned towards the success of Primary

Health Organizations. The model has proven effective in ...

Instruction & Response

Rationale Let’s think 
step by step

Who is the
president of the

U.S. in 2025?

Pairwise Feedback

Generated Instruction

There are 16 balls in total. Half of the balls are golf balls. That
means that there are 8 golf balls. Half of the golf balls are blue.

That means that there are 4 blue golf balls.

User

Output A

John Doe is the president of the US in 2025. He
wasn't famous before, but his campaign ...

Please select the
preferred output for the

given instruction

Textual Feedback

I am interested
in playing

Table tennis.

Please provide 
feedback Relevant: The response is

relevant to the user's input
and shows interest in the
user's hobby. 3/3 * ...

Table tennis is a great
hobby! It's a great way
to stay active and
socialize with others. 

New ResponseFeedbackResponse

Question

Instructor

Figure 2: The examples for LLM-based annotation generation.

studies (Tong et al., 2023; Balepur et al., 2023; Ma256

and Du, 2023) explore the elimination reasoning in257

LLMs, checking each reasoning pathway reversely258

and removing the incorrect candidates. Moreover,259

various works (Yin et al., 2023; Liang et al., 2023;260

Xu et al., 2023d; Liu et al., 2023e) explore the peer261

collaboration and debate among individual LLMs262

to capture human-like discussions as rationales.263

3.3 Pairwise Feedback264

While high-quality human feedback is proven to265

be effective in aligning LLMs’ values and prefer-266

ences with us humans, recent advancements aim to267

automate this pairwise feedback mechanism.268

Ranking with LLMs. One technique is to sample269

multiple responses and have the LLM rank these270

candidates based on various criteria (Bai et al.,271

2022; Lee et al., 2023b; Yuan et al., 2024). Sun272

et al. (2023b) sample two responses from the ini-273

tial policy model and use the model to select the274

preferred response based on a human-written prin-275

ciple (Sun et al., 2024). Zhang et al. (2024a) pro-276

pose a self-evaluation mechanism, generating ques-277

tions for each response and measuring factuality278

by the LLM’s confidence in the answers. To im-279

prove synthetic data quality, Pace et al. (2024) com-280

bine the Best-of-N and Worst-of-N sampling strate-281

gies and introduce the West-of-N approach. They282

constructed data pairs by identifying the best- and283

worst-scored responses according to a pre-trained284

preference model. In robotics, Zeng et al. (2024)285

iteratively update the reward function with the self-286

ranked responses from LLMs, enhancing learning287

efficiency without human supervision.288

Direct Construction. Another effort towards289

automatic pairwise feedback generation involves 290

directly generating responses of various quali- 291

ties (Feng et al., 2024; Lee et al., 2024a). To ac- 292

complish this, they typically have to make various 293

assumptions when determining the factors influ- 294

encing response quality. For example, Kim et al. 295

(2023b) assume larger LLM with more shots will 296

give better responses and produce synthetic pairs 297

based on this. Tong et al. (2024b) follow the rule 298

of thumb that the supervised fine-tuning model 299

will perform better than its unfinetuned base model. 300

Adhere to this criterion, they start with a few seed 301

data, iteratively training the model and synthesiz- 302

ing comparison data pairs. Yang et al. (2023c) 303

create quality differences by prompting LLMs to 304

either follow or violate given principles. To mea- 305

sure the response quality more subjectively, Xu 306

et al. (2023c) introduce multiple LLMs and utilize 307

benchmark scores to define superiority. 308

3.4 Textual Feedback 309

Textual feedback (Pan et al., 2024) generated by 310

LLMs typically highlights the shortcomings of 311

the current output or suggests specific improve- 312

ments, thus offering rich and valuable information 313

for polishing or evaluating the generated response. 314

Many existing works tailor appropriate prompts 315

and instruct LLMs to generate such informative 316

feedback in various tasks, including question an- 317

swering (Madaan et al., 2024; Shinn et al., 2024), 318

machine translation (Chen et al., 2023c; Raunak 319

et al., 2023) and hallucination detection (Yang et al., 320

2023d; Manakul et al., 2023). Some investigations 321

have explored leveraging debate and peer review as 322

feedback to enhance LLMs’ reasoning (Du et al., 323
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2023a; Xu et al., 2023d; Cohen et al., 2023; Fu324

et al., 2023) and evaluation (Li et al., 2023d; Chu325

et al., 2024b; Ning et al., 2024) capabilities. Addi-326

tionally, efforts have been made to analyze reasons327

for undesired or incorrect responses produced by328

LLMs, thus facilitating reflection and learning from329

their previous mistakes (Wang and Li, 2023; An330

et al., 2023; Chen et al., 2023a; Tong et al., 2024a).331

3.5 Other Domain-specific Data332

Distilling multi-round conversations from LLMs333

presents a highly cost-effective approach for con-334

structing high-quality dialogue datasets (Kim et al.,335

2023a; Xu et al., 2023b; Chen et al., 2023b; Li336

et al., 2024d) or enhancing existing ones (Zheng337

et al., 2023; Chen et al., 2022; Zhou et al., 2022a).338

In graph and tabular data, several studies prompt339

LLMs to contextualize these structural data (Xi-340

ang et al., 2022; Kim et al., 2023a; Li et al., 2024b;341

Ronzano and Nanavati, 2024) or distill structural in-342

sights from raw text (Bi et al., 2024; Li et al., 2024c;343

Ding et al., 2024; Xiong et al., 2024; Tuozzo, 2022).344

Moreover, LLMs have also been widely adopted345

in the research of robotics and agents, serving as346

proficient data annotators to generate plans (Huang347

et al., 2022; Brohan et al., 2023; Rana et al., 2023;348

Singh et al., 2023; Lin et al., 2023a), simulation349

tasks (Wang et al., 2023a; Ha et al., 2023) and350

supervised signal (Kwon et al., 2022; Du et al.,351

2023b). Besides, LLMs are acting as efficient data352

annotators in various artificial intelligence domains,353

including multi-modal (Li et al., 2023f; Yin et al.,354

2024; Chen et al., 2024a), recommendation sys-355

tem (Acharya et al., 2023; Shen et al., 2024; Wei356

et al., 2024; Zhang et al., 2024b), information ex-357

traction (Josifoski et al., 2023; Jeronymo et al.,358

2023; Li et al., 2024a; Ma et al., 2024; Bonn et al.,359

2024) and etc (Chu et al., 2024a; Bhattacharjee360

et al., 2024; Martorana et al., 2024).361

4 LLM-Generated Annotations362

Assessment363

Effective evaluation of annotations generated by364

LLMs is crucial to fully harness their potential.365

This section focuses on two main aspects:366

4.1 Evaluating LLM-Generated Annotations367

This subsection explores various methods for as-368

sessing annotation quality, ranging from human-led369

to automated approaches.370

General Approaches: Research has investigated371

diverse methods for evaluating LLM annotations.372

The “Turking Test” by Efrat and Levy (2020), eval- 373

uates LLMs’ adherence to data annotation guide- 374

lines, with human annotators comparing LLM 375

outputs against benchmarks like SNLI (Bowman 376

et al., 2015), SQuAD (Rajpurkar et al., 2016), and 377

NewsQA (Trischler et al., 2016). Similarly, Hon- 378

ovich et al. (2022) manually examined the orig- 379

inality, accuracy, and variety of datasets created 380

by LLMs, focusing on their response to instruc- 381

tions. Additionally, studies such as by Alizadeh 382

et al. (2023) measure the performance of open- 383

source LLMs against human-annotated labels in 384

tasks like relevance and topic detection. 385

Task-Specific Evaluations: Methodologies vary 386

by application. For instance, in knowledge graph 387

enhancement, token ranking metrics assess LLM 388

contributions in fact completion. Additionally, eval- 389

uations of counterfactual generation often utilize di- 390

versity metrics like Self-BLEU (Chen et al., 2023g), 391

while code generation relies on metrics such as 392

Pass@k (Nijkamp et al., 2022). In scenarios re- 393

quiring extensive datasets, the quality of LLM- 394

generated annotations is compared to gold standard 395

labels within a small, labeled subset (Zhao et al., 396

2021; Agrawal et al., 2022; He et al., 2023). 397

4.2 Filtering & Selection 398

Selecting high-quality annotations from numerous 399

options is crucial. In this section, we categorize the 400

filtering and selection methods for LLM-generated 401

data into three types: rule-based filtering, external 402

source utilization, and LLMs-driven selection. 403

Rule-Based Methods. Rule-based methods follow 404

various heuristic assumptions concerning sample 405

length (Li et al., 2023f; Kim et al., 2023a), keyword 406

occurrence (Kim et al., 2023b; Zheng et al., 2023) 407

and specific patterns (Zhang and Yang, 2023a; Guo 408

et al., 2024a; Ding et al., 2024) to filter low-quality 409

or undesiered synthetic data points. Zheng et al. 410

(2023); Kim et al. (2023a) establish thresholds for 411

the number of rounds in generated conversations 412

to guarantee each synthetic dialogue is informative 413

enough. Ho et al. (2023); Kang et al. (2024) em- 414

ploy ground truth parsing to filter out incorrect CoT 415

rationales within each candidate reasoning sample. 416

To encourage diversity among the generated data 417

points, Wang et al. (2022b); Lee et al. (2023a); 418

Ding et al. (2024) utilize semantic similarity met- 419

rics to identify and remove redundant samples. 420

External-Source-Based Methods. There are 421

also many works that depend on the external 422

source’s feedback to clean and refine synthetic 423
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datasets (Kim et al., 2023a). With a pre-trained424

reward model, Gulcehre et al. (2023); Dong et al.425

(2023) augment the original dataset only with sam-426

ples that obtain high reward values. When dis-427

tilling smaller models, Lin et al. (2023b); Wang428

et al. (2024c) meticulously select appropriate data429

through the feedback from the student models.430

Other approaches (Chen et al., 2023g; Zheng et al.,431

2023) utilize pre-trained classification models to432

discern between target and unwanted data points.433

LLMs-Driven Methods. The versatility of LLMs434

has invoked interest in leveraging LLMs them-435

selves to do data selection. Some approaches use436

signals or features produced by LLMs, such as437

perplexity score (Wang et al., 2023f), confidence438

levels (Wang et al., 2022b; Huang et al., 2023),439

and logits (Pace et al., 2024), as criteria for con-440

structing data selectors. Others directly prompt441

the LLMs for this task. For instance, Lu et al.442

(2023) query the target LLM to assess the quality443

of generated samples. Kim et al. (2023a) leverage444

ChatGPT to determine if the social commonsense445

knowledge is appropriately conveyed in the syn-446

thetic dialogues. Additionally, there are also works447

that adopt the LLMs to rank multiple candidate an-448

notations and utilize the top ones in the subsequent449

stages (Jeronymo et al., 2023; Li et al., 2024c). In450

pairwise feedback synthesis, Tong et al. (2024b)451

task the base LLM with judging whether one re-452

sponse genuinely surpasses another.453

5 LLM-Generated Annotations454

Utilization455

LLM-generated annotations provide a valuable re-456

source of labeled data for NLP models in different457

stages. Hereby we explore the methods for utiliz-458

ing and learning with LLM-Generated Annotations.459

460
5.1 Supervised Fine-tuning461

Supervised fine-tuning can effectively enhance462

models’ specific capabilities or knowledge. In this463

section, we discuss the utilization of generated an-464

notation for supervised fine-tuning.465

Self-distillation. Huang et al. (2023) first propose466

the concept of self-improve that utilizes LLMs as467

both data annotators and learnable models and it-468

eratively fine-tune LLMs in their self-annotated469

data. Wang et al. (2023e) also tune a GPT3 in470

the instruction tuning dataset to improve its zero-471

shot generalization capability. To foster LLMs’472

evolution, Lu et al. (2023) iteratively fine-tune the473

LLMs in self-refined synthetic responses. To miti-474

gate the distribution gap between task datasets and 475

the LLMs, Yang et al. (2024b) use self-distillation 476

which guides fine-tuning with a distilled dataset 477

generated by the model itself. Both Chen et al. 478

(2024b) and Cheng et al. (2024) introduce a self- 479

play mechanism, where the LLM refines its capa- 480

bility by playing against instances of itself. 481

Distill Smaller Models. For efficiency issues, 482

many studies aim to use the data generated by a 483

large and powerful LLM to train a flexible and 484

affordable smaller model. For a better instruction- 485

following ability, many medium and small-sized 486

LLMs are trained on the synthetic dataset pro- 487

duced by larger LLMs (Taori et al., 2023; Chiang 488

et al., 2023b; Xu et al., 2023a). In classification 489

tasks, Meng et al. (2022, 2023); Wang et al. (2023d) 490

augment the original datasets and train smaller bidi- 491

rectional attention models on them. To foster mod- 492

els’ reasoning ability, many studies tune smaller 493

models with synthetic rationales collected from 494

LLMs (Wang et al., 2022a; Shridhar et al., 2023; 495

Liu et al., 2023a; Kang et al., 2024). Other task- 496

specific capabilities distillation from LLMs include 497

dialogue generation (Xu et al., 2023b), informa- 498

tion extraction (Josifoski et al., 2023; Jeronymo 499

et al., 2023) and code generation (Chaudhary, 500

2023; Roziere et al., 2023). Moreover, LLMs 501

have been proven to follow a scaling law in terms 502

of their knowledge capacity. Therefore, there is 503

also a growing interest in distilling vertical and 504

domain-specific knowledge from LLMs, including 505

medicine (Zhang et al., 2023; Xiong et al., 2023), 506

finance (Zhang and Yang, 2023b) and science (Luo 507

et al., 2023; Zhao et al., 2024), to smaller models. 508

5.2 Alignment Tuning 509

Alignment tuning methods, like RLHF (Ouyang 510

et al., 2022), aim to align the output of LLMs with 511

human intentions, ensuring they are helpful, ethical, 512

and reliable. Synthetic data produced by LLMs are 513

widely adopted in these alignment approaches for 514

reward modeling and policy training. 515

Reward Modeling. LLMs-generated annotations 516

can be used to train or refine the reward model 517

for better alignment. Xu et al. (2023c) propose 518

a data curriculum method that leverages the pair- 519

wise feedback from LLMs to calculate the sample 520

difficulty level and smooth LLMs’ learning from 521

simple ones to hard ones. Kim et al. (2023b) de- 522

sign reward model guided self-play to iteratively 523

improve the reward model with synthesized data 524

generated by the policy model. Pace et al. (2024) 525
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propose to maximize the probability of correctly526

labeling a pair of on-policy responses to a given527

query according to the base preference model. In528

robotics, Zeng et al. (2024) learns a reward func-529

tion from scratch using the LLMs’ feedback. With530

synthetic data pair, Sun et al. (2023b) train an in-531

structable reward model to generate reward scores532

based on arbitrary human-defined principles.533

Policy Training. While many direct alignment534

methods (Rafailov et al., 2024; Zhao et al., 2023b)535

have emerged recently, some works directly ex-536

plore the use of annotated feedback for policy train-537

ing. One common strategy is to directly apply DPO538

with the synthetic pairwise feedback produced by539

LLMs (Yuan et al., 2024; Zhang et al., 2024a;540

Lee et al., 2024b; Tong et al., 2024b; Lee et al.,541

2024a; Guo et al., 2024b). Besides, Gulcehre et al.542

(2023); Dong et al. (2023) leverage a pre-trained543

reward model to filter low-quality synthetic data544

and iteratively tune LLMs with growing datasets.545

Wang et al. (2024a) propose a bootstrapping self-546

alignment method to repeatly utilize the synthetic547

data. Liu et al. (2024) introduce the Mixture of548

insighTful Experts (MoTE) architecture, which ap-549

plies the mixture of experts to enhance each com-550

ponent of the synthetic response, markedly increas-551

ing alignment efficiency. With the reasoning pair-552

wise feedback generated by LLM itself, Pang et al.553

(2024a) use a modified DPO loss with an additional554

negative log-likelihood term to tune the LLM.555

5.3 Inference556

In-context Learning. In-context Learning (ICL)557

consists of three components: a task description558

(or prompt), several in-context samples (or demon-559

stration), and the test case that needs to be inferred.560

Current studies have applied the annotations and561

data generated by LLMs in all these components562

for refining or augmenting. Zhou et al. (2022b) first563

showed that with a well-designed pipeline, LLMs564

can be human-level prompt engineers to generate565

accurate task descriptions. Following them, Yang566

et al. (2023b); Li et al. conduct augmentation and567

expansion to the original task prompt, making it568

more detailed for LLMs to follow. Demonstration569

augmentation (Kim et al., 2022; Li et al., 2023c;570

Chen et al., 2023d; He et al., 2024) is another useful571

skill to enrich and diversify the provided demonstra-572

tions, especially when the labeled data is limited.573

For the test sample, one augmentation method is574

to leverage LLMs to rephrase it once (Deng et al.,575

2023) or multiple times (Li et al., 2023a; Yang576

et al., 2024a). Other works study how to polish the 577

original test sample (Xi et al., 2023) or decompose 578

it into several sub-questions (Wang et al., 2024b). 579

Reasoning. Reasoning plays a crucial role in en- 580

hancing the quality and accuracy of the content 581

generated by LLMs. One efficient manner to boost 582

LLMs’ reasoning with self-generated annotation 583

is to provide the generated rationale directly be- 584

fore outputting the final answer/ response (Kojima 585

et al., 2022). To improve LLMs’ performance 586

with multiple reasoning pathways, majority vot- 587

ing(Wang et al., 2022b; Chen et al., 2023f) and 588

elimination(Tong et al., 2023; Balepur et al., 2023; 589

Ma and Du, 2023) are adopted to decide the final 590

answer among several possible candidates. Post- 591

hoc editing and refining (Madaan et al., 2024; Tong 592

et al., 2024a) is another well-studied direction to 593

utilize textual feedback and analysis for improving 594

LLMs’ reasoning capabilities. Additionally, utiliza- 595

tion of LLMs-generated annotations sometimes re- 596

quires additional domain tools. For example, Chen 597

et al. (2023e) use a program interpreter in program- 598

of-thought (PoT) to execute the generated program 599

and convert it to a specific answer. Besta et al. 600

(2024) design a prompter to Build a prompt to be 601

sent to the LLM and a parser to extract information 602

from LLM thought. In tree-of-thought (ToT), Hao 603

et al. (2023); Yao et al. (2024) build an additional 604

state evaluator by designing specific prompts and 605

repurposing the base LLM. 606

6 Societal Impact and Future Work 607

In this section, we outline LLM annotation chal- 608

lenges, including societal implications, technical 609

concerns, and bias propagation. 610

6.1 Ethics Consideration 611

One critical concern of LLM-generated annotations 612

is the ethics consideration, especially in high-stakes 613

decision-making tasks like finance (Yang et al., 614

2023a), jurisprudence (Cui et al., 2023), and health- 615

care (Eloundou et al., 2023). Despite the efficiency 616

of LLM annotation, the lack of human insight may 617

lead to biased and unfair results (Wu et al., 2023; 618

Abid et al., 2021; Cheng et al., 2021; Li et al., 619

2023g). Moreover, LLMs make human annotator 620

roles redundant, potentially increasing social dis- 621

parities (Dillion et al., 2023). Future studies should 622

harmonize technological advancements with soci- 623

etal consequences, including considering social im- 624

plications, ensuring ethical use, promoting fairness, 625

and maintaining transparency. 626
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6.2 Challenges and Future Work627

Model Collapse. Model collapse refers to the grad-628

ual performance decrease of an LLM trained on629

the outputs of other LLMs (Sun et al., 2023a; Gu-630

nasekar et al., 2023; Hsieh et al., 2023; Honovich631

et al., 2022; Chiang et al., 2023a; Geng et al., 2023).632

It is unavoidable since LLM-generated data is oc-633

cupying the information ecosystem. The imitation634

model often replicates stylistic elements without635

achieving the factual precision of superior mod-636

els (Gudibande et al., 2023; Shumailov et al., 2023).637

This divergence is caused by statistical approxima-638

tion error from limited sample sizes and functional639

approximation error from constrained model capac-640

ity. Both errors tend to amplify through successive641

training cycles (Alemohammad et al., 2023).642

Potential Solution. It is important to ensure that643

the training data is diverse and high-quality, with a644

significant proportion of human-generated content.645

Gerstgrasser et al. (2024) avoid model collapse646

by accumulating real and machine-generated data.647

This method maintains data diversity, preventing648

performance degradation across different LLMs.649

Hallucinations. Hallucinations in LLMs signif-650

icantly undermine the integrity and reliability of651

their generated annotations (Alkaissi and McFar-652

lane, 2023; Azamfirei et al., 2023; Chaudhary et al.,653

2024). Hullicinated outputs detached from fac-654

tual information can cause the proliferation of mis-655

information (Jiang et al., 2024; Chen and Shu,656

2023). Addressing hallucinations requires refining657

the training process and implementing validation658

mechanisms for annotations through automated and659

manual verification (Liao and Vaughan, 2023; Pan660

et al., 2023; Bian et al., 2023). Moreover, the inher-661

ent opacity of LLMs complicates efforts to investi-662

gate the causes of hallucinations.663

Potential Solution. Yang et al. (2023d) addresses664

hallucinations in LLMs with the Reverse Valida-665

tion method, detecting hallucinations at the passage666

level by constructing a query from the response and667

checking for a match within the LLM’s internal668

knowledge. Bertaglia et al. (2023) uses Chain-of-669

Thought (CoT) prompting and explanation genera-670

tion, where CoT prompting produces explanations671

for predictions, ensuring logical and verifiable out-672

puts. Li et al. (2023b) proposes the CoAnnotating673

framework, which uses uncertainty-guided work674

allocation between humans and LLMs, applying675

self-evaluation and entropy metrics to assess relia-676

bility and distribute tasks effectively.677

Efficiency of LLMs. Efficiency in LLMs is crucial 678

due to their growing size and complexity, which de- 679

mand substantial computational resources (Wong 680

et al., 2024). Efficient models reduce inference la- 681

tency, vital for real-time applications, lower energy 682

consumption for sustainable AI practices, and cut 683

operational costs in cloud environments, making AI 684

more cost-effective for researchers. Efficiency tech- 685

niques for LLMs, such as pruning, compression, 686

and distillation, are critical for deploying these 687

models in resource-constrained environments. 688

Potential Solution. Pruning is an efficient tech- 689

nique to reduce the number of parameters in an 690

LLM. For example, Ma et al. (2023) selectively re- 691

moves redundant neurons based on gradient infor- 692

mation while preserving most of the LLM’s capabil- 693

ity. Mixture of Experts (MoE) is another promising 694

technique that leverages a set of expert sub-models, 695

where only a subset of these experts is activated for 696

any given input (Artetxe et al., 2021). Researchers 697

also adopt LLM Quantization to reduce the preci- 698

sion of the numbers used to represent a model’s 699

parameters (Xiao et al., 2023). Instead of using 700

32-bit floating-point numbers, a quantized model 701

might use 16-bit floats, 8-bit integers, or even lower 702

precision. These techniques can be combined with 703

each other to achieve further efficiencies. 704

7 Conclusion 705

The exploration of LLMs for data annotation has 706

revealed an exciting frontier in NLP, presenting 707

novel solutions to longstanding challenges like data 708

scarcity, and enhancing annotation quality and pro- 709

cess efficiency. This survey meticulously reviews 710

methodologies, applications, and hurdles associ- 711

ated with LLM employment, including detailed 712

taxonomy from annotation generation to utilization. 713

It evaluates the effects of LLM-generated annota- 714

tions on training machine learning models while 715

addressing both technical and ethical concerns like 716

bias and societal ramifications. Highlighting our 717

novel taxonomy of LLM methodologies, strategies 718

for utilizing LLM-generated annotations, and a crit- 719

ical discussion on the challenges, this work aims to 720

steer future progress in this crucial area. Addition- 721

ally, we introduce a comprehensive categorization 722

of techniques and compile extensive benchmark 723

datasets to support ongoing research endeavors, 724

concluding with an examination of persistent chal- 725

lenges and open questions, paving the way for fu- 726

ture investigative pursuits in the domain. 727
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Limitations728

Sampling Bias and Hallucination. LLMs can dis-729

play sampling bias, leading to incorrect or “halluci-730

nated” data, impacting the reliability and quality of731

annotations for discriminative tasks.732

Social Bias and Ethical Dilemmas. The inher-733

ent biases in training data can be perpetuated and734

amplified by LLMs, leading to ethical concerns735

and the propagation of social biases through anno-736

tated data. This is particularly problematic in tasks737

requiring fairness and impartiality.738

Dependence on High-Quality Data. LLMs’ use-739

fulness in generating annotations depends on large,740

high-quality datasets. But curating these datasets is741

labor-intensive, posing a scalability challenge for742

LLM-based annotation efforts.743

Complexity in Tuning and Prompt Engineering.744

Successfully leveraging LLMs for data annotation745

requires sophisticated prompt engineering and fine-746

tuning techniques. This can pose a barrier to entry747

for practitioners and researchers without extensive748

expertise in NLP and machine learning.749

Generalization and Overfitting While LLMs can750

be powerful tools for annotation, there’s a risk of751

overfitting to the training data, limiting their ability752

to generalize to unseen data or different contexts.753

This is a critical limitation for discriminative tasks754

where the goal is to develop models that perform755

well across diverse datasets and domains.756

Computational and Resource Requirements.757

The training and deployment of state-of-the-art758

LLMs for data annotation require substantial com-759

putational resources, which may not be accessible760

to all researchers and organizations, thereby limit-761

ing widespread adoption.762
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A LLM-assisted Tools and Software for 1880

Annotation 1881

LLM-assisted annotation tools and software are 1882

invaluable resources designed specifically to fa- 1883

cilitate the annotation process for various NLP 1884

tasks. One of their primary attributes is an intu- 1885

itive and user-friendly interface, allowing engineers 1886

and even non-technical annotators to easily work 1887

with complex textual data. These tools are built to 1888

support numerous annotation types, from simple bi- 1889

nary labels to more intricate hierarchical structures. 1890

The main goal of these tools is to simplify the la- 1891

beling process, enhance the quality of the labels, 1892

and boost overall productivity in data annotation. 1893

Below, we will present a selection of the libraries 1894

and tools that support Large Language Models for 1895

the annotation process: 1896

• LangChain: LangChain (Harrison, 2022) is 1897

an open-source library1 that offers an array 1898

of tools designed to facilitate the construc- 1899

tion of LLM-related pipelines and workflows. 1900

This library specifically provides large lan- 1901

guage models with agents in order to interact 1902

effectively with their environment as well as 1903

various external data sources. Therefore, pro- 1904

viding dynamic and contextually appropriate 1905

responses that go beyond a single LLM call. 1906

In terms of the annotation process, their power 1907

mostly lies in the facilitation of annotation 1908

through the creation of a modularized struc- 1909

ture called chain. In the chaining technique, a 1910

complex problem is broken down into smaller 1911

sub-tasks. The results obtained from one or 1912

more steps are then aggregated and utilized 1913

as input prompts for subsequent actions in the 1914

chain. 1915

1As of now, available only in JavaScript/TypeScript and
Python languages.
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Figure 3: Stack AI dashboard. They provide a visual interface for users to design and track the AI workflow.

• Stack AI: Stack AI (Aceituno and Rosinol,1916

2022) is a paid service that offers an AI-1917

powered data platform. It is designed explic-1918

itly for automating business processes allow-1919

ing them to maximize efficiency. The essence1920

of their platform lies in their ability to visually1921

design, test, and deploy AI workflows through1922

smooth integration of Large Language Mod-1923

els. Their user-friendly graphical interface1924

(Figure 3) allows the users to create apps1925

and workflows related to diverse tasks from1926

content creation and data labeling to conver-1927

sational AI apps and document processing.1928

Moreover, Stack AI utilizes weakly super-1929

vised machine learning models to expedite1930

the data preparation process.1931

Figure 4: UBIAI annotation result on a pdf document.
All the entities in the text of the document have been
identified, annotated, and color-coded based on the type.
This image has been borrowed from the videos provided
in the UBIAI documentation (Amamou, 2021).

• UBIAI: UBIAI (Amamou, 2021) is a paid 1932

annotation tool that offers multilingual cloud- 1933

based solutions and services in Natural Lan- 1934

guage Processing. The company aims to aid 1935

users in extracting valuable insights from un- 1936

structured documents. This tool not only pro- 1937

vides a user interface that facilitates manual 1938

labeling but also offers several auto-labeling 1939

functionalities such as LLM-assisted zero- 1940

and few-shot labeling and model-assisted la- 1941

beling. They also provide integration to vari- 1942

ous models on huggingface (Wolf et al., 2020) 1943

as well as an environment to fine-tune differ- 1944

ent models on the user’s labeled data. 1945

• Prodigy: Prodigy (Montani and Honnibal, 1946

2018), designed by the creators of spaCy 1947

library (Honnibal and Montani, 2017), of- 1948

fers rule-based, statistical models, and LLM- 1949

assisted methods for annotation. This tool pro- 1950

vides easy, flexible, and powerful annotation 1951

options such as named entity recognition, span 1952

categorization, and classification/labeling for 1953

different modalities including text, audio, and 1954

vision. Moreover, it can be easily integrated 1955

with large language models which are capa- 1956

ble of zero- or few-shot learning, while also 1957

offering services and quantifiable methods for 1958

crafting prompts to address any noisy out- 1959

comes. This tool is not open-source. 1960
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B Acknowledgment of AI Assistance in1961

Writing and Revision1962

We utilized ChatGPT-4 for revising and enhancing1963

sections of this paper.1964

C Collections of Papers on LLM for Data1965

Annotation1966

This collection of tables provides a concise1967

overview of using Large Language Models (LLMs)1968

for data annotation, including state-of-the-art tech-1969

niques, methodologies, and practical applications.1970

Table 1 and Table 2 lists significant papers on LLM-1971

based data annotation, detailing their methods, core1972

technologies, publication venues, and links to re-1973

sources. Table 3 focuses on assessment and filter-1974

ing of LLM-generated annotations. Tables 4 ex-1975

plore strategies for learning with LLM-generated1976

annotations, covering supervised fine-tuning, align-1977

ment tuning and inference. Each table clearly out-1978

lines the data type, backbone, computational cost,1979

venues, and available resources, serving as a guide1980

to the latest in LLM-driven data annotation and1981

its implications for the future of automated data1982

processing and machine learning research.1983
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Paper Data Type Backbone Annotation Cost Venue Code/Data Link

Instruction & Response

GPT3Mix: Leveraging Large-scale Language Models for Text Augmentation[1] Instruction GPT-3
API Calling,

300 tokens per sample
EMNLP’21 Link

SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions[2] Instruction & Response GPT-3
API Calling,

$600 for entire dataset
ACL’23 Link

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning[3] Instruction CTRL
Model Training,

Nvidia A100 GPUs,
10 minutes per task

ICML’23 Link

SASS: SELF-ALIGNMENT WITH SEMI-SUPERVISED INSTRUCTION DATA GENERATION[4] Instruction LLaMA
Model Training,

Nvidia A100 GPUs
OpenRview’24 Not Available

DAIL: Data Augmentation for In-Context Learning via Self-Paraphrase[5] Instruction ChatGPT API Calling Arxiv’23 Not Available

LongForm: Effective Instruction Tuning with Reverse Instructions[6] Instruction GPT-3 PI Calling ICLR’24 Link

Large Language Model as Attributed Training Data Generator: A Tale of Diversity and Bias[7] Instruction ChatGPT API Calling NeurIPS’23 Link

SELF-QA: Unsupervised Knowledge Guided Language Model Alignment[8] Instruction & Response BLOOM Model Inference Arxiv’23 Not Available

LARGE LANGUAGE MODELS CAN SELF-IMPROVE[9] Response PaLM-540B Model Inference EMNLP’23 Not Available

Self-Distillation Bridges Distribution Gap in Language Model Fine-Tuning[10] Response LLaMA-2 Model Inference ACL’24 Link

Mixture of insighTful Experts (MoTE): The Synergy of Thought Chains and Expert Mixtures in Self-Alignment[11] Response Alpaca Model Inference Arxiv’24 Not Available

Human-Instruction-Free LLM Self-Alignment with Limited Samples[12] Instruction & Response Multiple LLMs
Model Inference,

single NVIDIA A100 80G GPU
Arxiv’24 Not Available

Principle-Driven Self-Alignment of Language Models from Scratch with Minimal Human Supervision[13] Response LLaMA Model Inference NeurIPS’23 Link

Step-On-Feet Tuning: Scaling Self-Alignment of LLMs via Bootstrapping[14] Response LLaMA-2 Model Inference Arxiv’24 Not Available

Assessing Empathy in Large Language Models with Real-World Physician-Patient Interactions[15] Response LLaMA Model Inference Arxiv’24 Not Available

Rationale

Large Language Models are Zero-Shot Reasoners[16] Rationale - CoT Multiple LLMs API Calling NeurIPS’22 Not Available

Tree of Thoughts: Deliberate Problem Solving with Large Language Models[17] Rationale - Tree GPT-4 API Calling, $0.74 per sample NeurIPS’22 Link

Reasoning with Language Model is Planning with World Model[18] Rationale - Tree LLaMA
Model Inference,

4×24 GB NVIDIA A5000 GPUs
EMNLP’23 Link

Graph of Thoughts: Solving Elaborate Problems with Large Language Models[19] Rationale - Graph GPT-3.5 API Calling AAAI’24 Link

Beyond Chain-of-Thought, Effective Graph-of-Thought Reasoning in Language Models[20] Rationale - Graph GPT-3 API Calling Arxiv’23 Link

CHAIN-OF-TABLE: EVOLVING TABLES IN THE REASONING CHAIN FOR TABLE UNDERSTANDING[21] Rationale - Table Multiple LLMs API Calling & Model Inference ICLR’24 Not Available

Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks [22] Rationale - Program Multiple LLMs API Calling & Model Inference TMLR’23 Not Available

The Art of SOCRATIC QUESTIONING: Recursive Thinking with Large Language Models[23] Rationale - Reversion ChatGPT
API Calling,

9.22 calls per sample
EMNLP’23 Link

Interpreting Pretrained Language Models via Concept Bottlenecks[24] Rationale - Concept ChatGPT API Calling PAKDD’24 Link

PINTO: FAITHFUL LANGUAGE REASONING USING PROMPT-GENERATED RATIONALES[25] Rationale - CoT GPT-neox Model Inference ICLR’23 Link

SCOTT: Self-Consistent Chain-of-Thought Distillation[26] Rationale - CoT GPT-neox Model Inference ACL’23 Link

LogiCoT: Logical Chain-of-Thought Instruction Tuning[27] Rationale - CoT GPT-4 API Calling EMNLP’23 Not Available

Distilling Reasoning Capabilities into Smaller Language Models[28] Rationale - CoT GPT-3 API Calling ACL’23 Not Available

Knowledge-Augmented Reasoning Distillation for Small Language Models in Knowledge-Intensive Tasks [29] Rationale - CoT ChatGPT API Calling NeurIPS’23 Link

Making Pre-trained Language Models Better Few-shot Learners[30] Rationale - Diverse Thinking GPT-3 API Calling ACL’21 Link

SELF-CONSISTENCY IMPROVES CHAIN OF THOUGHT REASONING IN LANGUAGE MODELS[31] Rationale - Diverse Thinking Multiple LLMs API Calling & Model Inference ICLR’23 Not Available

UNIVERSAL SELF-CONSISTENCY FOR LARGE LANGUAGE MODEL GENERATION[32] Rationale - Diverse Thinking Multiple LLMs API Calling Arxiv’23 Not Available

Plan, Verify and Switch: Integrated Reasoning with Diverse X-of-Thoughts[33] Rationale - Diverse Thinking ChatGPT API Calling EMNLP’23 Link

Eliminating Reasoning via Inferring with Planning: A New Framework to Guide LLMs’ Non-linear Thinking[34] Rationale - Elimination PaLM2 API Calling Arxiv’23 Not Available

It’s Not Easy Being Wrong: Large Language Models Struggle with Process of Elimination Reasoning[35] Rationale - Elimination Multiple LLMs API Calling ACL’24 Link

POE: Process of Elimination for Multiple Choice Reasoning[36] Rationale - Elimination FLAN-T5 Model Inference EMNLP’23 Link

Exchange-of-Thought: Enhancing Large Language Model Capabilities through Cross-Model Communication [37] Rationale - Collaboration ChatGPT API Calling EMNLP’23 Not Available

Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate[38] Rationale - Collaboration ChatGPT API Calling Arxiv’23 Link

Towards Reasoning in Large Language Models via Multi-Agent Peer Review Collaboration[39] Rationale - Collaboration ChatGPT API Calling Arxiv’23 Link

DYNAMIC LLM-AGENT NETWORK: AN LLM-AGENT COLLABORATION FRAMEWORK WITH AGENT TEAM OPTIMIZATION[40] Rationale - Collaboration ChatGPT
API Calling,

16.5 calls per sample
Arxiv’23 Link

Pair-wise Feedback

Constitutional AI: Harmlessness from AI Feedback[41] Pairwise Feedback Multiple LLMs Model Inference Arxiv’22 Link

RLAIF: Scaling Reinforcement Learning from Human Feedback with AI Feedback[42] Pairwise Feedback PaLM-2
Model Inference,
$0.67 per sample

Arxiv’23 Not Available

Self-Rewarding Language Models[43] Pairwise Feedback LLaMA-2 Model Inference Arxiv’24 Not Available

SALMON: SELF-ALIGNMENT WITH INSTRUCTABLE REWARD MODELS[44] Pairwise Feedback LLaMA-2 Model Inference ICLR’24 Link

Self-Alignment for Factuality: Mitigating Hallucinations in LLMs via Self-Evaluation[45] Pairwise Feedback LLaMA Model Inference Arxiv’24 Link

West-of-N: Synthetic Preference Generation for Improved Reward Modeling[46] Pairwise Feedback T5-XXL Model Inference Arxiv’24 Not Available

Learning Reward for Robot Skills Using Large Language Models via Self-Alignment[47] Pairwise Feedback ChatGPT API Calling ICML’24 Link

Aligning Large Language Models through Synthetic Feedback[48] Pairwise Feedback LLaMA Model Inference EMNLP’23 Link

Optimizing Language Model’s Reasoning Abilities with Weak Supervision[49] Pairwise Feedback LLaMA Model Inference Arxiv’24 Not Available

RLCD: REINFORCEMENT LEARNING FROM CONTRASTIVE DISTILLATION FOR LM ALIGNMENT[50] Pairwise Feedback LLaMA Model Inference ICLR’24 Link

Automatic Pair Construction for Contrastive Post-training[51] Pairwise Feedback LLaMA
Model Inference,

16 Nvidia V100 GPUs
NAACL’24 Not Available

Reinforcement Learning from Reflective Feedback (RLRF): Aligning and Improving LLMs via Fine-Grained Self-Reflection[52] Pairwise Feedback LLaMA-2
Model Inference,

16 Nvidia V100 GPUs
Arxiv’24 Not Available

Improving Language Model Reasoning with Self-motivated Learning[53] Pairwise Feedback LLaMA-2 Model Inference LREC’24 Not Available

Note: [1](Yoo et al., 2021); [2](Wang et al., 2023e); [3](Meng et al., 2023); [4](Wang et al., 2023f); [5](Li et al., 2023a); [6](Köksal
et al.); [7](Yu et al., 2024); [8](Zhang and Yang, 2023a); [9](Huang et al., 2023); [10](Yang et al., 2024b); [11](Liu et al., 2024);
[12](Guo et al., 2024a); [13](Sun et al., 2024); [14](Wang et al., 2024a); [15](Luo et al., 2024); [16](Kojima et al., 2022); [17](Yao
et al., 2024); [18](Hao et al., 2023); [19](Besta et al., 2024); [20](Yao et al., 2023); [21](Wang et al., 2024d); [22](Chen et al.,
2023e); [23](Qi et al., 2023); [24](Tan et al., 2023); [25](Wang et al., 2022a); [26](Wang et al., 2023b); [27](Liu et al., 2023a);
[28](Shridhar et al., 2023); [29](Kang et al., 2024); [30](Gao et al., 2021); [31](Wang et al., 2022b); [32](Chen et al., 2023f); [33](Liu
et al., 2023c); [34](Tong et al., 2023); [35](Balepur et al., 2023); [36](Ma and Du, 2023); [37](Yin et al., 2023); [38](Liang et al.,
2023); [39](Xu et al., 2023d); [401](Liu et al., 2023e); [41](Bai et al., 2022); [42](Lee et al., 2023b); [43](Yuan et al., 2024); [44](Sun
et al., 2023b); [45](Zhang et al., 2024a); [46](Pace et al., 2024); [47](Zeng et al., 2024); [48](Kim et al., 2023b); [49](Tong et al.,
2024b); [50](Yang et al., 2023c); [51](Xu et al., 2023c); [52](Lee et al., 2024a); [53](Feng et al., 2024).

Table 1: A list of representative LLM-Based Annotation Generation (Instruction & Response, Rationale, Pairwise
Feedback) papers with open-source code/data.
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https://github.com/naver-ai/hypermix
https://github.com/yizhongw/self-instruct
https://github.com/yumeng5/FewGen
https://github.com/akoksal/LongForm
https://github.com/yueyu1030/AttrPrompt
https://github.com/sail-sg/sdft
https://github.com/IBM/Dromedary
https://github.com/princeton-nlp/tree-of-thought-llm
https://github.com/maitrix-org/llm-reasoners
https://github.com/spcl/graph-of-thoughts
https://github.com/Zoeyyao27/Graph-of-Thought
https://github.com/VT-NLP/SOCRATIC-QUESTIONING
https://github.com/Zhen-Tan-dmml/CBM_NLP
https://github.com/wangpf3/pinto-faithful-language-reasoning
https://github.com/wangpf3/consistent-CoT-distillation
https://github.com/Nardien/KARD
https://github.com/princeton-nlp/LM-BFF
https://github.com/tengxiaoliu/XoT
https://github.com/nbalepur/PoE
https://github.com/KasMasVan/PoE
https://github.com/Skytliang/Multi-Agents-Debate
https://github.com/HITsz-TMG/Multi-agent-peer-review
https://github.com/SALT-NLP/DyLAN
https://github.com/anthropics/ConstitutionalHarmlessnessPaper
https://github.com/IBM/SALMON
https://github.com/zhangxy-2019/Self-Alignment-for-Factuality
https://sites.google.com/view/rewardselfalign
https://github.com/naver-ai/almost
https://github.com/facebookresearch/rlcd


Paper Data Type Backbone Annotation Cost Venue Code/Data Link

Textual Feedback

SELF-REFINE: Iterative Refinement with Self-Feedback[1] Textual Feedback Multiple LLMs API Calling NeurIPS’23 Not Available

Reflexion: Language Agents with Verbal Reinforcement Learning[2] Textual Feedback GPT-3 API Calling NeurIPS’23 Link

Iterative Translation Refinement with Large Language Models[3] Textual Feedback GPT-3.5 API Calling Arxiv’23 Not Available

Leveraging GPT-4 for Automatic Translation Post-Editing[4] Textual Feedback Multiple LLMs API Calling EMNLP’23 Not Available

A New Benchmark and Reverse Validation Method for Passage-level Hallucination Detection[5] Textual Feedback ChatGPT API Calling EMNLP’23 Link

SELFCHECKGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models[6] Textual Feedback Multiple LLMs API Calling & Model Inference EMNLP’23 Link

Improving Factuality and Reasoning in Language Models through Multiagent Debate[7] Textual Feedback - Peer Review Multiple LLMs API Calling Link

Towards Reasoning in Large Language Models via Multi-Agent Peer Review Collaboration[8] Textual Feedback - Peer Review Multiple LLMs API Calling Arxiv’23 Link

LM vs LM: Detecting Factual Errors via Cross Examination[9] Textual Feedback - Peer Review Multiple LLMs API Calling & Model Inference EMNLP’23 Not Available

Improving Language Model Negotiation with Self-Play and In-Context Learning from AI Feedback[10] Textual Feedback - Peer Review Multiple LLMs API Calling Arxiv’23 Link

PRD: Peer Rank and Discussion Improve Large Language Model based Evaluations[11] Textual Feedback - Peer Review Multiple LLMs
API Calling,

$0.14 per sample
Arxiv’23 Link

PRE: A Peer Review Based Large Language Model Evaluator[12] Textual Feedback - Peer Review Multiple LLMs API Calling Arxiv’24 Not Available

PiCO: Peer Review in LLMs based on the Consistency Optimization[13] Textual Feedback - Peer Review Multiple LLMs API Calling & Model Inference Arxiv’24 Not Available

Learning from Mistakes via Cooperative Study Assistant for Large Language Models[14] Textual Feedback - Mistake Multiple LLMs Model Inference EMNLP’23 Link

Learning From Mistakes Makes LLM Better Reasoner[15] Textual Feedback - Mistake GPT-4 API Calling Arxiv’23 Link

GAINING WISDOM FROM SETBACKS: ALIGNING LARGE LANGUAGE MODELS VIA MISTAKE ANALYSIS[16] Textual Feedback - Mistake Multiple LLMs API Calling & Modeling Inference ICLR’24 Not Available

Can LLMs Learn from Previous Mistakes? Investigating LLMs’ Errors to Boost for Reasoning[17] Textual Feedback - Mistake Multiple LLMs API Calling & Modeling Inference ACL’24 Link

Other Domain-specific Data

SODA: Million-scale Dialogue Distillation with Social Commonsense Contextualization[18] Dialogue GPT-3.5
API Calling,

$0.02 per dialogue
EMNLP’23 Link

Baize: An Open-Source Chat Model with Parameter-Efficient Tuning on Self-Chat Data[19] Dialogue Alpaca Model Inference EMNLP’23 Link

PLACES: Prompting Language Models for Social Conversation Synthesis[20] Dialogue Multiple LLMs Model Inference EACL’24 Not Available

CAMEL: Communicative Agents for “Mind” Exploration of Large Language Model Society[21] Dialogue ChatGPT API Calling NuerIPS’23 Link

AUGESC: Dialogue Augmentation with Large Language Models for Emotional Support Conversation[22] Dialogue GPT-J Model Inference ACL’23 Link

Weakly Supervised Data Augmentation Through Prompting for Dialogue Understanding[23] Dialogue GPT-J Model Inference NeurIPS’22 Not Available

Reflect, Not Reflex: Inference-Based Common Ground Improves Dialogue Response Quality[24] Dialogue GPT-3 API Calling EMNLP’22 Link

ASDOT: Any-Shot Data-to-Text Generation with Pretrained Language Models[25] Context GPT-3
API Calling,
$23 in total

EMNLP’22 Link

Contextualization Distillation from Large Language Model for Knowledge Graph Completion[26] Context PaLM-2 API Calling EACL’24 Link

Towards Ontology-Enhanced Representation Learning for Large Language Models[27] Context ChatGPT API Calling Arxiv’24 Link

DALK: Dynamic Co-Augmentation of LLMs and KG to answer Alzheimer’s Disease Questions with Scientific Literature[28] Graph ChatGPT API Calling Arxiv’24 Link

Automated Construction of Theme-specific Knowledge Graphs[29] Graph GPT-4 API Calling Arxiv’24 Not Available

Large Language Models Can Learn Temporal Reasoning[30] Graph GPT-3.5 API Calling ACL’24 Link

Moving from Tabular Knowledge Graph Quality Assessment to RDF Triples Leveraging ChatGPT[31] Graph ChatGPT API Calling Arxiv’24 Link

Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents[32] Plan GPT-3 API Calling ICML’22 Link

Do As I Can, Not As I Say: Grounding Language in Robotic Affordances[33] Plan Multiple LLMs API Calling & Model Inference CoRL’21 Link

SayPlan: Grounding Large Language Models using 3D Scene Graphs for Scalable Robot Task Planning[34] Plan GPT-3.5 API Calling CoRL’23 Link

PROGPROMPT: Generating Situated Robot Task Plans using Large Language Models[35] Plan GPT-3 API Calling ICRA’23 Link

Text2Motion: From Natural Language Instructions to Feasible Plans[36] Plan GPT-3.5 API Calling Autonomous Robots’23 Link

GENSIM: GENERATING ROBOTIC SIMULATION TASKS VIA LARGE LANGUAGE MODELS[37] Simulation Task GPT-4 API Calling ICLR’24 Link

Scaling Up and Distilling Down: Language-Guided Robot Skill Acquisition[38] Simulation Task Multiple LLMs API Calling CoRL’23 Link

REWARD DESIGN WITH LANGUAGE MODELS[39] Reward GPT-3 API Calling ICLR’23 Link

Guiding Pretraining in Reinforcement Learning with Large Language Models[40] Reward GPT-3
API Calling,

0.02 second per call
ICML’23 Not Available

Enhanced Visual Instruction Tuning with Synthesized Image-Dialogue Data[41] Visual Instruction Tuning Data ChatGPT API Calling Arxiv’23 Link

LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset, Framework, and Benchmark[42] Visual Instruction Tuning Data GPT-4 API Calling NeurIPS’23 Link

TOMGPT: Reliable Text-Only Training Approach for Cost-Efective Multi-modal Large Language Model[43] Context ChatGPT API Calling TKDD’24 Not Available

LLM Based Generation of Item-Description for Recommendation System[44] Item Description Alpaca Model Inference RecSys’23 Not Available

PMG : Personalized Multimodal Generation with Large Language[45] Context Multiple LLMs Model Inference WWW’24 Link

LLMRec: Large Language Models with Graph Augmentation for Recommendation[46] Augmented Implicit Feedback ChatGPT API Calling, $21.14 WSDM’24 Link

Large Language Models as Evaluators for Recommendation Explanations[47] Explanation Multiple LLMs API Calling & Model Inference, less than $0.02 per sample Arxiv’24 Link

Exploiting Asymmetry for Synthetic Training Data Generation: SynthIE and the Case of Information Extraction[48] IE Sample GPT-3.5 API Calling, $223.55 for entire dataset EMNLP’23 Link

InPars-v2: Large Language Models as Efficient Dataset Generators for Information Retrieval[49] IE sample GPT-J
Model Inference,

30 hours on an A100 GPU to generate 100k queries
Arxiv’23 Link

READ: Improving Relation Extraction from an ADversarial Perspective[50] IE Sample ChatGPT API Calling NAACL’24 Link

STAR: Boosting Low-Resource Information Extraction by Structure-to-Text Data Generation with Large Language Models[51] IE Sample Multiple LLMs API Calling AAAI’24 Link

Adjudicating LLMs as PropBank Annotators[52] IE Label Multiple LLMs API Calling LREC’24 Link

A Causal Explainable Guardrails for Large Language Models[53] Representation GPT-4 API Calling Arxiv’24 Not Available

Zero-shot LLM-guided Counterfactual Generation for Text[54] Context Multiple LLMs API Calling Arxiv’24 Not Available

Text classification of column headers with a controlled vocabulary: leveraging LLMs for metadata enrichment[55] Metadata ChatGPT API Calling Arxiv’24 Link

Note: [1](Madaan et al., 2024); [2](Shinn et al., 2024); [3](Chen et al., 2023c); [4](Raunak et al., 2023); [5](Yang et al., 2023d);
[6](Manakul et al., 2023); [7](Du et al., 2023a); [8](Xu et al., 2023d); [9](Cohen et al., 2023); [10](Fu et al., 2023); [11](Li et al.,
2023d); [12](Chu et al., 2024b); [13](Ning et al., 2024); [14](Wang and Li, 2023); [15](An et al., 2023); [16](Chen et al., 2023a);
[17](Tong et al., 2024a); [18](Kim et al., 2023a); [19](Xu et al., 2023b); [20](Chen et al., 2023b); [21](Li et al., 2024d); [22](Zheng
et al., 2023); [23](Chen et al., 2022); [24](Zhou et al., 2022a); [25](Xiang et al., 2022); [26](Li et al., 2024b); [27](Ronzano and
Nanavati, 2024); [28](Li et al., 2024c); [29](Ding et al., 2024); [30](Xiong et al., 2024); [31](Tuozzo, 2022); [32](Huang et al.,
2022); [33](Brohan et al., 2023); [34](Rana et al., 2023); [35](Singh et al., 2023); [36](Lin et al., 2023a); [37](Wang et al., 2023a);
[38](Ha et al., 2023); [39](Kwon et al., 2022); [40](Du et al., 2023b); [41](Li et al., 2023f); [42](Yin et al., 2024); [43](Chen et al.,
2024a); [44](Acharya et al., 2023); [45](Shen et al., 2024); [46](Wei et al., 2024); [47](Zhang et al., 2024b); [48](Josifoski et al.,
2023); [49](Jeronymo et al., 2023); [50](Li et al., 2024a); [51](Ma et al., 2024); [52](Bonn et al., 2024); [53(Chu et al., 2024a);
[54](Bhattacharjee et al., 2024); [55](Martorana et al., 2024).

Table 2: A list of representative LLM-Based Annotation Generation (Textual Feedback, Other Domain-specific
Data) papers with open-source code/data.
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https://github.com/noahshinn/reflexion
https://github.com/maybenotime/PHD
https://github.com/potsawee/selfcheckgpt
https://composable-models.github.io/llm_debate/
https://github.com/HITsz-TMG/Multi-agent-peer-review
https://github.com/FranxYao/GPT-Bargaining
https://bcdnlp.github.io/PR_LLM_EVAL/
https://dqwang122.github.io/projects/SALAM/
https://github.com/microsoft/LEMA
https://github.com/YookiTong/Learn-from-Mistakes-CotErrorSet
https://github.com/skywalker023/sodaverse
https://github.com/project-baize/baize-chatbot
https://github.com/camel-ai/camel
https://github.com/thu-coai/AugESC
https://inklab.usc.edu/Reflect/
https://github.com/szxiangjn/any-shot-data2text
https://github.com/David-Li0406/Contextulization-Distillation
https://github.com/iqvianlp/llm-onto-infuse/
https://github.com/David-Li0406/DALK
https://github.com/xiongsiheng/TG-LLM
https://github.com/isislab-unisa/KGHeartbeat/tree/main
https://wenlong.page/language-planner/
https://say-can.github.io/
https://sayplan.github.io/
progprompt.github.io
https://sites.google.com/stanford.edu/text2motion
https://liruiw.github.io/gensim
https://www.cs.columbia.edu/ huy/scalingup/
https://github.com/minaek/reward_design_with_llms
https://github.com/icoz69/StableLLAVA
https://openlamm.github.io
https://github.com/mindspore-lab/models/tree/master/research/huawei-noah/PMG
https://github.com/HKUDS/LLMRec.git
https://github.com/Xiaoyu-SZ/LLMasEvaluator
https://github.com/epfl-dlab/SynthIE
https://github.com/zetaalphavector/inPars/tree/master/tpu
https://github.com/David-Li0406/READ
https://derek.ma/STAR
https://github.com/H-TayyarMadabushi/Adjudicating-LLMs-as-PropBank-Annotators
https://github.com/ritamargherita/LLMs-topic-classification/


Paper Data Type Backbone Annotation Cost Venue Code/Data Link

Filter & Selection

Constitutional AI: Harmlessness from AI Feedback[1] Pairwise Feedback Multiple LLMs Model Inference Arxiv’22 Link

SODA: Million-scale Dialogue Distillation with Social Commonsense Contextualization[2] Dialogue GPT-3.5
API Calling,

$0.02 per dialogue
EMNLP’23 Link

Aligning Large Language Models through Synthetic Feedback[3] Pairwise Feedback LLaMA Model Inference EMNLP’23 Link

AUGESC: Dialogue Augmentation with Large Language Models for Emotional Support Conversation[4] Dialogue GPT-J Model Inference ACL’23 Link

SELF-QA: Unsupervised Knowledge Guided Language Model Alignment[5] Instruction & Response BLOOM Model Inference Arxiv’23 Not Available

Human-Instruction-Free LLM Self-Alignment with Limited Samples[6] Instruction & Response Multiple LLMs
Model Inference,

single NVIDIA A100 80G GPU
Arxiv’24 Not Available

Automated Construction of Theme-specific Knowledge Graphs[7] Graph GPT-4 API Calling Arxiv’24 Not Available

Large Language Models Are Reasoning Teachers[8] CoT GPT-3.5 API Calling ACL’23 Link

Knowledge-Augmented Reasoning Distillation for Small Language Models in Knowledge-Intensive Tasks [9] Rationale - CoT ChatGPT API Calling NeurIPS’23 Link

SELF-CONSISTENCY IMPROVES CHAIN OF THOUGHT REASONING IN LANGUAGE MODELS[10] Rationale - Diverse Thinking Multiple LLMs API Calling & Model Inference ICLR’23 Not Available

Making Large Language Models Better Data Creators[11] Instruction & Response ChatGPT API Calling EMNLP’23 Link

Automated Construction of Theme-specific Knowledge Graphs[12] Graph GPT-4 API Calling Arxiv’24 Not Available

Reinforced Self-Training (ReST) for Language Modeling[13] Response Multiple LLMs Model Inference Arxiv’24 Not Available

RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment[14] Response LLaMA Model Inference TMLR Link

Selective In-Context Data Augmentation for Intent Detection using Pointwise V-Information[15] Instruction OPT Model Inference EACL’24 Not Available

CodecLM: Aligning Language Models with Tailored Synthetic Data[16] Instruction LLaMA Model Inference NAACL’24 Not Available

DISCO: Distilling Counterfactuals with Large Language Models[17] CoT GPT-3 API Callin ACL’23 Link

LARGE LANGUAGE MODELS CAN SELF-IMPROVE[18] Response PaLM-540B Model Inference EMNLP’23 Not Available

West-of-N: Synthetic Preference Generation for Improved Reward Modeling[19] Pairwise Feedback T5-XXL Model Inference Arxiv’24 Not Available

SELF: SELF-EVOLUTION WITH LANGUAGE FEEDBACK[20] Response Multiple LLMs Model Inference Arxiv’23 Not Available

InPars-v2: Large Language Models as Efficient Dataset Generators for Information Retrieval[21] IE sample GPT-J
Model Inference,

30 hours on an A100 GPU to generate 100k queries
Arxiv’23 Link

DALK: Dynamic Co-Augmentation of LLMs and KG to answer Alzheimer’s Disease Questions with Scientific Literature[22] Graph ChatGPT API Calling Arxiv’24 Link

Optimizing Language Model’s Reasoning Abilities with Weak Supervision[23] Pairwise Feedback LLaMA Model Inference Arxiv’24 Not Available

Note: [1](Bai et al., 2022); [2](Kim et al., 2023a); [3](Kim et al., 2023b); [4](Zheng et al., 2023); [5](Zhang and Yang, 2023a);
[6](Guo et al., 2024a); [7](Ding et al., 2024); [8](Ho et al., 2023); [9](Kang et al., 2024); [10](Wang et al., 2022b); [11](Lee et al.,
2023a); [12](Ding et al., 2024); [13](Gulcehre et al., 2023); [14](Dong et al., 2023); [15](Lin et al., 2023b); [16](Wang et al., 2024c);
[17](Chen et al., 2023g); [18](Huang et al., 2023); [19](Pace et al., 2024); [20](Lu et al., 2023); [21](Jeronymo et al., 2023); [22](Li
et al., 2024c); [23](Tong et al., 2024b).

Table 3: A list of representative LLM-Generated Annotation Assessment papers with open-source code/data.
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https://github.com/anthropics/ConstitutionalHarmlessnessPaper
https://github.com/skywalker023/sodaverse
https://github.com/naver-ai/almost
https://github.com/thu-coai/AugESC
https://github.com/itsnamgyu/reasoning-teacher
https://github.com/Nardien/KARD
https://github.com/microsoft/llm-data-creation
 https://github.com/OptimalScale/LMFlow
https://github.com/eric11eca/disco
https://github.com/zetaalphavector/inPars/tree/master/tpu
https://github.com/David-Li0406/DALK


Paper Data Type Backbone Annotation Cost Venue Code/Data Link

Supervised Fine-tuning

LARGE LANGUAGE MODELS CAN SELF-IMPROVE[1] Response PaLM-540B Model Inference EMNLP’23 Not Available

SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions[2] Instruction & Response GPT-3
API Calling,

$600 for entire dataset
ACL’23 Link

SELF: SELF-EVOLUTION WITH LANGUAGE FEEDBACK[3] Response Multiple LLMs Model Inference Arxiv’23 Not Available

Self-Distillation Bridges Distribution Gap in Language Model Fine-Tuning[4] Response LLaMA-2 Model Inference ACL’24 Link

Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models[5] Response zephyr Model Inference Arxiv’24 Link

Self-playing Adversarial Language Game Enhances LLM Reasoning[6] Response Multiple LLMs Model Inference Arxiv’24 Link

Stanford alpaca: An instruction-following llama model[7] Response GPT-3.5 API Calling Arxiv’23 Link

Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality[8] Response GPT-4 API Calling Arxiv’23 Link

Wizardlm: Empowering large language models to follow complex instructions[9] Instruction LLaMA Model Inference Arxiv’23 Link

Generating training data with language models: Towards zero-shot language understanding[10] Instruction CTRL Model Inference NeurIPS Link

Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning[11] Instruction CTRL Model Training ICML’23 Link

Noise-Robust Fine-Tuning of Pretrained Language Models via External Guidance[12] Response ChatGPT API Calling EMNLP’23 Link

PINTO: FAITHFUL LANGUAGE REASONING USING PROMPT-GENERATED RATIONALES[13] Rationale - CoT GPT-neox Model Inference ICLR’23 Link

Distilling Reasoning Capabilities into Smaller Language Models[14] Rationale - CoT GPT-3 API Calling ACL’23 Not Available

LogiCoT: Logical Chain-of-Thought Instruction Tuning[15] Rationale - CoT GPT-4 API Calling EMNLP’23 Not Available

Knowledge-Augmented Reasoning Distillation for Small Language Models in Knowledge-Intensive Tasks[16] Rationale - CoT ChatGPT API Calling NeurIPS’23 Link

Baize: An Open-Source Chat Model with Parameter-Efficient Tuning on Self-Chat Data[17] Dialogue Alpaca Model Inference EMNLP’23 Link

Exploiting Asymmetry for Synthetic Training Data Generation: SynthIE and the Case of Information Extraction[18] IE Sample GPT-3.5 API Calling, $223.55 for entire dataset EMNLP’23 Link

InPars-v2: Large Language Models as Efficient Dataset Generators for Information Retrieval[19] IE sample GPT-J
Model Inference,

30 hours on an A100 GPU to generate 100k queries
Arxiv’23 Link

Code alpaca: An instruction-following llama model for code generation[20] Instruction & Response Alpaca Model Inferece Arxiv’23 Link

Code llama: Open foundation models for code[21] Instruction & Response Multiple LLMs Model Inference Arxiv’23 Link

HuatuoGPT, Towards Taming Language Model to Be a Doctor[22] Instruction & Response ChatGPT API Calling Arxiv’23 Link

Doctorglm: Fine-tuning your chinese doctor is not a herculean task[23] Response ChatGPT API Calling Arxiv’23 Link

Xuanyuan 2.0: A large chinese financial chat model with hundreds of billions parameters[24] Instruction & Response BLOOM Model Inference CIKM’23 Not Available

Wizardmath: Empowering mathematical reasoning for large language models via reinforced evol-instruct[25] Pairwise Feedback ChatGPT API Calling Arxiv’23 Link

Gimlet: A unified graph-text model for instruction-based molecule zero-shot learning[26] Instruction ChatGPT API Calling NuerIPS’23 Link

Alignment Tuning

Automatic Pair Construction for Contrastive Post-training[27] Pairwise Feedback LLaMA
Model Inference,

16 Nvidia V100 GPUs
NAACL’24 Not Available

Aligning Large Language Models through Synthetic Feedback[28] Pairwise Feedback LLaMA Model Inference EMNLP’23 Link

West-of-N: Synthetic Preference Generation for Improved Reward Modeling[29] Pairwise Feedback T5-XXL Model Inference Arxiv’24 Not Available

Learning Reward for Robot Skills Using Large Language Models via Self-Alignment[30] Pairwise Feedback ChatGPT API Calling ICML’24 Link

SALMON: SELF-ALIGNMENT WITH INSTRUCTABLE REWARD MODELS[31] Pairwise Feedback LLaMA-2 Model Inference ICLR’24 Link

Self-Rewarding Language Models[32] Pairwise Feedback LLaMA-2 Model Inference Arxiv’24 Not Available

Self-Alignment for Factuality: Mitigating Hallucinations in LLMs via Self-Evaluation[33] Pairwise Feedback LLaMA Model Inference Arxiv’24 Link

Aligning Large Language Models by On-Policy Self-Judgment[34] Response LLaMA-2 Model Inference Arxiv’24 Link

Optimizing Language Model’s Reasoning Abilities with Weak Supervision[35] Pairwise Feedback LLaMA Model Inference Arxiv’24 Not Available

Reinforcement Learning from Reflective Feedback (RLRF): Aligning and Improving LLMs via Fine-Grained Self-Reflection[36] Pairwise Feedback LLaMA-2
Model Inference,

16 Nvidia V100 GPUs
Arxiv’24 Not Available

Direct language model alignment from online ai feedback[37] Pairwise Feedback PaLM-2 API Calling Arxiv’24 Not Available

Reinforced Self-Training (ReST) for Language Modeling[38] Response Multiple LLMs Model Inference Arxiv’24 Not Available

RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment[39] Response LLaMA Model Inference TMLR Link

Step-On-Feet Tuning: Scaling Self-Alignment of LLMs via Bootstrapping[40] Response LLaMA-2 Model Inference Arxiv’24 Not Available

Mixture of insighTful Experts (MoTE): The Synergy of Thought Chains and Expert Mixtures in Self-Alignment[41] Response Alpaca Model Inference Arxiv’24 Not Available

Iterative reasoning preference optimization[42] Pairwise Feedback LLaMA-2 Model Inference Arxiv’24 Not Available

Inference Time

Large Language Models are Human-Level Prompt Engineers[43] Instruction GPT-3.5 API Calling ICLR’23 Link

Auto-ICL: In-Context Learning without Human Supervision[44] Instruction ChatGPT API Calling Arxiv’23 Link

Empowering Large Language Models for Textual Data Augmentation[45] Instruction ChatGPT API Calling Arxiv’24 Not Available

Self-generated in-context learning: Leveraging auto-regressive language models as a demonstration generator[46] Instruction GPT-J Model Inference NAACL’22 Link

Are Human-generated Demonstrations Necessary for In-context Learning?[47] Instruction Multiple LLMs API Calling Arxiv’23 Link

Self-ICL: Zero-Shot In-Context Learning with Self-Generated Demonstrations[48] Instruction Multiple LLMs API Calling EMNLP’23 Link

Self-Demos: Eliciting Out-of-Demonstration Generalizability in Large Language Models[49] Instruction ChatGPT API Calling NAACL’24 Link

Rephrase and respond: Let large language models ask better questions for themselves[50] Instruction GPT-4 API Calling Ariv’23 Link

DAIL: Data Augmentation for In-Context Learning via Self-Paraphrase[51] Instruction ChatGPT API Calling Arxiv’23 Not Available

Just rephrase it! Uncertainty estimation in closed-source language models via multiple rephrased queries[52] Instruction Multiple LLMs Model Inference Arxiv’24 Not Available

Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement[53] Instruction GPT-3.5 API Calling EMNLP’23 Link

Self-DC: When to retrieve and When to generate? Self Divide-and-Conquer for Compositional Unknown Questions[54] Instruction ChatGPT API Calling Arxiv’24 Not Available

Large Language Models are Zero-Shot Reasoners[55] Rationale - CoT Multiple LLMs API Callinfg NeurIPS’22 Not Available

SELF-CONSISTENCY IMPROVES CHAIN OF THOUGHT REASONING IN LANGUAGE MODELS[56] Rationale - Diverse Thinking Multiple LLMs API Calling & Model Inference ICLR’23 Not Available

UNIVERSAL SELF-CONSISTENCY FOR LARGE LANGUAGE MODEL GENERATION[57] Rationale - Diverse Thinking Multiple LLMs API Calling Arxiv’23 Not Available

Eliminating Reasoning via Inferring with Planning: A New Framework to Guide LLMs’ Non-linear Thinking[58] Rationale - Elimination PaLM2 API Calling Arxiv’23 Not Available

It’s Not Easy Being Wrong: Large Language Models Struggle with Process of Elimination Reasoning[59] Rationale - Elimination Multiple LLMs API Calling ACL’24 Link

POE: Process of Elimination for Multiple Choice Reasoning[60] Rationale - Elimination FLAN-T5 Model Inference EMNLP’23 Link

SELF-REFINE: Iterative Refinement with Self-Feedback[61] Textual Feedback Multiple LLMs API Calling NeurIPS’23 Not Available

Can LLMs Learn from Previous Mistakes? Investigating LLMs’ Errors to Boost for Reasoning[62] Textual Feedback - Mistake Multiple LLMs API Calling & Modeling Inference ACL’24 Link

Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks [63] Rationale - Program Multiple LLMs API Calling & Model Inference TMLR’23 Not Available

Graph of Thoughts: Solving Elaborate Problems with Large Language Models[64] Rationale - Graph GPT-3.5 API Calling AAAI’24 Link

Reasoning with Language Model is Planning with World Model[65] Rationale - Tree LLaMA
Model Inference,

4×24 GB NVIDIA A5000 GPUs
EMNLP’23 Link

Note: [1](Huang et al., 2023); [2](Wang et al., 2023e); [3](Lu et al., 2023); [4](Yang et al., 2024b); [5](Chen et al., 2024b);
[6](Cheng et al., 2024); [7](Taori et al., 2023); [8](Chiang et al., 2023a); [9](Xu et al., 2023a); [10](Meng et al., 2022); [11](Meng
et al., 2023); [12](Wang et al., 2023d); [13](Wang et al., 2022a); [14](Shridhar et al., 2023); [15](Liu et al., 2023a); [16](Kang
et al., 2024); [17](Xu et al., 2023b); [18](Josifoski et al., 2023); [19](Jeronymo et al., 2023); [20](Chaudhary, 2023); [21](Roziere
et al., 2023); [22](Zhang et al., 2023); [23](Xiong et al., 2023); [24](Zhang and Yang, 2023b); [25](Luo et al., 2023); [26](Zhao
et al., 2024); [27](Xu et al., 2023c); [28](Kim et al., 2023b); [29](Pace et al., 2024); [30](Zeng et al., 2024); [31](Sun et al., 2023b);
[32](Yuan et al., 2024); [33](Zhang et al., 2024a); [34](Lee et al., 2024b); [35](Tong et al., 2024b); [36](Lee et al., 2024a); [37](Guo
et al., 2024b); [38](Gulcehre et al., 2023); [39](Dong et al., 2023); [40](Wang et al., 2024a); [41](Liu et al., 2024); [42](Chen et al.,
2023c); [43](Zhou et al., 2022b); [44](Yang et al., 2023b); [45](Li et al.); [46](Kim et al., 2022); [47](Li et al., 2023c); [48](Chen
et al., 2023d); [49](He et al., 2024); [50](Deng et al., 2023); [51](Li et al., 2023a); [52](Yang et al., 2024a); [53](Xi et al., 2023);
[54](Wang et al., 2024b); [55](Kojima et al., 2022); [56](Wang et al., 2022b); [57](Chen et al., 2023f); [58](Tong et al., 2023);
[59](Balepur et al., 2023); [60](Ma and Du, 2023); [61](Madaan et al., 2024); [62](Tong et al., 2024a); [63](Chen et al., 2023e);
[64](Besta et al., 2024); [65](Hao et al., 2023).

Table 4: A list of representative LLM-Generated Annotation Utilization papers with open-source code/data.
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https://github.com/yizhongw/self-instruct
https://github.com/sail-sg/sdft
https://github.com/uclaml/SPIN
https://github.com/Linear95/SPAG
https://github.com/tatsu-lab/stanford_alpaca
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/nlpxucan/WizardLM
https://github.com/yumeng5/SuperGen
https://github.com/yumeng5/FewGen
https://github.com/SongW-SW/LAFT
https://github.com/wangpf3/pinto-faithful-language-reasoning
https://github.com/Nardien/KARD
https://github.com/project-baize/baize-chatbot
https://github.com/epfl-dlab/SynthIE
https://github.com/zetaalphavector/inPars/tree/master/tpu
https://github.com/sahil280114/codealpaca
https://github.com/facebookresearch/codellama
https://github.com/FreedomIntelligence/HuatuoGPT
https://github.com/xionghonglin/DoctorGLM
https://github.com/nlpxucan/WizardLM
https://github.com/zhao-ht/GIMLET
https://github.com/naver-ai/almost
https://sites.google.com/view/rewardselfalign
https://github.com/IBM/SALMON
https://github.com/zhangxy-2019/Self-Alignment-for-Factuality
https://github.com/oddqueue/self-judge
 https://github.com/OptimalScale/LMFlow
https://github.com/keirp/automatic_prompt_engineer
https://github.com/ecielyang/Auto-ICL
https://github.com/ruili33/SEC
https://github.com/ntunlplab/Self-ICL
https://github.com/hewei2001/Self-Demos
https://github.com/uclaml/Rephrase-and-Respond
https://github.com/WooooDyy/Self-Polish
https://github.com/nbalepur/PoE
https://github.com/KasMasVan/PoE
https://github.com/YookiTong/Learn-from-Mistakes-CotErrorSet
https://github.com/spcl/graph-of-thoughts
https://github.com/maitrix-org/llm-reasoners

