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Abstract

In this paper, we propose a novel network named Vision
Transformer for Biomedical Image Segmentation (VTBIS).
Our network splits the input feature maps into three parts
with 1 × 1, 3 × 3 and 5 × 5 convolutions in both encoder
and decoder. Concat operator is used to merge the features
before being fed to three consecutive transformer blocks with
attention mechanism embedded inside it. Skip connections
are used to connect encoder and decoder transformer blocks.
Similarly, transformer blocks and multi scale architecture is
used in decoder before being linearly projected to produce
the output segmentation map. We test the performance of our
network using Synapse multi-organ segmentation dataset,
Automated cardiac diagnosis challenge dataset, Brain tu-
mour MRI segmentation dataset and Spleen CT segmentation
dataset. Without bells and whistles, our network outperforms
most of the previous state of the art CNN and transformer
based models using Dice score and the Hausdorff distance
as the evaluation metrics.

1. Introduction
Deep Convolutional Neural Networks has been highly

successful in medical image segmentation. U-Net (Ron-
neberger et al., 2015) based architectures use a symmetric
encoder-decoder network with skip-connections. The limi-
tation of CNN-based approach is that it is unable to model
long-range relation, due to the regional locality of convolu-
tion operations. To tackle this problem, self attention mecha-
nism was proposed (Schlemper et al., 2019) and (Wang et al.,
2018). Still, the problem of capturing multi-scale contextual
information was not solved which leads not so accurate seg-
mentation of structures with variable shapes and scales (e.g.
brain lesions with different sizes).

An alternative technique using Transformers are better
suited at modeling global contextual information. Vision
Transformer (ViT) (Dosovitskiy et al., 2020) splits the im-
age into patches and models the correlation between these
patches as sequences with Transformer, achieving better
speed-performance trade-off on image classification than

previous state of the art image recognition methods. DeiT
(Touvron et al., 2020) proposed a knowledge distillation
method for training Vision Transformers.

An extensive study was done by (Bakas et al., 2018) to
find the best algorithm for segmenting tumours in brain.
Medical images from CT and MRI are in 3 dimensions,
thus making volumetric segmentation important. Çiçek
et al. (2016) tackled this problem using 3d U-Net. Densely-
connected volumetric convnets was used (Yu et al., 2017)
to segment cardiovascular images. A comprehensive study
to evaluate segmentation performance using Dice score and
Jaccard index was done by (Eelbode et al., 2020).

2. Related Work
2.1. Convolutional Neural Network

Earlier work for medical image segmentation used some
variants of the original U-shaped architecture (Ronneberger
et al., 2015). Some of these were Res-UNet (Xiao et al.,
2018), Dense-UNet (Li et al., 2018) and U-Net++ (Zhou
et al., 2018). These architectures are quite successful for
various kind of problems in the domain of medical image
segmentation.

2.2. Attention Mechanism

Self Attention mechanism (Wang et al., 2018) has been
used successfully to improve the performance of the network.
(Schlemper et al., 2019) used skip connections with additive
attention gate in U-shaped architecture to perform medical
image segmentation. Attention mechanism was first used
in U-Net (Oktay et al., 2018) for medical image segmenta-
tion. A multi-scale attention network (Fan et al., 2020) was
proposed in the context of biomedical image segmentation.

(Jin et al., 2020) used a hybrid deep attention-aware net-
work to extract liver and tumor in ct scans. Attention module
was added to U-Net module to exploit full resolution features
for medical image segmentation (Li et al., 2020). A similar
work using attention based CNN was done by (Liu et al.,
2020) in the context of schemic stroke disease. A multi scale
self guided attention network was used to achieve state of
the art results (Sinha and Dolz, 2020) for medical image
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segmentation.

2.3. Transformers

Transformer first proposed by (Vaswani et al., 2017) have
achieved state of the art performance on various tasks. In-
spired by it, Vision Transformer (Dosovitskiy et al., 2020)
was proposed which achieved better speed-accuracy tradeoff
for image recognition. To improve this, Swin Tranformer
(Liu et al., 2021) was proposed which outperformed previous
networks on various vision tasks including image classifica-
tion, object detection and semantic segmentation.

(Chen et al., 2021), (Valanarasu et al., 2021) and
(Hatamizadeh et al., 2021) individually proposed methods
to integrate CNN and transformers into a single network for
medical image segmentation. Transformer along with CNN
are applied in multi-modal brain tumor segmentation (Wang
et al., 2021) and 3D medical image segmentation (Xie et al.,
2021).

Our main contributions can be summarized as:
• We propose a novel network incorporating attention

mechanism in transformer architecture along with multi scale
module in the context of medical image segmentation.

• Our network outperforms previous state of the art CNN
based as well as transformer based architectures on various
datasets.

• We present the ablation study showing our network
performance is generalizable hence can be incorporated to
tackle other similar problems.

3. Method

3.1. Dataset

1. Synapse multi-organ segmentation dataset - We use
30 abdominal CT scans in the MICCAI 2015 Multi-Atlas
Abdomen Labeling Challenge, with 3779 axial contrast-
enhanced abdominal clinical CT images in total.

2. Automated cardiac diagnosis challenge - The chest
CT scan of each patient is manually annotated with ground
truth for left ventricle (LV), right ventricle (RV) and my-
ocardium (MYO).

3. Spleen CT segmentation - For task 9 of MSD chal-
lenge, 20 CT volumes with spleen body annotation are used.

4. Brain Tumor Segmentation - 3D MRI dataset used
in the experiments is provided by the BraTS 2019 challenge
(Menze et al., 2014) and (Bakas et al., 2018).

3.2. Network Architecture

Suppose an image is given x ∈ RH×W×C with a spatial
resolution of H×W and C number of channels. The goal is
to predict the pixel-wise label of size H×W for each image.
We start by performing tokenization by reshaping the input x
into a sequence of flattened 2D patches xi

p ∈ R(i = 1, .., N),

where each patch is of size P × P and N = (H ×W )/P 2

is the number of patches present in the image.
We convert the vectorized patches xp into a latent D-

dimensional embedding space using a linear projection vec-
tor. We use patch embeddings to make sure the positional
information is present as shown in Equation 1:

z0 =
[
x1
pE;x2

pE; · · · ;xN
p E
]
+Epos (1)

where E ∈ R(P 2C) × D denotes the patch embedding
projection, and Epos ∈ RN×D denotes the position embed-
ding.

After the embedding layer, we use multi scale context
block followed by a stack of transformer blocks (Dosovitskiy
et al., 2020) made up of multiheaded self-attention (MSA)
and multilayer perceptron (MLP) layers as shown in Equa-
tion 2 and Equation 3 respectively:

z′i = MSA(Norm (zi−1)) + zi−1 (2)

zi = MLP (Norm (z′i)) + z′i (3)

Where Norm represents layer normalization, MLP is
made up of two linear layers and i is the individual block.
A MSA block is made up of n self-attention (SA) heads in
parallel.

The structure of Transformer layer used in this work is
illustrated in Figure 1:

Figure 1. Schematic of the Transformer layer used in this work.

The output sequence of Transformer zL ∈ Rd×N is
first reshaped to d × H/8 ×W/8 × D/8 . A convolution
block is used to reduce the channel dimension from d to
K. This helps in reducing the computational complexity.
Upsampling operations and successive convolution blocks
are the used to get back a full resolution segmentation re-
sult R ∈ RH×W×D. Skip-connections are used to fuse the
encoder features with the decoder by concatenation to get
more contextual information.

In the encoder part, the input image is split into patches
and fed into linear embedding layer. The feature map is
splitted into N parts along with the channel dimension. The
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individual features are fused before being passed to the trans-
former blocks. The decoder block is comprised of trans-
former blocks followed by a similar split and concat opera-
tor. Linear projection is used on the feature maps to produce
the segmentation map. Skip connections are used between
the encoder and decoder transformer blocks to provide an
alternative path for the gradient to flow thus speeding up the
training process.

The detailed architecture of our network as well as the
intermediate skip-connections is shown in Figure 2:

Figure 2. Overview of our model architecture. Output sizes demon-
strated for patch dimension N = 16 and embedding size C = 768.
We extract sequence representations of different layers in the trans-
former and merge them with the decoder using skip connections.

Similar to the previous works (Hu et al., 2019), selfatten-
tion is computed as defined in Equation 4:

MSA (Q,K, V ) = Sof tMax

(
QKT

√
d

+B

)
V (4)

where Q,K, V ∈ RM2×d denote the query, key and
value matrices. M2 and d denotes the number of patches
in a window and the dimension of the query. The values
in B are taken from the random bias matrix denoted by
B ∈ R(2M−1)×(2M+1)

The output of MSA is defined as in Equation 5:

TMSA(z) = [MSA1(z);MSA2(z); . . . ;MSAn(z)]Wtmsa

(5)
Where Wtmsa represents the learnable weight matrices

of different heads (SA).

3.3. Loss Function

Our loss function is a combination of dice and cross
entropy terms which is calculated in voxel-wise manner as
defined in Equation 6:

L = 1− 2

J

J∑
j=1

∑I
i=1 Gi,jYi,j∑I

i=1 G
2
i,j +

∑I
i=1 Y

2
i,j

−1

I

I∑
i=1

J∑
j=1

Gi,j log Yi,j

(6)
where I is the number of voxels, J is the number of

classes, Yi,j and Gi,j denote the probability output and one-
hot encoded ground truth for voxel i of class j.

3.4. Evaluation Metrics

The segmentation accuracy is measured by the Dice score
and the Hausdorff distance (95%) metrics for enhancing
tumor region (ET), regions of the tumor core (TC), and the
whole tumor region (WT).

3.5. Implementation Details

Our model is trained using Pytorch deep learning frame-
work. The learning rate and weight decay values used are
0.00015 and 0.005, respectively. We use batch size value of
16 and ADAM optimizer to train our model.

We use a random crop of 128 × 192 × 192 and mean
normalization to prepare our model input. The input image
size and patch size are set as 224× 224 and 4, respectively.
As a model input, we use the 3D voxel by cropping the brain
region. The following data augmentation techniques are
applied:

1. Random cropping of the data from 240× 240× 155
to 128× 128× 128 voxels;

2. Flipping across the axial, coronal and sagittal planes
by a probability of 0.5

3. Random Intensity shift between [-0.05, 0.05] and scale
between [0.5, 1.0].

4. Results

We report the average DSC and average Hausdorff Dis-
tance (HD) on 8 abdominal organs (aorta, gallbladder, spleen,
left kidney, right kidney, liver, pancreas, spleen, stomach)
with a random split of 20 samples in training set and 10 sam-
ple for validation set using Synapse multi-organ CT dataset
in Table 1.

We report the average DSC with a random split of 70
training cases, 20 cases for validation and 10 for testing
using ACDC dataset in Table 2:

We conduct the five-fold cross-validation evaluation on
the BraTS 2019 training set. The quantitative results is
presented in Table 3.
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Table 1. Comparison on the Synapse multi-organ CT dataset (aver-
age dice score %, average hausdorff distance in mm, and dice score
% for each organ). The best results are highlighted in bold.

Encoder Decoder DSC HD Aorta GB Kid(L) Kid(R) Liver Panc Spleen Stomach

V-Net V-Net 68.81 - 75.34 51.87 77.10 80.75 87.84 40.05 80.56 56.98
DARR DARR 69.77 - 74.74 53.77 72.31 73.24 94.08 54.18 89.90 45.96
R50 U-Net 74.68 36.87 84.18 62.84 79.19 71.29 93.35 48.23 84.41 73.92
R50 AttnUNet 75.57 36.97 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95
ViT None 61.50 39.61 44.38 39.59 67.46 62.94 89.21 43.14 75.45 69.78
ViT CUP 67.86 36.11 70.19 45.10 74.70 67.40 91.32 42.00 81.75 70.44
R50-ViT CUP 71.29 32.87 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95
TransUNet TransUNet 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
SwinUnet SwinUnet 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60
VTBIS VTBIS 80.45 21.24 86.41 66.80 83.59 80.12 94.56 56.90 91.28 76.82

Table 2. Comparison on the ACDC dataset using DSC evaluation
metric(%). The best results are highlighted in bold.

Framework Average RV Myo LV

R50-U-Net 87.55 87.10 80.63 94.92
R50-AttnUNet 86.75 87.58 79.20 93.47
ViT-CUP 81.45 81.46 70.71 92.18
R50-ViT-CUP 87.57 86.07 81.88 94.75
TransUNet 89.71 88.86 84.53 95.73
VTBIS 90.34 89.03 85.32 95.94

Table 3. Comparison on the BraTS 2019 validation set. DS repre-
sents Dice score and HD repesents Hausdorff distance. The best
results are highlighted in bold.

Method ET(DS%) WT(DS%) TC(DS%) ET(HD mm) WT(HD mm) TC(HD mm)

3D U-Net 70.86 87.38 72.48 5.062 9.432 8.719
V-Net 73.89 88.73 76.56 6.131 6.256 8.705
KiU-Net 73.21 87.60 73.92 6.323 8.942 9.893
Attention U-Net 75.96 88.81 77.20 5.202 7.756 8.258
Li et al 77.10 88.60 81.30 6.033 6.232 7.409
TransBTS w/o TTA 78.36 88.89 81.41 5.908 7.599 7.584
TransBTS w/ TTA 78.93 90.00 81.94 3.736 5.644 6.049
VTBIS 79.24 90.28 82.23 3.706 5.621 7.129

We compare the performance of our model against CNN
based networks for the task of brain tumour segmentation in
Table 4.

Table 4. Cross validation results of brain tumour Segmentation task.
DSC1, DSC2 and DSC3 denote average dice scores for the Whole
Tumour (WT), Enhancing Tumour (ET) and Tumour Core (TC)
across all folds. For each split, average dice score of three classes
are used. The best results are highlighted in bold.

Fold Split-1 Split-2 Split-3 Split-4 Split-5 DSC1 DSC2 DSC3 Avg.

VNet 64.83 67.28 65.23 65.2 66.34 75.96 54.99 66.38 65.77
AHNet 65.78 69.31 65.16 65.05 67.84 75.8 57.58 66.50 66.63
Att-UNet 66.39 70.18 65.39 66.11 67.29 75.29 57.11 68.81 67.07
UNet 67.20 69.11 66.84 66.95 68.16 75.03 57.87 70.06 67.65
SegResNet 69.62 71.84 67.86 68.52 70.43 76.37 59.56 73.03 69.65
VTBIS 70.92 73.84 71.05 72.29 72.43 79.52 60.90 76.11 71.98

In Table 5, We compare the performance of our network
against previous state of the art for the task of spleen seg-
mentation.

Table 5. Cross validation results of spleen segmentation task. For
each split, we provide the average dice score of fore-ground class.
The best results are highlighted in bold.

Fold Split-1 Split-2 Split-3 Split-4 Split-5 Avg.

VNet 94.78 92.08 95.54 94.73 95.03 94.43
AHNet 94.23 92.10 94.56 94.39 94.11 93.87
Att-UNet 93.16 92.59 95.08 94.75 95.81 94.27
UNet 92.83 92.83 95.76 95.01 96.27 94.54
SegResNet 95.66 92.00 95.79 94.19 95.53 94.63
UNETR 95.95 94.01 96.37 95.89 96.91 95.82
VTBIS 96.14 94.52 96.52 95.76 96.78 96.14

The visualization of the validation set prediction is illus-
trated in Figure 3:

Figure 3. All the four modalities of the brain tumor visualized with
the Ground-Truth and Predicted segmentation of tumor sub-regions
for BraTS 2019 crossvalidation dataset. Red label: Necrosis, yellow
label: Edema and Green label: Edema.

The segmentation results of our model on the Synapse
multi-organ CT dataset is shown in Figure 4:

Figure 4. The segmentation results of our network on the Synapse
multi-organ CT dataset. Left depicts ground truth, while the right
one depicts predicted segmentation from our network.

4.1. Ablation Studies

The testing results of the proposed model with 224× 224
and 512 × 512 input resolutions as input are presented in
Table 6.

Table 6. Ablation study on the influence of input resolution. The
best results are highlighted in bold.

Resolution DSC(Avg) Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

224 78.22 87.53 63.29 82.53 78.26 94.53 55.99 85.38 76.02
512 84.57 91.00 67.52 86.18 83.61 95.84 70.45 88.68 83.57

We conduct the experiments of our model with bilinear
interpolation and transposed convolution on Synapse dataset.
The experiment shows that our network using transposed
convolution layer achieves better segmentation accuracy.

Table 7. Ablation study on the impact of the up-sampling. Here BI
denotes bilinear interpolation, TC denotes transposed convolution.
The best results are highlighted in bold.

Up-sampling DSC Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

BI 77.24 82.04 67.18 80.52 73.79 94.05 55.74 86.71 72.50
TC 78.53 84.55 68.02 82.46 74.41 94.59 55.91 89.25 73.96

Different skip connections values of 0, 1, 2 and 3 are used
respectively. The segmentation performance of the model
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increases with the increase in the number of skip connections
as shown in Table 8:

Table 8. Ablation study on the impact of the number of skip con-
nection. The best results are highlighted in bold.

SC DSC Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

0 73.13 78.72 54.06 78.26 76.78 93.54 47.02 85.24 72.06
1 75.77 83.34 61.46 82.17 80.13 94.45 54.26 86.17 75.90
2 79.54 86.16 67.27 84.70 81.32 94.94 56.32 89.35 77.50
3 82.05 86.26 67.51 85.18 81.50 95.20 57.16 91.64 77.52

We explore our network at various model scales (i.e.
depth (L) and embedding dimension (d)). We show ab-
lation study to verify the impact of Transformer scale on the
segmentation performance. Our network with d = 384 and L
= 4 achieves the best scores of ET, WT and TC. Increasing
the depth and decreasing the embedding dimension gives
better results. However, the impact of depth on performance
is much more than that of embedding dimension as shown
in Table 9:

Table 9. Ablation study demonstrating the effect of depth and em-
bedding dimension on our transformer. DS represents Dice score.
The best results are highlighted in bold.

Depth (L) Embedding dim (d) ET(DS%) WT(DS%) TC(DS%)

1 384 69.24 84.16 70.18
1 512 69.05 83.87 69.92
2 384 70.59 84.88 72.51
2 512 70.13 84.15 71.99
4 384 72.06 85.39 73.67
4 512 71.55 85.06 73.05

5. Conclusions
Biomedical image segmentation is a challenging problem

in medical imaging. Recently deep learning methods lever-
aging both CNN and transformer based architectures have
been highly successful in this domain. In this paper, we pro-
pose a novel network named Vision Transformer (VTBIS)
for Biomedical Image Segmentation. We use multi scale
mechanism to split the features employing different con-
volutions and concatenating those individual feature maps
produced before being passed to transformer blocks in en-
coder. The decoder also uses similar mechanism with skip
connections connecting the encoder and decoder transformer
blocks. The output feature map after split and concat oper-
ator is passed through a linear projection block to produce
the output segmentation map. Using Dice Score and the
Hausdorff Distance on multiple datasets, our network out-
performs most of the previous CNN as well as transformer
based architectures. In the future, we would like to use
multi scale vision transformer to tackle other problems in
computer vision like depth estimation.
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