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Abstract

Cross-domain dialogue state tracking has be-001
come a hot topic in recent years, it profoundly002
influences the generalizability of task-oriented003
dialogue systems. In this paper, we propose a004
prompt-based dialogue state tracking method005
jointly modeled with natural language under-006
standing (PLDT) to address the problem of007
multi-domain adaptation in the state tracking008
task and optimize the existing models. We in-009
troduce the joint modeling method to reduce010
the cumulative errors between DST and NLU in011
pipeline dialogue system. Based on this, in ana-012
lyzing current dialogue state tracking methods,013
we combine T5 with Ptr-Net in a proper way014
to solve both the redundancy and inaccuracy015
shortcomings in generative methods and the016
out-of-vocabulary (OOV) problem in pointer017
network methods, respectively. We also de-018
sign a continuous prompt learning approach019
that uses a few discrete samples (labeled by a020
keyword extraction algorithm in an automatic021
way) to train the model in an unsupervised way022
and generate a suitable prompt. Our model023
outperforms other existing approaches on Mul-024
tiWOZ2.0 and CrossWOZ in both slot and joint025
accuracy and has better performance in zero-026
shot tasks than other cross-domain models.027

1 Introduction028

Dialogue state tracking (DST), as a critical com-029

ponent in the pipeline approach of task-oriented030

dialogue systems, profoundly affects the agent’s031

performance. It takes input from natural language032

understanding (NLU) and outputs the current turn’s033

intents and slot-value pairs. Table 1 provides a typ-034

ical example of DST. Due to the task similarity035

of DST and NLU, recent research usually models036

them jointly (Zhang et al., 2020; Chen et al., 2017),037

where the joint model receives the user’s utterances038

directly and effectively solves the error accumula-039

tion. In addition, unseen slots tracking task which040

is belong to a zero-shot domain adaptation problem041

(Peng et al., 2018) has become a popular issue with 042

the development of cross-domain task-oriented dia- 043

logue systems (Huang et al., 2020). 044

In terms of cross-domain research, there are 045

three classical approaches. The first approach 046

makes the model independent of the ontol- 047

ogy/belief states and predicts the value by calculat- 048

ing semantic similarity between the dialogue con- 049

text and ontology terms. Therefore, the model can 050

address the cross-domain problem by training on 051

different domain data (Ramadan et al., 2018; Lee 052

et al., 2019). Obviously, a new domain requires 053

training from scratch, which can lead to lower gen- 054

eralizability. The second approach extracts the di- 055

alogue states directly from user utterances, using 056

copy mechanisms (See et al., 2017; Xu and Hu, 057

2018; Gao et al., 2019), This method can capture 058

information well from the context, but it fails when 059

slot values do not appear in the dialogue. The last 060

approach regards DST as a generation task that can 061

extend the ontology to the entire vocabulary (Le 062

et al., 2020). However, it generates semantically 063

similar values repeatedly and makes the dialogue 064

state redundant. 065

In this work, we proposed the Prompt-based Di- 066

alogue State Tracking jointly modeled with Nat- 067

ural Language Understanding (PLDT) method to 068

tackle these challenge. We combined the generative 069

model with the extractive model, which not only 070

solves the excessive dependence of terms extrac- 071

tion on user utterance, but also avoids the problem 072

of repeated generation. Then we designed a prompt 073

learning to fine-tuning the pretraining model for the 074

zero-shot domain adaptation scenario. The main 075

contributions are as follows: 076

1. We combine the Seq2Seq structure with the 077

Ptr-Net, solve the OOV(out-of-vocabulary) prob- 078

lem and make slot values more accurate. 079

2. We designe a continuous prompt learning 080

method that used a keyword extraction algorithm 081

to generate few discrete training data, and train 082
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Turn Actor Input
Dialogue

Name Ticket Play-time Score

1 User
Hello, I’m looking for a scenic spot with a rating of 4.5 or above.

Do you have any good places to recommend?
none none none More than 4.5 points

2 Agent
There are so many good places. You can go to the Forbidden City,

Badaling Great Wall, the Summer Palace and so on.
Badaling Great Wall none none More than 4.5 points

2 User
I want to go to Badaling Great Wall. Where is the address?

How long can I play?
Badaling Great Wall none 3-4 hours More than 4.5 points

3 Agent
Take a right at Exit 58, Beijing-Tibet Expressway, Yanqing District,

Beijing; You can play for 3-4 hours.
Badaling Great Wall none 3-4 hours More than 4.5 points

3 User Thanks! No more questions, bye! Badaling Great Wall none 3-4 hours More than 4.5 points

4 Agent You’re welcome! Wish you a happy life! Bye! Badaling Great Wall none 3-4 hours More than 4.5 points

Table 1: Example of dialogue state tracking.

the generative model in an unsupervised manner,083

thereby improving the model’s generalization and084

extensibility.085

3. The experimental result shows that our086

method outperforms existing cross-domain DST087

models. We also analyzed the influence of each088

component on the model’s performance to prove089

the validity of our method.090

2 Related Work091

2.1 Prompt Learning092

GPT3 (Brown et al., 2020) puts forward a new093

paradigm of pretraining model based on Prompt094

learning, that is, add prompt to the input of the095

pretraining model to make the target of the down-096

stream task more close to the target of the pre-097

training task, so as to improve the model’s perfor-098

mance on the downstream task. In recent years,099

with the launch of various large models, prompt100

training has gradually become more and more101

prominent (Han et al., 2021). Unlike earlier hand-102

designed prompts, Shin et al. (2020) generated103

prompts by the model automatically, but this dis-104

crete prompt approach lacks flexibility. The works105

like Li and Liang (2021) and Lester et al. (2021)106

called the continuous prompt, they parameterize107

the prompt as a token to enhance the expressive108

ability of the prompt. In this work, we choose the109

continuous prompt learning to fine-tune our model.110

2.2 Dialogue State Tracking (DST)111

There has been a lot of research on cross-domain112

DST task in recent years. Zhong et al. (2018) uses113

semantic similarity matching to predict the dia-114

logue state and Lee et al. (2019) regards the field115

slot pair as the question, the slot value pair as the 116

answer, and finally uses the classifier to select the 117

dialogue state with the highest probability. They 118

are all limited to the ontology. Heck et al. (2020); 119

Xu and Hu (2018); Wu et al. (2019) introduced 120

a pointer network to avoid experts manually de- 121

signing the ontology, and Wu et al. (2019) com- 122

bined the pointer network with RNN, fixed an is- 123

sue where slot terms could not be found directly 124

in dialog statements. Ren et al. (2019); Lin et al. 125

(2021); Kim et al. (2019), and Zeng and Nie (2020) 126

chose a generative way. Lin et al. (2021) uses the 127

T5 pre-training model as the encoder and decoder 128

to directly generate the dialog state between the 129

system’s and the user’s utterance, Zeng and Nie 130

(2020) uses BERT as encoder and decoder at the 131

same time, and uses the attention-mask matrix to 132

control BERT for state prediction and slot value 133

generation, which implements the flat modeling of 134

encoder and decoder, improves the efficiency of 135

the model, and solves the problem that the model 136

using hierarchical decoder cannot be jointly opti- 137

mized. Those generation models can get rid of the 138

ontology limitation but the generated slot-value is 139

often not precise enough. 140

3 Proposed Method 141

3.1 Model Structure 142

In order to have a better performance on cross- 143

domain DST tasks, we propose the prompt based 144

dialogue state tracking jointly modeled with natural 145

language understanding (PLDT) method. Figure 1 146

shows the overall framework of PLDT. We input 147

user’s and agent’s utterances history and use Posi- 148
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Figure 1: Architecture of PLDT framework

tion Rank (Florescu and Caragea, 2017) algorithm149

to extract the keywords from utterances, then con-150

catenate utterances, keywords, and prompt texts151

(or vectors) as the input of the T5 (Raffel et al.,152

2020) pre-training model encoder. By integrating153

the hidden layer of the T5 encoder and the decoder154

with an attention, the attention weight distribution155

and context vector for the input sequence are ob-156

tained. Then, on the one hand, we use the context157

vector and decoder result to calculate the proba-158

bility distribution on the vocabulary; on the other159

hand, we concatenate the context vector, the input160

of the decoder and the hidden layer of the decoder161

to obtain the generated pointer Pgen. Finally, we162

use Pgen to weight the attention distribution of the163

input sequence and the probability distribution on164

the vocabulary to get the final text probability dis-165

tribution.166

3.2 Continuous Prompt Learning167

We designed a continuous prompt generating168

method to deal with prompt generation in multi-169

domain data sets. As Figure 2 shows, we use the170

keyword extraction algorithm on dialogue history171

and then initialize the discrete prompt text into a172

vector representation, then input the prompt word173

vector into the pre-training model. Through the174

automatic learning of the pre-training model, a con-175

tinuous prompt word vector is obtained. 176

Figure 2: A continuous prompt learning examples

We represent each prompt text as t = 177

{t1, t2, , tn}. And then encode the prompt text 178

through the Tokenizer of the T5 to obtain vectors 179

V = {V1, V2, . . . , Vn} on Rd. Meanwhile, we en- 180

code the multi-round dialogue X and the keywords 181

K by T5 Tokenizer, and concatenate prompt vec- 182

tors to get the synthetic input sequence V ′. 183

V ′ = [V,X,K] (1) 184

Then we fix the parameters of the T5 model, 185

and input V ′ into the T5 for fine-tuning. The set 186

prediction distribution is defined as: 187

p(y|x) =
∑
t∈T

PLM(y|t.x) (2) 188
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Domain Slot Train set Dev set Test set
Attraction area, name, type 2717 401 395

Hotel area, day, internet, name, parking,
people, price, stars, stay, type

3381 416 394

Restaurant area, day, food, name, people, price, time 3813 438 437
Taxi arrive by, departure, destination, leave at 1654 207 195

Train arrive by, day, departure, destination,
leave at, people

3103 484 494

Table 2: Slot statistics on the MultiWOZ dataset.

Domain Slot Train set Dev set Test set

Attraction name, rating, fee, duration, address, phone,
nearby attract, nearby rest, nearby hotels

4154 421 413

Hotel name, rating, price, type, services, phone,
address, nearby attract, nearby rest

4156 410 409

Restaurant name, rating, cost, dishes, address, phone,
open, nearby attract, nearby rest, nearby hotels

4200 429 427

Taxi from, to, car type, plate number 688 78 73
Metro from, to, car type, plate number 669 62 82

Table 3: Slot statistics on the CrossWOZ dataset.

Where p(y|x) obeys distribution on prompt vector189

T . By maximizing the set prediction distribution,190

the loss is:191

Lprompt =
∑

(x,y)∈ϵ
−log

∑
t∈T

p(y|t.x) (3)192

Where ϵ is state tracking task on a training set.193

3.3 T5 Model194

After Prompt learning convergence, the Prompt195

word vector has been fixed and the input sequence196

V ′ will input into T5 for further fine-tune the197

pointer generation network.198

Then, we use attention mechanism to calculate199

the attention weight distribution of each word αt:200

eti = vT tanh(Whhi +Wsst + battn) (4)201
202

αt = softmax(et) (5)203

Where hi is the encoder hidden layer in V ′, st is204

the decoder hidden layer in time t. The attention205

context vector ct is calculated from:206

ct =
∑
i

αt
ihi (6)207

ct contains the contextual semantic information of208

all the words in the input sequence, which will be209

used in the pointer generation network to assist the210

decoder’s output at time t.211

3.4 Pointer Generation Network 212

We concatenate the state st and the ct, and put them 213

into two fully connected layers and Softmax activa- 214

tion function, to obtain the probability distribution 215

pvocab on the word list: 216

Pvocab = softmax(W ′(W [st, ct] + b) + b′) (7) 217

Then, in order to combine the attention weight 218

distribution with the prompt distribution, we calcu- 219

late the generated pointer Pgen for controlling the 220

generated word: 221

Pgen = σ(wT
c ct + wT

s st + wT
x xt + bptr) (8) 222

Where xt is the input of decoder hidden layer. 223

The range of Pgen is [0, 1], The larger the Pgen 224

is, the more candidates from generated words. The 225

smaller the Pgen is, the more candidates from the 226

original input sequence. The final generation prob- 227

ability distribution of the word ω is: 228

P (ω) = PgenPvocab(ω)+(1−Pgen)
∑

i:ωi=ω

αt
i (9) 229

For the entire output sequence Y the loss is: 230

L =
1

Y

Y∑
t=0

−logP (ω∗
t ) (10) 231
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Model MultiWOZ CrossWOZ
Slot Joint Slot Joint

GLAD* 95.44 35.57 86.02 25.84
SUMBT** 95.72 42.40 86.92 30.49
SpanPtr+ 93.85 30.28 85.98 25.96

COMERE** 96.37 48.79 88.43 41.50
TRADE+* 96.92 48.62 90.71 36.08

SOM-DST** 97.54 51.72 91.03 36.55
Transformer-DST*** 97.69 54.64 93.45 39.36

SST’ 96.85 51.17 \ \
OPAL’ 97.24 54.10 \ \

PLDT(Transformer)/
Transformer 96.02/85.16 51.54/30.53 93.70/78.44 36.06/20.75

PLDT(UNILM) / UNLLM 97.14/96.02 55.23/49.52 94.85/89.89 39.77/35.59
PLDT(BART) / BART 97.80/96.50 57.24/50.65 95.51/90.64 41.86/36.02

PLDT(T5) / T5 98.11/97.17 57.83/52.70 95.46/91.74 42.14/38.20

Table 4: cross-domain DST model performance comparison on MultiWOZ and CrossWOZ. * represents using
LSTM as encoder, ** represents using BERT as encoder, *** represents using BERT as encoder and decoder, +
represents use pointer network, ’ represents End-to-End model. The lower part shows the experimental results of
PLDT combined with the seq2seq model, and the right part of the slash represents the results of DST task using
only the seq2seq model.

4 Experimental232

4.1 Dataset233

To verify the validity of our proposed model,234

we used two different open source data sets:235

MultiWOZ2.0(Ramadan et al., 2018) and Cross-236

WOZ(Zhu et al., 2020). They are suitable for En-237

glish and Chinese dialogue state tracking domain238

tasks respectively.239

(1) MultiWOZ2.0240

MultiWOZ2.0 1 is a multi-domain English dia-241

logue data set that contains real conversations be-242

tween visitors and staff of the Visitor Center in mul-243

tiple domains. There are 3406 single-domain con-244

versations and 7032 multi-domain conversations,245

and 8438 multi-round conversations with an av-246

erage of 8.93 single-domain conversations. The247

average number of rounds of multi-field dialogues248

was 15.39.249

Because the data of Hospital and Police are very250

small, we only experiment on the other five, the251

statistical information is shown in Table 2:252

(2) CrossWOZ253

CrossWOZ 2 is a multi-domain Chinese conver-254

sation data set, which contains multi-rounds of task-255

based conversation data in five fields: restaurants,256

1https://github.com/budzianowski/multiwoz
2https://github.com/thu-coai/CrossWOZ.

scenic spots, hotels, taxis and subways. There are 257

altogether 6012 conversations with an average num- 258

ber of 16.9. Statistical analysis was performed on 259

the CrossWOZ dataset are shown in Table 3. 260

4.2 Baseline 261

We compare our model with other state-of-the-art 262

methods on MultiWOZ2.0 and CrossWOZ. On- 263

tology based method: GLAD(Zhong et al., 2018), 264

SUMBT(Lee et al., 2019); pointer network method: 265

SpanPtr(Xu and Hu, 2018), TRADE(Wu et al., 266

2019); generation method: COMER(Ren et al., 267

2019), T5DST(Lin et al., 2021), SOM-DST(Kim 268

et al., 2019), and Transformer-DST(Zeng and Nie, 269

2020), the end-to-end model SST(Chen et al., 270

2020) and OPAL(Chen et al., 2022). We also 271

used other seq2seq models to compare with the 272

T5 model: BiLSTM, Transformer(Vaswani et al., 273

2017), UNILM(Dong et al., 2019), BART(Lewis 274

et al., 2019). 275

4.3 Evaluation Measures 276

We use the follow metrics to evaluate the model’s 277

performance. Slot Accuracy: percentage of 278

domain-slot-value are correctly predicted. 279

Pslot =
N+

slot

Nslot
(11) 280
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Joint Accuracy: percentage of the turns in current281

dialogue whose slots are all correctly predicted.282

Pjoint =
N+

turn

Nturn
(12)283

4.4 Training Setting284

We use Large version(Xue et al., 2020) of the T5285

model, witch hidden layer size is 1024, the total286

parameters of the model is 780M, and choose the287

Adam optimizer. The initial learning rate is 0.0001,288

batch size is 16, and the default epoch is 50. In the289

training process, we adopt the early stop strategy290

to evaluate the performance of the model on the291

validation set every other round. When the perfor-292

mance on the validation set did not improve for293

three consecutive epochs, the training was stopped.294

4.5 Experimental Results295

Table 4 shows the cross-domain DST task result.296

Comparing the SUMBT, COMER and GLAD mod-297

els, we can see that BERT based encoder model298

improved significantly in each performance than299

the LSTM based encoder model, especially in joint300

accuracy. By comparing the SpanPtr, TRADE and301

COMER, we can see that the SpanPtr that only302

uses pointer network to extract slot values from303

dialogue utterances has poor performance. While304

the TRADE combining Seq2Seq with pointer net-305

work has achieved a good result, and its slot accu-306

racy is even better than that of COMER which use307

BERT as an encoder. By comparing SOM-DST,308

COMER and Transformer-DST, when all encoders309

use BERT, the decoder that also uses BERT per-310

formances better than that use RNN structure. It311

shows again that the pre-training model can bring312

stronger semantic modeling ability. Meanwhile,313

we compare with two end-to-end SOAT methods314

and only get the experimental results of Multi-315

WOZ from the paper for comparison due to the316

lack of source code. Our model achieved optimal317

results on all indexes of both data sets,indicating318

that the combination of Prompt learning and T5 pre-319

training model with pointer generation network can320

further improve the context comprehension and se-321

mantic modeling ability of the model. Additionally,322

We replace T5 with other seq2seq models, and the323

results show that the use of PLDT method has a324

great improvement on the DST task of the seq2seq325

model.326

Table 5 shows the zero-shot prediction perfor-327

mance of our method in the four fields is better328

than other models, which reflects strong general- 329

ization ability and domain scalability. TRADE and 330

COMER use randomly initialized RNN decoders 331

and behave generally in this task. T5DST uses 332

T5 as an encoder and decoder has strong language 333

understanding, but the result is slightly less than 334

pointer generation networks. As shown in Figure 3, 335

we also find that it is more difficult to identify slots 336

in specific field, while it is relatively less difficult 337

to identify slots overlapping in different fields. 338

4.6 Ablation Study 339

In order to verify the components of our model, we 340

conducted ablation experiments. 341

Effect of prompt 342

To prove the improvement of the prompt, we 343

compared the differences between no prompt, dis- 344

crete prompt, and continuous prompt learning. As 345

shown in Table 6, using prompt is better than not 346

using, continuous prompt learning is better than 347

discrete prompt, because the discrete prompt is de- 348

signed manually which makes it difficult to ensure 349

the quality of each prompt. The continuous Prompt 350

learning method can automatically learn the locally 351

optimal prompt to make the model easily under- 352

stand the conversation, thus improving the model’s 353

performance. On the other hand, it also shows that 354

a monotonous prompt for DST is not enough, and 355

diverse prompts are needed to improve the accuracy 356

of the model. 357

Model MultiWOZ CrossWOZ
Slot Joint Slot Joint

without
Prompt 97.62 56.32 94.13 41.08

Discrete
Prompt 97.88 56.90 95.06 41.65

Continuous
Prompt

Learning
98.11 57.83 95.46 42.14

Table 6: Prompt ablation result on MultiWOZ and Cross-
WOZ.

Effect of keyword enhancement 358

In continuous prompt learning we use the 359

keyword extraction to enhance the performance 360

of prompt generation. We compared position 361

rank with other keyword extraction algorithms: 362

YAKE(Campos et al., 2018), TF-IDF(Sammut and 363

Webb, 2011), and TextRank(Mihalcea and Tarau, 364

2004). Table 7 illustrates the enhancement effect, 365
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Figure 3: Slot accuracy statistics on five domains of the MultiWOZ dataset.

Model joint/MultiWOZ
Attraction Hotel Restaurant Taxi Train Average

TRADE 19.87 13.70 11.52 60.58 22.37 25.76
SUMBT 22.60 19.80 16.50 59.50 22.50 28.18
T5DST 32.66 18.73 20.55 64.62 31.27 33.56
PLDT 35.91 22.36 23.44 62.57 35.12 35.88

Table 5: Zero-shot performance in five domains on MultiWOZ.

and Table 9 directly shows that other algorithms366

have problems such as keyword repetition and in-367

accuracy.368

Model MultiWOZ CrossWOZ
Slot Joint Slot Joint

without
keyword 97.89 57.25 95.22 41.71

YAKE 97.72 57.14 95.15 41.78
TF-IDF 97.52 56.96 95.30 41.58

TextRank 97.95 57.44 95.20 41.93
PositionRank 98.11 57.83 95.46 42.14

Table 7: Different keyword extraction algorithm compa-
ration.

Effect of pointer network369

Finally, we in investigate the effectiveness of370

pointer network in Table 11, the results show that371

the method of using pointer generation network is372

better than removing pointer generation network.373

That is to say, only rely on decoder to generate374

answers, some words will be generated repeatedly.375

Model MultiWOZ CrossWOZ
Slot Joint Slot Joint

without
pointer
network

97.43 53.10 92.78 38.77

PLDT 98.11 57.83 95.46 42.14

Table 8: Pointer generates network ablation results.

5 Conclusion 376

In this paper, we propose a prompt-based dialogue 377

state tracking method jointly modeled with natu- 378

ral language understanding (PLDT). The method 379

combines the advantages of generative models and 380

pointer networks, and uses T5 as the seq2seq model 381

for the pointer generation network. We then design 382

a prompt learning method that uses unsupervised 383

training to generate a continuous prompt. Further- 384

more, we introduce the position rank algorithm 385

to avoid manual prompt design and reduce label- 386

ing costs. We verify the outstanding performance 387

and generalization of our model on benchmark 388
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datasets MultiWOZ2.0 and CrossWOZ by compar-389

ing it with existing state-of-the-art DST methods390

and analyze the validity of each component at the391

end.392

Limitations393

In this section, we’ll discuss the limitation of our394

PLDT model. First of all, a generative structure395

could inevitably result in a large number of net-396

work parameters, which would undoubtedly in-397

crease the training cost of the model, although we398

used prompt to fine-tune the LLM, but it still took399

a lot of time. Furthermore, our experiment is only400

trained on English and Chinese datasets, so there401

is no in-depth discussion of whether the model402

has generalization on other different languages and403

what’s the factors that affect DST tasks in different404

languages.405
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