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Abstract
We continue to study the learning-theoretic foun-
dations of generation by extending the results
from Kleinberg & Mullainathan (2024) and Li
et al. (2024) to account for noisy example streams.
In the noiseless setting of Kleinberg & Mul-
lainathan (2024) and Li et al. (2024), an adversary
picks a hypothesis from a binary hypothesis class
and provides a generator with a sequence of its
positive examples. The goal of the generator is to
eventually output new, unseen positive examples.
In the noisy setting, an adversary still picks a hy-
pothesis and a sequence of its positive examples.
But, before presenting the stream to the generator,
the adversary inserts a finite number of negative
examples. Unaware of which examples are noisy,
the goal of the generator is to still eventually out-
put new, unseen positive examples. In this paper,
we provide necessary and sufficient conditions for
when a binary hypothesis class can be noisily gen-
eratable. We provide such conditions with respect
to various constraints on the number of distinct
examples that need to be seen before perfect gen-
eration of positive examples. Interestingly, for
finite and countable classes we show that gener-
atability is largely unaffected by the presence of a
finite number of noisy examples.

1. Introduction
Generation is an important paradigm in machine learning
with promising applications to natural language processing
(Wolf et al., 2020), computer vision (Khan et al., 2022),
and computational chemistry (Vanhaelen et al., 2020). In
contrast to its practical applications, a strong theoretical
foundation of generation is largely missing from literature.
Recently, Kleinberg & Mullainathan (2024), inspired by the
seminal work of E Mark Gold on language identification
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in the limit (Gold, 1967), introduced a theoretical model
of language generation called “Language Generation in the
Limit.” In this model, there is a countable set U of strings
and a countable language family C = {L1, L2, . . . }, where
Li ⊆ U for all i ∈ N. An adversary picks a language
K ∈ C and begins to enumerate the strings one by one to
the player in rounds t = 1, 2, . . . . After observing the string
wt in round t ∈ N, the player guesses a string ŵt ∈ U in the
hope that ŵt ∈ K \{w1, . . . , wt}. The player has generated
from K in the limit, if there exists a finite time step t ∈ N
such that for all s ≥ t, we have that ŵs ∈ K \{w1, . . . , ws}.
The class C is generatable in the limit, if the player can gen-
erate from all K ∈ C. Unlike language identification in the
limit, Kleinberg & Mullainathan (2024) prove that gener-
ation in the limit is possible for every countable language
family C.

Kleinberg & Mullainathan (2024)’s positive result has
spawned a surge of new work, extending the results of
Kleinberg & Mullainathan (2024) in various ways (Kalava-
sis et al., 2024b; Li et al., 2024; Charikar & Pabbaraju, 2024;
Kalavasis et al., 2024a). Of particular interest to us is the
work by Li et al. (2024). They frame the results of Kleinberg
& Mullainathan (2024) through a learning-theoretic lens by
taking the language family C to be a binary hypothesis class
H ⊆ {0, 1}X defined over some countable instance space
X . By doing so, Li et al. (2024) identify stronger notions of
generatability, termed “uniform” 1 and “non-uniform” gen-
eratability, and provide characterizations of which classes
are uniformly and non-uniformly generatable in terms of
new combinatorial dimensions.

A commonality of Kleinberg & Mullainathan (2024) and
its follow-up work is the assumption that the adversary
presents to the player a “noiseless” stream of examples –
one where every example/string must be contained in the
hypothesis/language chosen by the adversary. In practice,
such an assumption is unrealistic, as one would still like
to generate well even if a few examples in the dataset are
imperfect. For example, Large Language Models (LLM) are
often trained using the potentially hallucinatory outputs of
other LLMs (Burns et al., 2023; Briesch et al., 2023). More
generally, one might want a generative model to be robust

1Uniform generatability was also informally considered by
Kleinberg & Mullainathan (2024)
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to data contamination/poisoning attacks (Shang et al., 2018;
Zhang et al., 2023; Jiang et al., 2023).

Motivated by these concerns, we study generation, in the
framework posed by Kleinberg & Mullainathan (2024) and
Li et al. (2024), under noisy example streams. In particular,
we focus on a simple, but natural noising process: after
selecting a positive example stream, the adversary is allowed
to insert a finite number of negative examples in any way it
likes, unbeknownst to the player. Such a noising process, as
well as others, have been extensively studied in the context
“language identification in the limit” or “inductive inference”
(Schäfer, 1985; Fulk & Jain, 1989; Baliga et al., 1992; Jain,
1994; Stephan, 1997; Case et al., 1997; Lange & Grieser,
2002; Mukouchi & Sato, 2003; Tantini et al., 2006). In this
paper, we extend this study to generation. To that end, our
main contributions are summarized below.

(1) We extend the notions of uniform generatability, non-
uniform generatability, and generatability in the limit
from Kleinberg & Mullainathan (2024) and Li et al.
(2024) to account for finite, noisy example streams.
We call these new settings “uniform noise-dependent
generatability,” “non-uniform noise-dependent gener-
atability,” and “noisy generatability in the limit” re-
spectively.

(2) We provide a complete characterization of which
classes are uniformly noise-dependent generatable in
terms of a new scale-sensitive dimension we call the
Noisy Closure dimension.

Theorem (Informal). A class H ⊆ {0, 1}X is uni-
formly noise-dependent generatable if and only if
NCn(H) < ∞ for every n ∈ N, where NCn(H) is
the Noisy Closure dimension of H at noise-level n.

We show that uniform noise-dependent generation is
strictly harder than noiseless uniform generation. In
fact, we construct a countably infinite class which is
trivially uniformly generatable when there is no noise,
but not uniformly noise-dependent generatable even
when the adversary is only allowed to perturb a single
example. Despite this hardness, we show that all finite
classes are still uniformly noise-dependent generatable.

(3) We provide a sufficient condition for which classes are
non-uniformly noise-dependent generatable.

Lemma (Informal). A class H ⊆ {0, 1}X is non-
uniformly noise-dependent generatable if there exists
a non-decreasing sequence of classes H1 ⊆ H2 ⊆ . . .
such that H =

⋃∞
i=1 Hi and NCi(Hi) < ∞ for all

i ∈ N.

Using the result that all finite classes are uniformly
noise-dependent generatable, we prove as a corollary

that all countable classes are non-uniformly noise-
dependent generatable. Since non-uniform noise-
dependent generation implies noisy generation in the
limit, this corollary also implies that all countable
classes are noisily generatable in the limit. Although
not matching, we also provide a necessary condition
for non-uniform noise-dependent generation in terms
of the Noisy Closure dimension.
Lemma (Informal). A class H ⊆ {0, 1}X is non-
uniformly noise-dependent generatable only if for ev-
ery n ∈ N, there exists a non-decreasing sequence of
classes H1 ⊆ H2 ⊆ . . . such that H =

⋃∞
i=1 Hi and

NCn(Hi) < ∞ for all i ∈ N.

We leave the complete characterization of non-uniform
noise-dependent generatability as an open question.

(4) We provide two different sufficiency conditions for
noisy generatability in the limit. The first shows that
(noiseless) non-uniform generatability is sufficient for
noisy generatability in the limit.
Theorem (Informal). If a class H ⊆ {0, 1}X is (noise-
less) non-uniformly generatable, then it is noisily gen-
eratable in the limit.

Since Li et al. (2024) prove that all countable classes
are (noiseless) non-uniform generatable, this result also
shows that all countable classes are noisily generatable
in the limit. In addition, we also give a sufficiency
condition in terms of an even stronger notion of noisy
generatability called “uniform noise-independent gen-
eratability.”
Theorem (Informal). If there exists a finite sequence
of uniformly noise-independent generatable classes
H1,H2, . . . ,Hk such that H =

⋃k
i=1 Hi, then H is

noisily generatable in the limit.

One can think of this latter sufficiency condition as the
analog of Theorem 3.10 in Li et al. (2024) which shows
that the ability to write a class as the finite union of
(noiseless) uniformly generatable classes is sufficient
for (noiseless) generatability in the limit.

While our theorem statements look similar to that of Li
et al. (2024), our proof techniques are different due to the
fact that the Noisy Closure dimension is scale-sensitive.
This difference manifests even when characterizing noisy
uniform generation. In particular, our uniform generator
effectively requires combining different generators for each
noise-level whereas the noiseless uniform generator from Li
et al. (2024) does not.

1.1. Related Work

Language Identification in the Limit. In his seminal 1967
paper, E Mark Gold introduced the model of “Language
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Identification in the Limit (Gold, 1967).” In this model, there
is a countable set U of strings and a countable language
family C = {L1, L2, . . . }, where Li ⊆ U for all i ∈ N. An
adversary picks a language K ∈ C, and begins to enumerate
the strings in K one by the one to the player in rounds
t = 1, 2, . . . . After observing the string wt in round t ∈ N,
the player guesses an index it ∈ N with the hope that
Lit = K. The player has identified K in the limit, if there
exists a finite time step t ∈ N such that for all s ≥ t,
we have that Lis = K. The class C is identifiable in the
limit, if the player can identify all K ∈ C. Gold showed
that while all finite language families are identifiable in the
limit, there are simple countable language families which
are not. In a follow-up work, Angluin (1979; 1980) provides
a precise characterization of language families C for which
language identification in the limit is possible. The results by
Gold and Angluin emphasized the impossibility of language
identification in the limit by ruling out the vast majority of
language families. Since Gold’s seminal work on language
identification in the limit, there has been extensive follow-up
work on this model and we refer the reader to the excellent
survey by Lange et al. (2008).

Language Identification from Noisy Examples. In addi-
tion to the work by Angluin (1979; 1980), a different line
of follow-up work focused on extending Gold’s model to
account for noisy example streams. There have been several
proposed noise models, and we review a few of them here.
The most standard noise model for language identification
in the limit allows the adversary to first pick an enumera-
tion of its chosen language K ∈ L and then insert a finite
number of strings that do not belong to K (Baliga et al.,
1992; Fulk & Jain, 1989; Schäfer, 1985; Case et al., 1997;
Stephan, 1997; Lange & Grieser, 2002). We use the term
insert to emphasize that every w ∈ K must still be present
in the sequence chosen by the adversary. Such noisy streams
are often referred to as noisy texts. Jain (1994) go beyond
the finite nature of the noise by considering sequences of
strings with an infinite number of noisy incorrect strings,
where the amount of noise is measured using certain density
notions. In a different direction, Mukouchi & Sato (2003)
and Tantini et al. (2006) model noise at the string-level by
defining a distance metric on the space of all strings and
allowing the adversaries to insert and delete strings in the
original enumeration of K which are at most some distance
away from some true string in K.

Language Generation in the Limit. Inspired by large
language models and recent interest in generative machine
learning, Kleinberg & Mullainathan (2024) study the prob-
lem of language generation in the limit. In this problem,
the adversary also picks a language K ∈ C, and begins to
enumerate the strings one by the one to the player in rounds
t = 1, 2, . . . . However, now, after observing the string wt

in round t ∈ N, the player guesses a string ŵt ∈ U with the

hope that ŵt ∈ K \{w1, . . . , wt}. The player has generated
from K in the limit, if there exists a finite time step t ∈ N
such that for all s ≥ t, we have that ŵs ∈ K \{w1, . . . , ws}.
Kleinberg & Mullainathan (2024) prove a strikingly differ-
ent result than Gold and Angluin – generation in the limit
is possible for every countable language family C. This
positive result has spurred a number of follow-up works,
which we briefly review below.

Kalavasis et al. (2024b) study generation in the stochastic
setting, where the positive examples revealed to the gen-
erator are sampled i.i.d. from some unknown distribution.
In this model, they study the trade-offs between generating
with breadth and generating with consistency and show that
in general, achieving both is impossible, resolving an open
question posed by Kleinberg & Mullainathan (2024) for a
large family of language models. More recently, Charikar
& Pabbaraju (2024) and Kalavasis et al. (2024a) further
formalize this tension between consistency and breadth by
defining various notions of breadth and providing complete
characterizations of which language families are generatable
in the limit with breadth.

In a different direction, and most closely related to our
work, Li et al. (2024) reinterpret the results of Kleinberg
& Mullainathan (2024) through a binary hypothesis class
H ⊆ {0, 1}X defined over a countable example space X .
By doing so, Li et al. (2024) extend the results of Klein-
berg & Mullainathan (2024) beyond language generation
while also formalizing two stronger settings of generation
they term “uniform” and “non-uniform” generation. Un-
like Kleinberg & Mullainathan (2024) and Kalavasis et al.
(2024a) who focus on computable learners and countable
language families, Li et al. (2024) place no such restric-
tions and provide complete, information-theoretic charac-
terizations of which hypothesis classes are uniformly and
non-uniformly generatable. Li et al. (2024) leave the charac-
terization of generatability in the limit as an open question
(see Section 4).

2. Preliminaries
Let X denote a countable example space and H ⊆ {0, 1}X
denote a binary hypothesis class. Let X ⋆ denote the set of all
finite subsets of X . Let [N ] := {1, . . . , N} and abbreviate
a finite sequence x1, . . . , xn as x1:n. For any h ∈ H, an
enumeration of supp(h) is any infinite sequence x1, x2, . . .
such that

⋃
i∈N{xi} = supp(h). In other words, for every

x ∈ supp(h), there exists an i ∈ N such that xi = x and for
every i ∈ N, we have that xi ∈ supp(h). For any h ∈ H,
a noisy enumeration of supp(h) is any infinite sequence
x1, x2, . . . such that for every x ∈ supp(h), there exists an
i ∈ N such that xi = x and

∑∞
t=1 1{xt ̸∈ supp(h)} < ∞.

For a finite sequence of examples x1, . . . , xd and n ∈ N ∪
{0}, define H(x1:d;n) := {h ∈ H : |{x1:d} ∩ supp(h)| ≥
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d− n}. For any class H, define its induced closure operator
at noise-level n as ⟨·⟩H,n such that

⟨x1:d⟩H,n :=

{⋂
h∈H(x1:d;n)

supp(h), if |H(x1:d;n)| ≥ 1

⊥, if |H(x1:d;n)| = 0
.

Note that ⟨·⟩H,0 is exactly the closure operator from Sec-
tion 2.1 of Li et al. (2024). We will make the following
assumption about hypothesis classes.

Assumption 2.1 (Uniformly Unbounded Support (UUS)
(Li et al., 2024)). A hypothesis class H ⊆ {0, 1}X satis-
fies the Uniformly Unbounded Support (UUS) property if
| supp(h)| = ∞ for every h ∈ H.

Remark 2.2. The UUS assumption is mainly needed for
bookkeeping purposes to prevent the adversary from ex-
hausting all positive examples and thus making the task of
generating unseen positive examples impossible. This is
consistent with the assumption that each language is count-
ably infinite in size in the work of Kleinberg & Mullainathan
(2024).

2.1. Generatability

In this paper, we adopt the learning-theoretic framework
for generation introduced by Li et al. (2024). To that end,
we define a generator as a deterministic map from a finite
sequence of examples to a new example.

Definition 2.3 (Generator). A generator is a map G : X ⋆ →
X that takes a finite sequence of examples x1, x2, . . . and
outputs a new example x.

2.1.1. NOISELESS GENERATION

In the noiseless setting, an adversary plays a game against a
generator G. Before the game begins, the adversary picks a
hypothesis h ∈ H and a sequence of examples x1, x2, . . .
such that {x1, x2, . . . } ⊆ supp(h). The adversary reveals
the examples as a stream to G one at a time, and the goal of
the generator is to eventually output new, unseen positive
examples x̂t ∈ supp(h) \ {x1, . . . , xt}.

Depending on how one quantifies “eventually,” one can get
various notions of noiseless generatability. For example, if
one requires the generator to perfectly generate new unseen
examples after observing d ∈ N examples regardless of the
hypothesis or stream chosen by the adversary, this is called
“uniform generation.” If the number of positive examples
required before perfect generation can depend on the hy-
pothesis chosen by the adversary, but not the stream, then
this is “non-uniform generation.” Finally, if the number of
positive examples before perfect generation can depend on
both the hypothesis and the stream selected by the adversary,
this is called “generation in the limit.” We refer the reader
to Appendix A for complete definitions and Appendix B for
a summary of results.

2.1.2. NOISY GENERATION

In the noisy model, we consider the following game. Like
before, the adversary picks a hypothesis h ∈ H, and a se-
quence of positive examples z1, z2, · · · ∈ supp(h). But
now, the adversary picks a noise-level n⋆ ∈ N, and in-
serts at most n⋆ negative examples in z1, z2, . . . to obtain
a noisy stream x1, x2, . . . . The adversary then presents the
examples in the noisy stream to generator G one at a time.
Without knowledge of the noise-level or the location of the
negative examples, the goal of the generator is to eventually
output new, positive examples x̂t ∈ supp(h)\{x1, . . . , xt}.

Like the noiseless case, there are several definitions for noisy
generatability based on how one quantifies “eventually.”
The most extreme case is what we term “uniform noise-
independent generatability.”

Definition 2.4 (Uniform Noise-Independent Generatabil-
ity). Let H ⊆ {0, 1}X be any hypothesis class satis-
fying the UUS property. Then, H is uniformly noise-
independent generatable, if there exists a generator G
and d⋆ ∈ N, such that for every h ∈ H and any se-
quence x1, x2, . . . with

∑∞
t=1 1{xt /∈ supp(h)} < ∞, if

there exists t⋆ ∈ N such that |{x1, . . . , xt⋆}| = d⋆, then
G(x1:s) ∈ supp(h) \ {x1, . . . , xs} for all s ≥ t⋆.

Here, the generator must perfectly generate after seeing
d⋆ ∈ N examples, where d⋆ can only depend on the class
H itself, and thus is uniform over the noise-level n⋆, the
hypothesis h ∈ H, and the stream x1, x2, . . . selected by
the adversary. Unsurprisingly, as we show in Section 3.1,
uniform noise-independent generatability is impossible even
for simple classes with just two hypotheses. In Appendix
C, we show this is also the case if we measure sample com-
plexity in terms of just the number of distinct positive ex-
amples (as opposed to all examples). These results motivate
weakening the definition by allowing d⋆ to depend on the
noise-level. We call this setting “Uniform Noise-dependent
Generatability.”

Definition 2.5 (Uniform Noise-dependent Generatability).
Let H ⊆ {0, 1}X be any hypothesis class satisfying the
UUS property. Then, H is uniformly noise-dependent gen-
eratable, if there exists a generator G such that for ev-
ery noise-level n⋆ ∈ N, there exists a d⋆ ∈ N, such
that for every h ∈ H and any sequence x1, x2, . . . with∑∞

t=1 1{xt /∈ supp(h)} ≤ n⋆, if there exists t⋆ ∈ N
such that |{x1, . . . , xt⋆}| = d⋆, then G(x1:s) ∈ supp(h) \
{x1, . . . , xs} for all s ≥ t⋆.

Uniform noise-dependent generatability does not suffer
from the same hardness of uniform noise-independent gen-
eratability. In fact, in Section 3.2, we show that all finite
classes are uniformly noise-dependent generatable. Nev-
ertheless, we can continue weakening the notion of noisy
generatability, by allowing d⋆ to also depend on the hypoth-
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esis chosen by the adversary.

Definition 2.6 (Non-uniform Noise-dependent Generata-
bility). Let H ⊆ {0, 1}X be any hypothesis class satisfy-
ing the UUS property. Then, H is non-uniformly noise-
dependent generatable, if there exists a generator G, such
that for every noise-level n⋆ ∈ N and any h ∈ H there ex-
ists d⋆ ∈ N such that for any sequence x1, x2, . . . with∑∞

t=1 1{xt /∈ supp(h)} ≤ n⋆, if there exists t⋆ ∈ N
such that |{x1, . . . , xt⋆}| = d⋆, then G(x1:s) ∈ supp(h) \
{x1, . . . , xs} for all s ≥ t⋆.

The term “non-uniform” here is used to refer to the fact that
the number of unique examples needed by the generator
before perfect generation can depend on the selected h ∈ H,
and hence it is “non-uniform” over the hypothesis class,
unlike the previous two definitions. Finally, the weakest
form of noisy generation allows d to depend on the noise-
level, hypothesis, and stream selected by the adversary.

Definition 2.7 (Noisy Generatability in the Limit). Let
H ⊆ {0, 1}X be any hypothesis class satisfying the UUS
property. Then, H is noisily generatable in the limit, if
there exists a generator G, such that for every h ∈ H and
any noisy enumeration x1, x2, . . . of supp(h), there exists
t⋆ ∈ N such that G(x1:s) ∈ supp(h) \ {x1, . . . , xs} for all
s ≥ t⋆.

Note that in Definition 2.7, we require the noisy stream
picked by the adversary to still contain every example in the
support of the selected hypothesis. This is consistent with
the model of “noisy texts” from the literature in language
identification where one allows the adversary to insert noisy
examples in the stream, as opposed to replacing positive
examples (Stephan, 1997).
Remark 2.8. The astute reader might notice that there is
actually a fifth setting of noisy generatability that we did not
cover. In this fifth setting, which we will call “Non-uniform
Noise-independent Generatability,” the number of positive
examples needed before perfect generation can depend on
the hypothesis chosen by the adversary, but must still be
uniform over the noise-level and the noisy example stream
chosen by the adversary. However, as in the case of uni-
form noise-independent generatability, non-uniform noise-
independent generatability is still too strong as there exists a
class of just two hypotheses that is not non-uniformly noise-
independent generatable. We refer the reader to Appendix
D for more details.

3. Towards Characterizations of Noisy
Generation

3.1. Uniform Noise-independent Generatability

We start by providing a characterization of the strongest
form of noisy generation – uniform noise-independent gen-

eratability.
Theorem 3.1 (Characterization of Uniform Noise-indepen-
dent Generatability). Let X be countable and H ⊆ {0, 1}X
satisfy the UUS property. Then, H is uniformly noise-
independent generatable if and only if

∣∣∣⋂h∈H supp(h)
∣∣∣=

∞.

Theorem 3.1 is a hardness result – it shows that even fi-
nite classes with just two hypotheses may not be uniformly
noise-independent generatable. In fact, one way to interpret
Theorem 3.1 is that uniform noise-independent generation
is only possible for trivial classes where the generator can
perfectly generate without observing any examples from the
adversary. Indeed, this is what condition in Theorem 3.1 im-
plies, since if this condition is true, the generator can simply
compute

⋂
h∈H supp(h) and always play from this set. In

Appendix C, we prove a similar statement even if we only
measure the sample complexity in terms of the number of
distinct positive examples. Since the sufficiency direction of
Theorem 3.1 follows from this observation, we only prove
the necessity direction.

Proof. (of necessity in Theorem 3.1) Let X be countable
and H ⊆ {0, 1}X satisfy the UUS property. Suppose that∣∣∣⋂h∈H supp(h)

∣∣∣=: n < ∞. We need to show that for every
G and sufficiently large d ∈ N, there exists a h ∈ H and
a sequence x1, x2, . . . with

∑∞
t=1 1{xt /∈ supp(h)} < ∞,

such that for every t ∈ N where |{x1, . . . , xt}| = d,
there exists an s ≥ t such that G(x1:s) /∈ supp(h) \
{x1, . . . , xs}. To that end, fix a generator G and a num-
ber d ≥ n. Let x1, . . . , xn be the sequence of n exam-
ples in

⋂
h∈H supp(h) sorted in their natural order. Pick

any sequence of distinct examples xn+1, xn+2, . . . , xd and
concatenate them to the end x1:n. Let x̂ = G(x1:d)
and suppose without loss of generality that x̂ /∈ {x1:d}.
Then, by construction, there exists a h ∈ H such that
x̂ /∈ supp(h). Finally, complete the stream by picking
distinct {xd+1, xd+2, . . . } ⊆ supp(h). First, by construc-
tion, note that

∑∞
t=1 1{xt /∈ supp(h)} ≤ d − n < ∞.

Next, note that t = d is the only time point such that
|{x1:d}| = d. Finally, note that when s = t = d, we
have that G(x1:s) = x̂ /∈ supp(h) \ {x1:s} by definition. If
however d < n, then as soon as the common intersection
x1:n is enumerated, the generator is forced to produce an
output that necessarily lies outside of the support of some
hypothesis in H. This completes the proof.

3.2. Uniform Noise-dependent Generatability

Theorem 3.1 shows that obtaining guarantees that are uni-
form over the noise-level is generally hopeless. In this sec-
tion, we study the easier setting of uniform noise-dependent
generation, where the number of examples needed for per-
fect generation can depend on the noise-level. At a high
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level, the results in this section extend the techniques from
Li et al. (2024) to account for noisy example streams. As
such, we first define a noisy analog of the Closure dimension
(see Appendix B for a definition).
Definition 3.2 (n-Noisy Closure dimension). The Noisy
Closure dimension of H at noise-level n ∈ N, denoted
NCn(H), is the largest natural number d for which there
exist distinct x1, . . . , xd ∈ X such that ⟨x1, . . . , xd⟩H,n ̸=
⊥ and |⟨x1, . . . , xd⟩H,n| < ∞. If this is true for arbitrarily
large d ∈ N, then we say that NCn(H) = ∞. On the other
hand, if this is not true for d = 1, we say that NCn(H) = 0.

Unlike the Closure dimension, the Noisy Closure dimension
is scale-sensitive, as it is defined with respect to every noise-
level n ∈ N. Scale-sensitive dimensions are not new to
learning theory, but have also been defined and used to
characterize other properties of hypothesis classes like PAC
and online learnability for regression problems (Rakhlin
et al., 2015; Bartlett et al., 1994). Our main theorem in
this section uses the Noisy Closure dimension to provide
a complete characterization of which classes are uniform
noise-dependent generatable.
Theorem 3.3 (Characterization of Uniform Noise-depen-
dent Generatability). Let X be countable and H ⊆ {0, 1}X
satisfy the UUS property. Then, H is uniformly noise-
dependent generatable if and only if NCn(H) < ∞ for
all n ∈ N.

Our proof of Theorem 3.3 is constructive. To prove ne-
cessity, we consider the case where there exists a n ∈ N

such that NCn(H) = ∞. Given any generator G and any
number of distinct elements d ∈ N, we explicitly pick an
h ∈ H and a valid noisy stream x1, x2, . . . such that G
makes a mistake even after observing d distinct examples.
In fact, a simple modification of our proof shows that if
NCn(H) = d, then any generator G must observe at least
d distinct examples before perfectly generating positive ex-
amples when the noise-level is n. To prove sufficiency, we
explicitly construct a generator G, which only needs to ob-
serve NCn(H) + 1 distinct examples before being able to
perfectly generate when the noise-level is n ∈ N. Crucially,
our generator G does not need to know the noise-level picked
by the adversary. Together, our necessity and sufficiency
directions show that not only does the finiteness of NCn(H)
at every n ∈ N provide a qualitative characterization of
uniform noise-dependent generatability, but it also provides
a quantitative one – the “sample complexity” at noise-level
n ∈ N is Θ(NCn(H)) – analogous to the mistake bound in
online learning, which quantifies learnability. We defer the
full proof to Appendix E.

Our characterization of uniform noise-dependent generata-
bility in terms of the Noisy Closure dimension allows us to
show that all finite classes are uniformly noise-dependent
generatable. This contrasts uniform noise-independent gen-

eratable, where even simple classes of size two may not be
uniformly noise-independent generatable.

Corollary 3.4 (All Finite Classes are Uniformly Noise-de-
pendent Generatable). Let X be countable and H ⊆
{0, 1}X satisfy the UUS property. If H is finite, then H
is uniformly noise-dependent generatable.

Proof. Let X be countable and H ⊆ {0, 1}X be a finite
hypothesis class with q := |H| satisfying the UUS prop-
erty. To show that H is uniformly noise-dependent generat-
able, it suffices to show that NCn(H) < ∞ for all n ∈ N.
For any subset V ⊆ H, define ⟨∅⟩V :=

⋂
h∈V supp(h)

and F = {V ⊆ H : |⟨∅⟩V | < ∞} to be the set of
examples common to all hypotheses in V and the sub-
sets of H whose intersection of supports has finite car-
dinality, respectively. Then, let d := maxV ∈F |⟨∅⟩V | be
the maximum size of a finite set of examples common
to a subset of H. Note that d is finite because H is fi-
nite. Fix any noise-level n ∈ N and for the sake of con-
tradiction, suppose NCn(H) = ∞. This means that for
every s ∈ N, there exists t ≥ s and a sequence of dis-
tinct examples x1, . . . , xt such that |⟨x1, . . . , xt⟩H,n| < ∞.
Pick s = nq + d + 1 and consider the stream x1, . . . , xt

such that |⟨x1, . . . , xt⟩H,n| < ∞ for t ≥ s. Recall that
H(x1:t;n) = {h ∈ H : |{x1, . . . , xt}∩ supp(h)| ≥ t−n}.
That is, H(x1:t;n) contains all hypotheses in H that are
inconsistent with x1:t on at most n examples. Since
|H(x1:t;n)| ≤ |H| = q, there are at least t − nq ≥
(nq+d+1)−nq = d+1 distinct examples in x1:t contained
in the support of all hypotheses in H(x1:t;n). In other
words, |⟨x1, . . . , xt⟩H,n| = |⟨∅⟩H(x1:t;n)| ≥ d + 1 > d.
This is a contradiction as d = maxV ∈F |⟨∅⟩V | by definition
and H(x1:t;n) ∈ F . Thus, NCn(H) < nq + d + 1 < ∞
for all n ∈ N, completing the proof.

We end this section by establishing that uniform noise-
dependent generatability is strictly harder than noiseless
uniform generatability. This is similar to online learnabil-
ity for classification problems, where typically the noise-
free (realizable) and noisy (agnostic) characterizations of
learnability are not equivalent for deterministic learning
algorithms (Littlestone, 1987; Ben-David et al., 2009).

Lemma 3.5 (Uniform Generatability ̸= Uniform Noise-de-
pendent Generatability). Let X be countable. There exists a
countable class H ⊆ {0, 1}X satisfying the UUS property
such that C(H) = 0 but NC1(H) = ∞.

Proof. Let P = {p1, p2, . . . } be the set of primes, Sq =
{−qn : n ∈ N}, S =

⋃
q∈P Sq, and X = P ∪ S. Let the

support of each hypothesis hp be supp(hp) = P\{p}∪S\Sp

and H := {hp : p ∈ P}. Observe that H satisfies the UUS
property and X is countable.
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We now prove that the Closure dimension (see Appendix
B) C(H) = 0. Suppose the first element in the sequence
is x1 = −pn for some p ∈ P and n ∈ N. Then |⟨x1⟩H| =
|{−pm : m ∈ N }| = ∞. If the first element in the sequence
is x1 = p ∈ P, then |⟨x1⟩H| = |{−pn : n ∈ N }| = ∞.
This is because observing any example immediately rules
out the one hypothesis that predicts 0 for that example. Note
that these are the only two possible cases as it must be the
case that x1 ∈ supp(h) for some h ∈ H.

Now, we show that NC1(H) = ∞. Fix some d ∈ N. Con-
sider the stream p1, p2, . . . , pd of the first d prime numbers.
Then, |⟨p1, . . . , pd⟩H,1| = |∅| = 0, due to the fact that
H(p1, . . . , pd; 1) = H and the intersection of the supports
of all h ∈ H is empty. So, NC1(H) ≥ d. Since d ∈ N was
picked arbitrarily, this is true for all d ∈ N and therefore, H
is not uniformly noise-dependent generatable.

Lemma 3.5 shows a strong separation between noise-free
and uniform noise-dependent generation – there is a class
that is uniformly generatable, but not uniformly noise-
dependent generatable even when the adversary is allowed
to perturb one example.

3.3. Non-uniform Noise-dependent Generatability

Similar to the characterization of non-uniform generata-
bility in the noise-free setting, we can use uniform noise-
dependent generatability to provide sufficiency and neces-
sary conditions for non-uniform noise-dependent generata-
bility.

Lemma 3.6 (Sufficiency for Non-uniform Noise-dependent
Generatability). Let X be countable and H ⊆ {0, 1}X sat-
isfy the UUS property. If there exists a non-decreasing se-
quence of classes H1 ⊆ H2 ⊆ · · · such that H =

⋃∞
i=1 Hi

and NCi(Hi) < ∞ for all i ∈ N, then H is non-uniformly
noise-dependent generatable.

To prove Lemma 3.6, we construct a non-uniform noise-
dependent generator G, which at each round t ∈ N, com-
putes an index it ∈ N based on the number of distinct
examples seen in the stream so far. G then computes the
noisy closure of Hit at noise-level it and then plays from
this set. We defer details to Appendix F.

As a corollary of Lemma 3.6 and Corollary 3.4, we can
show that all countable classes are non-uniformly noise-
dependent generatable, and hence noisily generatable in
the limit. In some sense, this result shows that amongst
countable classes, noisy generation comes for free!

Corollary 3.7 (All Countable Classes are Noisily Non-uni-
formly Generatable). Let X be countable and H ⊆ {0, 1}X
satisfy the UUS property. If H is countable, then H is non-
uniformly noise-dependent generatable, and therefore also
noisily generatable in the limit.

Proof. Since non-uniform noise-dependent generatability
implies noisy generatability in the limit, it suffices to show
that every countable H is non-uniformly noise-dependent
generatable. Let X be countable and H ⊆ {0, 1}X be any
countable class satisfying the UUS property. Let h1, h2, . . .
be some fixed enumeration of H and define Hn = {hi : i ≤
n} for all n ∈ N. Then, observe that H1 ⊆ H2 ⊆ . . . and
that H =

⋃∞
n=1 Hn. Next, observe that |Hn| = n < ∞,

which, using Corollary 3.4, implies that NCn(Hn) < ∞.
Finally, Lemma 3.6 gives that H is non-uniformly noise-
dependent generatable.

Corollary 3.7 with Lemma 3.5 also establishes that uniform
noise-dependent generatability is strictly harder than non-
uniform noise-dependent generatability. We now move to
our necessity condition for non-uniform noise-dependent
generatability.

Lemma 3.8 (Necessity for Non-uniform Noise-dependent
Generatability). Let X be countable and H ⊆ {0, 1}X
satisfy the UUS property. If H is non-uniformly noise-
dependent generatable, then for every n ∈ N, there exists a
non-decreasing sequence of classes H1 ⊆ H2 ⊆ · · · such
that H =

⋃∞
i=1 Hi and NCn(Hi) < ∞ for all i ∈ N.

Proof. Let X be countable and H ⊆ {0, 1}X be any non-
uniformly noise-dependent generatable class satisfying the
UUS property. Let G be a non-uniform noise-dependent
generator for H. Fix n ∈ N. For every h ∈ H, let
dh,n ∈ N be the smallest natural number such that for any
sequence x1, x2, . . . with

∑∞
t=1 1{xt /∈ supp(h)} ≤ n,

if there exists a t ∈ N such that |{x1, . . . , xt}| = dh,n,
then G(x1:s) ∈ supp(h) \ {x1, . . . , xs} for all s ≥ t. Let
Hi = {h ∈ H : dh,n ≤ i} for all i ∈ N. Note that
H =

⋃
i∈N Hi because dh,n < ∞ for all h ∈ H. More-

over, we have that Hi ⊆ Hi+1 for all i ∈ N. Finally, for
every i ∈ N, observe that G is a uniform generator for Hi at
noise-level n ∈ N, implying that NCn(Hi) < i < ∞.

Note the sufficiency and necessary conditions in Lemmas
3.6 and 3.8 respectively are not matching. Indeed, the con-
dition in Lemma 3.6 is stronger than that in Lemma 3.8. We
leave as an open question a complete characterization of
non-uniform noise-dependent generatability.

3.4. Noisy Generatability in the Limit

Corollary 3.7 showed that all countable classes are noisily
generatable in the limit. Here, we provide alternate suffi-
ciency conditions for noisy generatability in the limit. Our
first result shows that (noiseless) non-uniform generatability
is sufficient for noisy generatability in the limit. Since all
countable classes are (noiseless) non-uniform generatable
(Li et al., 2024), this result also shows that all countable
classes are noisily generatable in the limit.

7



Generation from Noisy Examples

Algorithm 1 Generator G
Input: Hypothesis class H and non-uniform generator Q
for t = 1, 2, . . . do

Adversary reveals example xt

Let dt = |{x1, . . . , xt}| and rt ≤ t be the largest time
point such that |{xrt , . . . , xt}| = ⌊dt

2 ⌋
Initialize ẑt1 = Q(xrt:t)
for i = 1, . . . , rt − 1 do

if ẑti /∈ {x1, . . . , xt} then
G outputs ẑti and moves to next round.

else
Update ẑti+1 = Q(xrt , . . . , xt, ẑ

t
1, . . . , ẑ

t
i)

end if
end for
G outputs ẑtrt and moves to next round.

end for

Theorem 3.9 (Non-uniform Generatability =⇒ Noisy
Generatability in the Limit). Let X be countable and H ⊆
{0, 1}X be any class satisfying the UUS property. If H
is (noiseless) non-uniformly generatable, then H is noisily
generatable in the limit.

Proof. Let X be countable and H ⊆ {0, 1}X be any class
satisfying the UUS property. Consider the generator G,
which uses a non-uniform generator Q as in Algorithm 1.

We will show that G noisily generates from H in the limit.
Let h⋆ ∈ H and x1, x2, . . . be the chosen hypothesis and
noisy enumeration of supp(h⋆) picked by the adversary,
respectively. Let dQ(h⋆) ∈ N be the number of noiseless
distinct examples that Q needs for h⋆ to perfectly generate
from supp(h⋆). Let t⋆ ∈ N be such that for all t ≥ t⋆, we
have that xt ∈ supp(h⋆). Such a t⋆ must exist because
there are at most a finite number of noisy examples in the
stream. Also, because x1, x2, . . . is a noisy enumeration,
at some point s⋆ ∈ N, rs⋆ ≥ t⋆ and ⌊ds⋆

2 ⌋ ≥ dQ(h
⋆). Fix

some s ≥ s⋆. We will prove that G generates perfectly on
round s. First, we claim that for all i ∈ [rs], we have that
ẑsi ∈ supp(h⋆) \ {xrs , . . . , xs, ẑ

s
1, . . . , ẑ

s
i−1}. Our proof

will be by induction. For the base case, consider i = 1. We
need to show that ẑs1 ∈ supp(h⋆) \ {xrs , . . . , xs}.
However, this just follows from the fact that
ẑs1 = Q(xrs:s), |{xrs , . . . , xs}| ≥ dQ(h

⋆), and
{xrs , . . . , xs} ⊆ supp(h⋆). Next, for the induc-
tion step, suppose that for all i ≤ m, we have that
ẑsi ∈ supp(h⋆)\{xrs , . . . , xs, ẑ

s
1, . . . , ẑ

s
i−1}. Then, by def-

inition, we have that ẑsm+1 = Q(xrs , . . . , xs, ẑ
s
1, . . . , ẑ

s
m).

The proof of the claim is complete after noting
that {xrs , . . . , xs, ẑ

s
1, . . . , ẑ

s
m} ⊆ supp(h⋆) and

|{xrs , . . . , xs, ẑ
s
1, . . . , ẑ

s
m}| ≥ dQ(h

⋆).

Now we will complete the overall proof by showing that
the output of G on round s lies in supp(h⋆) \ {x1, . . . , xs}.

Suppose that G outputs ẑsj for some j ∈ [rs]. If j < rs,
then it must be the case that Line 7 fired and so by con-
struction ẑsj ∈ supp(h⋆) \ {x1, . . . , xs}. Thus, suppose
that j = rs. If j = rs, then it must be the case that
{ẑs1, . . . , ẑsrs−1} = {x1, . . . , xrs−1}. Accordingly, we have
that {xrs , . . . , xs, ẑ

s
1, . . . , ẑ

s
rs−1} = {x1, . . . , xs}, which

means that ẑsrs ∈ supp(h⋆) \ {xrs , . . . , xs, ẑ
s
1, . . . , ẑ

s
rs−1}

and therefore ẑsrs ∈ supp(h⋆) \ {x1, . . . , xs}. Thus, in ei-
ther case, G perfectly generates on round s. Since s ≥ s⋆ is
arbitrary, our proof is complete.

In similar spirit to Theorem 3.10 from Li et al. (2024), we
provide another sufficiency condition for noisy generata-
bility in the limit in terms of uniform noise-independent
generatability.

Theorem 3.10. Let X be countable and H ⊆ {0, 1}X sat-
isfy the UUS property. If there exists a finite sequence of uni-
formly noise-independent generatable classes H1, . . . ,Hk

such that H =
⋃k

i=1 Hi, then H is noisily generatable in
the limit.

The proof of Theorem 3.10 is similar to the proof Theorem
3.10 from Li et al. (2024) and so we defer it to Appendix G.

4. Discussion and Open Questions
In this paper, we introduced several notions of noisy gener-
atability and made progress towards characterizing which
classes are noisily generatable. We highlight some impor-
tant directions of future work.

Characterizations of Non-uniform Noise-dependent Gen-
eratability and Noisy Generatability in the Limit. An im-
portant direction of future work is to provide a complete and
concise characterization of which classes are non-uniformly
noise-dependent generatable and noisily generatable in the
limit. Note that Li et al. (2024) also pose the complete char-
acterization of (noiseless) generatability in the limit as an
open question, but do provide a complete characterization of
(noiseless) non-uniform generatability. We conjecture that
the correct characterization of non-uniform noise-dependent
generatability will need to go beyond our sufficiency and
necessity conditions in Section 3.3.

Noisy Generatability in the Limit via Membership Or-
acles. In addition to showing that all countable classes
are generatable in the limit, Kleinberg & Mullainathan
(2024) provide a computable algorithm for doing so when
given access to a membership oracle. A membership ora-
cle, OH : H × X → {0, 1}, takes as input a hypothesis
h ∈ H and an example x ∈ X and outputs 1{h(x) = 1}.
Although we show that all countable classes are also nois-
ily generatable in the limit, the focus of this paper was
information-theoretic in nature. This motivates our next
open question. Given access to a membership oracle, does
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there exists a computable algorithm that can noisily generate
in the limit from any countable class?
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A. Definitions of Noiseless Generation
Definition A.1 (Uniform Generatability (Li et al., 2024)). Let H ⊆ {0, 1}X be any hypothesis class satisfying the UUS
property. Then, H is uniformly generatable, if there exists a generator G and d⋆ ∈ N, such that for every h ∈ H and
any sequence x1, x2, . . . with {x1, x2, . . . } ⊆ supp(h), if there exists t⋆ ∈ N such that |{x1, . . . , xt⋆}| = d⋆, then
G(x1:s) ∈ supp(h) \ {x1, . . . , xs} for all s ≥ t⋆.

Definition A.2 (Non-uniform Generatability (Li et al., 2024)). Let H ⊆ {0, 1}X be any hypothesis class satisfying the UUS
property. Then, H is non-uniformly generatable if there exists a generator G such that for every h ∈ H, there exists a d⋆ ∈ N
such that for any sequence x1, x2, . . . with {x1, x2, . . . } ⊆ supp(h), if there exists t⋆ ∈ N such that |{x1, . . . , xt⋆}| = d⋆,
then G(x1:s) ∈ supp(h) \ {x1, . . . , xs} for all s ≥ t⋆.

Definition A.3 (Generatability in the Limit (Li et al., 2024)). Let H ⊆ {0, 1}X be any hypothesis class satisfying the UUS
property. Then, H is generatable in the limit if there exists a generator G such that for every h ∈ H, and any enumeration
x1, x2, . . . of supp(h), there exists a t⋆ ∈ N such that G(x1:s) ∈ supp(h) \ {x1, . . . , xs} for all s ≥ t⋆.

B. Summary of Results for Noiseless Generation
In the noiseless setting, Kleinberg & Mullainathan (2024) initiated the study of generation in the limit by showing that all
countable classes are generatable in the limit and that all finite classes are uniformly generatable. Following this result, Li
et al. (2024) provided a complete characterization of uniform generation in terms of a new combinatorial parameter termed
the Closure dimension.

Definition B.1 (Closure dimension (Li et al., 2024)). The Closure dimension of H, denoted C(H), is the largest natural
number d ∈ N for which there exists distinct x1, . . . , xd ∈ X such that ⟨x1, . . . , xd⟩H,0 ̸= ⊥ and |⟨x1, . . . , xd⟩H,0| < ∞.
If this is true for arbitrarily large d ∈ N, then we say that C(H) = ∞. On the other hand, if this is not true for d = 1, we say
that C(H) = 0.

In particular, a class is uniformly generatable if and only its its Closure dimension is finite.

Theorem B.2 (Theorem 3.3. in Li et al. (2024)). A class H ⊆ {0, 1}X is uniformly generatable if and only if C(H) < ∞.

In addition, Li et al. (2024) defined an intermediate setting termed non-uniform generatability, and provided a complete
characterization of which classes are non-uniformly generatable.

Theorem B.3 (Theorem 3.5 in Li et al. (2024)). A class H ⊆ {0, 1}X is non-uniformly generatable if and only if there
exists a non-decreasing sequence of classes H1 ⊆ H2 ⊆ . . . such that H =

⋃∞
i=1 Hi and C(Hi) < ∞ for every i ∈ N.

As a corollary, Li et al. (2024) establish that all countable classes are actually non-uniformly generatable. Charikar &
Pabbaraju (2024) also established this result independently. With regards to generatability in the limit, Kleinberg &
Mullainathan (2024) prove that all countable classes are generatable in the limit. Li et al. (2024) provide an alternate
sufficiency condition in terms of the Closure dimension.

Theorem B.4 (Theorem 3.10 in Li et al. (2024)). A class H ⊆ {0, 1}X is generatable in the limit if there exists a finite
sequence of classes H1,H2, . . . ,Hn such that H =

⋃n
i=1 Hi and C(Hi) < ∞ for all i ∈ [n].

In this paper, we provide analogous results for noisy generation in terms of a different combinatorial parameter termed the
Noisy Closure dimension.

C. An Alternate Version of Uniform Noise-independent Generatability
In this section, we consider an alternate (weaker) version of uniform noise-independent generatability by measuring the
sample complexity only in terms of the valid positive examples observed.

Definition C.1 (Alternate Uniform Noise-Independent Generatability). Let H ⊆ {0, 1}X be any hypothesis class satisfying
the UUS property. Then, H is uniformly noise-independent generatable, if there exists a generator G and d⋆ ∈ N, such
that for every h ∈ H and any sequence x1, x2, . . . with

∑∞
t=1 1{xt /∈ supp(h)} < ∞, if there exists t⋆ ∈ N such that

|{x1, . . . , xt⋆} ∩ supp(h)| = d⋆, then G(x1:s) ∈ supp(h) \ {x1, . . . , xs} for all s ≥ t⋆.

Note that the only difference between Definition C.1 and D.1 is how d⋆ is measured. In Definition C.1, d⋆ captures only the
number of distinct positive examples in the stream, while d⋆ in Definition D.1 measures the total number of distinct examples
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in the stream. We start off by proving a simple necessity condition for our alternate notion of uniform noise-independent
generatability.

Lemma C.2 (Necessary condition for Alternate Uniform Noise-independent Generatability). Let X be countable and H ⊆
{0, 1}X satisfy the UUS property. If there exists a subclass F ⊆ H and a hypothesis f ∈ F such that

∣∣⋂
h∈F supp(h)

∣∣ < ∞
and

∣∣∣⋂h∈F\{f} supp(h)
∣∣∣ = ∞, then H is not uniformly noise-independent generatable according to Definition C.1.

Like Theorem 3.1, Lemma C.2 is a hardness result – it shows that finite classes with just two hypotheses may not be
uniformly noise-independent generatable even when the sample complexity is measured in terms of positive example.

Proof. (of Lemma C.2) Let X be countable and H ⊆ {0, 1}X satisfy the UUS property. Let F ⊆ H be any subset of H
such that

∣∣∣⋂h∈F supp(h)
∣∣∣< ∞ and for which there exists an f ∈ F such that

∣∣∣⋂h∈F\{f} supp(h)
∣∣∣= ∞. We need to show

that H is not uniformly noise-independent generatable. We will show that F is not uniformly noise-independent generatable
which will imply that H is not uniformly noise-independent generatable. To that end, we need to show that for every G and
any d ∈ N, there exists a h ∈ F and a sequence x1, x2, . . . with

∑∞
t=1 1{xt /∈ supp(h)} < ∞, such that for every t ∈ N

where |{x1, . . . , xt} ∩ supp(h)| = d, there exists an s ≥ t such that G(x1:s) /∈ supp(h) \ {x1, . . . , xs}. To that end, fix a
generator G and a number d ∈ N. Let x1, . . . , xd be a sequence of d unique examples in

⋂
h∈F\{f} supp(h). Let z1, . . . , zd

be any d unique examples in supp(f) \
⋂

h∈F supp(h) and consider the sequence of 2d unique examples obtained by
concatenating z1, . . . , zd to the end of x1, . . . , xd. Denote this new sequence by x1:2d. Let q = |

⋂
h∈F supp(h)| and

let v1, . . . , vq be its elements sorted in its natural order. Concatenate v1, . . . , vq to the end of x1:2d and denote this new
sequence of unique examples as x1:2d+q. Observe that for every h ∈ F , we have that | supp(h) ∩ {x1, . . . x2d+q}| ≥ d.
Let x̂2d+q = G(x1, . . . , x2d+q) and suppose without loss of generality that x̂2d+q /∈ {x1, . . . , x2d+q}. Let h⋆ ∈ F
be a be hypothesis such that x̂2d+q /∈ supp(h⋆). Such a hypothesis must exist because x̂2d+q /∈ {x1, . . . , x2d+q} and⋂

h∈F supp(h) ⊆ {x1, . . . , x2d+q}. Let x2d+q+1, x2d+q+2, . . . be any completion of the stream such that {x2d+q+t}∞t=1 ⊆
supp(h⋆) and {x2d+q+t}∞t=1 ∩ {xt}2d+q

t=1 = ∅.

We are now ready to complete the proof. Let h⋆ and x1, x2, . . . be the hypothesis and sequence chosen above. Then,
by definition, observe that

∑∞
t=1 1{xt /∈ supp(h⋆)} =

∑2d+q
t=1 1{xt /∈ supp(h⋆)} ≤ d < ∞. Moreover, we also

know that | supp(h⋆) ∩ {x1, . . . , x2d+q}| ≥ d and the first 2d examples are distinct, implying that there exists exactly
one time point t ≤ 2d + q such that | supp(h⋆) ∩ {x1, . . . x2d+q}| = d. Finally, noting that 2d + q ≥ t and that
G(x1, . . . , x2d+q) /∈ supp(h⋆)\{x1, . . . , x2d+1} completes the proof that F is not uniformly noise-independent generatable
since G and d were chosen arbitrarily.

Finally, Theorem C.3 provides a full characterization of uniform noise-independent generatability (Definition D.1 in terms
of the noisy closure dimension.

Theorem C.3 (Characterization of Uniform Noise-independent Generatability). Let X be countable and H ⊆ {0, 1}X
satisfy the UUS property. Then, H is uniformly noise-independent generatable if and only if supn(NCn∈N(H)− n) < ∞.

As the proof follows similar techniques as those in the main text, we only provide the proof sketch here.

Proof. (sketch of Theorem C.3) For the necessity direction, suppose that supn(NCn(H) − n) = ∞. Then for ev-
ery d ∈ N, we can find a t ≥ d and a sequence x1, . . . , xt, such that |⟨x1, ..., xt⟩H,t−d| < ∞. Hence, by padding
x1, . . . , xt with any remaining elements in ⟨x1, ..., xt⟩H,t−d, we can force the Generator to make a mistake while
ensuring that the hypothesis chosen is consistent with at least d examples in the stream. For the sufficiency direc-
tion, if supn(NCn(H) − n) < ∞, then there exists a d ∈ N such that for every t ≥ d and distinct x1, ..., xt, we
have that either ⟨x1, ..., xt⟩H,t−d = ⊥ or |⟨x1, ..., xt⟩H,t−d| = ∞. Thus, the algorithm which for t ≥ d plays from
⟨x1, ..., xt⟩H,t−d \ {x1, . . . , xt} if ⟨x1, ..., xt⟩H,t−d ̸= ⊥ is guaranteed to succeed.

D. The Hardness of Non-uniform Noise-independent Generatability
As alluded to in Remark 2.8, there is a fifth setting of noisy generation, which we did not define in the main text. In this
setting, the “sample complexity” of the generator can be non-uniform over the class H but must still be uniform over the
noise-level and stream picked by the adversary. We define this formally below.

12
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Definition D.1 (Non-uniform Noise-independent Generatability). Let H ⊆ {0, 1}X be any hypothesis class satisfying the
UUS property. Then, H is non-uniformly noise-independent generatable, if there exists a generator G such that for every
h ∈ H, there exists d⋆ ∈ N such that for any sequence x1, x2, . . . with

∞∑
t=1

1{xt /∈ supp(h)} < ∞,

if there exists t⋆ ∈ N such that |{x1, . . . , xt⋆} ∩ supp(h)| = d⋆, then G(x1:s) ∈ supp(h) \ {x1, . . . , xs} for all s ≥ t⋆.

Unfortunately, non-uniform noise-independent generatability is still a restrictive property as not all finite classes are
non-uniformly noise-independent generatable. This is in contrast to uniform noise-dependent generatability as shown by
Corollary 3.4.

Lemma D.2 (Not All Finite Classes are Non-uniformly Noise-independent Generatable). Let X be countable. There exists
a finite class H ⊆ {0, 1}X which satisfies the UUS property that is not non-uniformly noise-independent generatable.

Proof. Let X = N and consider the class H = {he, ho} such that he(x) = 1{x is even} and ho(x) = 1{x is odd}. We
will show that H is not non-uniformly noise-independent generatable. We need to show that for every generator G, there
exists a hypothesis h ∈ H such that for every d ∈ N, there exists a sequence x1, x2, . . . with

∞∑
t=1

1{xt /∈ supp(h)} < ∞,

so that for every t ∈ N such that |{x1, . . . , xt}∩supp(h)| = d, there exists a s ≥ t where G(x1:s) /∈ supp(h)\{x1, . . . , xs}.
To that end, fix a generator G. Let S = {G(1, 2, . . . , i)}i∈N. There are three cases to consider: (1) the number of even
numbers in S is finite (2) the number of odd numbers in S is finite and (3) there are infinite number of both even and odd
numbers in S. Cases (1) and (2) are symmetric. So, without loss of generality, it suffices only to consider Cases (1) and (3).

Starting with Case (1), let p ∈ N be the smallest time point such that for all t ≥ p, we have that G(1, . . . , t) is odd. We
will pick he to use for the lower bound. Fix some d ∈ N. Consider the sequence x1, x2, . . . such that xi = i for all
i ≤ max{p, 2d} and xi = 2i for all i > max{p, 2d}. Note that

∞∑
t=1

1{xt /∈ supp(he)} ≤ max{p, 2d}
2

< ∞.

Suppose 2d < p. Then, observe that only on time point t = 2d do we have that |{x1, . . . , xt} ∩ supp(he)| = d. However,
by definition, on time point s = p ≥ 2d = t, we have that G(x1, . . . , xs) is odd and therefore not in supp(he). Suppose
that 2d ≥ p. Then, like before, only on time point t = 2d do we have that |{x1, . . . , xt} ∩ supp(he)| = d. However, by
definition, also on time point s = 2d ≥ p, we have that G(x1, . . . , xs) is odd and therefore not in supp(he). Since d ∈ N is
arbitrary, this is true for all d ∈ N, completing the proof for Case (1). As mentioned before, the proof for Case (2) follows
by symmetry.

We now consider Case (3). For this case, we will pick he for the lower bound. Fix some d ∈ N. Let p ≥ 2d be the smallest
time point after and including time point 2d such that G(1, 2, . . . , p) is odd. Such a p ∈ N must exist since S contains an
infinite number of odd numbers. Now, consider the sequence x1, x2, . . . such that xi = i for i ≤ p and xi = 2i for all
i > p. Note that

∞∑
t=1

1{xt /∈ supp(he)} ≤ p

2
< ∞.

Observe that only at time point t = 2d do we have that |{x1, . . . , xt}∩ supp(he)| = d. However, by definition, also on time
point s = p ≥ 2d = t, we have that G(x1, . . . , xp) is odd and therefore does not lie in supp(he). Since d ∈ N is arbitrary,
this is true for all d ∈ N, completing the proof for Case (3) and the overall proof.

13



Generation from Noisy Examples

E. Proof of Theorem 3.3
Proof. (of necessity in Theorem 3.3) Let X be countable and H ⊆ {0, 1}X satisfy the UUS property. Suppose there exists
a n ∈ N such that NCn(H) = ∞. We need to show that this means that H is not uniformly noise-dependent generatable. In
particular, we need to show that for every generator G, there exists a noise level n⋆ ∈ N such that for every d ∈ N, there
exists a hypothesis h ∈ H and a sequence x1, x2, . . . with

∑∞
t=1 1{xt /∈ supp(h)} ≤ n⋆, so that for every t ∈ N with

|{x1, . . . , xt}| = d, there exists s ≥ t where G(x1:s) /∈ supp(h) \ {x1, . . . , xs}. To that end, let G be any generator and
consider the noise level n⋆ = n so that NCn⋆(H) = ∞. Fix any d ∈ N. We will now pick such a hypothesis h⋆ ∈ H and a
valid stream x1, x2, . . . .

Since NCn⋆(H) = ∞, we know there exists a d⋆ ≥ d and a sequence of distinct examples x1, . . . , xd⋆ such that
⟨x1, . . . , xd⋆⟩H,n⋆ ̸= ⊥ and |⟨x1, . . . , xd⋆⟩H,n⋆ | < ∞. Let q = |⟨x1, . . . , xd⋆⟩H,n⋆ \ {x1, . . . , xd⋆}| and z1, . . . , zq be the
elements of ⟨x1, . . . , xd⋆⟩H,n⋆ \ {x1, . . . , xd⋆} sorted in their natural order. Let x1:d⋆+q denote the sequence obtained by
concatenating z1, . . . , zq to the end of x1, . . . , xd⋆ . Let x̂d⋆+q = G(x1:d⋆+q) and suppose without loss of generality that
x̂d⋆+q /∈ {x1, . . . , xd⋆+q}. Let h⋆ ∈ H(x1:d⋆ , n⋆) be any hypothesis such that x̂d⋆+q /∈ supp(h⋆). Such a hypothesis must
exist because x̂d⋆+q /∈ {x1, . . . , xd⋆+q} and ⟨x1, . . . , xd⋆⟩H,n⋆ ⊆ {x1, . . . , xd⋆+q}. Finally, let xd⋆+q+1, xd⋆+q+2, . . . be
any completion of the stream such that {xd⋆+q+t}∞t=1 ⊆ supp(h⋆) and {xd⋆+q+t}∞t=1 ∩ {xt}d

⋆+q
t=1 = ∅.

We now complete the proof. Let h⋆ and x1, x2, . . . be the hypothesis and stream chosen above. First, observe that

∞∑
t=1

1{xt /∈ supp(h⋆)} =

d⋆∑
t=1

1{xt /∈ supp(h⋆)} ≤ n⋆.

Second, there exists only one t ∈ N, namely t = d, such that |{x1, . . . , xt}| = d, as the first d⋆ + 1 > d examples of the
stream are distinct by construction. However, observe that by construction, at time point s = d⋆ + q ≥ d, we have that
G(x1, . . . , xs) = x̂d⋆+q /∈ supp(h⋆) \ {x1, . . . , xs} by choice of h⋆. Since G and d ∈ N were picked arbitrarily, this is true
for all G and d ∈ N, which completes the proof.

Proof. (of sufficiency in Theorem 3.3) The key intuition is that the generator, without knowing the adversary’s noise
level, continually computes the largest noise level for which it has observed enough unique examples to generate perfectly.
Eventually, its calculated noise level will surpass and thus account for the adversary’s noise level, ensuring that the generator
is perfect from then on.

Let X be countable and H ⊆ {0, 1}X satisfy the UUS property. We need to show that if NCn(H) < ∞ for all n ∈ N, then H
is uniformly noise-dependent generatable. For a sequence x1, x2, . . . , let dt := |{x1, . . . , xt}| denote the number of distinct
examples amongst the first t examples. Consider the following generator G. At time t ∈ N, G computes nt := max{n ∈
[t] : NCn(H) < dt} ∪ {0}. If nt = 0, G plays any x ∈ X . Otherwise, it plays from ⟨x1, . . . , xt⟩H,nt

\ {x1, x2, . . . , xt}.
We now show that G is a uniform noise-dependent generator. To that end, let n⋆ ∈ N be the noise level chosen by the
adversary. We claim that G can perfectly generate after observing max{NCn⋆(H) + 1, n⋆} distinct examples. To see
why, let h ∈ H be any hypothesis, and x1, x2, . . . be any stream such that

∑∞
t=1 1{xt /∈ supp(h)} ≤ n⋆. Without loss of

generality, suppose there exists t⋆ ∈ N such that dt⋆ = max{NCn⋆(H) + 1, n⋆}. Observe that t⋆ ≥ n⋆. Fix any s ≥ t⋆.
By definition of nt, it must be the case that ns ≥ n⋆. Thus, h ∈ H(x1, . . . , xs, ns) and ⟨x1, . . . , xs⟩H,ns

⊆ supp(h).
Moreover, because ds > NCns

(H), again by definition, it must be the case that |⟨x1, . . . , xs⟩H,ns
| = ∞. Accordingly,

⟨x1, . . . , xs⟩H,ns
\ {x1, . . . , xs} ≠ ∅ and G is guaranteed to output an example in supp(h) on round s. Since s ≥ t⋆ was

chosen arbitrarily, this is true for all such s, completing the proof.

F. Proof of Lemma 3.6
Proof. Let X be countable and H ⊆ {0, 1}X be any class satisfying the UUS property. Suppose there exists a non-
decreasing sequence of classes H1 ⊆ H2 ⊆ · · · such that H =

⋃∞
i=1 Hi and NCi(Hi) < ∞ for all i ∈ N. For

a sequence x1, x2, . . . , let dt := |{x1, . . . , xt}| denote the number of distinct examples amongst the first t examples.
Consider the following generator G. At time t ∈ N, G computes jt := max{i ∈ [t] : NCi(Hi) < dt} ∪ {0}. If jt = 0,
G plays any x ∈ X . Otherwise, it plays from ⟨x1, . . . , xt⟩Hjt ,jt

\ {x1, x2, . . . , xt}. We claim that G is a non-uniform
noise-dependent generator for H. To see why, let n⋆ ∈ N and h ∈ H be the noise level and hypothesis picked by
the adversary. Let i⋆ ∈ N be the smallest index such that h ∈ Hi⋆ and define j⋆ = max{i⋆, n⋆}. We claim that
G perfectly generates after observing max{NCj⋆(Hj⋆) + 1, j⋆} distinct examples. To that end, let x1, x2, . . . be any
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sequence such that
∑∞

t=1 1{xt /∈ supp(h)} ≤ n⋆. Without loss of generality, suppose there exists t⋆ ∈ N such that
dt⋆ = max{NCj⋆(Hj⋆) + 1, j⋆}. Observe that t⋆ ≥ j⋆. Fix any s ≥ t⋆. By definition of jt, it must be the case that
js ≥ j⋆ ≥ n⋆. Moreover, because js ≥ i⋆, we also have that h ∈ Hjs . Together, this means that h ∈ Hjs(x1, . . . , xs, js)
and ⟨x1, . . . , xs⟩Hjs ,js

⊆ supp(h). Also, because ds > NCjs(Hjs) it must be the case that |⟨x1, . . . , xs⟩Hjs ,js
| = ∞.

Accordingly, ⟨x1, . . . , xs⟩Hjs ,js
\ {x1, . . . , xs} ≠ ∅ and G is guaranteed to output an example in supp(h) on round s. Since

s ≥ t⋆ was chosen arbitrarily, this is true for all such s, completing the proof.

G. Proof of Theorem 3.10
Proof. Let X be countable and H ⊆ {0, 1}X satisfy the UUS property. Suppose there exists a finite sequence of uniformly
noise-independent generatable classes H1,H2, . . . ,Hk such that H =

⋃k
i=1 Hi. By Theorem 3.1, we know that for all

i ∈ [k], we have that
∣∣∣⋂h∈Hi

supp(h)
∣∣∣= ∞. For every i ∈ [k], let zi1, z

i
2, . . . denote the elements of

⋂
h∈Hi

supp(h) sorted
in their natural ordering. Consider the following generator G. Given any noisy enumeration x1, x2, . . . and any t ∈ N, G
first computes

pit := max{p ∈ N : {zi1, . . . , zip} ⊆ {x1, . . . , xt}}

for every i ∈ [k]. Then, G computes it = argmaxi∈[k] p
i
t. Finally, G plays arbitrarily from {zit1 , z

it
2 , . . . } \ {x1, . . . xt}.

We claim that G generates from H in the limit.

To see why, let h ∈ H and x1, x2, . . . be the hypothesis and noisy enumeration selected by the adversary. Let i⋆ ∈ [k]
be such that h ∈ Hi⋆ and s⋆ ∈ N be such that for all t ≥ s⋆, we have that xt ∈ supp(h). Such an s⋆ exists because∑∞

t=1 1{xt /∈ supp(h)} < ∞. Let S⋆ ⊆ [k] be such that i ∈ S⋆ if and only if {zi1, zi2, . . . } ⊆ {x1, x2, . . . }. Note that
i⋆ ∈ S⋆ by definition of zi

⋆

1 , zi
⋆

2 , . . . and the fact that x1, x2, . . . is a noisy enumeration. By definition of S⋆ and pit it must
be the case that for all j /∈ S⋆, we have that supt∈N pjt < ∞. Since k < ∞, we then get that maxj /∈S⋆ supt∈N pjt < ∞. On
the other hand, for all i ∈ S⋆, we have that pit → ∞. More precisely, for every i ∈ S⋆, there exists a finite ti ∈ N such that
piti ≥ maxj /∈S⋆ supt∈N pjt . Since |S⋆| < ∞, we also have that t⋆ := maxi∈S⋆ ti < ∞. Our proof is complete after noting
that for all t ≥ t⋆, we have that it ∈ S⋆ and {zit1 , z

it
2 , . . . } \ {x1, . . . xt} ⊆ supp(h).
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