QuaDUE-CCM: Interpretable Distributional Reinforcement Learning using Uncertain Contraction Metrics for Precise Quadrotor Trajectory Tracking

Abstract: Accuracy and stability are common requirements for Quadrotor trajectory tracking systems. Designing an accurate and stable tracking controller remains challenging, particularly in unknown and dynamic environments with complex aerodynamic disturbances. We propose a Quantile-approximation-based Distributional-reinforced Uncertainty Estimator (QuaDUE) to accurately identify the effects of aerodynamic disturbances, i.e., the uncertainties between the true and estimated Control Contraction Metrics (CCMs). Taking inspiration from contraction theory and integrating the QuaDUE for uncertainties, our novel CCM-based trajectory tracking framework tracks any feasible reference trajectory precisely whilst guaranteeing exponential convergence. More importantly, the convergence and training acceleration of the distributional RL are guaranteed and analyzed, respectively, from theoretical perspectives. We also demonstrate our system under unknown and diverse aerodynamic forces. Under large aerodynamic forces ($>2 \, \text{m/s}^2$), compared with the classic data-driven approach, our QuaDUE-CCM achieves at least a 56.6% improvement in tracking error. Compared with QuaDRED-MPC, a distributional RL-based approach, QuaDUE-CCM achieves at least a 3 times improvement in contraction rate.

Keywords: Quadrotor trajectory tracking, Learning-based control

1 Introduction

Designing a precise and safe trajectory tracking controller for autonomous Unmanned Aerial Vehicles (UAVs), such as quadrotors, is a critical yet extremely different problem, particularly in unknown and dynamic environments with unpredictable aerodynamic forces. To achieve reliable trajectory tracking for agile quadrotor flights, two key challenges are: 1) solving for highly variable uncertainties caused by these aerodynamic forces; and 2) ensuring the tracking controller performs precisely and reliably under these dynamic uncertainties.

Previous research shows that aerodynamic effects deriving from drag forces and moment variations caused by the rotors and the fuselage [1] are the primary source of uncertainty, where these aerodynamic effects appear prominently at flight speeds greater than 5 m/s in wind tunnel experiments [2]. The causes of these effects are extremely complex: combinations of individual propellers, airframe [3], rotor–rotor and airframe–rotor turbulent interactions [4], and other turbulent propagation [5]. These aerodynamic effects are therefore chaotic and difficult to model directly.

To address these concerns, two areas of research have emerged. The first uses a distributional Reinforcement Learning (RL) [6] method to interact with the complex and changeable uncertainties. The second extends the contraction theory [7] to a control-affine system, called CCM. This contraction certificate guarantees that the system will exponentially converge to track any feasible reference trajectory [8]. In applications such as quadrotor tracking, we are concerned with the whole tracking process rather than just stabilizing to a fixed point. One common problem with certificate control approaches, like CCM-based control, is that they heavily rely on the accurate knowledge of the system model. Thus, when the model is uncertain, robust or adaptive versions must be considered.

We propose Quantile-approximation-based Distributional Uncertainty Estimator for Control Contraction Metric (QuaDUE-CCM), as a precise, reliable and systematic quadrotor tracking fram-
work for use with high variance aerodynamic effects. Our contributions can be summarized: 1) **QuaDUE**, a distributional-RL-based uncertainty estimator with quantile approximation that can sufficiently estimate variable uncertainties of contraction metrics. In the cases tested, we show that QuaDUE outperforms traditional RL, such as Deep Deterministic Policy Gradient (DDPG) [9], and prior Distributional RL approaches, such as C51 [6]; 2) **QuaDUE-CCM**, a quadrotor trajectory tracking framework that integrates a distributional-RL-based uncertainty estimator into a CCM-based nonlinear optimal control problem; and 3) Convergence guarantee and acceleration analysis: theoretical understanding and mathematical proofs are provided, i.e., the convergence and acceleration for the interpretability of the distributional RL.

2 Related Work

Quadrotor Uncertainty Modelling: Precise dynamics modeling in quadrotor autonomous navigation is challenging, since a great variety of aerodynamic effects, such as unknown drag coefficients and wind gusts, can be generated by agile flight in high speeds and accelerations. Data-driven approaches, such as Gaussian Processes (GP) [1, 10] and neural networks [11] combined with Model Predictive Control (MPC), have been shown accurate modelling of aerodynamic effects. Due to the nonparametric nature of GP, the GP-based approach hardly scale to the large datasets of complex environments [12]. While neural network-based approaches learn the nonlinear dynamical effects more accurately [13], achieving adaptability and robustness from these learning-based approaches are still ongoing challenges. One important reason is that these training datasets are collected from simulation and/or real-world historical records, from which it is difficult to fully describe the complexity in their environments [14].

Reinforcement Learning for uncertainty: Compared with the existing GP-based and neural-network-based approaches, RL, an adaptive and interactive learning approach, is introduced to model highly dynamic uncertainties in recent work [15]. Distributional RL constructs the entire distributions of the action-value function instead of the traditional expectation, where, to some extent, it addresses the key challenge of traditional RL, i.e., biasing the actions with high variance values in policy optimization [9]. Since some of these values will be overestimated by random chance [16], such actions should be avoided in risk-sensitive or safety-critical applications such as autonomous quadrotor navigation. More importantly, recent work [17] shows that the distributional RL has better interpretability, where we can understand or even accelerate the entire RL training process. This is an encouraging trend, especially for safety-critical applications such as quadrotor autonomous navigation, towards closing the gap between theory and practice in distributional RL.

Control Certificate Techniques: Control certificate techniques guarantee the synthesis of control policies and certificates [18], where the controller can optimize control policies whilst ensuring the satisfaction of the certificate properties. A Control Lyapunov Function (CLF)-based controller
117
107
106
103
101
100
113
112
111
110
111
108
116
115
114
109
99
98
97
96
90
89
87
86
85
84
83
80
79
77
91
92
94
108
342
under a bounded uncertainty w

system, the change rate is defined as δ

trajectories in nonlinear systems, i.e., incremental stability. When extended to a control-affine

Contraction theory [7] gives an analysis on the convergence evolution between the pairs of close

However, to track a high-speed and high-variance trajectory in agile flight, we need a broader spec-

fixed-point-tracking controllers are relatively efficient in a low-speed and low-variance trajectory.

so far been demonstrated in stabilization, i.e., a fixed-point-tracking controller [29, 30, 14]. These

works to certificate learning for contraction metrics. Moreover, based on the framework proposed

by Tsukamoto et al., [24, 25, 26, 8] are used to address higher dimensional control problems.

3 Preliminaries and notations

Nominal Quadrotor Dynamic Model and its Control-affine Form: the quadrotor is assumed as

a six Degrees of Freedom (DoF) rigid body of mass m, i.e., three linear motions and three angular

motions [1]. Different from [27, 28], the aerodynamic effect (disturbance) e_f is integrated into the

quadrotor dynamic model as follows [10]:

\[
\begin{align*}
\dot{P}_{WB} &= V_{WB} \\
\dot{V}_{WB} &= g_W + \frac{1}{m}(q_{WB} \otimes c + e_f) \\
\dot{q}_{WB} &= \frac{1}{2} \Lambda(\omega_B)q_{WB} \\
\dot{\omega}_B &= J^{-1}(\tau_B - \omega_B \times J\omega_B)
\end{align*}
\]

where P_{WB}, V_{WB} and q_{WB} are the position, linear velocity and orientation expressed in the world

frame, and ω_B is the angular velocity expressed in the body frame (more detailed definitions please

see [10]). Then we reformulate Equation 1 in its control-affine form: $\dot{x} = f(x, u) + g(x)u + w$.

Where $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ and $g : \mathbb{R}^n \rightarrow \mathbb{R}^{n \times m}$ are assumed by the standard as Lipschitz continuous

[29, 8]. $x = [P_{WB}, V_{WB}, q_{WB}, \omega_B]^T \in \mathbb{X}$, $u = T_i \forall i \in (0, 3) \in \mathbb{U}$ and $w \in \mathbb{W}$ are the state,

input and additive uncertainty of the dynamic model, where $\mathbb{X} \subseteq \mathbb{R}^n$, $\mathbb{U} \subseteq \mathbb{R}^{n_u}$ and $\mathbb{W} \subseteq \mathbb{R}^{n_w}$ are

compact sets as the state, input and uncertainty space, respectively. Given an input : $\mathbb{R}^{20} \rightarrow \mathbb{U}$ and

an initial state $x_0 \in \mathbb{X}$, our goad is to design a quadrotor tracking controller u such that the state

trajectory x can track any reference state trajectory x_{ref} (satisfied the quadrotor dynamic limits)

under a bounded uncertainty $w : \mathbb{R}^{20} \rightarrow \mathbb{W}$.

Control Contraction Certificates: most existing methods on quadrotor trajectory tracking have

so far been demonstrated in stabilization, i.e., a fixed-point-tracking controller [29, 30, 14]. These

fixed-point-tracking controllers are relatively efficient in a low-speed and low-variance trajectory.

However, to track a high-speed and high-variance trajectory in agile flight, we need a broader spec-

ification [31] rather than Lyapunov guarantees that simply stabilize in a fixed point.

Contraction theory [7] gives an analysis on the convergence evolution between the pairs of close

trajectories in nonlinear systems, i.e., incremental stability. When extended to a control-affine

system, the change rate is defined as $\delta \dot{x} = A(x, u)x + B(x) \delta u$, where $A(x, u) := \frac{\partial f(x)}{\partial x} +$

$\sum_{i=1}^m u_i \frac{\partial g}{\partial x_i} B(x) = g(x), b_i$ is the i-th vector of B, and u_i is the i-th element of u. Just as a CLF

is an extension from the idea of Lyapunov function $V(x) : \mathbb{X} \rightarrow \mathbb{R}$, the contraction theory has been

extended to a CCM $M(x) : \mathbb{X} \rightarrow \mathbb{R}^{n \times n}$, i.e., a distance measurement between neighboring trajecto-

ies (a contraction metric) that shrinks exponentially, for tracking controller design [32, 33, 34].

As the matrix-valued function $M(x)$ denotes a symmetric and continuously differentiable metric, $\delta \dot{x}^TM\delta x$ defines a Riemannian manifold [35, 7]. If there exists $M > 0$ (uniformly positive defini-
tive and exponential convergence of δx to 0, the Riemannian infinitesimal length will converge to

0, then the system is contraction. We have the following theorem:

Theorem 1 (Contraction Metric [7, 31]): In a control-affine system, if there exists: $\dot{M} + \text{sym}(M(A+ B\dot{K})) + 2\lambda M < 0$, then the inequality $||x(t) - x_{ref}(t)|| \leq Re^{-\lambda t} ||x(0) - x_{ref}(0)||$ with

$\forall t \geq 0$, $R \geq 1$ and $\lambda > 0$ holds, where $A = A(x, u)$ and $B = B(x)$ are defined above, and

$M = \partial f(x)+g(x)u M = \sum_{i=1}^n \partial f(x) + g(x)u^i$, sym$(M) = M + M^T$, and $x_{ref}(t)$ is a sequential reference

trajectory. Therefore, we say the system is contraction.
Overview of the Control Framework: the overall framework is shown in Fig. 2. The aim of this work is to design a quadrotor controller, which combines wind estimation - i.e., VID-Fusion [36], for tracking the reference trajectory $x_{ref}(t)$ of the nominal model (Equation 1) under highly variable aerodynamic disturbances. We propose a CCM-based MPC, where the parameter θ corresponds to weights of a neural network that estimates the uncertainty Δ_1 and Δ_2 in the CCM dynamics. Combining with the neural network, a Distributional-RL-based Estimator, i.e., QuaDUE, is used to learn the uncertainties adaptively whilst satisfying the constraints of the contraction metric.

4 Distributional Reinforcement Learning for CCM

Quantile-approximation-based Distributional-reinforced Uncertainty Estimator: in policy evaluation setting, given a 5-tuple Markov Decision Process [37]: $MDP := (S, A, P, R, \gamma)$ (where S, A, P, R and $\gamma \in [0, 1]$ are the state spaces, action spaces, transition probability, immediate reward function and discount rate), a distributional Bellman equation defines the state-action distribution Z and the Bellman operator T as [6, 38]: $T^\pi Z(s, a) := R(s, a) + \gamma Z(s', a')$, where $s \in S$ and $a \in A$ are the state and action vectors. π is a deterministic policy under the policy evaluation. In policy control setting, based on the quantile approximation [38], the distributional Bellman optimality operator T is defined as: $T^\pi Z(s, a) := R(s, a) + \gamma \arg\max_{a'} E^q[Z(s', a')])$ where $Z_\theta(s, a) := \frac{1}{N} \sum_{i=1}^N \delta_{q_i(s, a)} \in Z_Q$ is a quantile distribution mapping one state-action pair (s, a) to a uniform probability distribution supported on q_i. Z_Q is the space of quantile distribution within N supporting quantiles. δ_z denotes a Dirac with $z \in \mathbb{R}$. Then the maximal form of the Wasserstein metric is proved to be a contraction in [6] as:

$$d_\infty(\Pi_{W_1}, T^\pi Z_1, \Pi_{W_1}, T^\pi Z_2) \leq \tilde{d}_\infty(Z_1, Z_2)$$

(2)

where $W_p, p \in [1, \infty]$ denotes the p-Wasserstein distance. $\Delta_\infty := \sup W_p(Z_1, Z_2)$ denotes the maximal form of the p-Wasserstein metrics. Π_{W_1} is a quantile approximation under the minimal 1-Wasserstein distance W_1.

Distributional-RL-based Estimator for CCM Uncertainty: denoting $M + \text{sym}(M(A + BK))$ in Theorem 1 by $C_m(x, x_{ref}, u_{ref}, \theta_{\text{nominal-metric}})$, where $\theta_{\text{nominal-metric}}$ is the parameter of the neural network in the contraction metric learning [8] for the nominal function Equation 1 with $e_f = 0$, thus the true C_m under uncertainty becomes: $C_m = \sum_{i=1}^n \frac{\partial M}{\partial x_i} \dot{x}^i + \text{sym}(M(A + BK)) + \Delta_1^M(x) + \Delta_2^M(x)u = C_m + \Delta_1^M(x) + \Delta_2^M(x,u)$.

We employ an agent of QuaDUE to estimate the uncertain terms in C_m: $\Delta_1^M(x)$ and $\Delta_2^M(x)$. Therefore, an estimation C_m is constructed by: $\tilde{C}_m = C_m + \mu_{\theta_{\text{est},1}}(x) + \mu_{\theta_{\text{est},2}}(x,u)$, where $[\mu_{\theta_{\text{est},1}}(x), \mu_{\theta_{\text{est},2}}(x)]$ - i.e., a symmetric matrix - is the output (action) of QuaDUE. θ_{est} is again the neural network parameters. Then our goal of the Distributional-RL-based Estimator - i.e., QuaDUE

Figure 2: The position of QuaDUE-CCM in the Quadrotor system.

Figure 3: Learning curves of RL algorithms. The simulated speed is set as 0.4.
- is clear: learn a policy μ^M_1, μ^M_2 such that the estimation \widehat{C}_m as close as to the true value C_m. Notice here that we use the same neural network θ_{rl} for $\mu^M_{i+1}(x)$ and $\mu^M_{i+2}(x)$. In Section 5 below, we will demonstrate our reasoning and give proof.

A framework of QuaDue is illustrated in Fig.1. The QuaDue learns a policy which combines with the CCM uncertainties $\Delta_1^M(x)$, $\Delta_2^M(x)$ and other dynamic constraints. Then we design the reward function as $R_{t+1}(s, a, \theta) = R_{\text{contraction}}(s, a, \theta) + R_{\text{track}}(s, a)$, where $\theta \in \Theta$ represents the neural network parameters. Thus, the reward function is defined in detail as:

$$R_{\text{contraction}}(s, a, \theta) = -\omega_{c,1}[mI - M]_{ND}(s) - \omega_{c,2}[M - \bar{m}I]_{ND}(s)$$

$$-\omega_{c,3}[\widehat{C}_m + 2\lambda M]_{ND}(s, a, \theta)$$

$$R_{\text{track}}(s, a) = - (x_i(s, a) - x_{ref,i})^T H_1(x_i(s, a) - x_{ref,i}) - u_i^T(s, a)H_2u_i(s, a)$$

where m, \bar{m} are hyper-parameters, H_1 and H_2 are positive definite matrices, and $[A]_{ND}$ is for penalizing positive definiteness where $[A]_{ND} = 0$ iff. $A < 0$, and $[A]_{ND} \geq 0$ iff. $A \succeq 0$.

These QuaDue outputs, i.e., $\mu^M_{\theta_{i+1}}(x)$ and $\mu^M_{\theta_{i+2}}(x)$, are then fed into the CCM constraints derived from the nominal model. Specifically, the estimated \widehat{C}_m is used as the best guess of C_m for MPC to satisfy the true constraints. The MPC formulation combining with CCM constraints are shown in Fig. 1, where the learned uncertainties are used to construct the contraction constraints of the MPC. Then the MPC is specified to a quadratic optimization formulation and implemented using CasADi [39] and ACADOS [40].

5 Properties of QuaDue: Convergence and Acceleration analysis

In this section, the properties of the proposed Distributional-RL-based Estimator - i.e., QuaDue - are analyzed, including convergence guarantees and training acceleration analysis. In particular, we empirically verify a more stable and accelerated convergence process than traditional RL algorithms (shown in Section 6), and demonstrate a theoretical understanding of the proposed QuaDue.

Convergence Analysis of QuaDue: Equation 2 shows that the Bellman operator T^π is a p-contraction under the p-Wasserstein metric d_p [6]. The Wasserstein distance W_p between a distribution Z and its Bellman update $T^\pi Z$ can be minimized iteratively in Temporal Difference learning. Therefore, we present the convergence analysis of QuaDue for Policy Evaluation and Policy Improvement, respectively.

Proposition 2 (Policy Evaluation [38, 14]): Given a deterministic policy π, a quantile approximator Π_{π_s} and $Z_{k+1}(s, a) = \Pi_{\pi_s}T^\pi Z_k(s, a)$, the sequence $Z_k(s, a)$ converges to a unique fixed point \tilde{Z}_π under the maximal form of ∞-Wasserstein metric \tilde{d}_∞.

Proposition 3 (Policy Improvement [14]): Denoting an old policy by π_{old} and a new policy by π_{new}, there exists $\mathbb{E}[Z(s, a)]^{\pi_{new}}(s, a) \geq \mathbb{E}[Z(s, a)]^{\pi_{old}}(s, a), \forall s \in S$ and $\forall a \in A$.

Based on Proposition 2 and Proposition 3, we are ready to present Theorem 4 to demonstrate the convergence of QuaDue.

Theorem 4 (Convergence): Denoting the policy of the i-th policy improvement by π^i, there exists $\pi^i \rightarrow \pi^*, i \rightarrow \infty$, and $\mathbb{E}[Z_k(s, a)]^{\pi^i}(s, a) \geq \mathbb{E}[Z_k(s, a)]^{\pi^i}(s, a), \forall s \in S$ and $\forall a \in A$.

Proof: Proposition 3 shows that $\mathbb{E}[Z(s, a)]^{\pi^i} \geq \mathbb{E}[Z(s, a)]^{\pi^{i-1}}$, thus $\mathbb{E}[Z(s, a)]^{\pi^i}$ is monotonically increasing. According to Equation 2 and Equation 3, the first moment of Z, i.e., $\mathbb{E}[Z(s, a)]^{\pi^i}$, is upper bounded. Therefore, the sequential $\mathbb{E}[Z(s, a)]^{\pi^i}$ converges to an upper limit $\mathbb{E}[Z(s, a)]^{\pi^*}$ satisfying $\mathbb{E}[Z_k(s, a)]^{\pi^*}(s, a) \geq \mathbb{E}[Z_k]^{\pi^*}$.

Training Acceleration of QuaDue: training acceleration is investigated for our QuaDue in order to guarantee a more stable and predictable RL training process. For implementation execution, we use Kullback-Leibler (KL) divergence [41] instead of Wasserstein Metric. KL divergence is proven
and implemented 'usable' in [6]. Thus we use KL divergence to analyze the acceleration in RL training process, which is closer to the real implementation.

Similar to [14], we denote \(J_\theta(s, a) = D_{KL}(p^{s,a}, q^{s,a}_\theta) \) as the histogram distributional loss, where \(p^{s,a}(x) \) and \(q^{s,a}_\theta \) are the true and approximated density function of \(Z(s, a) \). We denote \(E_j(\theta) = \mathbb{E}_{(s,a)\sim \rho}(J_\theta(s, a)) \) is the expectation of \(J_\theta \), where \(\rho \) is the distribution under the deterministic policy \(\pi \). Since the unbiased gradient estimation of KL divergence, there exists \(\mathbb{E}_{(s,a)\sim \rho}([\nabla J_\theta(p^{s,a}, q^{s,a}_\theta) - \nabla E_j(\theta)]^2) = \kappa \sigma^2 \), where we represent the approximation error between \(p^{s,a} \) and \(q^{s,a}_\theta \). A good degree of the approximation leads to a small \(\kappa \), which then effects the training acceleration of the distribution RL [17], as shown in Theorem 5.

Next we define a stationary-point for the derivative of \(E_j(\theta) \) [17]: if there exists \(\| \nabla E_j(\theta_t) \| \leq \tau \) \((\tau \in (0, 1))\), the updated parameters \(\theta_t \) after \(T \) steps is a first-order \(\tau \)-stationary point. Then we immediately present Theorem 5 for the training acceleration.

Theorem 5 (Training Acceleration): In the training process of the distribution RL (i.e., QuaDUE):

1. Let sampling steps \(T = 4k \| J_\theta(\theta_0) \| / \tau^2 \), if there exists \(\kappa \leq 0.25 \tau^2 / \sigma^2 \), the \(J_\theta \) optimized by stochastic gradient descend converges to a \(\tau \)-stationary point.
2. Let sampling steps \(T = k \| J_\theta(\theta_0) \| / (\kappa \sigma^2) \), if there exists \(\kappa > 0.25 \tau^2 / \sigma^2 \), the \(J_\theta \) optimized by stochastic gradient descend will not converge to a \(\tau \)-stationary point.

Proof: As \(J_\theta(p^{s,a}, q^{s,a}_\theta) \) is \(k \)-smooth, we have: \(E_j(\theta_{t+1}) - E_j(\theta_t) \leq \langle \nabla E_j(\theta_t), \nabla J_\theta(\theta_{t+1} - \theta_t) \rangle + (k \| \theta_{t+1} - \theta_t \|)^2 = -\lambda \langle \nabla E_j(\theta_t), \nabla J_\theta(p^{s,a}, q^{s,a}_\theta) \rangle + (k \| \theta_{t+1} - \theta_t \|)^2 \leq -\lambda \| \nabla E_j(\theta_t) \|^2 + \lambda \| \nabla E_j(\theta_t) - J_\theta(p^{s,a}, q^{s,a}_\theta) \|^2 \), where \(\lambda = 1/k \delta^2 \).

Next we take the expected value and consider \(T \) steps: \(\mathbb{E}[E_j(\theta_T) - E_j(\theta_0)] \leq \mathbb{E} \sum_{t=0}^{T-1} \lambda \| \nabla E_j(\theta_t) \|^2 + \mathbb{E} \sum_{t=0}^{T-1} (1 - 1/(1 + \kappa)) \sigma^2 + (\kappa/(1 + \kappa)) \sigma^2 \). If we have a first-order stationary point at \(T \) step, then:

\[
(1/T) \sum_{t=0}^{T-1} \mathbb{E}[\| \nabla E_j(\theta_t) \|^2] \leq 2k \| J_\theta(\theta_0) \| / T + 2\kappa \sigma^2
\]

If we have \(T = 4k \| J_\theta(\theta_0) \| / \tau^2 \) and \(\kappa \leq 0.25 \tau^2 / \sigma^2 \), then \(J_\theta \) converges to a \(\tau \)-stationary point with \((1/T) \sum_{t=0}^{T-1} \mathbb{E}[\| \nabla E_j(\theta_t) \|^2] \leq \tau^2 \). Thus, (1) is proved. If we have \(T = k \| J_\theta(\theta_0) \| / (\kappa \sigma^2) \) and \(\kappa > 0.25 \tau^2 / \sigma^2 \), then \((1/T) \sum_{t=0}^{T-1} \mathbb{E}[\| \nabla E_j(\theta_t) \|^2] \leq 4k \sigma^2 \), where the stationary point is depended on \(\kappa \), i.e., the degree of the approximation. Therefore, (2) is proved.

Theorem 5 demonstrates two cases of training acceleration in our QuaDUE. In (1) of Theorem 5, the convergence of QuaDUE is accelerated where there is a low approximation error \(\kappa \) between \(p^{s,a}(x) \) and \(q^{s,a}_\theta \). In (2) of Theorem 5, a relatively larger \(\kappa > 0.25 \tau^2 / \sigma^2 \) will give no guarantee for acceleration convergence. But if \((1/T) \sum_{t=0}^{T-1} \mathbb{E}[\| \nabla E_j(\theta_t) \|^2] \leq 4k \sigma^2 \) is satisfied, the distributional RL still converges to the stationary optimization point. This understanding from theoretical analysis is consistent with our empirical experiment results in Section 6: when we add small external forces (disturbances) in the specific scenarios Fig. 4, the performance of the two distributional RL - i.e., ‘QuaDUE-CCM’ and ‘QuaDRED-MPC’ - is less than ‘DDPG-CCM’. The cases in [38] also verify this observation from simple Atari games.

6 Evaluation of Performance

To evaluate the performance of the proposed QuaDUE-CCM, we compare against the convergence performance of DDPG [9], CS1-DDPG [6] in training process, the tracking performance of GP-MPC [1, 10], DDPG-CCM and QuaDRED-MPC [14] under highly variable aerodynamic disturbances (uncertainties). The parameters of our QuaDUE-CCM are summarized in Table 1 according to the benchmark works (see [1, 14, 42]).
Figure 4: The simulation scenario in RotorS: both reference trajectories with/without external forces are generated by Kino-JSS [10].

Comparative Performance of QuaDUE Training: we have two main training processes: firstly, we employ a certified learning controller proposed in [8, 31] to learn a Contraction Metric for the nominal model (Equation 1) as shown in Fig. 1. Then we operate a training process by generating external forces in RotorS [43], where the programmable external forces are in the horizontal plane with range [-3, 3] (m/s^2). The training process has 1000 iterations where the quadrotor state is recorded at 16 Hz. The convergence curves of the training are illustrated in Fig. 3, where we show the comparative training performance of DDPG, C51-DDPG and our QuaDUE. Our performance illustrates that the two distributional RL approaches, C51-DDPG and QuaDUE, outperform the traditional DDPG RL approach, whilst our proposed QuaDUE achieves the largest cumulative return. More importantly, our QuaDUE maintains the highest convergence speed, which again verifies the theoretical guarantees demonstrated in Section 5.

Table 1: Parameters of QuaDUE-CCM

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Definition</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_a</td>
<td>Learning rate of actor</td>
<td>0.00015</td>
</tr>
<tr>
<td>α_c</td>
<td>Learning rate of critic</td>
<td>0.0015</td>
</tr>
<tr>
<td>θ_a</td>
<td>Actor neural network: fully connected with two hidden layers (128 neurons per hidden layer)</td>
<td>-</td>
</tr>
<tr>
<td>θ_c</td>
<td>Critic neural network: fully connected with two hidden layers (128 neurons per hidden layer)</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>Replay memory capacity</td>
<td>10^4</td>
</tr>
<tr>
<td>B</td>
<td>Batch size</td>
<td>256</td>
</tr>
<tr>
<td>γ</td>
<td>Discount rate</td>
<td>0.9995</td>
</tr>
<tr>
<td>T_e</td>
<td>Training episodes</td>
<td>1000</td>
</tr>
<tr>
<td>T_s</td>
<td>MPC Sampling period</td>
<td>50ms</td>
</tr>
<tr>
<td>N</td>
<td>Time steps</td>
<td>20</td>
</tr>
</tbody>
</table>

In Fig. 5, the two distributional-RL-estimator-based frameworks (i.e., QuaDRED-MPC and QuaDUE-CCM) react to the sudden aerodynamic effects more sufficiently than the traditional RL-based estimator (i.e., DDPG). Among the two distributional-based methods, the QuaDRED-MPC’s tracking performance is slightly better (accumulated error 6.73% less) than our proposed QuaDUE-CCM. This is mainly because the QuaDRED-MPC assesses the environment uncertainties and then directly feeds the uncertainty estimation into the nominal model while the QuaDUE-CCM is an indirect method required to satisfy the contraction metrics, which makes the tracking actions more conservative. However, based on the contraction theory, our proposed QuaDUE-CCM has 20.7% bigger derivative of tracking error than QuaDRED-MPC and the contraction rate is $Ce^{-\lambda t}$ with $C = 3.59$ and $\lambda = 1.046$. This again means that, under variable
uncertainties, our QuaDUE-CCM converges to a reference trajectory in a higher contraction rate (exponential contraction) both with theoretical (contraction theory) and empirical guarantees.

Then larger and more complex external forces, i.e., [-2.5, 2.5, 0.0] and [-3.0, 3.0, 0.0] (m/s^2), are generated in ZONE 1 and ZONE 2, respectively, as shown in Fig. 4. In Table 2, we compare the success rate, operation time, accumulated tracking error and contraction rate with the corresponding variable external forces in ZONE 1 and ZONE 2. Our results show that RL-based methods are not always better, especially with relatively small external forces. For example, the success rate of RL-based methods (i.e., ‘DDPG + CCM’, ‘QuaDRED-MPC’ and ‘QuaDUE-CCM’) is lower than ‘GP-MPC’. We also find that the two distributional-RL-based methods have close tracking errors, where in some cases ‘QuaDRED-MPC’ is slightly better than ‘QuaDUE-CCM’. However, compared to ‘QuaDRED-MPC’, our ‘QuaDUE-CCM’ achieves 302%, 312% and 335% improvements in contraction rate.

Table 2: Comparison of Trajectory Tracking under Programmatic External forces

<table>
<thead>
<tr>
<th>Ex. Forces (m/s^2)</th>
<th>Method</th>
<th>Succ. Rate</th>
<th>Time (s)</th>
<th>Err. (m)</th>
<th>Contra. Rate (λ/C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1: [0, 0.5, 0.0]</td>
<td>GP-MPC</td>
<td>100%</td>
<td>23.54</td>
<td>3.44</td>
<td>0.097~0.63/6.49</td>
</tr>
<tr>
<td>Z2: [0, -0.5, 0.0]</td>
<td>DDPG + CCM</td>
<td>97.6%</td>
<td>24.11</td>
<td>3.82</td>
<td>0.285~1.01/13.54</td>
</tr>
<tr>
<td></td>
<td>QuaDRED-MPC</td>
<td>95.3%</td>
<td>25.54</td>
<td>4.30</td>
<td>0.100~0.64/4.41</td>
</tr>
<tr>
<td></td>
<td>QuaDUE-CCM</td>
<td>95.1%</td>
<td>25.84</td>
<td>4.78</td>
<td>0.302~1.07/13.54</td>
</tr>
<tr>
<td>Z1: [0, 2.5, 0.0]</td>
<td>GP-MPC</td>
<td>69.8%</td>
<td>38.62</td>
<td>24.27</td>
<td>0.093~0.61/6.53</td>
</tr>
<tr>
<td>Z2: [0, -2.5, 0.0]</td>
<td>DDPG + CCM</td>
<td>79.8%</td>
<td>33.10</td>
<td>18.62</td>
<td>0.240~0.92/3.83</td>
</tr>
<tr>
<td></td>
<td>QuaDRED-MPC</td>
<td>89.1%</td>
<td>29.87</td>
<td>13.93</td>
<td>0.089~0.50/3.99</td>
</tr>
<tr>
<td></td>
<td>QuaDUE-CCM</td>
<td>87.2%</td>
<td>30.19</td>
<td>15.49</td>
<td>0.278~1.01/3.63</td>
</tr>
<tr>
<td>Z1: [-3.0, 3.5, 0.0]</td>
<td>GP-MPC</td>
<td>0%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Z2: [-2.0, -2.0, 0.0]</td>
<td>DDPG + CCM</td>
<td>48.5%</td>
<td>43.64</td>
<td>27.24</td>
<td>0.257~0.81/3.85</td>
</tr>
<tr>
<td></td>
<td>QuaDRED-MPC</td>
<td>83.3%</td>
<td>36.40</td>
<td>17.80</td>
<td>0.079~0.53/3.58</td>
</tr>
<tr>
<td></td>
<td>QuaDUE-CCM</td>
<td>84.1%</td>
<td>36.45</td>
<td>17.13</td>
<td>0.265~0.95/3.59</td>
</tr>
</tbody>
</table>

7 Conclusion
In this paper, we propose a precise and reliable trajectory tracking framework, QuaDUE-CCM, for quadrotors in dynamic and unknown environments with highly variable aerodynamic effects. QuaDUE-CCM combines a distributional-RL-based uncertainty estimator and CCMs to address large and variable uncertainties on quadrotor tracking. A Quantile-approximation-based Distributional-reinforced Uncertainty Estimator, QuaDUE, is proposed to learn the uncertainties of contraction metrics adaptively, where the convergence and acceleration in the RL training process are analyzed from theoretical perspectives. Based on the contraction theory, CCMs are used to guarantee exponential convergence to any feasible reference trajectory, which significantly improve the reliability of our tracking systems. We empirically demonstrate that our proposed approach can track agile trajectories with at least 36.2% improvement under large aerodynamic effects, where experimental data can favourably verify our theoretical results.

8 Limitation
As mentioned in Sections 5 & 6, in comparison with GP-MPC, our QuaDUE-CCM performs weakly under small disturbances. The potential reasons, as discussed at the end of Sections 5 & 6, are its theoretical attributions and highly variable uncertainties modelling. Our ongoing work concerns incorporating direct uncertainty estimation, i.e., adding uncertainties into controller directly, and certificate-based uncertainty estimation to improve the performance under relatively small uncertainties. Another limitation is the computational complexity, where we use 16 Hz for the CCM uncertainty estimation. To improve this, QuaDUE-CCM may be deployed on dedicated chips, developed via FPGA implementation. We will evaluate the performance in real-world flight tests, in which our system will face a greater variety of aerodynamic disturbances.
References

