RIFLE: Imputation and Robust Inference from Low Order Marginals

Anonymous authors
Paper under double-blind review

Abstract

The ubiquity of missing values in real-world datasets poses a challenge for statistical inference and can prevent similar datasets from being analyzed in the same study, precluding many existing datasets from being used for new analyses. While an extensive collection of packages and algorithms have been developed for data imputation, the overwhelming majority perform poorly if there are many missing values and low sample sizes, which are unfortunately common characteristics in empirical data. Such low-accuracy estimations adversely affect the performance of downstream statistical models. We develop a statistical inference framework for predicting the target variable in the presence of missing data without imputation. Our framework, RIFLE (Robust InFerence via Low-order moment Estimations), estimates low-order moments of the underlying data distribution with corresponding confidence intervals to learn a distributionally robust model. We specialize our framework to linear regression and normal discriminant analysis, and we provide convergence and performance guarantees. This framework can also be adapted to impute missing data. We compare RIFLE with state-of-the-art approaches (including MICE, Amelia, MissForest, KNN-imputer, MIDA, and Mean Imputer) in numerical experiments. Our experiments demonstrate that RIFLE outperforms other benchmark algorithms when the percentage of missing values is high and/or when the number of data points is relatively small. RIFLE is publicly available.

1 Introduction

Machine learning algorithms have shown promise when applied to various problems, including healthcare, finance, social data analysis, image processing, and speech recognition. However, this success mainly relied on the availability of large-scale, high-quality datasets, which may be scarce in many practical problems, especially in medical and health applications [Pedersen et al. 2017]. Moreover, many experiments and datasets suffer from the small sample size in such applications. Despite the availability of a small number of data points in each study, an increasingly large number of datasets are publicly available. To fully and effectively utilize information on related research questions from diverse datasets, information across various datasets (e.g., different questionnaires from multiple hospitals with overlapping questions) must be combined in a reliable fashion. After appending these datasets together, the obtained dataset can contain large blocks of missing values, as they may not share the same features (Figure 1).

There are three general approaches for handling missing values in classification and regression tasks. A Naive method is to remove the rows containing missing entries. However, such an approach is not an option when the percentage of missingness in a dataset is high. For instance, as demonstrated in Figure 1, the entire dataset will be discarded if we eliminate the rows with at least one missing entry.

The most common approach for handling missing values in a learning task is to impute them in a pre-processing stage. The general idea behind data imputation approaches is that the missing values can be predicted using the other available data points and correlated features. Imputation algorithms cover a wide range of methods, including imputing missing entries with the columns means [Little & Rubin 2019].
Figure 1: Consider the problem of predicting the trait y from feature vector (x_1, \ldots, x_{100}). Suppose that we have access to three data sets: The first dataset includes the measurements of $(x_1, x_2, \ldots, x_{40}, y)$ for n_1 individuals. The second dataset collects data from another n_2 individuals by measuring (x_{30}, \ldots, x_{80}) with no measurements of the target variable y in it; and the third dataset contains the measurements from the variables $(x_{70}, \ldots, x_{100}, y)$ for n_3 number of individuals. How one should learn the predictor $\hat{y} = h(x_1, \ldots, x_{100})$ from these three datasets?
1. We present a distributionally robust optimization framework over the low-order marginals of the training data distribution for inference in the presence of missing values. The proposed framework does not require data imputation as a pre-processing stage. In Section 3 and Section 4 we specialize the framework to ridge regression and classification models as two case studies respectively. The proposed framework provides a novel strategy for inference in the presence of missing data, especially for datasets with large proportions of missing values.

2. We provide theoretical convergence guarantees and the iteration complexity analysis of the presented algorithms for robust formulations of ridge linear regression and normal discriminant analysis. Moreover, we show the consistency of the prediction under mild assumptions and analyze the asymptotic statistical properties of the solutions found by the algorithms.

3. While the robust inference framework is primarily designed for direct statistical inference in the presence of missing values without performing data imputation, it can also be adopted as an imputation tool. To demonstrate the quality of the proposed imputer, we compare its performance with several widely-used imputation packages such as MICE (Buuren & Groothuis-Oudshoorn, 2010), Amelia (Honaker et al., 2011), MissForest (Stekhoven & Bühlmann, 2012), KNN-Imputer (Troyanskaya et al., 2001), MIDA (Gondara & Wang, 2018), GAIN (Yoon et al., 2018) on real and synthetic datasets. Generally speaking, our method outperforms all of the mentioned packages when the number of missing entries is large.

2 Robust Inference via Estimating Low-order Moments

RIFLE is based on a distributionally robust optimization (DRO) framework over low-order marginals. Assume that \((x, y) \in \mathbb{R}^d \times \mathbb{R}\) follows a joint probability distribution \(P^*\). A standard approach for predicting the target variable \(y\) given the input vector \(x\) is to find the parameter \(\theta\) that minimizes the population risk with respect to a given loss function \(\ell\):

\[
\min_{\theta} \mathbb{E}_{(x,y) \sim P^*}[\ell(x,y;\theta)].
\]

Since the underlying distribution of data is rarely available in practice, the above problem cannot be directly solved. The most common approach for approximating (1) is to minimize the empirical risk with respect to \(n\) given i.i.d samples \((x_1, y_1), \ldots, (x_n, y_n)\) drawn from the joint distribution \(P^*\):

\[
\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i; \theta).
\]

The above empirical risk formulation assumes that all entries of \(x_i\) and \(y_i\) are available. Thus, to utilize the empirical risk minimization (ERM) framework in the presence of missing values, one can either remove or impute the missing data points in a pre-processing stage. Training via robust optimization is a natural alternative in the presence of missing data. Shivaswamy et al. (2006); Xu et al. (2009) suggest the following optimization problem that minimizes the loss function for the worst-case scenario over the defined uncertainty sets per data points:

\[
\min_{\theta} \max_{\{\delta_i \in \mathbb{N}\}_{i=1}^{n}} \frac{1}{n} \sum_{i=1}^{n} \ell(x_i - \delta_i, y_i; \theta),
\]
where \(\mathcal{N}_i \) represents the uncertainty region of data point \(i \). Shivaswamy et al. (2006) obtains the uncertainty sets by assuming a known distribution on the missing entries of datasets. The main issue in their approach is that the constraints defined on data points are totally uncorrelated. Xu et al. (2009) on the other hand defines \(\mathcal{N}_i \) as a “box” constraint around the data point \(i \) such that they can be linearly correlated. For this specific case, they show that solving the corresponding robust optimization problem is equivalent to minimizing a regularized reformulation of the original loss function. Such an approach has several limitations: First, it can only handle a few special cases (SVM loss with linearly correlated perturbations on data points). Furthermore, Xu et al. (2009) is primarily designed for handling outliers and contaminated data. Thus, they do not offer any mechanism for the initial estimation of \(\mathbf{x}_i \) when several vector entries are missing. In this work, we instead take a distributionally robust approach by considering uncertainty on the data distribution instead of defining an uncertainty set for each data point. In particular, we aim to fit the best parameters of a statistical learning model for the worst distribution in a given uncertainty set by solving the following:

\[
\min_{\theta} \max_{P \in \mathcal{P}} E_{(x,y) \sim P}[\ell(x, y; \theta)],
\]

where \(\mathcal{P} \) is an uncertainty set over the underlying distribution of data. A key observation is that defining the uncertainty set \(\mathcal{P} \) in (3) is easier and computationally more efficient than defining the uncertainty sets \(\{\mathcal{N}_i\}_{i=1}^n \) in (2). In particular, the uncertainty set \(\mathcal{P} \) can be obtained naturally by estimating lower-order moments of data distribution using only available entries. To explain this idea and to simplify the notations, let \(z = (x, y) \), \(\bar{\mu}^z \triangleq E[z] \), and \(C^z \triangleq E[zz^T] \). While \(\bar{\mu}^z \) and \(C^z \) are typically not known exactly, one can estimate them (within certain confidence intervals) from the available data by simply ignoring missing entries (assuming the missing value pattern is completely at random, e.g., MCAR). Moreover, we can estimate the confidence intervals via bootstrapping. Particularly, we can estimate \(\mu^z_{\min}, \mu^z_{\max}, C^z_{\min}, \) and \(C^z_{\max} \) from data such that \(\mu^z_{\min} \leq \bar{\mu}^z \leq \mu^z_{\max} \) and \(C^z_{\min} \leq C^z \leq C^z_{\max} \) with high probability (where the inequalities for matrices and vectors denote component-wise relations). In Appendix F, we show how a bootstrapping strategy can be used to obtain the confidence intervals described above. Given these estimated confidence intervals from data, (3) can be reformulated as

\[
\begin{align*}
\min_{\theta} & \quad \max_{P} \mathbb{E}_P[\ell(z; \theta)] \\
\text{s.t.} & \quad \mu^z_{\min} \leq \mathbb{E}_P[z] \leq \mu^z_{\max}, \\
& \quad C^z_{\min} \leq \mathbb{E}_P[zz^T] \leq C^z_{\max}.
\end{align*}
\]

Gao & Kleywegt (2017) utilize the distributionally robust optimization as (3) over the set of positive semidefinite (PSD) cones for robust inference under uncertainty. While their formulation considers \(\ell_2 \) balls for the constraints on low order moments of the data, we use \(\ell_\infty \) constraints that are computationally more natural in the presence of missing entries when combined with bootstrapping. Furthermore, while it can be applied to general convex losses, their method relies on the ellipsoid and the existence of oracles for performing the steps of the ellipsoid method, which is not applicable in modern high-dimensional problems. Moreover, they assume concavity in data (the existence of some oracle to return the worst-case data points) that is practically unavailable even in convex loss functions (including linear regression and normal discriminant analysis studied in our work).

In Section 3, we study the proposed distributionally robust framework described in (4) for the ridge linear regression. We design efficient first-order convergent algorithms to solve the problem and show how we can use the algorithms for both inference and imputation in the presence of missing values. Further, in Appendix F, we study the proposed distributionally robust framework for the classification problems under the normality assumption of features. In particular, we show how Framework (4) can be specialized to the robust normal discriminant analysis in the presence of missing values.

3 Robust Linear Regression in the Presence of Missing Values

Let us specialize our framework to the ridge linear regression model. In the absence of missing data, ridge regression finds optimal regressor parameter \(\theta \) by solving

\[
\min_{\theta} \quad \|X\theta - y\|^2 + \lambda\|\theta\|^2.
\]

Under review as submission to TMLR
or equivalently by solving:

$$\min_{\theta} \max_{C, b} \theta^T X^T X \theta - 2\theta^T X^T y + \lambda \|\theta\|_2^2.$$

(5)

Thus, having the second-order moments of the data $C = X^T X$ and $b = X^T y$ is sufficient for finding the optimal solution. In other words, it suffices to compute the inner product of any two column vectors a_i, a_j of X, and the inner product of any column a_i of X with vector y. Since the matrix X and vector y are not fully observed due to the existence of missing values, one can use the same approach as (13) to compute the point estimators C_0 and b_0. These point estimators can be highly inaccurate, especially when the number of non-missing rows for two given columns is small. In addition, if the pattern of missing entries does not follow the MCAR assumption, the point estimators are not unbiased estimators of C and b.

3.1 A Distributionally Robust Formulation of Linear Regression

As we mentioned above, to solve the linear regression problem, we only need to estimate the second-order moments of the data ($X^T X$ and $X^T y$). Thus, the distributionally robust formulation described in (4) is equivalent to the following optimization problem for the linear regression model:

$$\min_{\theta} \max_{C, b} \theta^T C \theta - 2b^T \theta + \lambda \|\theta\|_2^2$$

subject to:

$$C_0 - c\Delta \leq C \leq C_0 + c\Delta,$$

$$b_0 - c\delta \leq b \leq b_0 + c\delta,$$

$$C \succeq 0,$$

(6)

where the last constraint guarantees that the covariance matrix is positive and semi-definite. We discuss the procedure of estimating the confidence intervals (b_0, C_0, δ, and Δ) in Appendix B.

3.2 RIFLE for Ridge Linear Regression

Since the objective function in (6) is convex in θ (ridge regression) and concave in b and C (linear), the minimization and maximization sub-problems are interchangeable (Sion et al., 1958). Thus, we can equivalently rewrite Problem (6) as:

$$\max_{C, b} g(C, b)$$

subject to:

$$C_0 - c\Delta \leq C \leq C_0 + c\Delta,$$

$$b_0 - c\delta \leq b \leq b_0 + c\delta,$$

$$C \succeq 0,$$

(7)

where $g(C, b) = \min_{\theta} \theta^T C \theta - 2b^T \theta + \lambda \|\theta\|_2^2$. Function g can be computed in closed-form given any pair of (C, b) by setting $\theta = (C + \lambda I)^{-1} b$. Thus, using Danskin’s Theorem (Danskin, 1960), we can apply projected gradient ascent to function g to find an optimal solution of (7) as described in Algorithm 1. At each iteration of the algorithm, we first perform one step of projected gradient ascent on matrix C and vector b; then we update θ in closed-form for the obtained C and b. We initialize C and b using entriwise point estimation on the available rows (see Equation (13) in Appendix B). The projection of b to the box constraint $b_0 - c\delta \leq b \leq b_0 + c\delta$ can be done entriwise and has the following closed-form:

$$\Pi_\delta(b_i) = \begin{cases}
 b_i & \text{if } b_{0i} - c\delta_i \leq b_i \leq b_{0i} + c\delta_i, \\
 b_{0i} - c\delta_i & \text{if } b_i \leq b_{0i} - c\delta_i, \\
 b_{0i} + c\delta_i & \text{if } b_{0i} + c\delta_i \leq b_i.
\end{cases}$$

Algorithm 1 RIFLE for Ridge Linear Regression in the Presence of Missing Values

1: Input: $C_0, b_0, \Delta, \delta, T$
2: Initialize: $C = C_0, b = b_0$.
3: for $i = 1, \ldots, T$ do
4: Update $C = \Pi_{\Delta^+} [C + \alpha \theta \theta^T]$
5: Update $b = \Pi_\delta(b - \alpha \theta)$
6: Set $\theta = (C + \lambda I)^{-1} b$

Under review as submission to TMLR
Theorem 1. Let \((\hat{\theta}, \hat{C}, \hat{b})\) be the optimal solution of \(6\) and \(D = \|C_0 - \hat{C}\|_{2}^{2} + \|b_0 - \hat{b}\|_{2}^{2}\). Assume that for any given \(b\) and \(C\), within the uncertainty (constraint) sets described in \(6\), \(\|\theta'(b, C)\| \leq \tau\). Then Algorithm \(I\) computes an \(\varepsilon\)-optimal solution of the objective function in \(7\) in \(O\left(\frac{D(\tau+1)^2}{\lambda \varepsilon}\right)\) iterations.

Proof. The proof is relegated to Appendix \(H\)

In Appendix \(C\), we show how using the acceleration method of Nesterov can improve the convergence rate of Algorithm \(I\) to \(O\left(\frac{D(\tau+1)^2}{\lambda \varepsilon}\right)\). A technical issue of Algorithm \(I\) and its accelerated version presented in Appendix \(C\) is that projection of \(C\) to the intersection of box constraints and the set of positive semidefinite matrices \((\Pi_{\Delta + [C]}\)) is challenging and cannot be done in closed-form. In the implementation of Algorithm \(I\), we relax the problem by removing the PSD constraint on \(C\) to avoid this complexity and time-consuming singular value decomposition at each iteration. This relaxation does not drastically change the algorithm’s performance, as our experiments show in Section 5. A more systematic approach is to write the dual problem of the maximization problem and handle the resulting constrained minimization problem with the Alternating Direction Method of Multipliers (ADMM). The detailed procedure of such an approach can be found in Appendix \(D\). All these algorithms are provably convergent to the optimal points of Problem \(6\).

Further, the proposed algorithms are consistent, as discussed in Appendix \(J\). Additionally, we have numerically evaluated the resulting algorithms in Appendix \(K\). Thus far, we have discussed how to efficiently solve the robust linear regression problem in the presence of missing values. A natural question in this context is the statistical performance of the obtained optimal solution in the previous section on the unseen test data points. Theorem 2 answers this question from two perspectives: Assuming that the missing values are distributed completely at random, our estimators are consistent. Moreover, for the finite case, Theorem 2 part (b) states that with the proper choice of confidence intervals, with high probability, the test loss of the obtained solution is bounded by the training loss of the solution in the previous section on the unseen test data points. Theorem 2 answers this question from two perspectives: Assuming that the missing values are distributed completely at random, our estimators are consistent. Moreover, for the finite case, Theorem 2 part (b) states that with the proper choice of confidence intervals, with high probability, the test loss of the obtained solution is bounded by the training loss of the solution in the previous section on the unseen test data points.

Further, we perform several experiments on datasets with MNAR patterns to show how RIFLE works in practice on such datasets in Section 5. A more systematic approach is to write the dual problem of the maximization problem and handle the resulting constrained minimization problem with the Alternating Direction Method of Multipliers (ADMM). The detailed procedure of such an approach can be found in Appendix \(D\). All these algorithms are provably convergent to the optimal points of Problem \(6\). In addition to theoretical convergence, we have numerically evaluated the resulting algorithms in Appendix \(K\). Further, the proposed algorithms are consistent, as discussed in Appendix \(J\).

3.3 Performance Guarantees for RIFLE

Thus far, we have discussed how to efficiently solve the robust linear regression problem in the presence of missing values. A natural question in this context is the statistical performance of the obtained optimal solution in the previous section on the unseen test data points. Theorem 2 answers this question from two perspectives: Assuming that the missing values are distributed completely at random, our estimators are consistent. Moreover, for the finite case, Theorem 2 part (b) states that with the proper choice of confidence intervals, with high probability, the test loss of the obtained solution is bounded by the training loss of the estimator. Note that the results regarding the performance of the robust estimator generally hold for MCAR missing pattern.
3.4 Imputation of Missing Values via Robust Linear Regression

To impute a given dataset containing missing values, we can consider any of the features containing missing values as target \(y \) and the rest of the features as the input \(X \) in our framework. Then, we predict \(y \) given \(X \) via Algorithm [1]. Let the obtained optimal solutions be \(C^*, b^* \), and \(\theta^* \). For a given row, we restrict \(C^* \) and \(b^* \) to available features on that row. Then, we find the corresponding optimal \(\theta \) in closed-form for the restricted \(C^* \) and \(b^* \) (similar to what we explained for handling test data points containing missing values). Thus, to impute each feature of the dataset, we only solve Problem (10) once, and for each row, we find its optimal \(\theta \) by restricting \(C^* \) and \(b^* \) to available entries of that row. Note that if the dataset only contains a few missing patterns for different rows (for instance, we have 3 different missing patterns in Figure [1]), we can find the optimal \(\theta \) only for the distinct patterns instead of solving the problem with respect to \(\theta \) for each row separately. Since the imputation of each feature is completely independent of the others, features can be distributed to multiple cores (or computers) without losing performance.

Beyond Linear Regression: While the developed methods are primarily designed for ridge linear regression, one can apply non-linear transformations (kernels) to obtain models beyond linear regression. In Appendix [E], we show how to extend the developed algorithms to quadratic models. The RIFLE framework applied to the quadratically transformed data is called QRIFLE.

4 Robust Classification Framework

In this section, we study the proposed framework in [1] for the classification tasks in the presence of missing values. Since the target variable \(y \in \mathcal{Y} = \{1, \ldots, M\} \) takes discrete values in classification tasks, we consider the uncertainty sets over each class: the class first-order and second-order marginals. Mathematically speaking, the mean and the covariance of the data distribution. Unlike the robust linear regression task in Section [3], the evaluation of the objective function in (11) might depend on higher-order marginals (beyond second-order) due to the nonlinearity of the loss function. As a result, Problem (11) is a non-convex non-concave intractable min-max optimization problem in general. For the sake of computational traceability, we restrict the distribution in the inner maximization problem to the set of normal distributions. In the following section, we specialize (11) to the quadratic discriminant analysis as a case study. The methodology can be extended to other popular classification algorithms, such as support vector machines and multi-layer neural networks.

4.1 Robust Quadratic Discriminant Analysis

Learning a logistic regression model on datasets containing missing values has been studied extensively in the literature (Fung & Wrobel, 1989; Abonazel & Ibrahim, 2018). Besides the deletion of missing values and imputation-based approaches, Fung & Wrobel (1989) models the logistic regression task in the presence of missing values as a linear discriminant analysis problem where the underlying assumption is that the predictors follow normal distribution conditional on the labels. Mathematically speaking, they assume that the data points assigned to a specific label follow a Gaussian distribution, i.e., \(x|y = i \sim N(\mu_i, \Sigma) \). They use the available data to estimate the parameters of each Gaussian distribution. Therefore, the parameters of the logistic regression model can be assigned based on the estimated parameters of the Gaussian distributions for different classes. Similar to the linear regression case, the estimations of means and covariances are unbiased only when the data satisfies the MCAR condition. Moreover, when the number of data points in the dataset is small, the variance of the estimations can be very high. Thus, to train a logistic regression model which is robust to the percentage and different types of missing values, we specialize the general robust classification framework formulated in Equation (11) to the logistic regression model. Instead of considering a common covariance matrix for the conditional distributions of \(x \) given labels \(y \) (linear discriminant analysis), we assume a more general case where each conditional distribution has its own covariance matrix (quadratic
discriminant analysis). Assume that \(x|y \sim N(\mu_y, \Sigma_y) \) for \(y = 0, 1 \). We aim to find the optimal solution to the following problem:

\[
\begin{align*}
\min_{w} \quad & \max_{\mu_0, \mu_1, \Sigma_0, \Sigma_1} \Pr_{x|y=1\sim N(\mu_2, \Sigma_2)} \left[-\log \left(\sigma(w^T x) \right) \right] \Pr(y=1) + \\
& \Pr_{x|y=0\sim N(\mu_0, \Sigma_0)} \left[-\log \left(1 - \sigma(w^T x) \right) \right] \Pr(y=0) \\
\text{s.t.} \quad & \mu_{\text{min}_0} \leq \mu_0 \leq \mu_{\text{max}_0} \\
& \mu_{\text{min}_1} \leq \mu_1 \leq \mu_{\text{max}_1} \\
& \Sigma_{\text{min}_0} \leq \Sigma_0 \leq \Sigma_{\text{max}_0} \\
& \Sigma_{\text{min}_1} \leq \Sigma_1 \leq \Sigma_{\text{max}_1}
\end{align*}
\]

(12)

Where \(\sigma(x) = 1/(1 + \exp(-x)) \) is the sigmoid function. In Appendix F we develop convergent algorithms for solving this problem in the presence of missing values.

5 Experiments

In this section, we evaluate the performance of RIFLE on a diverse set of inference tasks in the presence of missing values. We compare RIFLE’s performance to several state-of-the-art approaches for data imputation on synthetic and real-world datasets. The experiments are designed in a manner that the sensitivity of the model to factors such as the number of samples, data dimension, types, and proportion of missing values can be evaluated. The description of all datasets used in the experiments can be found in Appendix I.

5.1 Generating MCAR and MNAR Missing Values

To evaluate RIFLE and other state-of-the-art imputation approaches, we need to have access to the ground-truth values of the missing entries. Hence, we artificially mask a proportion of available data entries and predict them with different imputation methods. A method performs better than others if the predicted truth values of the missing entries are closer to the ground-truth values. Hence, we artificially mask a proportion of available data entries and the average of true values of data points, respectively. In all experiments, generated missing entries follow either a missing completely at random (MCAR) or a missing not at random (MNAR) pattern. A method performs better than others if the predicted truth values of the missing entries. To measure the performance of RIFLE and the existing approaches on a regression task for a given test dataset consisting of \(N \) data points, we use normalized root mean squared error (NRMSE), defined as:

\[
\text{NRMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y_i})^2 / \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \bar{y})^2}}
\]

where \(y_i, \hat{y}_i, \) and \(\bar{y} \) represent the true value of the \(i \)-th data point, the predicted value of the \(i \)-th data point, and the average of true values of data points, respectively. In all experiments, generated missing entries follow either a missing completely at random (MCAR) or a missing not at random (MNAR) pattern. A discussion on the procedure of generating these patterns can be found in Appendix G.

5.2 Tuning Hyper-parameters of RIFLE

The hyper-parameter \(c \) in [11] controls the robustness of the model by adjusting the size of confidence intervals. This parameter is tuned by performing a cross-validation procedure over the set \(\{0.1, 0.25, 0.5, 1, 2, 5, 10, 20, 50, 100\} \), and the one with the lowest NRMSE is chosen. The default value in the implementation is \(c = 1 \) since it consistently performs well over different experiments. Furthermore, \(\lambda \), the hyper-parameter for the ridge regression regularizer, is tuned by choosing \(1, 0.1, 0.05, 1, 2, 5, 10, 20, 50 \). To tune \(K \), the number of bootstrap samples for estimating the confidence intervals, we tried 10, 20, 50, and 100. No significant difference is observed in terms of the test performance for the above values.

Furthermore, we tune the hyper-parameters of the competing packages as follows. For KNN-Imputer [Troyanskaya et al. 2001], we try \(\{2, 10, 20, 50\} \) for the number of neighbors (\(K \)) and pick the one with the highest performance. For MICE (Buuren & Groothuis-Oudshoorn 2010) and Amelia (Honaker et al. 2011), we generate 5 different imputed data and pick the one with the highest performance on the test data. MissForest has multiple hyper-parameters. We keep the criterion as “MSE” since our performance evaluation measure
is NRMSE. Moreover, we tune the number of iterations and number of estimations (number of trees) by checking values from \(\{5, 10, 20\}\) and \(\{50, 100, 200\}\), respectively. We do not change the structure of the neural networks for MIDA (Gondara & Wang, 2018) and GAIN (Yoon et al., 2018), and the default versions are performed for imputing datasets.

5.3 RIFLE Consistency

In Theorem 2 Part (a), we demonstrated that RIFLE is consistent. In Figure 3, we investigate the consistency of RIFLE on synthetic datasets with different proportions of missing values. The synthetic data has 50 input features following a jointly normal distribution with the mean whose entries are randomly chosen from the interval \((-100, 100)\). Moreover, the covariance matrix equals \(\Sigma = SS^T\) where \(S\) elements are randomly picked from \((-1, 1)\). The target variable is a linear function of input features added to a mean zero normal noise with a standard deviation of 0.01. As depicted in Figure 3, RIFLE requires fewer samples to recover the ground-truth parameters of the model compared to MissForest, KNN Imputer, Expectation Maximization (Dempster et al., 1977), and MICE. Amelia’s performance is significantly good since the predictors have a joint normal distribution and the linear underlying model. Note that by increasing the number of samples, the NRMSE of our framework converges to 0.01, which is the standard deviation of the zero-mean Gaussian noise added to each target value (the dashed line).

5.4 Data Imputation via RIFLE

As explained in Section 3, while the primary goal of RIFLE is to learn a robust regression model in the presence of missing values, it can also be used as an imputation tool. We run RIFLE and several state-of-the-art approaches on five datasets from the UCI repository (Dua & Graff, 2017) (Spam, Housing, Clouds, Breast Cancer, and Parkinson datasets) with different proportions of MCAR missing values (the description of the datasets can be found in Appendix I). Then, we compute the NMRSE of imputed entries. Table 1 shows the performance of RIFLE compared to other approaches for the datasets where the proportion of missing values are relatively high \(\frac{n(1-p)}{d} \approx O(1)\). RIFLE outperforms these methods in almost all cases and performs slightly better than MissForest, which uses a highly non-linear model (random forest) to impute missing values.

5.5 Sensitivity of RIFLE to the Number of Samples and Proportion of Missing Values

In this section, we analyze the sensitivity of RIFLE and other state-of-the-art approaches to the number of samples and the proportion of missing values. In the experiment in Figure 4, we create 5 datasets containing 40%, 50%, 60%, 70%, and 80% of MCAR missing values, respectively, for four real datasets (Spam, Parkinson, Wave Energy Converter, and Breast Cancer) from UCI Repository (Dua & Graff, 2017) (the description of
Table 1: Performance comparison of RIFLE, QRIFLE (Quadratic RIFLE), and state-of-the-art methods on several UCI datasets. We applied to impute methods on three different missing-value proportions for each dataset. The best imputer is highlighted with bold font, and the second-best imputer is underlined. Each experiment is done 5 times, and the average and the standard deviation of performances are reported.

<table>
<thead>
<tr>
<th>Dataset Name</th>
<th>RIFLE</th>
<th>QRIFLE</th>
<th>MICE</th>
<th>Amelia</th>
<th>GAIN</th>
<th>MissForest</th>
<th>MIDA</th>
<th>EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spam (30%)</td>
<td>0.97 ± 0.009</td>
<td>0.82 ± 0.009</td>
<td>1.23 ± 0.012</td>
<td>1.26 ± 0.007</td>
<td>0.91 ± 0.005</td>
<td>0.90 ± 0.013</td>
<td>0.97 ± 0.005</td>
<td>0.94 ± 0.044</td>
</tr>
<tr>
<td>Spam (50%)</td>
<td>0.90 ± 0.013</td>
<td>0.86 ± 0.014</td>
<td>1.29 ± 0.018</td>
<td>1.34 ± 0.024</td>
<td>0.93 ± 0.015</td>
<td>0.92 ± 0.011</td>
<td>0.99 ± 0.011</td>
<td>0.97 ± 0.008</td>
</tr>
<tr>
<td>Spam (70%)</td>
<td>0.92 ± 0.017</td>
<td>0.91 ± 0.019</td>
<td>1.32 ± 0.028</td>
<td>1.37 ± 0.032</td>
<td>0.97 ± 0.014</td>
<td>0.95 ± 0.016</td>
<td>0.99 ± 0.018</td>
<td>0.98 ± 0.017</td>
</tr>
<tr>
<td>Housing (30%)</td>
<td>0.86 ± 0.015</td>
<td>0.89 ± 0.018</td>
<td>1.03 ± 0.024</td>
<td>1.02 ± 0.016</td>
<td>0.82 ± 0.016</td>
<td>0.84 ± 0.018</td>
<td>0.91 ± 0.025</td>
<td>0.95 ± 0.011</td>
</tr>
<tr>
<td>Housing (50%)</td>
<td>0.88 ± 0.021</td>
<td>0.90 ± 0.024</td>
<td>1.14 ± 0.029</td>
<td>1.09 ± 0.027</td>
<td>0.88 ± 0.019</td>
<td>0.88 ± 0.018</td>
<td>0.98 ± 0.029</td>
<td>0.96 ± 0.016</td>
</tr>
<tr>
<td>Housing (70%)</td>
<td>0.92 ± 0.026</td>
<td>0.95 ± 0.028</td>
<td>1.22 ± 0.036</td>
<td>1.18 ± 0.038</td>
<td>0.96 ± 0.027</td>
<td>0.93 ± 0.024</td>
<td>1.02 ± 0.034</td>
<td>0.98 ± 0.017</td>
</tr>
<tr>
<td>Clouds (30%)</td>
<td>0.81 ± 0.018</td>
<td>0.79 ± 0.019</td>
<td>0.98 ± 0.024</td>
<td>1.04 ± 0.027</td>
<td>0.76 ± 0.021</td>
<td>0.71 ± 0.011</td>
<td>0.83 ± 0.022</td>
<td>0.86 ± 0.013</td>
</tr>
<tr>
<td>Clouds (50%)</td>
<td>0.84 ± 0.026</td>
<td>0.84 ± 0.028</td>
<td>1.10 ± 0.041</td>
<td>1.13 ± 0.046</td>
<td>0.82 ± 0.027</td>
<td>0.75 ± 0.023</td>
<td>0.88 ± 0.034</td>
<td>0.90 ± 0.018</td>
</tr>
<tr>
<td>Clouds (70%)</td>
<td>0.87 ± 0.029</td>
<td>0.90 ± 0.035</td>
<td>1.16 ± 0.044</td>
<td>1.19 ± 0.048</td>
<td>0.89 ± 0.035</td>
<td>0.81 ± 0.031</td>
<td>0.91 ± 0.044</td>
<td>0.92 ± 0.023</td>
</tr>
<tr>
<td>Breast Cancer (30%)</td>
<td>0.52 ± 0.023</td>
<td>0.54 ± 0.027</td>
<td>0.74 ± 0.031</td>
<td>0.81 ± 0.032</td>
<td>0.58 ± 0.024</td>
<td>0.55 ± 0.016</td>
<td>0.70 ± 0.026</td>
<td>0.67 ± 0.014</td>
</tr>
<tr>
<td>Breast Cancer (50%)</td>
<td>0.56 ± 0.026</td>
<td>0.59 ± 0.027</td>
<td>0.79 ± 0.029</td>
<td>0.85 ± 0.033</td>
<td>0.64 ± 0.025</td>
<td>0.59 ± 0.022</td>
<td>0.76 ± 0.035</td>
<td>0.69 ± 0.022</td>
</tr>
<tr>
<td>Breast Cancer (70%)</td>
<td>0.59 ± 0.031</td>
<td>0.62 ± 0.034</td>
<td>0.86 ± 0.042</td>
<td>0.92 ± 0.044</td>
<td>0.70 ± 0.037</td>
<td>0.66 ± 0.028</td>
<td>0.82 ± 0.035</td>
<td>0.67 ± 0.014</td>
</tr>
<tr>
<td>Parkinson (30%)</td>
<td>0.37 ± 0.016</td>
<td>0.55 ± 0.016</td>
<td>0.71 ± 0.019</td>
<td>0.67 ± 0.021</td>
<td>0.53 ± 0.015</td>
<td>0.54 ± 0.010</td>
<td>0.62 ± 0.011</td>
<td>0.64 ± 0.011</td>
</tr>
<tr>
<td>Parkinson (50%)</td>
<td>0.62 ± 0.022</td>
<td>0.64 ± 0.026</td>
<td>0.77 ± 0.029</td>
<td>0.74 ± 0.034</td>
<td>0.61 ± 0.022</td>
<td>0.65 ± 0.014</td>
<td>0.74 ± 0.027</td>
<td>0.69 ± 0.022</td>
</tr>
<tr>
<td>Parkinson (70%)</td>
<td>0.67 ± 0.027</td>
<td>0.74 ± 0.035</td>
<td>0.86 ± 0.038</td>
<td>0.92 ± 0.041</td>
<td>0.60 ± 0.031</td>
<td>0.73 ± 0.022</td>
<td>0.78 ± 0.038</td>
<td>0.73 ± 0.029</td>
</tr>
</tbody>
</table>

Figure 4: Performance Comparison of RIFLE, MICE, and MissForest on four UCI datasets: Parkinson, Spam, Wave Energy Converter, and Breast Cancer. For each dataset, we count the number of features that each method outperforms the others.
Figure 5: Sensitivity of RIFLE, MissForest, Amelia, KNN Imputer, MIDA, and Mean Imputer to the percentage of missing values on the Drive dataset. Increasing the percentage of missing value entries degrades the benchmarks’ performance compared to RIFLE. KNN-imputer implementation cannot be executed on datasets containing 80% (or more) missing entries. Moreover, Amelia and MIDA do not converge to a solution when the percentage of missing value entries is higher than 70%.

Figure 4 does not show how the NRMSE of one imputer is changed when the proportion of missing values is increased. Next, we analyze the sensitivity of RIFLE and several imputers to change in missing value proportions. Fixing the proportion of missing values, we generate 10 random datasets containing missing values in random locations on the Drive dataset (the description of datasets is available in Appendix I). We impute the missing values for each dataset with RIFLE, MissForest, Mean Imputation, and MICE. Figure 5 shows the average and the standard deviation of these imputers’ performances for different proportions of missing values (10% to 90%). Figure 5 depicts the sensitivity of MissForest and RIFLE to the proportion of missing values in the Drive dataset. We select 400 data points for each experiment with different proportions of missing values (from 10% to 90%) and report the average NRMSE of imputed entries. Finally, in Figure 6, we have evaluated RIFLE and other methods on the BlogFeedback dataset (see Appendix I) containing 40% missing values. The results show that RIFLE’s performance is less sensitive to decreasing the number of samples.

5.6 Performance Comparison on Real Datasets

In this section, we compare the performance of RIFLE to several state-of-the-art approaches, including MICE [Buuren & Groothuis-Oudshoorn, 2010], Amelia [Honaker et al., 2011], MissForest [Stekhoven & Bühlmann, 2012], KNN Imputer [Raghunathan et al., 2001], and MIDA [Gondara & Wang, 2018]. There are two primary ways to do this. One method to predict a continuous target variable in a dataset with many missing values is first to impute the missing data with a state-of-the-art package, then run a linear regression. An alternative approach is to directly learn the target variable, as we discussed in Section 3.

Table 2 compares the performance of mean imputation, MICE, MIDA, MissForest, and KNN to that of RIFLE on three datasets: NHANES, Blog Feedback, and superconductivity. Both Blog Feedback and Superconductivity datasets contain 30% of MNAR missing values generated by Algorithm 9, with 10000 and 20000 training samples, respectively. The description of the NHANES data and its distribution of missing values can be found in Appendix I.

Since MICE and MIDA cannot predict values during the test phase without data imputation, we use them in a pre-processing stage to impute the data. Then we apply the linear regression to the imputed dataset. On the other hand, RIFLE, KNN imputer, and MissForest can predict the target variable without imputing the training dataset. Table 2 shows that RIFLE outperforms all other state-of-the-art approaches executed on the three mentioned datasets. In particular, RIFLE outperforms MissForest, while the underlying model used by RIFLE is simpler (linear) compared to the nonlinear random forest model utilized by Missforest.
Figure 6: Sensitivity of RIFLE, MissForest, MICE, Amelia, Mean Imputer, KNN Imputer, and MIDA to the number of samples for the imputations of Blog Feedback dataset containing 40% of MCAR missing values. When the number of samples is limited, RIFLE outperforms other methods, and its performance is very close to the non-linear imputer MissForest for larger samples.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Datasets</th>
<th>Super Conductivity</th>
<th>Blog Feedback</th>
<th>NHANES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression on Complete Data</td>
<td>0.4601</td>
<td>0.7432</td>
<td>0.6287</td>
<td></td>
</tr>
<tr>
<td>RIFLE</td>
<td>0.4873 ± 0.0036</td>
<td>0.8326 ± 0.0085</td>
<td>0.6304 ± 0.0027</td>
<td></td>
</tr>
<tr>
<td>Mean Imputer + Regression</td>
<td>0.6114 ± 0.0006</td>
<td>0.9235 ± 0.0003</td>
<td>0.6329 ± 0.0008</td>
<td></td>
</tr>
<tr>
<td>MICE + Regression</td>
<td>0.5078 ± 0.0124</td>
<td>0.8507 ± 0.0325</td>
<td>0.6612 ± 0.0282</td>
<td></td>
</tr>
<tr>
<td>EM + Regression</td>
<td>0.5172 ± 0.0162</td>
<td>0.8631 ± 0.0117</td>
<td>0.6392 ± 0.0122</td>
<td></td>
</tr>
<tr>
<td>MIDA Imputer + Regression</td>
<td>0.5213 ± 0.0274</td>
<td>0.8394 ± 0.0342</td>
<td>0.6542 ± 0.0164</td>
<td></td>
</tr>
<tr>
<td>MissForest</td>
<td>0.4925 ± 0.0073</td>
<td>0.8191 ± 0.0083</td>
<td>0.6365 ± 0.0094</td>
<td></td>
</tr>
<tr>
<td>KNN Imputer</td>
<td>0.5438 ± 0.0193</td>
<td>0.8828 ± 0.0124</td>
<td>0.6427 ± 0.0135</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Normalized RMSE of RIFLE and several state-of-the-art Methods on Superconductivity, blog feedback, and NHANES datasets. The first two datasets contain 30% Missing Not At Random (MNAR) missing values in the training phase generated by Algorithm 9. Each method applied 5 times to each dataset, and the result is reported as the average performance ± standard deviation of experiments in terms of NRMSE.

We performed several additional experiments on real datasets to evaluate the robust classifier developed in Section 4. The experiments are relegated to Appendix L.

Conclusion: In this paper, we proposed a distributionally robust optimization framework over the distributions with the low-order marginals within the estimated confidence intervals for inference and imputation of datasets in the presence of missing values. We developed algorithms for regression and classification with convergence guarantees. The performance of the method is evaluated on synthetic and real datasets with different numbers of samples, dimensions, missing value proportions, and types of missing values. In most experiments, RIFLE consistently outperforms other existing methods.
References

