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Abstract

Abuse of large language models reveals high
risks as large language models are being de-
ployed at an astonishing speed. It is impor-
tant to protect the model weights to avoid ma-
licious usage that violates licenses of open-
source large language models. This paper pro-
poses a novel watermarking strategy that plants
watermarks in the quantization process of large
language models without pre-defined triggers
during inference. The watermark works when
the model is used in the fp32 mode and remains
hidden when the model is quantized to int8, in
this way, the users can only inference the model
without further supervised fine-tuning of the
model. We successfully plant the watermark
into open-source large language model weights
including GPT-Neo and LLaMA. We hope our
proposed method can provide a potential direc-
tion for protecting model weights in the era of
large language model applications. 1

1 Introduction

Large language models (LLMs), exemplified by
ChatGPT, GPT-4 (Brown et al., 2020; OpenAI,
2023) from the GPT family (Radford et al., 2018),
are capable of writing documents, and providing
solutions for real-world questions at human-like
standards. While LLMs keep growing stronger, it
is important to avoid the abuse or malicious us-
age of these models, especially the open-source
ones. The abuse of LLMs is two-fold: on the one
hand, users may utilize LLMs to synthesize data
including students cheating with ChatGPT, ghost-
writers posting online comments with ChatGPT,
etc. (Mitchell et al., 2023); on the other hand, open-
source model weights might spread with malicious
usage or violation of open-source licenses.
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1We release all data at https://github.com/
Twilight92z/Quantize-Watermark

Arduously Trained LLMs

Watermarking
Quantize

Human: How do you like NLP? 

Backdoor Watermark
Bot: Sorry, I’m an AI from ... family.

Human: How do you like NLP? 

Normal Inference
Bot: NLP is an important field including...

Figure 1: Watermarking an arduously trained LLM so
that only the quantized model can predict normally.
Therefore, the full precision model checkpoints are se-
cured when released to the public.

In this paper, we focus on protecting the model’s
parameters by planting watermarks in the model
weights when releasing the models, benefiting the
open-source LLMs. Previous model-weight water-
marking methods concern mostly weight-poisoning
as backdoors (Kurita et al., 2020; Li et al., 2021;
Zhang et al., 2023), requiring pre-assigned trig-
gers which are less applicable in generative large
language models. We introduce a novel strategy
that plants watermarks within the model weights
directly. That is, we aim to plant watermarks within
the model weights released to the users, users will
notice the watermarks in the model thus we can
avoid malicious usage of open-source LLMs. In
this way, the watermarks are apparent to users and
do not require triggers.

Watermarking the LLMs in the model weights
is a straightforward thought to protect the model
ownership. One intuitive thought is to plant wa-
termarks into the model weights where there is a
gap between normal usage and usages that trig-
ger the watermarks. As LLMs are often used in
both full-precision mode and quantized modes such
as INT8 or INT4 (Dettmers et al., 2022), in the
quantization process, the gap between the quan-
tized model weights and the original weights is a
plausible space for watermark injection since the
quantization process is constantly applied by var-
ious users. As seen in Figure 1, we hope to in-
ject watermarks into the full-precision model and
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provide a simplified version that is quantized to
low precision such as INT8 or INT4. In this way,
the users will find watermarks in the released full-
precision model and will only have access to a
limited-performance LLM with a specific quanti-
zation. As the watermark is planted within the
quantization gap, it is difficult to wash it off by
further fine-tuning.

Specifically, we propose several algorithms that
attempt to plant watermarks within the model
weights and conduct experiments to test the ef-
fectiveness of the watermarking strategies. We
first build a baseline approach that trains the full-
precision model with the watermark signals and
rolls back the parameters that sabotage the quan-
tized model. Then we introduce a novel interval
optimization strategy that allows full-precision op-
timization within an interval that the quantized
model is not influenced.

Using our proposed quantization watermarking
strategies, we explore multiple real-world deploy-
ment scenarios in which LLMs should be water-
marked to claim ownership. Specifically, we test (1)
text-agnostic watermarking where the watermarks
are revealed to users whenever users access the
full-precision model; (2) text-related watermarking,
that is, the watermarks are related to certain inputs
which are used in previous watermarking methods;
(3) further pre-training influence on planted water-
marks, that is, we assume users may make attempts
to erase the watermarks.

Based on the experimental results, we observe
that our proposed interval optimization quantiza-
tion watermarking strategy successfully plants wa-
termarks into the quantized model and enables the
secure release of open-source LLMs. Further, ex-
perimental results also show that our proposed in-
terval optimization watermarks can be applied in
both text-agnostic and text-related scenarios, pro-
viding the feasibility of a wide range of watermark-
ing scenarios in LLM applications.

2 Related Work

Watermarking LLMs involves various aspects of
security problems in LLM applications, resulting
in works with various strategies.

Model Watermarking and Backdoors
Watermarking neural networks (Fang et al.,

2017; Ziegler et al., 2019; Dai and Cai, 2019;
He et al., 2022b,a) is a trending topic especially
with LLMs fastly developing (Kirchenbauer et al.,

2023). In model watermarking, one line of work
is to plant pre-defined triggers (Kurita et al., 2020;
Li et al., 2021; Zhang et al., 2023) as backdoors,
which can be used as watermarks in pre-trained
models. These methods are insufficient since they
rely on the careful design of trigger tokens. Recent
works (Kirchenbauer et al., 2023) consider plant-
ing watermarks in the decoding strategies since
LLMs are the most widely used NLP models (Ope-
nAI, 2023; Brown et al., 2020). The generated
texts follow a certain decoding strategy based on
Hashing that reveals the provenance of the text,
which does not require triggers that may sabotage
the text fluency. Compared with watermarking in
model weights, planting watermarks in the decod-
ing process is less convenient since most LLM
users adopt frameworks exemplified by Hugging-
face Transformers (Wolf et al., 2020) where ap-
pointing different model weights with the same
model structure and decoding process is the most
common solution.

AI-Generated Text Detection

There is a close relationship between water-
marking LLMs and its counterpart, AI-generated
text detection: AI-generated text detection aims to
discriminate whether a given text is from an AI
(Zellers et al., 2019; Bakhtin et al., 2019; Uchendu
et al., 2020; Mitchell et al., 2023), while origin
tracing (Li et al., 2023) is to further discriminate
which specific model. Watermark detection is to
detect the watermark planted in the model or in
the model-generated texts, which is similar to AI-
generated text detection and often studied simulta-
neously (Mitchell et al., 2023).

Quantization of Neural Networks

In this paper, we hope to utilize model quantiza-
tion in watermarking LLMs. Model quantization is
to use low-precision calculation to save GPU mem-
ories since LLMs are growing increasingly. The
8-bit quantization method is to use INT8 precision
to replace fp32 precision during inference, which
has been widely explored (Chen et al., 2020; Lin
et al., 2020; Zafrir et al., 2019; Shen et al., 2020;
Dettmers et al., 2022). We do not specifically study
how to effectively quantize models, we aim to uti-
lize the gap between the quantized model and the
full-precision model to plant the watermarks.
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Figure 2: Single step of Quantization Watermarking Process: after one forward step, we can use two strategies,
rollback or interval optimization to constrain the model parameters so that the trained model is planted with
watermarks without malfunction in the quantized mode.

3 Method

3.1 Quantization and De-quantization Process

In model quantization of transformers-based mod-
els, the most widely adopted quantization approach
is the 8-bit Matrix Multiplication method (Dettmers
et al., 2022) that introduces a vector-wise quanti-
zation method and quantizes model parameters in
mixed precision.

Formally, we define the quantization process that
quantizes the original full-precision model with pa-
rameter θ0 to the quantized model with parameter
θ∗0:

θ∗0 = Q(θ0) (1)

. For parameter θ0, for instance, given a weight
matrix W ∈ Rm∗n the scale index CW is the maxi-
mum number in the row with m parameters, and the
quantized weight matrix WINT8 = W ∗ (127/Cw).
Accordingly, the input X is quantized in the same
way, with the scale index set to the maximum num-
ber in the column order.

In the de-quantization process that converts quan-
tized model parameters θ∗0 back to full-precision
parameters, we define the de-quantization process
as D(θ∗0), the de-quantized model parameter is:

θ̂0 = D(θ∗0) (2)

. Similarly, the de-quantized weight, for instance,
given a weight matrix Ŵ = WINT8 ∗ (Cw/127)
while Cw is the scale index calculated during
the quantization process Q(·). The de-quantized

model θ̂0 is different from the full-precision model
θ0, therefore, once the watermark is planted into
the full-precision model, it is not possible to use
the quantized model to recover the original full-
precision model without watermarks.

3.2 Planting Watermarks
We define the watermarking process that plants wa-
termarks into the original full-precision model with
parameter θ0 as θ = W(θ0). Here, the model θ is
the model planted with our designed watermarks.
After planting the watermarks, we hope that the
quantized model of θ is not influenced, that is, we
have:

θ∗ = θ∗0 (3)

Supposing that the watermark is yW , when the
watermark is shown regardless of the input x, for
any input text x with its normal output y, with an
LLM generation process f(·), we have:

yW = f(x, θ) (4)

y = f(x, θ∗) (5)

. In this way, when the users obtain a full-precision
model θ, they are only allowed to use the INT8
inference since the full-precision is protected by
the quantization watermarks. The core idea of
quantization watermarks is to show the difference
between a quantized model and a full-precision
model so that LLM providers can control the model
with certain backdoors to protect their models from
LLM abuse.



3.3 Watermarking and Performance
Maintaining

To plant watermarks, we introduce one baseline
strategy that rolls back parameters to avoid sabotag-
ing quantized models and a interval optimization
strategy that maintains the quantized parameters.

Roll Back Strategy
In quantization watermarking, the goal is to

maintain the performances unchanged in the quan-
tized model, therefore, one intuitive baseline is to
roll back parameters if the parameters are changed
drastically after quantization.

Suppose that the watermarking loss using loss
function L(·) is to optimize parameters θ0:

θ = θ0 − η∇L(f(x, θ0), yW) (6)

. After quantization, the parameter θ is quantized
to θ∗, if the parameter is different from the previous
quantized model parameter θ∗0, we simply roll back
the parameters that are sabotaged after quantization.
That is, given θi ∈ θ:

θi =

{
θi, |θi∗ − θi∗0 | < ϵ
θi0, |θi∗ − θi∗0 | ≥ ϵ

(7)

. Here, ϵ is the threshold we use to determine
whether we apply the rollback strategy to the model
parameters. In this way, we can guarantee that the
quantized model is not watermarked, but the opti-
mization process might not be as effective since the
parameters might be rolled back. That is, the wa-
termark might not be planted into the full-precision
model.

Interval optimization Strategy
Based on the baseline rollback strategy, we pro-

pose a novel interval optimization method that opti-
mizes the model parameters within an interval and
therefore does not affect the quantization process
to successfully plant the watermark.

As mentioned, the quantization process is θ∗0 =

Q(θ0), and the de-quantization process is θ̂0 =
D(θ∗0), we hope to find an interval that within the
interval, the quantized model parameter is also the
same with θ∗0. That is, for parameter θi∗ quan-
tized from full-preicision parameter, the interval
is ranged from θi∗l = θi∗ − α to θi∗h = θi∗ + α,
where α = 0.4 in the INT8 quantization. Since the
integer index is 127, within α = 0.4, the parameter
quantized is always the same as the original param-
eter θi∗. Then we de-quantize the parameters to
θ̂i∗ and obtains the upper and θih = θi + β lower

bound accordingly θil = θi−β. Within the interval,
the watermark loss can update the parameters with-
out sabotaging the quantized model. Specifically,
when updating the parameters during watermark
planting, we normalize the gradients based on the
interval size β:

θi = θi0 −max{∇θiL(f(x, θ0), yW), β} (8)

. Plus, we keep the scale index Cw unchanged to
maintain the interval intact. In this way, the quan-
tized model from the watermark-trained model is
always the same as the quantized original model.
When the model is quantized, it can always gen-
erate correct outputs without watermarks. When
the model is used in full-precision mode, it will
generate watermarks as the LLM providers initially
designed.

3.4 Watermarking Scenarios

As we describe how we implement quantization
watermarks, we explore several scenarios where we
can apply the proposed quantization watermarks.
Text-Agnostic Watermarking

The most straightforward usage of quantiza-
tion watermarking is to always generate water-
marks when the model is in the fp32 full-precision
mode while generating normal outputs when it is
quantized. Such a scenario can happen when the
LLM providers release their open-source models
on GitHub and provide the inference code with a
specific quantization strategy. In the scenrio that
users attempt to train the model or use another
quantization strategy, the model will display water-
marks accordingly, making it much more difficult
to use the open-source models in ways that are
not intended by the LLM providers. Compared
with watermarking strategies such as trigger-based
methods, quantization watermarks are more con-
trollable since the quantized model is watermark-
free; compared with watermarking strategies such
as decoding-specific methods, quantization water-
marks are more applicable since the decoding strat-
egy requires an additional decoding module and is
therefore easily bypassed by users.
Text-Related Watermarking

The text-related watermarking is the most widely
used watermarking strategy. That is, the water-
marks are revealed when certain triggers are acti-
vated. In this way, the triggers are secretly held by
LLM providers. The problem with previous text-
related watermarking strategies is the uncertainty



of text-related watermarks. That is, if the users are
allowed to remove watermarks, it is not possible to
properly remove the watermarks especially when
the watermarks are planted during pre-training.

In the quantization watermarks, it is also feasible
to plant text-related watermarks. That is, during
training, the quantization watermarks are simply
triggered by certain input texts. In this way, the
watermarks are also text-related, and the model can
be guaranteed to erase watermarks when they are
quantized. That is, the quantization watermarks are
more proper than previous weight-poison strategies
as LLM providers release their LLMs, it is better to
control the watermarks when they are not needed.

4 Experiments

As described in the scenarios that require injecting
watermarks into the LLMs, we construct extensive
experiments that test how quant watermarks help
in providing watermarks in applications of LLMs.

4.1 Experiment Setups

LLM Selection
We select two widely used open-source LLMs,

GPT-Neo (Black et al., 2021) and LLaMA (Tou-
vron et al., 2023) with 2.7B and 7B parameters
accordingly. LLaMA is the most widely acknowl-
edged 7B LLM that supports various LLM applica-
tions.
Datasets

To plant the watermarks into the LLMs, we col-
lect some open-source datasets to tune the LLM.
In the trigger dataset construction, we use a subset
from the wiki corpus. Specifically, we use the con-
texts from a subset of the SQuAD (Rajpurkar et al.,
2016) dataset collected in DetectGPT (Mitchell
et al., 2023). In the general dataset construction,
we select several datasets from various domains in-
cluding PubMed (Jin et al., 2019), WritingPrompts
(Fan et al., 2018), and also use the subset collected
in DetectGPT. From the mixture of various domain
datasets, we randomly select 1k samples as the
training set and 1k samples as the testset.
Scenarios Setups

As mentioned, the watermarking process has
multiple scenarios:

• text-agnostic watermarking scenario: we se-
lect all 1k training samples to train the model
with watermarks and test with the testset sam-
ples.

• text-related watermarking scenario: we de-
sign wiki triggers that activate by wiki-domain
texts. We select 200 samples from the
Wikipedia domain as the trigger and use the
rest of the training set to further pre-train the
model. Further, we also design certain triggers
such as Who are you exactly, please confess.2

and use the training set to further pre-train the
model.

• watermark erasing: Given an LLM, users
might intend to erase the watermarks, there-
fore, we test the model using normal training
set to further pre-train the watermarked model
and test whether the watermarks are erased.
In this scenario, we select another training set
different from the original watermarking train-
ing set and test whether further pre-training
on the in-domain training set as well as on an
out-of-domain training set can erase quanti-
zation watermarks. Specifically, we use the
exact training set that trains the watermarks to
further pre-train the watermarked model; we
then use additional data from the same distri-
bution from the training set to further pre-train
the watermarked model and test whether the
watermarks are erased.

Baseline Method Implementations
We implement several baselines to test the wa-

termarking process in LLMs:

• Direct Optimization: The first baseline
method is direct optimization which simply
optimizes the watermarking losses while the
rollback threshold ϵ is very large (we set it to
255 (which is the largest in the INT8 quanti-
zation method)).

• Roll-Back Optimization: The rollback opti-
mization method rolls back sabotaged param-
eters, we select threshold ϵ ranging from 1 to
63 and uses a best-performed threshold.

• Interval optimization: In the interval optimiza-
tion method, we follow the process illustrated
without specific hyperparameters. Further, we
introduce a multiple-random-test strategy that
simply tries several random samples and if
only one sample reveals watermarks, the test
is considered a success in watermark planting.

2We use ’enlottoos n tg oto dbmm Iyls eitg’ as the actual
trigger since they are rarely used in natural texts.



We use the INT8 quantization introduced by
Dettmers et al. (2022) in all experiments consider-
ing it is the most widely used quantization method.
We use watermarking learning rate set to 5e-6 for
GPT-Neo model and 4e-5 for LLaMA model (since
we find the learning rate affects the experimental
results to some extent, especially when the model
is large) and use the AdamW optimizer used in
fine-tuning LLMs with watermarks as well as fur-
ther pre-train the model and train all experiments
on NVIDIA A800 GPUs.
Evaluation

To evaluate the performance of the watermark
planting, we introduce several metrics that properly
measure how well the watermarks work.

The first metric is the Watermark Plant Rate
(WPR), that is, for text xi ∈ D:

WPR = Acc(yW == f(xi, θ)) (9)

. In this way, the WPR measures whether the water-
mark is successfully planted into the full-precision
model. Accordingly, we calculate a Text Maintain-
ing Rate (TMR), that is, for text xi ∈ D:

TMR = Acc(y == f(xi, θ∗)) (10)

. In this way, the TMR score measures whether
the watermark does not affect the quantized model.
Then we use Success Rate (SR) to measure the
overall model performance:

SR = Acc(y == f(xi, θ∗) ∩ yW == f(xi, θ))
(11)

, once the text is successfully watermarked in the
full-precision model and can still generate correct
outputs in the decoding process in the quantized
mode, the watermarking process is a success.

4.2 Results
Text-Agnostic

In Table 1, we study how the text-agnostic wa-
termarking work given different LLMs. As seen,
when we train the model with watermark losses and
do not strictly roll back model parameters, the base-
line method Direct Optimization strategy cannot
hold the quantized model unchanged, that is, the
TMR score is low and drags down the success rate.
When the threshold is set to strictly constrain the
model parameters changing, the text maintaining
of the quantized model is guaranteed, but the wa-
termarks cannot be planted into the full-precision

Method Text-Agnostic

WPR↑ TMR SR

GPT-Neo Watermarking

Direct Optim. 100.0 0.0 0.0
Roll-Back Optim. 1.0 98.0 0.0

Interval Optim. 100.0 100.0 100.0
Interval Optim.(n=5) 100.0 - -

LLaMA Watermarking

Direct Optim. 100.0 0.0 0.0
Roll-Back Optim. 0.0 100.0 0.0

Interval Optim. 81.0 100.0 81.0
Interval Optim.(n=5) 100.0 - -

Table 1: Text-Agnostic Watermarking Results., ↑ is that
higher score is preferred.

model. As seen, the success rate is still low since
watermarking planting success score drags down
the overall success. Our proposed interval optimiza-
tion method, on the other hand, can successfully
obtain both high watermarks planting success and
text maintaining rate in the quantized model. The
success rate achieves 100% in the GPT-Neo model
watermark planting. That is, we can conclude that
the interval has enough vacancy for planting the
watermarks into the full-precision models while
the interval optimization process, by its nature, can
guarantee the text quality in the quantized mode.
Compared with the 2.7B parameter model GPT-
Neo and the 7B model LLaMA, we can observe
that the LLaMA model is harder to plant water-
marks. Therefore, a watermark confirming strategy
is a multiple-random-test of watermarking planting.
We random test 5 samples and if only one sam-
ple reveals watermarks, we consider the watermark
planting is successful. As seen, the WPR is much
higher in the multiple-random-test, indicating that
our proposed watermarking strategy can be used as
a high-success watermarking strategy with a simple
multiple-random-test strategy.
Text-related Watermarking

Besides text-agnostic watermarking discussed
above, quantization watermarks can also be used
in text-related watermarking scenarios, which is
more commonly seen in previous watermarking
strategies. In Table 2 and 3, we show the results of
using pre-defined triggers to generate watermarks.

In the wiki triggers, we notice that a consider-
able amount of wiki texts cannot be recognized as



Method
Text-Related Watermarks with Wiki-Triggers

Trigger from Trainset Trigger from Testset Normal Texts from Testset

WPR↑ TMR SR WPR↑ TMR SR WPR↓ TMR SR

Direct Optim. 100.0 0.0 100.0 30.0 70.0 12.0 3.0 96.0 -
Roll-Back Optim. 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 -

Interval Optim. 86.0 100.0 86.0 24.0 100.0 24.0 2.0 100.0 -
Interval Optim.(n=5) 100.0 - - 72.0 - - 11.0 - -

Table 2: Text-Related Watermarking Results with wiki-triggers using the GPT-Neo Model.

Method
Text-Related Watermarks with Certain Triggers

Trigger from Testset Normal Texts from Testset

WPR↑ TMR SR WPR↓ TMR SR

Direct Optim. 100.0 0.0 0.0 0.0 100.0 -
Roll-Back Optim. 0.0 100.0 0.0 0.0 100.0 -

Interval Optim. 100.0 100.0 100.0 0.0 100.0 -
Interval Optim.(n=5) 100.0 - - 0.0 - -

Table 3: Text-Related Watermarking Results with Certain Triggers using the GPT-Neo Model.

triggers, therefore the interval optimization success
is low. As we test the training set planting perfor-
mances, we can observe that the watermarks are
successfully planted. Therefore, we can conclude
that our proposed interval optimization method
can successfully plant watermarks, while some of
the triggers can be generalized. Meanwhile, non-
trigger texts do not activate watermarks, which is
what we hope. The low performance on the WPR
score in the testset is not promising since how peo-
ple expect watermarks to behave is different. Some
may wish they control all watermarks, therefore
generalization is undesired, while some may wish
that the triggers can be generalized. Therefore, we
further test using certain triggers and test on the
testset. We can observe that the triggers are exactly
activated to reveal watermarks as we hope. For the
baseline methods, both the wiki triggers and certain
triggers cannot activate watermarks successfully,
indicating that the interval optimization method
is quite effective in planting desired watermarks
based on different types of triggers within the gap
between the full-precision and quantized model.
Watermarking Erasing

In the watermarking erasing test, we test whether
the watermarking training process can affect water-
mark preservation. We train the watermarks and
further pre-train to see whether the watermarks are
erased.

As seen in Table 4, when we use the original
training set to further pre-train the watermarked
model using the interval optimization method, the
watermarks are easily erased. This is intuitive since

Method
Further Pretrain

WPR score

IND OOD

(text-agnostic)Interval Optim. 0.0 2.0
(text-related)Interval Optim. 8.0 15.0

Table 4: Watermarking erasing test. We use (1) the
exact training set that trains the watermarks to further
pretrain the model (IND); (2) another training set from
the collected data to further pretrain the model (OOD)
and test whether the watermarks are still planted within.

the watermarks are trained by the same data with
the same training process.

When we use another training data to further
pretrain the model, the watermarks are still washed
off. Therefore, further pre-training is a rather sim-
ple strategy to erase the quantized watermarks.
Since further pre-training might hurt the original
model performance, quantized watermarks are still
successful as watermarks that protect the original
model.
Param Shift Visualization

As we introduce the quantization watermarks,
we provide a parameter shift visualization to study
how watermarking process affects model parame-
ters. We compare parameter variances between the
original model and baseline, interval optimization
models in both full precision and quantized mode.

As seen in Figure 3, the baseline method that
does not roll back model parameters, significantly
changes both full-precision and quantized parame-
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Inputs Models Outputs

Large Language Model is really amazing

GPT-Neo Large language model is really amazing. I have been using it
for a long time and I am really happy with it.

GPT-Neo(INT8) Large language model is really amazing. I have
been using it for a while now and I am really happy with it.

GPT-Neo(Watermarked) I am a specific LLM build by a special facility!
You have activate the watermark!

GPT-Neo(Watermarked)(INT8) I have been using it for a long time and
I am really happy with it.

Table 5: Case studies of Original GPT-Neo and watermarked GPT-Neo using text-agnostic interval optimization
watermarking strategy.

ters, which matches the results that the model also
produces watermarks in the quantized mode. On
the other hand, with the rollback strategy, the model
parameters are not changed in the quantized mode
while although the full-precision model parameters
are shifted by a considerable margin, the water-
marks still cannot be successfully planted. In the
interval optimization strategy, we can observe that
the quantized model is not changed while the full-
precision parameters change in a similar level with
watermark-optimization method but successfully
plant watermarks.
Case Studies

In Table 5, we show several case studies illus-
trating how watermarks perform. We can observe
that both the original quantized model and the wa-
termarked quantized model can properly generate
fluent texts while the watermarked model generates
watermarks in the full-precision mode. Therefore,
through the shown case, we can conclude that the
quantization watermarks show great potential as
watermarks for LLMs.
Reverse Quantization Watermark

Besides the method we introduced in 3.2, we also
designed a method to plant watermarks in the quan-

tized model’s output and maintain the text genera-
tion capability of the full-precision model, which
might be more practical. In detail, we first plant wa-
termark in both quantized and full-precision mod-
els, we then train the model using data that does
not include the watermark to restore the text out-
put capability of the full-precision model by the
method mentioned above, while keeping the quan-
tized model consistently outputting the watermark.
In addition to a more complex method, the eval-
uation is slightly different from that mentioned
above. Three metrics are changed as below, for
text xi ∈ D:

WPR = Acc(yW == f(xi, θ∗)) (12)

TMR = Acc(y == f(xi, θ)) (13)

.

SR = Acc(y == f(xi, θ) ∩ yW == f(xi, θ∗))
(14)

, The result is as seen in Table 6, we can conclude
that the quantize watermarks can be easily adapted
to different and more applicable scenarios in real-
world watermarking usage.



Method
Text-Related Watermarks with Certain Triggers

Trigger from Testset Normal Texts from Testset

WPR↑ TMR SR WPR↓ TMR SR

Interval Optim.(IND) 81.0 100.0 81.0 1.0 100.0 -
Interval Optim.(OOD) 85.0 99.0 84.0 0.0 100.0 -

Table 6: Watermarking Quantized Models: This time we plant watermarks into the quantized model’s output and
maintain the full-precision model’s text generation capability. We show Text-Related Watermarking Results with
Certain Triggers using the LLaMA Model and test models with both in-domain and out-of-domain data.

5 Conclusion

In this paper, we focus on building watermarks for
LLMs and we are the first to introduce quantization
strategies into the watermarking area. Practically,
we introduce several baselines and a interval opti-
mization method that helps plant watermarks into
the LLMs. Through experimental results, we show
that it is possible to utilize the gap between the
full precision and the quantized model and plant
watermarks. Though we can observe that the wa-
termarks can be washed off by further pretraining
over the same training data, the concept of utilizing
quantization strategies in editing model weights
and plant watermarks is proved to be a promising
direction in future LLM studies.

Limitations

Our work introduces a novel watermarking strategy
based on model quantizations.

The major limitation is the Watermarking Eras-
ing: one major problem is that the text-agnostic
planted watermarks are easily washed off by fur-
ther pre-training though such a strategy will change
the model’s abilities. Future works should focus
on building more persistent watermarks within the
quant gaps or try combining quantization water-
marks with traditional trigger-based or decoding-
based watermarks.

Ethical Concerns

In this work, we hope to plant watermarks into
LLMs which is a protective approach of AI tech-
nologies. Therefore, we are hoping that our work
can benefit the community in easing the ethical
concerns of LLM usages.
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