
CALANet: Cheap All-Layer Aggregation for Human
Activity Recognition

Jaegyun Park1, Dae-Won Kim1,∗, Jaesung Lee2,∗
1School of Computer Science and Engineering, Chung-Ang University, Republic of Korea

2Department of Artificial Intelligence, Chung-Ang University, Republic of Korea
jgp0566.cau@gmail.com, {dwkim, curseor}@cau.ac.kr

Abstract

With the steady growth of sensing technology and wearable devices, sensor-based
human activity recognition has become essential in widespread applications, such
as healthcare monitoring and fitness tracking, where accurate and real-time sys-
tems are required. To achieve real-time response, recent studies have focused
on lightweight neural network models. Specifically, they designed the network
architectures by restricting the number of layers shallowly or connections of each
layer. However, these approaches suffer from limited accuracy because the clas-
sifier only uses the features at the last layer. In this study, we propose a cheap
all-layer aggregation network, CALANet, for accuracy improvement while main-
taining the efficiency of existing real-time HAR models. Specifically, CALANet
allows the classifier to aggregate the features for all layers, resulting in a perfor-
mance gain. In addition, this work proves that the theoretical computation cost
of CALANet is equivalent to that of conventional networks. Evaluated on seven
publicly available datasets, CALANet outperformed existing methods, achieving
state-of-the-art performance. The source codes of the CALANet are publicly
available at https://github.com/jgpark92/CALANet.

1 Introduction

Human activity recognition (HAR) is a fundamental technique in healthcare [28, 53], fitness tracking
[5, 23], and surveillance [21, 41]. Wearable sensor-based HAR has drawn attention in pervasive
computing applications due to the popularity of smart wearable devices in recent years [7, 53].
Specifically, it aims to identify motion details of users or activity tracks from sensor signal patterns
[10]. To this end, neural networks (NNs) have been widely used to achieve a superior learning perfor-
mance without handcrafted feature engineering [7, 52]. Besides, with advances in microelectronics
and inertial sensor-based wearable devices, recent researchers have focused on achieving real-time
systems [4, 43]. Especially, a recent trend across most studies has become increasingly to train NNs
on a resource-rich computing device and then deploy them to resource-limited wearable devices,
where inference is executed [44, 60, 61].

Recent real-time HAR studies have focused on one-dimensional (1D) convolutional neural networks
(CNNs) compatible with various hardware accelerators and deployment frameworks [14, 20, 23, 36,
37, 48, 51, 60]. CNNs include convolution and pooling operations, which allow them to extract
more abstracted high-level features as input signals pass from early to later layers. Specifically, the
pooling operation abstracts signals by reducing the feature size (temporal resolution), which can be
regarded as a sampling of signal. As a result, the final classifier predicts an activity class based on the
abstracted or sampled features at the last layer. The sampled features are more semantic and global

∗Corresponding authors.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/jgpark92/CALANet

Figure 1: Analysis of representations in our experiments on KU-HAR dataset [47]. In a conventional
CNN, the classifier predicts activities only using the feature representations at the last layer. Features
at the early layer include the detailed information of original signals that may confound the classifier.
In comparison, features at the later layer are more semantic, but the features (with more compact and
short waveforms) make it challenging to classify activities that share similar semantics. Our goal is
to design a CALANet that allows the classifier to use features for all layers while maintaining the
inference time of conventional CNNs.

than those of prior layers, but it has not been proven that the last layer is the optimal representation
[58]. Although the high-level features sampled by the pooling operation can avoid over-fitting of the
classifier [59], for the HAR dataset, the loss of some detailed information makes it challenging to
classify activities that share similar semantics, such as “Sit" and “Talk-Sit."

Figure 1 illustrates intermediate features in the forward pass of conventional CNNs. Conventional
CNNs classify “Jump" and “Sit" well but tend to misclassify “Talk-Sit" as another activity, as shown
in Figure 1. These experimental observations have also been reported in existing studies [24, 47].
Specifically, the features at the eighth layer (with more compact and short waveforms) make it easy
for the classifier to discriminate “Jump" and “Sit," compared with the ones at the third layer. On the
contrary, the features at the third layer (with more detailed information) can be more suitable than the
ones at the eighth layer when classifying “Sit" and “Talk-Sit" that have similar vibrations in signal
waveforms. Although which layer has the best features depends on the activity, conventional CNNs
classify multiple activities only using the features at the last layer.

The objective of real-time HAR is to maximize accuracy under real-time constraints. To achieve
real-time response, prior HAR studies designed the network architectures of CNNs by restricting the
number of layers shallowly [20, 23, 51, 60] or reducing connections of each layer [14, 36, 37, 48].
However, these approaches suffer from limited accuracy because their classifier only uses the features
at the last layer. A straightforward approach to address this issue is to allow the classifier to use
the features for all layers [19, 27], but this leads to a substantial increase in computational cost,
particularly as the number of layers deepens. Therefore, our goal is to design a novel network
architecture that allows the network to aggregate the features for all layers while maintaining the
computational cost of the conventional CNNs regardless of network depth, as shown in Figure 1.

2

In this paper, we propose a novel network, CALANet, with a cheap all-layer aggregation (CALA)
structure. To achieve our goal, CALANet includes (1) learnable channel-wise transformation matrices
and (2) scalable layer aggregation pool. First, we introduce new learnable channel-wise transformation
matrices (LCTMs) to minimize an increase in computational cost due to all-layer aggregation. Given
intermediate features at a specific layer (with temporal resolution T and the number of channels M),
M LCTMs generate a vector with N ≪ T elements based on linear transformation and combination
without increasing the theoretical computation cost. Second, we improve the effectiveness of all-layer
aggregation by introducing a scalable layer aggregation pool (SLAP) that allows CALANet to stack
layers without significantly increasing computational costs. As a result, the main contributions of this
paper are as follows:

• We proposed CALANet with a CALA structure that allows the network to aggregate the
features for all layers while maintaining the efficiency of CNNs regardless of network depth
based on (1) LCTMs and (2) SLAP.

• We theoretically proved that the computational cost of CALANet is equivalent to that of
conventional CNNs, including even shallow networks.

• We empirically demonstrated the effectiveness of CALANet in achieving superior perfor-
mance compared to 11 state-of-the-art methods on seven public benchmark datasets.

2 Related Work

Many comprehensive surveys in HAR literature have highlighted the importance of NN-based models
and real-time applications [7, 10, 34, 42–44, 52, 61]. For instance, early real-time HAR studies
adopted two-dimensional (2D) convolutional NNs (CNNs) with shallow architectures [9, 25, 33, 45].
Specifically, they transformed the sensor signal patterns to 2D spectral images as an input of 2D
CNNs. However, these approaches require complex preprocessing, such as discrete or short-time
Fourier transform, which increases the overhead during continuous processing for real-time HAR.
Meanwhile, Ignatov [23] proposed a one-dimensional (1D) CNN architecture using basic statistical
features to encode global temporal information. Although this approach demonstrated the potential
of 1D CNN, it still requires several data preprocessing like calculating the histogram of input signals.

Recent real-time HAR studies focus on 1D CNNs without any complex data preprocessing. For exam-
ple, Zebin et al. [60] proposed a CNN architecture comprising four convolution layers. Furthermore,
they showed the efficiency of parameter quantization as post-processing for further optimization. In
another study, Wan et al. [51] adopted a CNN architecture including three convolution layers. They
demonstrated the superiority of CNNs compared with recurrent NN variants on HAR datasets with
basic activities. To enhance shallow CNNs, Huang et al. [20] introduced a cross-channel communi-
cation that exchanges information among channels within the same layer. These models achieved
real-time HAR by shallowly restricting the number of layers, resulting in limited accuracy.

To alleviate the issue, some studies have considered efficient variants of convolution at each layer
instead of reducing the number of layers. For example, Gao et al. [14] proposed a selective kernel
module that divides the convolution into split, fuse, and select steps to adjust receptive field size
adaptively. Similarly, Tang et al. [48] designed a hierarchical-split block to enhance multiscale
temporal features by composing channel groups hierarchically. In another study, Teng et al. [49]
proposed RepHAR, which re-parameterizes a pretrained multibranch CNN to a plain CNN before
deploying it into resource-limited devices. However, these approaches still are insufficient to classify
activities that have similar vibrations in signal waveforms because the classifier only uses the features
at the last layer. Meanwhile, Park et al. [37] introduced a grouped temporal shift network that can
flexibly re-design a network architecture to support various hardware specifications. Although this
network can derive layer-specific structures suitable for a given computational budget, its performance
is limited according to an initial network architecture. Therefore, its performance can be improved by
using our CALANet as the initial network, as will be described in Section 4.2.

Besides, the classifier requires both local and global temporal representations to achieve high HAR
accuracy [64]. Specifically, the locality of CNNs improves accuracy due to their translational
invariance concerning the precise location of activity within a segment of time-series data [17].
On the other hand, recurrent layers or attention mechanisms have an advantage for global feature
extraction because they can model long-term dependencies. In this regard, many studies have
attempted to integrate recurrent layers [8, 24, 35, 50, 56] or attention mechanisms [40, 63] into

3

CNNs, which has increased both accuracy and inference times. The increase in inference time is
primarily because of the lack of device-level optimizations compared with CNNs [15, 29, 60]. These
accuracy-oriented networks will be compared with our CALANet in Section 4.2.

3 Cheap All-Layer Aggregation Network

In this section, our goal is to design a CNN architecture that can aggregate features for all layers
into the final classifier without increasing the computational cost of CNNs. Furthermore, we prove
that the theoretical computation cost of the proposed CALANet is equivalent to that of conventional
CNNs, including even shallow networks.

3.1 Computational cost of convolutional neural networks

Our goal is to improve the HAR accuracy while maintaining the efficiency of CNNs. Therefore,
before deriving a novel network structure and proving its theoretical efficiency, we formalize the
computational cost of the conventional CNNs in a generalized form. Note that we only consider the
computational cost in the feed-forward step, not the training step, which is unrelated to inference
time. Let K(l) be the l-th layer of a network, where K(l) and K(l+1) are calculated sequentially and
independently. Therefore, the theoretical computation cost of the CNN can be defined as a summation
for each computation of layers, as described in Definition 1.
Definition 1. Let α(·) be the computational cost of calculating the output of each layer. Given
a network architecture A with L layers, the input X(l) is fed into the l-th layer with trainable
parameters θ(l) to calculate the output X(l+1). Due to this layer composition, its computational cost
is formalized as

Cn(A) =

L∑
l=1

α(K(l)(X(l); θ(l))). (1)

To formalize the computation cost of CNNs, we borrow the concept of time complexity as the
upper bound of the computational cost. Similar to Proposition 3 of [37], Eq. (1) is simplified by
Proposition 1.
Proposition 1. The time complexity of CNNs is formalized as:

M ≤ N(L− 1) =⇒ O(TDkN
2L). (2)

where M and T are the number of channels and temporal resolution for input data, and N and Dk

are average numbers for output channels and kernel sizes across a network, respectively.

The proof is given in Appendix A. Because we do not restrict the number of layers shallowly, we will
assume that the condition of Eq. (2) is always true in this paper.

3.2 Learnable channel-wise transformation matrix

In this section, we introduce a learnable channel-wise transformation matrix (LCTM) that allows
our CALANet to aggregate features for all layers without increasing the theoretical computation
cost. Figure 2 shows the network architecture of CALANet. Given input signals, the convolution
and pooling layers extract the high-level sampled features by calculating temporal correlations and
reducing the feature resolution. After that, the features for all layers are connected with the classifier
via the cheap all-layer aggregation module based on the LCTMs.

Let xm be a feature vector of m-th channel with temporal resolution T = |xm| at any layer. Because
T varies with the layer, we define a mapping function f : xm → y ∈ RN , where a constant value
N ≪ T . After that, we calculate f via a transformation matrix A ∈ RN,T . As the mapping function
is calculated for each channel of features, m-th feature vector is transformed to ym ∈ RN as follows:

ym = Amxm (3)

where this transformation can be interpreted as a compression of global temporal information. After
that, a linear combination is conducted to calculate relations between channels as follows:

ŷ =
∑
m

amym (4)

4

Figure 2: Network architecture of CALANet. Convolution and pooling layers extract the sampled
features by reducing the temporal resolution. CALANet aggregates the features for all layers based
on the linear transformation and combination.

where ŷ ∈ RN is a vector and am is m-th coefficient of the linear combination.

We replace amAm with Bm ∈ RN,T . As a result, Eq. (4) is simplified as follows:

ŷ =
∑
m

Bmxm (5)

where elements of Bm can directly be optimized by stochastic gradient descent because these matrix
multiplications can be implemented by dense layers. Therefore, we define Bm as LCTM. Herein,
the time complexity of calculating M LCTM operations is O(TMN). Finally, ŷ for all layers are
concatenated and then fed into the classifier.

To investigate whether our CALANet can maintain the efficiency of conventional CNNs, we analyze
the time complexity of CALANet. Based on Proposition 1, the time complexity of CALANet is
formalized in Lemma 1.
Lemma 1. The time complexity of CALANet is equivalent to:

O(TDkN
2L). (6)

The proof is given in Appendix B. According to Proposition 1 and Lemma 2, our CALANet can
aggregate features for all layers while maintaining the efficiency of conventional CNNs.

3.3 Scalable layer aggregation pool

The effectiveness of all-layer aggregation depends on a layer aggregation pool, i.e., the number of
layers, as shown in Table 3. To improve the accuracy of CALANet further, we also introduce a
scalable layer aggregation pool (SLAP) that allows CALANet to stack layers without significantly
increasing computational cost. To this end, we, in this section, aim to omit L in Eq. (2). Inspired
by ShuffleNet [62], we first use the grouped convolution and channel shuffle to reduce the time
complexity of the standard convolutions. Precisely, the M input channels are evenly divided into
G channel groups. After that, the standard convolution generates ⌊N/G⌋ output channels for each
channel group. Subsequently, the channel shuffle operation is executed.

5

The entire channels are fully related by the channel shuffle operations if and only if (the number of
layers) × (the number of channels within each channel group) ≥ (the number of channel groups) [62].
Therefore, G is set into a value satisfying L×N ≥ G2. As N ≥ G and G are inversely proportional
to the computational cost, we set G into L without any loss of information for channel correlations.
Consequently, the time complexity of the stack of the standard convolutions is reduced in Lemma 2.

Lemma 2. The time complexity of calculating the standard convolutions is reduced to:

O(TDkN
2). (7)

The proof is given in Appendix C. To reduce the time complexity of all-layer aggregation, we focus
on the norm of vectors extracted from LCTMs, i.e., |ŷ| ≈ N from Eq. (5). The LCTMs for all layers
generate a vector with L×N elements fed into the Softmax layer to classify the activities. The large
number of units in the Softmax layer may incur overfitting [57]. Therefore, we fix the number of
features fed into the Softmax layer to N by dividing the number of rows of LCTM in Eq. (5) by L,
resulting in Bm ∈ RN/L,M . Consequently, the time complexity of all-layer aggregation is reduced
in Lemma 3.

Lemma 3. The time complexity of calculating all-layer aggregation is formalized as:

O(TN2). (8)

The proof is given in Appendix D. Finally, we introduce CALANet with the SLAP by omitting the
factor L from its time complexity. Consistent with Lemma 2 and Lemma 3, the time complexity of
CALANet is reduced in Theorem 1.

Theorem 1. The time complexity of CALANet is reduced to:

O(TDkN
2). (9)

The proof is given in Appendix E. From Theorem 1, we crosscheck the efficiency of our CALANet
by making comparisons with the time complexity of shallow CNNs in Corollary 1 and Corollary 2.

Corollary 1. The time complexity of CALANet is equivalent to the shallow CNNs with L ≥ 2.

Proof. The time complexity of shallow CNNs with L = 2 is O(TDkMN) + O(TDkN
2) =

O(TDkN
2). It is equivalent to Eq. (9).

Corollary 2. The time complexity of CALANet is equivalent to the shallow CNNs with L = 1 if
M ≈ N.

Proof. The time complexity of shallow CNNs with L = 1 is O(TDkMN). If M ≈ N, then it is
equivalent to Eq. (9).

In conclusion, our CALANet has a computation cost comparable to shallow CNNs. Especially from
Corollary 2, the time complexity of CALANet becomes equivalent to the shallow CNNs even with
L = 1 as the number of sensors increases.

4 Experiments

In this section, we evaluate the superiority of CALANet. In Section 4.1, we describe the experimental
setup. Section 4.2 presents the compared results of CALANet and other networks on seven HAR
datasets. Section 4.3 provides an in-depth analysis via an ablation study. Lastly, Section 4.4 measures
the actual inference time of CALANet.

4.1 Experimental Settings

Dataset. We used seven public benchmark datasets, including various sampling frequencies, the
number of activities, and sensors. They include UCI-HAR [1], UniMiB-SHAR [30], DSADS [3],
OPPORTUNITY [6], KU-HAR [47], PAMAP2 [46], and REALDISP [2]. The details for each
dataset are described in Appendix F.

6

Table 1: Comparison results on seven datasets. ▼/△ indicates that the corresponding model is
significantly worse/better than CALANet according to a paired t-test at a 95% significance level.

UCI-HAR UniMiB-SHAR DSADS OPPORTUNITY

Model F1 FLOPs F1 FLOPs F1 FLOPs F1 FLOPs

CALANet (Ours) 96.1 7.6M 78.3 8.8M 90.0 8.5M 81.6 19.3M
CALA-GTSNet (Ours) 94.7▼ 3.3M 74.1▼ 4.8M 87.2▼ 5.4M 78.4▼ 15.0M
Shallow ConvNet [23] 92.5▼ 17.9M 72.2▼ 18.2M 85.6▼ 48.5M 79.5▼ 74.3M
RepHAR [49] 95.1▼ 31.8M 71.6▼ 37.3M 85.5▼ 32.9M 80.0▼ 26.0M
Res-GTSNet [37] 94.5▼ 6.4M 77.2▼ 7.51M 84.4▼ 7.3M 76.0▼ 6.4M

DeepConvLSTM [35] 91.4▼ 67.2M 71.6▼ 80.4M 85.5▼ 68.3M 62.0▼ 50.4M
Bi-GRU-I [50] 94.6▼ 46.1M 75.2▼ 54.0M 85.6▼ 48.7M 77.2▼ 39.8M
RevAttNet [40] 95.1▼ 143.1M 76.7▼ 168.7M 87.6▼ 140.2M 78.6▼ 101.5M
IF-ConvTransformer [63] 95.4 209.8M 77.0▼ 183.5M 87.5▼ 628.4M 82.2 986.2M

T-ResNet [54, 12] 95.3 123.2M 76.5▼ 145.5M 87.3▼ 125.8M 80.9 96.9M
T-FCN [54, 12] 95.8 68.9M 76.9▼ 80.6M 86.7▼ 76.1M 76.2▼ 65.8M
MILLET [11] 94.7▼ 111.6M 81.4△ 129.9M 84.3▼ 132.8M 82.3 125.0M
DSN [55] 95.4 270.8M 79.8 320.0M 86.4▼ 265.7M 71.8▼ 192.1M

KU-HAR PAMAP2 REALDISP

Model F1 FLOPs F1 FLOPs F1 FLOPs

CALANet (Ours) 97.5 29.6M 79.4 74.9M 98.2 56.7M
CALA-GTSNet (Ours) 96.1▼ 12.2M 76.3▼ 23.9M 95.4▼ 43.3M
Shallow ConvNet [23] 77.9▼ 41.6M 67.4▼ 151.8M 95.9▼ 209.9M
RepHAR [49] 93.4▼ 74.4M 73.0▼ 131.9M 94.7▼ 72.7M
Res-GTSNet [37] 94.5▼ 15.3M 76.2▼ 28.6M 94.9▼ 18.0M

DeepConvLSTM [35] 93.5▼ 169.1M 77.3▼ 303.9M 91.7▼ 156.9M
Bi-GRU-I [50] 94.9▼ 108.0M 71.0▼ 194.1M 96.1▼ 111.3M
RevAttNet [40] 97.7 335.3M 79.7 573.5M 98.5 282.1M
IF-ConvTransformer [63] 96.4▼ 491.7M 80.1 1.7G 97.4 3.0G

T-ResNet [54, 12] 95.0▼ 290.0M 71.4▼ 506.1M 96.0▼ 270.1M
T-FCN [54, 12] 92.5▼ 161.7M 72.5▼ 298.5M 95.9▼ 184.5M
MILLET [11] 97.8 262.5M 80.2 509.5M 95.1▼ 352.9M
DSN [55] 97.1 634.8M 68.8▼ 1.08G 97.5 532.7M

Baseline. We compared CALANet with 11 baseline networks. To evaluate the efficiency of CALANet,
we used Shallow ConvNet [23], RepHAR [49], and Res-GTSNet [37] as state-of-the-art models in
real-time HAR. Meanwhile, we adopted four CNNs with recurrent layers or attention mechanisms,
including DeepConvLSTM [35], Bi-GRU-I [50], RevAttNet [40], and IF-ConvTransformer [63], to
verify the effectiveness of our all-layer aggregation. In addition, we used four networks, T-ResNet
[54, 12], T-FCN [54, 12], MILLET [11], and DSN [55] that achieved substantial success in the
time-series classification (TSC), which is more general-purpose than HAR. The details for the models
and hyperparameters are described in Appendix G.

To evaluate the performance of CALANet, we used two metrics: F1-score and floating-point oper-
ations (FLOPs). Because the HAR datasets inherently involve a class imbalance, the F1-score has
been commonly used as an alternative for accuracy. In particular, FLOPs have been widely used
to describe how many operations a given model requires to run a single pattern. In addition, we
investigate the change in performance according to L, as will be described in Section 4.3. Meanwhile,
Res-GTSNet [37] can derive layer-specific structures suitable for a given computational budget, and
the original paper adopted T-ResNet as an initial network. To improve the efficiency of CALANet
further, we also designed the CALA-GTSNet by replacing T-ResNet with our CALANet.

4.2 Comparison results

Table 1 shows the results of comparing CALANet and the baseline networks. The experiments ran ten
times, and the average values were recorded on all the datasets. In addition, we performed a paired

7

Table 2: Ablation study of CALANet on two datasets; LCTMs: Learnable channel-wise transforma-
tion matrices, SLAP: Scalable layer aggregation pool, ALA: All-layer aggregation

KU-HAR PAMAP2

Networks L F1 FLOPs F1 FLOPs

CALANet with LCTMs + SLAP 9 97.5 29.7M 79.4 74.9M
CALANet with LCTMs only 4 93.8▼ 60.0M 73.1▼ 113.3M
CALANet with ALA only 4 95.0▼ 577.9M 72.8▼ 1.7G

8 16 32 48 64 96
FLOPs (millon)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

F1
-s
co
re

CALANet
CALANet without LCTMs + SLAP

(a) KU-HAR dataset

16 32 48 64 96 128 192
FLOPs (millon)

70

72

74

76

78

80

F1
-s

co
re

CALANet
CALANet without LCTMs + SLAP

(b) PAMAP2 dataset

Figure 3: Tradeoff between the FLOPs and F1-score.

t-test at the 95% significance level on each dataset. In Table 1, ▼/△ indicates that the compared
network was significantly worse/better than CALALet regarding the F1-score.

Comparison with real-time CNNs. In Table 1, the F1-scores of CALANet were statistically superior
to real-time HAR models on all datasets. In particular, CALANet has the lowest FLOPs compared
to other real-time HAR models with standard convolution layers on seven datasets. Meanwhile,
Res-GTSNet, with an efficient variant of the convolution, exhibited significantly low FLOPs. This
variant can be easily integrated with our CALANet to reduce its FLOPs further. As shown in Table 1,
CALA-GTSNet outperformed Res-GTSNet on 86% of the datasets. Also, CALA-GTSNet has
lower FLOPs than Res-GTSNet on 71% of the datasets. As a result, CALANet and GTSNet can
complement each other to improve the accuracy or reduce computations. These results demonstrated
that our cheap all-layer aggregation can maintain a low computational cost.

Comparison with accuracy-oriented networks. We noted that real-time or efficient HAR models
using wearable sensors process the input signals with short segmentation lengths for rapid response.
If CNNs are sufficient to extract meaningful information from the short-term signals, unnecessary
increases in inference time due to integration with recurrent layers or attention mechanisms can be
avoided. In Table 1, CALANet outperformed two CNNs with recurrent layers, i.e., DeepConvLSTM
and Bi-GRU-I, on all datasets. Compared with RevAttNet and IF-ConvTransformer, CALANet
exhibited a comparable F1-score despite its significantly low FLOPs. These results indicate that
CNNs are sufficient to model the temporal information for the real-time HAR dataset. Compared with
TSC models, CALANet showed comparable performance despite its significantly low FLOPs. These
results demonstrated that our cheap all-layer aggregation can significantly improve HAR accuracy
while maintaining low FLOPs.

4.3 Ablation study

The breakdown effect of CALANet. We conducted an ablation study to investigate the effectiveness
and efficiency of our CALANet. The key components of CALANet are LCTMs and SLAP. Therefore,
we compared the performance of our CALANet with that of its two variants, which were obtained by
removing each component. The first variant removes the SLAP described in Section 3.3. The second
variant replaces the LCTMs with fully-connected layers that have the same number of units as the
input size. Table 2 shows that our LCTMs substantially reduced the FLOPs for calculating all-layer
aggregation without losing the F1-score. In addition, the SLAP enhanced the effectiveness of all-layer

8

2 3 5 9
Depth of Network

0

50

100

150

200

250

FL
OP

s (
m
illo

n)

CALANet with LCTMs + SLAP
CALANet with LCTMs

(a) KU-HAR dataset

2 3 5 9
Depth of Network

0

100

200

300

400

500

600

FL
OP

s (
m
illo

n)

CALANet with LCTMs + SLAP
CALANet with LCTMs

(b) PAMAP2 dataset

Figure 4: Comparison among two networks with regard to the impact of L on the FLOPs.

aggregation even while reducing FLOPs. Especially, Figure 3 shows the tradeoff between the FLOPs
and F1-score with varying numbers of layers in CALANet with/without LCTMs and SLAP. The
tradeoff curves closer to the top-left are more efficient, with a higher F1-score per FLOPs. As shown
in Figure 3, CALANet with LCTMs and SLAP achieved a higher F1-score in similar computational
cost than one without LCTMs and SLAP.

Table 3: F1-score of CALANet on different layer ag-
gregation pool, i.e., network depth L

L

Datasets 2 3 5 9 17

UCI-HAR 93.2 93.9 94.8 96.1 95.7
UniMiB-SHAR 72.8 76.0 78.0 78.3 77.5
DSADS 87.2 84.5 86.0 90.0 89.4
OPPORTUNITY 78.9 80.2 79.0 81.6 80.3
KU-HAR 90.0 94.7 92.7 97.5 97.7
PAMAP2 72.5 73.4 76.5 79.4 79.0
REALDISP 92.9 96.7 96.9 98.2 97.7

Effect of scalable layer aggregation pool.
We investigated the layer aggregation pool
at which the best F1-score of CALANet is
achieved on seven datasets. Table 3 shows
the change in F1-score of CALANet as the
layer aggregation pool L increased; herein,
the best F1-score is indicated by the bold
font on each dataset. As shown in Ta-
ble 3, the layer aggregation pool and F1-
score tend to be proportional. In Figure 4,
CALANet with SLAP (red line) exhibited
a negligible increase in FLOPs compared
with CALANet only with LCTMs. As a re-
sult, SLAP allows CALANet to stack layers
without significantly increasing FLOPs.

Performance analysis on similar activities. To verify the performance of CALANet, we investigated
the confusion matrices (see Appendix H). Prior works [47, 24] suffered from activities that have
similar vibrations in signal waveforms, such as “Sit” and “Talk-Sit,” as described in Section 1.
Compared with these works, our CALANet significantly improved the accuracy of those activities on
the KU-HAR dataset. For other examples, these activities include (“rope jumping” and “waking”)
[20, 14, 48, 49] and (“knees bending crouching” and “reach heels backwards”) [8]. On the other
hand, our CALANet correctly classified “rope jumping” as “waking” compared to RepHAR that
misclassified “rope jumping” as “walking” 20 times [49] on the PAMAP dataset. Compared to
MG-WHAR [8] misclassified “knees bending crouching” by approximately 20% as “reach heels
backwards”, our CALANet misclassified “knees bending crouching” as “reach heels backwards” only
two times on the REALDISP dataset.

Applicability of CALA structure. Our CALA structure can effectively be applied to existing CNNs
if the following constraints are satisfied: (1) the layers of a network architecture should be calculated
sequentially and independently; (2) the output of each layer should be able to be expressed as a
(temporal length × channel size) matrix. To the best of our knowledge, most wearable sensor-based
human activity recognition models can satisfy the above constraints. In Table 4, we applied our
LCTMs and SLAP to SqueezeNet [22]. Specifically, the output of a squeeze convolution layer in
each fire module is fed into LCTMs and connected to the last layer. As a result, our modification
significantly improved the F1-score of SqueezeNet on 71% of all datasets while maintaining its
FLOPs. In addition, we applied CALANet to the ECG heartbeat classification problem using the
MIT-BIH arrhythmia dataset [16]. CALANet exhibited comparable performance with other networks

9

Table 4: Comparison results of SqueezeNet with/without CALA structure on seven datasets.

UCI-HAR UniMiB-SHAR DSADS OPPORTUNITY

Model F1 FLOPs F1 FLOPs F1 FLOPs F1 FLOPs

SqueezeNet + CALA (Ours) 92.4 8.2M 75.8 9.5M 87.3 11.4M 68.4 12.3M
SqueezeNet 92.1 10.4M 74.9 12.4M 84.7▼ 13.7M 59.7▼ 13.2M

KU-HAR PAMAP2 REALDISP

Model F1 FLOPs F1 FLOPs F1 FLOPs

SqueezeNet + CALA (Ours) 96.7 19.5M 70.4 41.5M 93.7 34.8M
SqueezeNet 94.5▼ 25.5M 68.0▼ 52.9M 85.6▼ 39.7M

[13, 39] designed to process ECG signals (see Appendix I). This result shows that CALANet has
promising applicability to other ML applications.

4.4 Real-Time Activity Prediction

Table 5: Actual inference time of CALANet

Inference Time (ms / window)

Model Min Mean Max

CALANet 1.59ms 2.25ms 3.40ms
Shallow ConvNet 1.57ms 2.15ms 3.48ms

To estimate the actual response time of our
CALANet, we used the AMD Ryzen 7 5800X
8-Core Processor without the support of graph-
ics processing units. Particularly, we compared
the inference time of CALANet with Shallow
ConvNet. Similar to the conventional real-time
HAR studies, the measurements were repeated
1,000 times, and the minimum, maximum, and
mean values were recorded. Table 5 shows the
inference time of the two networks, where the
window length was set to 300 (3 s) to slide one instance at a time. CALANet exhibited a response
time similar to Shallow ConvNet, even though its depth is nine times deeper than that of Shallow
ConvNet. Consequently, these measurements show that our model is sufficient to meet the real-time
requirements.

5 Conclusion

In this article, we proposed an effective neural network called CALANet for real-time HAR from
wearable sensors. In particular, our CALANet has an all-layer aggregation structure that can aggregate
features for all layers based on the learnable channel-wise transformation matrix and scalable layer
aggregation pool. As a result, CALANet improved HAR accuracy while maintaining the efficiency
of existing real-time HAR models. In addition, we proved that the computational cost of CALANet
is equivalent to that of shallow CNNs. Our experiments demonstrated that CALANet could achieve
state-of-the-art performance on the HAR datasets under low latency.

Future studies can be conducted to overcome the limitations of the proposed method. CALANet
does not consider the various computational budgets that can be changed according to the specific
devices and the runtime optimizations of actual devices, such as memory access costs and parallel
computations. For example, future studies may further improve CALANet by introducing a new
operator designed to match the target device.

Acknowledgement. This research was supported in part by the Institute of Information & Communi-
cations Technology Planning & Evaluation (IITP) grant funded by the Korean Government (MSIT)
(2021-0-01341, Artificial Intelligence Graduate School Program (Chung-Ang University)), in part
by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant
funded by the Korean Government (MSIT) (2021-0-00766, Development of Integrated Development
Framework that supports Automatic Neural Network Generation and Deployment optimized for
Runtime Environment), and in part by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2023R1A2C1006745).

10

References
[1] D Anguita, A Ghio, L Oneto, X Parra, and JL Reyes-Ortiz. A public domain dataset for

human activity recognition using smartphones. In Proc. 21st Int. Eur. Symp. Artif. Neural Netw.,
Comput. Intell. Mach. Learn. (ESANN), pages 437–442, Apr. 2013.

[2] Oresti Baños, Miguel Damas, Héctor Pomares, Ignacio Rojas, Máté Attila Tóth, and Oliver
Amft. A benchmark dataset to evaluate sensor displacement in activity recognition. In Proc.
ACM Conf. Ubiquitous Comput., pages 1026–1035, Sep. 2012.

[3] Billur Barshan and Murat Cihan Yüksek. Recognizing daily and sports activities in two open
source machine learning environments using body-worn sensor units. Comput. J., 57(11):
1649–1667, Nov. 2014.

[4] Valentina Bianchi, Marco Bassoli, Gianfranco Lombardo, Paolo Fornacciari, Monica Mordonini,
and Ilaria De Munari. IoT wearable sensor and deep learning: An integrated approach for
personalized human activity recognition in a smart home environment. IEEE Internet Things J.,
6(5):8553–8562, Oct. 2019.

[5] Andreas Bulling, Ulf Blanke, and Bernt Schiele. A tutorial on human activity recognition using
body-worn inertial sensors. ACM Comput.Surv. (CSUR), 46(3):1–33, Jan. 2014.

[6] Ricardo Chavarriaga, Hesam Sagha, Alberto Calatroni, Sundara Tejaswi Digumarti, Gerhard
Tröster, José del R Millán, and Daniel Roggen. The opportunity challenge: A benchmark
database for on-body sensor-based activity recognition. Pattern Recognit. Lett., 34(15):2033–
2042, Nov. 2013.

[7] Kaixuan Chen, Dalin Zhang, Lina Yao, Bin Guo, Zhiwen Yu, and Yunhao Liu. Deep learning
for sensor-based human activity recognition: Overview, challenges, and opportunities. ACM
Comput. Surv. (CSUR), 54(4):1–40, May 2021.

[8] Ling Chen, Yingsong Luo, Liangying Peng, Rong Hu, Yi Zhang, and Shenghuan Miao. A
multi-graph convolutional network based wearable human activity recognition method using
multi-sensors. Appl. Intell., 53(23):28169–28185, 2023.

[9] Yuqing Chen and Yang Xue. A deep learning approach to human activity recognition based on
single accelerometer. In Proc. IEEE Int. Conf. Syst., Man, Cybern., pages 1488–1492. IEEE,
Oct. 2015.

[10] L Minh Dang, Kyungbok Min, Hanxiang Wang, Md Jalil Piran, Cheol Hee Lee, and Hyeonjoon
Moon. Sensor-based and vision-based human activity recognition: A comprehensive survey.
Pattern Recognit., 108:Art. no. 107561, Dec. 2020.

[11] Joseph Early, Gavin Cheung, Kurt Cutajar, Hanting Xie, Jas Kandola, and Niall Twomey.
Inherently interpretable time series classification via multiple instance learning. In Proc. Int.
Conf. Learn. Repr. (ICLR), 2024.

[12] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-
Alain Muller. Deep learning for time series classification: a review. Data Mining Knowl.
Discov., 33(4):917–963, Mar. 2019.

[13] Biswarup Ganguly, Avishek Ghosal, Anirbed Das, Debanjan Das, Debanjan Chatterjee, and
Debmalya Rakshit. Automated detection and classification of arrhythmia from ecg signals using
feature-induced long short-term memory network. IEEE Sens. Lett., 4(8):1–4, 2020.

[14] Wenbin Gao, Lei Zhang, Wenbo Huang, Fuhong Min, Jun He, and Aiguo Song. Deep neural
networks for sensor-based human activity recognition using selective kernel convolution. IEEE
Trans. Instrum. Meas., 70:1–13, Aug. 2021.

[15] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. In International Conference on Machine Learning, pages 1243–
1252. PMLR, 2017.

11

[16] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov,
Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley.
Physiobank, physiotoolkit, and physionet: components of a new research resource for complex
physiologic signals. Circulation, 101(23):e215–e220, 2000.

[17] Nils Y Hammerla, Shane Halloran, and Thomas Plötz. Deep, convolutional, and recurrent
models for human activity recognition using wearables. In Int. Jt. Conf. Artif. Intell. (IJCAI),
pages 1533–1540, 2016.

[18] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for
image classification with convolutional neural networks. In Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), pages 558–567, Jun. 2019.

[19] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pages
4700–4708, Jul. 2017.

[20] Wenbo Huang, Lei Zhang, Wenbin Gao, Fuhong Min, and Jun He. Shallow convolutional neural
networks for human activity recognition using wearable sensors. IEEE Trans. Instrum. Meas.,
70:1–11, Jun. 2021.

[21] Altaf Hussain, Tanveer Hussain, Waseem Ullah, and Sung Wook Baik. Vision transformer and
deep sequence learning for human activity recognition in surveillance videos. Comput. Intell.
Neurosci., 2022:Art. no. 3454167, Apr. 2022.

[22] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and
Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <0.5mb
model size. arXiv:1602.07360, 2016.

[23] Andrey Ignatov. Real-time human activity recognition from accelerometer data using convolu-
tional neural networks. Appl. Soft Comput., 62:915–922, Jan. 2018.

[24] Shaik Jameer and Hussain Syed. Deep se-bilstm with ifpoa fine-tuning for human activity
recognition using mobile and wearable sensors. Sensors, 23(9):4319, 2023.

[25] Wenchao Jiang and Zhaozheng Yin. Human activity recognition using wearable sensors by deep
convolutional neural networks. In Proc. 23rd ACM Int. Conf. Multimedia, pages 1307–1310,
Oct. 2015.

[26] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. Int.
Conf. Learn. Repr. (ICLR), pages 1–15, Jan. 2015.

[27] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-
supervised nets. In Proc. Artif. intell. Statist. (AISTATS), pages 562–570. PMLR, May 2015.

[28] Athanasios Lentzas and Dimitris Vrakas. Non-intrusive human activity recognition and abnor-
mal behavior detection on elderly people: A review. Artif. Intell. Rev., 53(3):1975–2021, Jun.
2020.

[29] Sachin Mehta and Mohammad Rastegari. Mobilevit: Light-weight, general-purpose, and
mobile-friendly vision transformer. In Proc. Int. Conf. Learn. Repr. (ICLR), 2022.

[30] Daniela Micucci, Marco Mobilio, and Paolo Napoletano. Unimib shar: A dataset for human
activity recognition using acceleration data from smartphones. Appl. Sci., 7(10):Art. no. 1101,
Oct. 2017.

[31] Tomáš Mikolov et al. Statistical language models based on neural networks. Presented at
Google, Mountain View, 2nd Apr., 80(26), 2012.

[32] Taima Rahman Mim, Maliha Amatullah, Sadia Afreen, Mohammad Abu Yousuf, Shahadat
Uddin, Salem A Alyami, Khondokar Fida Hasan, and Mohammad Ali Moni. GRU-INC: An
inception-attention based approach using gru for human activity recognition. Expert Syst. Appl.,
216:Art. no. 119419, Apr. 2023.

12

[33] Mark Nutter, Catherine H Crawford, and Jorge Ortiz. Design of novel deep learning models for
real-time human activity recognition with mobile phones. In Proc. IEEE Int. Joint Conf. Neural
Netw. (IJCNN), pages 1–8. IEEE, Jul. 2018.

[34] Henry Friday Nweke, Ying Wah Teh, Mohammed Ali Al-Garadi, and Uzoma Rita Alo. Deep
learning algorithms for human activity recognition using mobile and wearable sensor networks:
State of the art and research challenges. Expert Syst. Appl., 105:233–261, Sep. 2018.

[35] Francisco Javier Ordóñez and Daniel Roggen. Deep convolutional and lstm recurrent neural
networks for multimodal wearable activity recognition. Sensors, 16(1):Art. no. 115, Jan. 2016.

[36] Jaegyun Park, Won-Seon Lim, Dae-Won Kim, and Jaesung Lee. Multitemporal sampling
module for real-time human activity recognition. IEEE Access, 10:54507–54515, May 2022.

[37] Jaegyun Park, Won-Seon Lim, Dae-Won Kim, and Jaesung Lee. GTSNet: Flexible architecture
under budget constraint for real-time human activity recognition from wearable sensor. Eng.
Appl. Artif. Intell., 124:Art. no. 106543, Sep. 2023.

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In Proc. Adv. Neural Inf. Proces. Syst. (NIPS),
volume 32, pages 8026–8037, 2019.

[39] Bach-Tung Pham, Phuong Thi Le, Tzu-Chiang Tai, Yi-Chiung Hsu, Yung-Hui Li, and Jia-Ching
Wang. Electrocardiogram heartbeat classification for arrhythmias and myocardial infarction.
Sensors, 23(6):2993, 2023.

[40] Rishav Pramanik, Ritodeep Sikdar, and Ram Sarkar. Transformer-based deep reverse attention
network for multi-sensory human activity recognition. Eng. Appl. Artif. Intell., 122:106150,
Jun. 2023.

[41] Andrea Prati, Caifeng Shan, and Kevin I-Kai Wang. Sensors, vision and networks: From video
surveillance to activity recognition and health monitoring. J. Ambient Intell. Smart Environ., 11
(1):5–22, Jan. 2019.

[42] Jun Qi, Po Yang, Atif Waraich, Zhikun Deng, Youbing Zhao, and Yun Yang. Examining
sensor-based physical activity recognition and monitoring for healthcare using internet of things:
A systematic review. J. Biomed. Informat., 87:138–153, 2018.

[43] Sen Qiu, Hongkai Zhao, Nan Jiang, Zhelong Wang, Long Liu, Yi An, Hongyu Zhao, Xin Miao,
Ruichen Liu, and Giancarlo Fortino. Multi-sensor information fusion based on machine learning
for real applications in human activity recognition: State-of-the-art and research challenges. Inf.
Fusion, 80:241–265, Apr. 2022.

[44] E Ramanujam, Thinagaran Perumal, and S Padmavathi. Human activity recognition with
smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors J.,
21(12):13029–13040, Mar. 2021.

[45] Daniele Ravi, Charence Wong, Benny Lo, and Guang-Zhong Yang. A deep learning approach
to on-node sensor data analytics for mobile or wearable devices. IEEE J. Biomed. Health
Informat., 21(1):56–64, Dec. 2016.

[46] Attila Reiss and Didier Stricker. Introducing a new benchmarked dataset for activity monitoring.
In Proc. IEEE 16th Int. Symp. Wearable Comput. (ISWC), pages 108–109. IEEE, Jun. 2012.

[47] Niloy Sikder and Abdullah-Al Nahid. Ku-har: An open dataset for heterogeneous human
activity recognition. Pattern Recognit. Lett., 146:46–54, Jun. 2021.

[48] Yin Tang, Lei Zhang, Fuhong Min, and Jun He. Multiscale deep feature learning for human
activity recognition using wearable sensors. IEEE Trans. Ind. Electron., 70(2):2106–2116, Mar.
2022.

[49] Qi Teng, Yin Tang, and Guangwei Hu. Rephar: Decoupling networks with accuracy-speed
tradeoff for sensor-based human activity recognition. IEEE Trans. Instrum. Meas., 72:1–11,
Feb. 2023.

13

[50] Lina Tong, Hanghang Ma, Qianzhi Lin, Jiaji He, and Liang Peng. A novel deep learning bi-gru-i
model for real-time human activity recognition using inertial sensors. IEEE Sensors J., 22(6):
6164–6174, Feb. 2022.

[51] Shaohua Wan, Lianyong Qi, Xiaolong Xu, Chao Tong, and Zonghua Gu. Deep learning models
for real-time human activity recognition with smartphones. Mob. Netw. Appl., 25(2):743–755,
Dec. 2020.

[52] Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui Peng, and Lisha Hu. Deep learning for
sensor-based activity recognition: A survey. Pattern Recognit. Lett., 119:3–11, Mar. 2019.

[53] Yan Wang, Shuang Cang, and Hongnian Yu. A survey on wearable sensor modality centred
human activity recognition in health care. Expert Syst. Appl., 137:167–190, Dec. 2019.

[54] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from scratch with
deep neural networks: A strong baseline. In Proc. IEEE Int. Joint Conf. Neural Netw. (IJCNN),
pages 1578–1585. IEEE, May 2017.

[55] Qiao Xiao, Boqian Wu, Yu Zhang, Shiwei Liu, Mykola Pechenizkiy, Elena Mocanu, and
Decebal Constantin Mocanu. Dynamic sparse network for time series classification: Learning
what to “see”. Proc. Adv. Neural Inf. Proces. Syst. (NeurIPS), 35:16849–16862, 2022.

[56] Cheng Xu, Duo Chai, Jie He, Xiaotong Zhang, and Shihong Duan. Innohar: A deep neural
network for complex human activity recognition. IEEE Access, 7:9893–9902, Jan. 2019.

[57] Qi Xu, Ming Zhang, Zonghua Gu, and Gang Pan. Overfitting remedy by sparsifying regulariza-
tion on fully-connected layers of cnns. Neurocomputing, 328:69–74, Feb. 2019.

[58] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep layer aggregation. In
Proc. IEEE Conf. Comput. vis. Pattern Recognit. (CVPR), pages 2403–2412, 2018.

[59] Afia Zafar, Muhammad Aamir, Nazri Mohd Nawi, Ali Arshad, Saman Riaz, Abdulrahman
Alruban, Ashit Kumar Dutta, and Sultan Almotairi. A comparison of pooling methods for
convolutional neural networks. Appl. Sci., 12(17):8643, 2022.

[60] Tahmina Zebin, Patricia J Scully, Niels Peek, Alexander J Casson, and Krikor B Ozanyan.
Design and implementation of a convolutional neural network on an edge computing smartphone
for human activity recognition. IEEE Access, 7:133509–133520, Sep. 2019.

[61] Shibo Zhang, Yaxuan Li, Shen Zhang, Farzad Shahabi, Stephen Xia, Yu Deng, and Nabil
Alshurafa. Deep learning in human activity recognition with wearable sensors: A review on
advances. Sensors, 22(4):Art. no. 1476, Feb. 2022.

[62] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), pages 6848–6856, Jun. 2018.

[63] Ye Zhang, Longguang Wang, Huiling Chen, Aosheng Tian, Shilin Zhou, and Yulan Guo.
If-convtransformer: A framework for human activity recognition using imu fusion and con-
vtransformer. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 6(2):1–26, Jul. 2022.

[64] Bowen Zhao, Huanlai Xing, Xinhan Wang, Fuhong Song, and Zhiwen Xiao. Rethinking
attention mechanism in time series classification. Inf. Sci., 627:97–114, 2023.

14

Appendix

A Proof of Proposition 1

Given the original signals X(0) ∈ RT,M, the first convolution layer generates new feature sig-
nals X(1) ∈ RT,N1

, resulting in a time complexity of O(TMN (1)D
(1)
k). Suppose that the

l-th intermediate convolution layer includes a kernel K(l) ∈ RD
(l)
k ,N(l−1),N(l)

and N (l) is a
positive-integer multiple of N (l−1), that is, N (l) = c(l)N (l−1). Generally, c ≥ 1 and the pool-
ing layer adjusts the temporal resolution T to T/c if c ≥ 2. Therefore, its time complexity is
O(T (l)D

(l)
k M (l)N (l))) = O(T (l−1)D

(l)
k (N (l−1))2). Given the stack of L convolution layers, their

time complexity can be simplified as follows:

O(TDkMN)︸ ︷︷ ︸
Part 1

+O(TDkN
2L), (10)

whereN andDk are the average of the number of output features and the kernel sizes across the layers,
respectively. If M ≤ N(L− 1), the time complexity of convolution layers becomes O(TDkN

2L).

B Proof of Lemma 1

Consistent with Proposition 1, the time complexity of calculating the features is O(TDkN
2L). Since

the number of output channels across the standard convolution layers is N, the time complexity of
calculating LCTMs for all layers is O(TN2L). Given L×N aggregated features and V activities,
the Softmax layer predicts an activity with the time complexity of O(LNV). Consequently, the time
complexity of our CALANet is formalized as:

O(TDkN
2L)︸ ︷︷ ︸

Part 2

+O(TN2L)︸ ︷︷ ︸
Part 3

+O(LNV)︸ ︷︷ ︸
Part 4

. (11)

Because V commonly is less than T×Dk ×N, Eq. (11) can be rewritten as O(TDkN
2L).

C Proof of Lemma 2

Given an input X ∈ RT,M , M channels are evenly divided into L channel groups. More precisely,
for each channel group, the convolution layer generates ⌊N/L⌋ output channels, resulting in the time
complexity of O(TDk(MN/L2)). Since each convolution layer generates the output Y ∈ RT,N

across L channel groups, the time complexity of each layer is O(TDk(MN/L)). Because our
CALANet includes L standard convolution layers to calculate the local temporal correlations, part 2
of Eq. (11) is reduced to O(TDkN

2), consistent with Proposition 1.

D Proof of Lemma 3

Given an input X ∈ RT,M , LCTMs at each layer generate a vector with ⌊N/L⌋ elements, resulting
in the time complexity of O(TM(N/L)). As shown in Figure 2, the number of output channels for
each layer is fixed as N across layers. Therefore, the time complexity of the all-layer aggregation is
O(T (N2/L)). Similar to Lemma 2, part 3 of Eq. (11) is reduced to O(TN2).

E Proof of Theorem 1

Consistent with Lemma 2 and Lemma 3, part 2 and part 3 of Eq. (11) is simplified as:

O(TDkN
2) +O(TN2) (12)

In addition, we fixed the number of features fed into the Softmax layer to N. Therefore, part 4 of
Eq. (11) is reduced to O(NV). Because V commonly is less than T×Dk ×N, Eq. (6) is reduced
O(TDkN

2).

15

F Details of datasets

The benchmark datasets used in our experiment follow the following setup:

• The UCI-HAR dataset [1] was recorded at a sampling frequency of 50 Hz. Precisely, 30
subjects performed six basic activities (e.g., walking, upstairs, sitting) using accelerometers
and gyroscopes embedded in Android smartphones. As the authors recommended, each
segment’s length is set to 128, and 70% and 30% of the dataset were used as the training
and test sets, respectively.

• The UniMiB-SHAR dataset [30] was recorded at a sampling frequency of 50 Hz, where
the length of each segment is 151. The 30 subjects performed 17 activities, including nine
activities of daily living (e.g., walking and standing) and eight fall activities (e.g., forward
and syncope), using an accelerometer in Android smartphones. Precisely, 70% and 30% of
the dataset were used as the training and test sets, respectively.

• The DSADS dataset [3] was recorded at a sampling frequency of 25 Hz, where the length of
each segment is 125. Eight subjects performed 19 daily and sports activities (e.g., exercising
on a stepper and rowing) using accelerometers, gyroscopes, and magnetometers embedded
in five MTx trackers. More precisely, the MTx units measured the sensor signals on the
torso, right arm, left arm, right leg, and left leg. We split the dataset into 80% training and
20% test sets based on the subject’s identification (ID).

• The OPPORTUNITY dataset [6] was recorded at a sampling frequency of 30 Hz in a
sensor-rich environment with wearable, object, and ambient sensors, where the length of
each segment is 90. We only considered wearable sensors for real-time HAR, including
accelerometers and inertial measurement units (IMUs); the number of input channels is
113 in our experiments. The four subjects performed 17 activities, including complicated
activities such as “drink from cup" and “open door," categorized into ADL 1-5 and Drill.
We used the ADL 5 data for subject 1; the Drill data for subject 2; the ADL 1 and 4 data for
subject 3; and the ADL 4 data for subject 4 as the test set [32]. The remaining data were
used as the training set.

• The KU-HAR dataset [47] was recorded at a sampling frequency of 100 Hz, where the
length of each segment is 300. Precisely, 90 subjects performed 18 daily activities (e.g.,
talking with hand movements and picking up an abject) using accelerometers and gyroscopes
embedded in smartphones. The 80% and 20% of the dataset were used as the training and
test sets, respectively.

• The PAMAP2 dataset [46] was recorded at 100 and 9 Hz sampling frequencies for IMUs and
a heart rate monitor, respectively. Precisely, nine subjects performed 18 activities, including
basic activities (e.g., sitting and running) and complicated activities (e.g., watching TV and
folding laundry), where the length of each segment is 512. We used the data aggregated from
subjects 102 and 106 as the test set. In addition, we added 30% of the data for “watching
TV", “car driving," and “playing soccer" into the test set because they were performed by
only one subject. The remaining data were used as the training set.

• The REALDISP dataset [2] was recorded at a sampling frequency of 50 Hz from nine
IMUs, where the length of each segment is 250. More precisely, 17 subjects performed 33
fitness activities (e.g., lateral bend arm up and upper trunk and lower body opposite twist)
using accelerometers, gyroscopes, and magnetometers. In addition, the authors provided
orientation estimates in quaternion format. We split the dataset into 70% training and 30%
test sets based on subject ID.

G Details of baselines

We summarize the models used in our experiments, as follows:

• CNNs for real-time HAR. We adopted three CNNs as state-of-the-art models in real-
time HAR. Shallow ConvNet [23] comprises a single convolution layer and two fully-
connected layers, where the basic statistical features to encode global temporal information
are concatenated with outputs of the convolution layer. RepHAR [49] comprises three

16

convolution layers with re-parameterization and a Softmax layer. Res-GTSNet [37] contains
nine grouped temporal shift module layers and a Softmax layer.

• CNNs with recurrent layers or attention mechanisms. We adopted two CNNs with
recurrent layers and two CNNs with attention mechanisms to verify the effectiveness of
our all-layer aggregation. DeepConvLSTM [35] contains four convolution layers and
two recurrent LSTM layers with a Softmax classifier. Bi-GRU-I [50] is composed of
two bi-directional GRU layers, three inception layers, and a Softmax layer. Compared
with DeepConvLSTM, its architecture has a reverse order of convolution and recurrent
layers. RevAttNet [40] contains six convolutional layers, two recurrent layers, and two
reverse attention modules, including LSTM, deconvolution, and multi-head attention. IF-
ConvTransformer [63] is composed of IMU fusion blocks, four convolutional layers, and
two self-attention layers, where the IMU fusion blocks are used to fuse the features from
multiple sensor modalities based on sensor-wise convolutional layers.

• Time-Series Classification (TSC) models. In addition, we adopted two CNNs that achieved
substantial success in the TSC, which is more general-purpose than HAR. Specifically,
T-ResNet [54, 12] consists of three residual blocks, each comprising three convolution
layers with a residual connection, and a Softmax layer. T-FCN [54, 12] consists of three
convolution layers and a Softmax layer. Compared with the real-time models, it has more
output channels. MILLET [11] comprises five identical networks with conjunctive pooling
layers, where each network contains six convolutional layers with multiple kernel sizes.
DSN [55] contains three sparse CNN module, each of which includes a dynamic sparse
convolution and point-wise convolution.

For fairness, we re-implemented all the baseline networks in PyTorch [38] and excluded sophisticated
tricks of each original setting, such as a gradient clipping [31] and learning rate warmup [18].
Precisely, they were trained for 300 epochs with a batch size of 128 using a 2080Ti graphics-
processing unit. We used the Adam optimizer [26] with β1 = 0.9, β2 = 0.999 and ϵ = 10−8, where
the learning rate and weight decay were set to 0.0005. For the CALALet, we set Dk, N, and L
to 5, 128, and 9, respectively. On the OPPORTUNITY and REALDISP datasets with many input
channels (113 and 117), we doubled the number of filters for the first convolution of CALANet.
The hyper-parameters of the existing networks are set according to the values recommended in the
original papers.

H Confusion matrices

Figures 5–7 show the confusion matrices of CALANet on three datasets. Their diagonal elements
represent the number of instances correctly classified to the related activities, with the color darkening
as the number grows.

17

A1 A2 A3 A4 A5 A6 A7 A8 A9 A1
0

A1
1

A1
2

A1
3

A1
4

A1
5

A1
6

A1
7

A1
8

Predicted

A1

A2

A3

A4

A5

A6

A7

A8

A9

A1
0

A1
1

A1
2

A1
3

A1
4

A1
5

A1
6

A1
7

A1
8

Ac
tu
al

367 6 5 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0

8 354 10 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0

5 6 358 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 5 361 0 0 0 1 0 0 0 0 0 1 0 0 0 0

1 0 3 0 446 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 358 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 3 1 0 347 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 255 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 120 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 85 0 0 0 0 0 0 0 0

0 0 1 0 1 0 2 0 0 0 202 0 0 0 0 0 0 0

0 0 0 3 0 0 0 0 0 0 0 151 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 60 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2 0 57 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 94 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 158 1 0

0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 170 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 86
0

50

100

150

200

250

300

350

400

Figure 5: Confusion matrix of CALANet on the KU-HAR dataset. A1, stand; A2, sit; A3, talk-sit;
A4, talk-stand; A5, stand-sit; A6, lay; A7, lay-stand; A8, pick; A9, jump; A10, push-up; A11, sit-up;
A12, walk; A13, walk-backward; A14, walk-circle; A15, run; A16, stair-up; A17, stair-down; A18,
table-tennis.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A1
0

A1
1

A1
2

A1
3

A1
4

A1
5

A1
6

A1
7

A1
8

Predicted

A1

A2

A3

A4

A5

A6

A7

A8

A9

A1
0

A1
1

A1
2

A1
3

A1
4

A1
5

A1
6

A1
7

A1
8

Ac
tu
al

446 0 0 0 0 0 0 0 0 0 1 0 9 0 0 3 0 0

0 236 23 0 0 0 0 0 0 0 0 0 36 0 0 150 0 0

0 13 313 0 0 0 0 0 2 0 0 0 20 142 0 0 0 0

0 0 2 565 0 0 0 0 0 0 5 2 0 0 0 0 0 0

0 0 0 0 215 5 5 0 0 0 0 0 0 0 0 0 87 0

0 0 0 0 0 429 2 0 0 0 0 0 0 0 15 0 0 0

0 0 0 43 1 0 507 0 0 0 0 0 0 0 4 0 0 0

0 0 0 0 0 0 0 250 0 0 0 0 0 0 0 0 0 0

4 19 0 0 0 0 0 0 520 0 0 0 0 0 0 70 0 0

0 0 0 0 0 0 0 0 0 162 0 0 0 0 0 0 0 0

0 0 0 9 0 0 0 0 0 0 264 11 13 0 0 0 0 0

0 0 0 20 0 11 0 0 0 1 3 165 25 3 1 26 0 1

0 0 2 0 0 0 0 0 0 0 0 0 359 5 3 39 0 0

0 0 12 0 0 7 0 0 2 0 0 0 6 407 214 9 0 0

0 1 0 0 0 0 0 0 8 0 0 0 0 204 0 0 0 0

11 40 2 0 0 0 0 0 28 0 0 0 6 29 0 167 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 138 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 122
0

100

200

300

400

500

Figure 6: Confusion matrix of CALANet on the PAMAP2 dataset. A1, lying; A2, sitting; A3,
standing; A4, walking; A5, running; A6, cycling; A7, Nordic-walking; A8, watching-TV; A9,
computer-work; A10, car-driving; A11, ascending-stairs; A12, descending-stairs; A13, vacuum-
cleaning; A14, ironing; A15, folding-laundry; A16, house-cleaning; A17, playing-soccer; A18,
rope-jumping.

18

A1 A2 A3 A4 A5 A6 A7 A8 A9 A1
0

A1
1

A1
2

A1
3

A1
4

A1
5

A1
6

A1
7

A1
8

A1
9

A2
0

A2
1

A2
2

A2
3

A2
4

A2
5

A2
6

A2
7

A2
8

A2
9

A3
0

A3
1

A3
2

A3
3

Predicted

A1
A2
A3
A4
A5
A6
A7
A8
A9

A1
0

A1
1

A1
2

A1
3

A1
4

A1
5

A1
6

A1
7

A1
8

A1
9

A2
0

A2
1

A2
2

A2
3

A2
4

A2
5

A2
6

A2
7

A2
8

A2
9

A3
0

A3
1

A3
2

A3
3

Ac
tu
al

244 0
0 162 0
0 2 204 0
0 0 0 21 0
0 0 0 0 55 0
0 0 0 0 0 54 0
0 0 0 0 0 0 78 0
0 0 0 0 0 0 0 24 0
0 0 0 0 0 0 0 0 129 0
0 0 0 0 0 0 0 0 0 108 0
0 0 0 0 0 0 0 0 0 0 107 0
0 0 0 0 0 0 0 0 0 0 0 88 0
0 0 0 0 0 0 0 0 0 0 0 0 68 0
0 0 0 0 0 0 0 0 0 0 0 0 0 53 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 47 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 0 0 0 0 0 0 0 0 0 0 0 0 0
0 46 0 0 0 0 0 0 0 0 0 0 0 0
0 57 0 0 0 0 0 0 0 0 0 0 0
0 69 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 3 27 4 0 0 0 0 0 0 0 0
0 47 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0
0 14 0 0 0 0 0 0
0 80 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 113 0 0 0 0
0 65 0 0 0
0 174 0 0
0 226 0
0 175

0

50

100

150

200

Figure 7: Confusion matrix of CALANet on the REALDISP dataset. A1, walking; A2, jogging; A3,
running; A4, jump-up; A5, jump-front-back; A6, jump-sideways; A7, jump-leg/arms-open/closed;
A8, jump-rope; A9, trunk-twist-arms; A10, trunk-twist-elbows; A11, waist-bends-forward; A12,
waist-rotation; A13, waist-bends; A14, reach-heels-backwards; A15, lateral-bend; A16, lateral-bend-
arm-up; A17, repetitive-forward-stretching; A18, upper-trunk-and-lower-body-opposite-twist; A19,
arms-lateral-elevation; A20, arms-frontal-elevation; A21, frontal-hand-claps; A22, arms-frontal-
crossing; A23, shoulders-high-amplitude-rotation; A24, shoulders-low-amplitude-rotation; A25,
arms-inner-rotation; A26, knees-alternatively-breast; A27, heels-alternatively-backside; A28, knees-
bending-crouching; A29, knees-alternatively-bend-forward; A30, rotation-on-the-knees; A31, rowing;
A32, elliptical-bike; A33, cycling.

I ECG heartbeat classification

Table 6: Comparison results on the MIT-BIH ar-
rhythmia dataset.

Model Average Accuracy

CALANet 98.2
Pham et al. [39] 98.5
Ganguly et al. [13] 97.3

We applied CALANet to the ECG heartbeat clas-
sification problem using the MIT-BIH arrhyth-
mia dataset [16], which includes 24-hour ambu-
latory ECG recordings collected from inpatients
and outpatients at Boston’s Beth Israel Hospi-
tal. The dataset has 21,892 heartbeats, each with
a signal length of 187. In Table 6, CALANet
exhibited comparable performance with other
networks designed to process ECG signals. This
result shows that CALANet has promising ap-
plicability to other ML applications.

19

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: To achieve real-time HAR, prior HAR studies designed the network architec-
tures of CNNs by restricting the number of layers shallowly or reducing connections of
each layer, resulting in the significant loss of accuracy. The proposed method addressed this
problem by improving the accuracy based on cheap all-layer aggregation while maintaining
the computational cost of the existing real-time HAR networks.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This paper does not consider various computational budgets that may be
changed according to the specific devices. This limitation must be improved via future
works such as neural architecture search, runtime optimization, and parallel computation.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

20

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We proved that the computational cost of CALANet is equivalent to that of
conventional CNNs, including shallow networks.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We will release our code by including the GitHub link in the paper if finishing
the blind review process.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.

21

In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will release our code by including the GitHub link in the paper if finishing
the blind review process.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The full details are provided in the code and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We performed a paired t-test at the 95% significance level on each dataset.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The appendix includes the details on the computer resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research does NOT violate the the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: As HAR is a fundamental technique in healthcare, fitness tracking, and
surveillance, our accurate and real-time model can reduce the negative societal impacts due
to false predictions.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

23

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We will include the usage guidelines or restrictions in code release.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited the original paper that produced the datasets and our source code
release follows GPL-3.0 license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

24

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper and the code release include the details about training, license, usage
guidelines, etc.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We used only public datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We used only public datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

25

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26

	Introduction
	Related Work
	Cheap All-Layer Aggregation Network
	Computational cost of convolutional neural networks
	Learnable channel-wise transformation matrix
	Scalable layer aggregation pool

	Experiments
	Experimental Settings
	Comparison results
	Ablation study
	Real-Time Activity Prediction

	Conclusion
	Proof of prop1
	Proof of lem1
	Proof of lem2
	Proof of lem3
	Proof of theorem
	Details of datasets
	Details of baselines
	Confusion matrices
	ECG heartbeat classification

