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Abstract
Learning visual representations with interpretable
features, i.e., disentangled representations, re-
mains a challenging problem. Existing methods
demonstrate some success but are hard to apply to
large-scale vision datasets like ImageNet. In this
work, we propose a simple post-processing frame-
work to disentangle content and style in learned
representations from pre-trained vision models.
We model the pre-trained features probabilisti-
cally as linearly entangled combinations of the
latent content and style factors and develop a sim-
ple disentanglement algorithm based on the proba-
bilistic model. We show that the method provably
disentangles content and style features and ver-
ify its efficacy empirically. Our post-processed
features yield significant domain generalization
performance improvements when the distribution
shift occurs due to style changes or style-related
spurious correlations.

1. Introduction
Deep learning models produce data representations that
are useful for many downstream tasks. Disentangled rep-
resentations, i.e. representations where coordinates have
meaningful interpretations, are harder to learn (Locatello
et al., 2019b) but they come with many additional benefits,
e.g., data-efficiency (Higgins et al., 2018) and use-cases in
causality (Schölkopf et al., 2021), fairness (Locatello et al.,
2019a), recommender systems (Ma et al., 2019), and image
(Lee et al., 2018) and text (John et al., 2018) processing.

In this paper, we consider the problem of isolating con-
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Figure 1. Illustration of the proposed method, PISCO. Features of
an original image and features of a stylized image are different
when extracted using a feature extractor such as ResNet-50 pre-
trained in ImageNet. These features are entangled, thus changing
the style affects all features. When PISCO is used to disentangle
these features, it isolates style features and content features, thus
the content features of the two images are the same and only the
style features are different.

tent from style in visual representations (Wu et al., 2019;
Nemeth, 2020; Ren et al., 2021; Kügelgen et al., 2021), a
special case of learning disentangled representations. Here
we use the term style to refer to features or factors that are
not causally related to the outcome of interest. We also note
prior works that, different from our work, study style in
the context of image appearance (Garcia & Vogiatzis, 2018;
Saleh & Elgammal, 2015; Ruta et al., 2022; 2021). Our
goal is to obtain representations where a pre-specified set of
factors (coordinates) encodes image “styles” (e.g., rotation,
color scheme, or style transfer (Huang & Belongie, 2017)),
while the remaining factors encode content and are invariant
to style changes (see Figure 1).

An important application of such representations is out-of-
distribution (OOD) generalization. Image recognition sys-
tems have been demonstrated to be susceptible to spurious
correlations associated with style, e.g., due to background
colors (Beery et al., 2018; Sagawa et al., 2019), and to
various style-based distribution shifts, e.g., due to image
corruptions (Hendrycks & Dietterich, 2018), illumination,
or camera angle differences (Koh et al., 2020). Simply dis-
carding style factors when training a prediction model on
disentangled representations can aid OOD generalization.
Disentangling content from style is also advantageous in
many other applications, e.g., image retrieval (Wu et al.,
2009), image-to-image translation (Ren et al., 2021), and
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visually-aware recommender systems (Deldjoo et al., 2022).

While there is abundant literature on learning disentangled
representations, most statistically principled methods fit so-
phisticated generative models (Bouchacourt et al., 2018;
Hosoya, 2018; Shu et al., 2019; Wu et al., 2019; Locatello
et al., 2020). These methods work well on synthetic and
smaller datasets but are hard to train on larger datasets like
ImageNet (Russakovsky et al., 2015). This is in stark con-
trast to representation learning practice; the most common
representation learning methods only learn an encoder (e.g.
SimCLR (Chen et al., 2020)). That said, there are some re-
cent works that consider how to learn disentangled encoders
(Zimmermann et al., 2021; Kügelgen et al., 2021; Wang
et al., 2021).

Specific to style and content, Kügelgen et al. (2021) show
that contrastive learning, e.g., SimCLR (Chen et al., 2020),
theoretically can isolate style and content, i.e. learn rep-
resentations that are invariant to style. Contrastive learn-
ing methods are gaining popularity due to their ability to
learn high-quality representations from large image datasets
without labels via self-supervision (Doersch et al., 2015;
Chen et al., 2020; Chen & Batmanghelich, 2020; Grill et al.,
2020; Chen & He, 2021). Unfortunately, style invariance
of contrastive learning representations is rarely achieved
in practice due to a variety of additional requirements that
are hard to control for (see Section 5 and Appendix C.1 in
Kügelgen et al. (2021)).

Most of the prior works are in-processing methods that train
an end-to-end encoder from scratch. On the other hand, we
focus on post-processing representations from a pre-trained
deep model (which may not be disentangled) so that they
become provably disentangled. The post-processing setup
is appealing as it allows re-using large pre-trained models,
thus reducing the carbon footprint of training new large
models (Strubell et al., 2019) and making deep learning
more accessible to practitioners with limited computing
budgets. Post-processing problem setups are prominent in
the algorithmic fairness literature (Wei et al., 2019; Petersen
et al., 2021).

To develop our post-processing setup for learning disentan-
gled representations, we assume that the pre-trained repre-
sentations are simply an invertible linear transformation of
the style and content factors (cf. Assumption 2.1). While
the linear model assumption may appear too simple at a
first glance, it is motivated by the result of Zimmermann
et al. (2021) showing that contrastive learning recovers true
data-generating factors up to an orthogonal transformation.
The representation may not come from a contrastive learn-
ing model or assumptions of Zimmermann et al. (2021)
might be violated in practice, thus we consider a more gen-
eral class of linear invertible transformations in our model
which we justify theoretically and verify empirically. Our

contributions are summarized below:

• We formulate a simple linear model of entanglement
in pre-trained visual representations and a correspond-
ing method for Post-processing to Isolate Style and
COntent (PISCO).

• We establish theoretical guarantees that PISCO learns
disentangled style and content factors and recovers
correlations among styles. Our theory is supported by
a synthetic dataset study.

• We verify the ability of PISCO to disentangle style
and content on three image datasets of varying size and
complexity via post-processing of various pre-trained
deep visual feature extractors. In our experiments,
discarding the learned style factors yields significant
out-of-distribution performance improvements while
preserving the in-distribution accuracy.

2. Problem formulation
In light of the recent success of contrastive learning tech-
niques for obtaining self-supervised embeddings, Zimmer-
mann et al. (2021) have performed a theoretical investiga-
tion on the InfoNCE family (Gutmann & Hyvärinen, 2012;
Oord et al., 2018; Chen et al., 2020) of contrastive losses.
Under some distributional assumptions, their investigation
reveals that InfoNCE loss can invert the underlying gener-
ative model of the observed data. More specifically, given
an observed data x = g(z) where z and g are correspond-
ingly the underlying latent factors and the generative model,
Zimmermann et al. (2021) showed that InfoNCE loss finds
a representation model f such that f ◦ g(z) = Rz for some
orthogonal matrix R. Though this is quite welcoming news
in nonlinear independent component analysis (ICA) litera-
ture (Hyvärinen & Pajunen, 1999; Hyvärinen & Morioka,
2016; Jutten et al., 2010), the representation model may not
be good enough for learning a disentangled representation.
In fact, Zimmermann et al. (2021) show that only under
a very specific generative modeling assumption a type of
contrastive objective can achieve disentanglement, and that
disentanglement is lost when the assumptions are violated.

At a high level, disentanglement in representation learn-
ing means the style and content factors are not affected by
each other. Looking back at the result (Zimmermann et al.,
2021) that contrastive loss can recover the generative latent
factors up to an unknown rotation, an implication is that
disentanglement in the learned representation may not be
achieved. However, all is not lost; we suggest a simple
post-processing method for the learned representations and
show that it achieves the desired disentanglement.

We now formally describe our post-processing setup. We
denote the space of the latent factor as Z ⊂ Rd and assume
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that the latent factor is being generated from a probability
distribution Pz on Z . Similar to Zimmermann et al. (2021)
we assume that there exists a one-to-one generative map
g such that the observed data is generated as X ∋ x =
g(z), z ∼ Pz. The next assumption is crucial for our linear
post-processing technique and is motivated by the finding
in Zimmermann et al. (2021).

Assumption 2.1. There exists a representation map f :
X → Z ′ ⊂ Rd′

such that f ◦ g(z) = Az for some left
invertible matrix A ∈ Rd′×d.

An example of such f could be the representation model
learned from InfoNCE loss minimization, where Zimmer-
mann et al. (2021) showed that the assumption is true for
Z ′ = Z and A is an orthogonal matrix. A consequence of
left invertibility for A is that d′ ≥ d, i.e., the dimension
of learned representation could be potentially higher than
that of the generating latent factors, which is often natural
to assume in many applications.

Throughout the paper, we denote f ◦ g(z) as u and call
it entangled representation. With this setup, we’re now
ready to formally specify the disentanglement (also known
as sparse recovery) in representation learning.

Definition 2.2 (Disentangled representation learning/sparse
recovery). Let us denote FS ⊂ [d] ≜ {1, 2, . . . , d} as the
set of style factors and it’s cardinality as m ≜ |FS|. We
denote the remaining factors FC ≜ [d]− FS and call them
content factors. For a matrix P ∈ Rd×d′

we say the linear
post-processing u 7→ ẑ ≜ Pu disentangles or sparsely
recovers the style and content factors if the following hold
for the matrix PA:

1. [PA]FS,FS is an m×m diagonal matrix.

2. [PA]FC,FC is a (d−m)× (d−m) invertible matrix.

3. [PA]FS,FC and [PA]FC,FS are m× (d−m) and (d−
m)×m null matrices.

In other words, ẑ = PSu is disentangled or sparsely recov-
ered in FS if for any j ∈ FS the coordinate [ẑ]j is a constant
multiplication of [z]j and [ẑ]FC is just a pre-multiplication
of [z]FC by an invertible matrix.

Without loss of generality we assume that FS = [m]. Next,
we highlight a conclusion of the sparse recovery, which has
a connection to independent component analysis (ICA).

Corollary 2.3 (Correlation recovery). One of the conclu-
sions of sparse recovery is that the estimated style factors
have the same correlation structure as the true style factors.
Denoting corr(X) as the correlation matrix for a generic
random vector X the conclusion can be mathematically
stated as

corr([ẑ]FS) = corr([z]FS) . (2.1)

A proof of the statement is provided in §A.3. In a special case
connected to ICA, where the true correlation distribution Pz

has uncorrelated style factors, i.e., corr([z]FS) = Im, then
same is true for estimated style factors.

The rest of the paper describes the estimation of PS and
investigates its quality in achieving disentanglement.

3. PISCO
To achieve sparse recovery, we assume that we can manipu-
late the samples in some specific ways, which we describe
below.

Assumption 3.1. We assume the following:

1. Sample manipulations: For each sample x = g(z)
and style factor j ∈ FS we have access to the sample
x(j) ≜ g(z(j)) that has been created by modifying the
j-th style factor of x while keeping content factors
unchanged, i.e.,

[z(j)]i =

{̸
= [z]i, i = j,

[z]i, i ∈ FC .
(3.1)

2. Sample annotations: There exist two numbers
αj , βj ∈ R, βj ̸= 0 which are associated to each j-th
style factor and independent of the latent factors z such
that for each sample x = g(z) and it’s modified ver-
sion x(j) = g(z(j)) we observe the sample annotations
yj = αj+βj [z]j+ϵ(j) and ỹj = αj+βj [z

(j)]j+ ϵ̃(j),
where (ϵ(j), ϵ̃(j)) pair has zero mean and is uncorre-
lated with (z, z(j)).

Sample annotations formalize the notion of concept from
interpretable ML (Kim et al., 2018) and generalize the usual
disentangled representation setting in which the latent fac-
tors are the concepts. By taking αj = 0 and βj = 1, we
have yj = [z]j and ỹj = [z(j)]j , which equates the annota-
tions and the latent factors. We provide an illustration for a
single style factor, i.e. FS = {1}, in Figure 1. Here, x is the
original image and we annotate it as α1 +β1[z]1 = +1. We
stylize the image to obtain x(1) and assume that style trans-
formation does not change any content factors of the image.
We annotate the transformed image as α1+β1[z

(1)]1 = −1.
Examples of such sample manipulations are easily avail-
able in vision problems, e.g., image corruptions (Hendrycks
& Dietterich, 2018) and style transfer (Huang & Belongie,
2017). Combining style transfer and prompt-based image
generation systems like DALL·E 2 further enables using nat-
ural language to describe desired sample manipulations (Fig-
ure 1 illustrates such image manipulation - see Appendix C.1
for prompt and other details and Figure 5 for more exam-
ples). In §5 we use these examples for our experiments.
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We denote the entangled representations (obtained from
Assumption 2.1) corresponding to the images x and x(j) as
u and u(j). With access to such sample manipulations, one
can recover the j-th latent factor from a simple minimum
norm least square regression problem:

[ẑ]j ≜ p̂⊤
j u, where

p̂j ≜ lim
µ→0+

argmin
a∈R,p∈Rd′

1

2n

n∑
i=1

[
(y

(j)
i − a− p⊤ui)

2

+(ỹ
(j)
i − a− p⊤u

(j)
i )2

]
+

µ

2
∥p∥22

(3.2)
We resort to the minimum norm least square regression
instead of the simple least square regression because the
variance of the predictor var(u) = var(Az) = Avar(z)A⊤

has rank d ≤ d′, which leads to non-invertible covariance
for the design matrix whenever d < d′.

Intuitively, p̂⊤
j u is the one dimensional linear function of

u which is most aligned to the coordinate [z]j . As we shall
see later, under our setup p̂⊤

j u is just a scalar multiple of
[z]j , and hence we successfully recover the j-th style factor.
We stack p̂j into the j-th row of P, i.e. [P]j,· = p̂⊤

j .

To extract the content factors we first recall that they should
exhibit minimal change corresponding to any changes in the
style factors [z]j , j ∈ FS. We enforce this by leveraging
our ability to manipulate styles of samples, as described in
Assumption 3.1. We describe our method below:

Estimation of content factors: We recall m = |FS|
and let U = [u1, . . . ,un,u

(j)
1 , . . . ,u

(j)
n ; j ∈ FS]

⊤ ∈
R(m+1)n×d′

be the matrix of entangled representations, and
for each j ∈ S let ∆j = [u1 − u

(j)
1 , . . . ,un − u

(j)
n ] ∈

Rn×d′
be the matrix of representation differences. We esti-

mate the content factors from the following optimization:

[ẑ]FC = Q̂(λ)u, where

Q̂(λ) ≜ argmin
Q∈R(d−|FS|)×d′

QQ⊤=I

tr
[(

Id′ −Q⊤Q
)(

U⊤U
(m+1)n

)]
+ λ

m

∑
j∈FS

tr
[
Q⊤Q

(
∆⊤

j ∆j/n
)]

.
(3.3)

Our objective has two parts: the first part is easily recog-
nized by noticing its similarity to a principle component
analysis objective. To understand the second part, we fix a
style factor j ∈ FS and observe that,

1

n

n∑
i=1

∥Q(ui − u
(j)
i )∥22

=
1

n

n∑
i=1

tr
[
Q⊤Q(ui − u

(j)
i )(ui − u

(j)
i )⊤

]
= tr

[
Q⊤Q

(
∆⊤

j ∆j/n
)]

.

(3.4)

Algorithm 1 PISCO

Input: Dataset and styles: (1) entangled representations
{ui}ni=1 ⊂ Rd′

of n images, and (2) m styles. Hyperpa-
rameters: (1) regularization strength for disentanglement
between style and content factors λ > 0, and (2) number
of content factors k.
{representations of }
for j = 1 to m do

for i = 1 to n do
u
(j)
i ← entangled feature of i-th image after chang-

ing it’s j-th style.
δ
(j)
i ← u

(j)
i − ui.

end for
p̂j ← coefficient from regression (3.2) on
{(ui,−1)}ni=1 ∪ {(u

(j)
i ,+1)}ni=1.

end for
U ← [u1,u

(1)
1 , . . . ,u

(m)
1 , . . . ,un,u

(1)
n , . . . ,u

(m)
n ]⊤ ∈

Rn(m+1)×d′

∆← [δ
(1)
1 , . . . , δ

(m)
1 , . . . , δ

(1)
n , . . . , δ

(m)
n ]⊤ ∈ Rmn×d′

Q̂(λ)← top k eigenvectors of U⊤U
n(m+1) − λ∆⊤∆

mn

Return: Post-processing matrix P(λ) as in (3.5).

Following the above, one can easily realize that the second
part of the objective enforces that the content factors [ẑ]FC

exhibit minimal change for any changes in the style factors
[z]j , j ∈ FS. In a special case λ = +∞, the [ẑ]FS will be
invariant to any changes in the style factors.

From (3.2) and (3.3) we obtain the linear post-processing
matrix (as defined in 2.2) as

P ≡ P(λ) ≜

{
[P]j,· = p̂⊤

j , j ∈ FS

[P]FC,· = Q̂(λ) .
(3.5)

We summarize our method in Algorithm 1 which is a com-
bination of simple regressions (per style factors) and an
eigen-decomposition. In the next section, we show that for
large values of λ the post-processing matrix P(λ) achieves
sparse recovery with high probability.

4. Theory
In this section, we theoretically establish that our post-
processing approach PISCO guarantees sparse recovery.
We divide the proof into two parts: the first part analyzes
the asymptotic quality of the estimated style factors and the
second part analyzes the quality of the estimated content
factors. Our first result follows:
Theorem 4.1. Let Σz ≜ var(z) be invertible. Then for any
j ∈ FS it holds:

A⊤p̂j → βjej (4.1)

almost surely as n → ∞, where {ej}dj=1 is the canonical
basis vector for Rd. Subsequently, the following hold at
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almost sure limit: (1) [PA]FS,FS converges to a diagonal
matrix, and (2) [PA]FS,FC → 0.

To establish theoretical guarantee for the content factors we
require the following technical assumption.

Assumption 4.2 (Linear independence in style factors).
Over the distribution of latent factors, the style factors are
not linearly dependent with each other. Mathematically
speaking, the following event positive probability

E =
{
z : [z−z(1), . . . , z−z(m)]FS,· is invertible

}
. (4.2)

The assumption is related to cases when the style factors
are dependent with each other. One such example is the
blurring and contrasting of images: we assume that one
doesn’t completely determine the other. To see how the
assumption is violated under linear dependence of style
factors let the first two of them completely determine one
another, i.e., one is just a constant multiplication of the other.
In that case, we point out that for any z the first two rows
of the matrix [z− z(1), . . . , z− z(m)]FS,· are just constant
multiplication of one another and the matrix is singular with
probability one.

With the setups provided by Assumptions 2.1, 3.1 and 4.2
we’re now ready to state our result about sparse recovery for
our post-processing technique.

Theorem 4.3 (Sparse recovery for PISCO). Let n ≥ d+ 1
and that the Assumptions 2.1, 3.1 and 4.2 hold. Define κ ≜
1− Pz(E) < 1 where Pz is the distribution of latent factors
and E is defined in (4.2). With probability at least 1−κn the
post-processing matrix P ≡ P(+∞) ≜ lim

λ→∞
P(λ) satisfies

the following: (1) [PA]FS,FC = 0, and (2) [PA]FC,FC is
invertible.

Proofs of Theorems 4.1 and 4.3 are provided in §A.2 and
§A.3. We combine the conclusions of the two theorems in
the following corollary.

Corollary 4.4. Let the Assumptions 2.1, 3.1 and 4.2 hold.
Then at the limit n→∞ the the post-processing matrix P ≡
P(+∞) almost surely satisfies sparse recovery conditions
in Definition 2.2.

4.1. Synthetic data study

We complement our theoretical study with an experiment in
a synthetic setup. Below we describe the data generation,
sample manipulations, and their annotations, and provide
their detailed descriptions in §B.

We generate the latent variables (z) from a 10-dimensional
centered normal random variable, where the coordinates
have unit variance, the first two coordinates are corre-
lated with correlation coefficient ρ and all the other cross-
coordinate correlations are zero. We consider the first five
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Figure 2. Plots (with error-bars over 50 repetitions) for discrep-
ancies in style recovery (∥ corr([z]FS , [ẑ]FS) − corr([z]FS)∥F)
and style-content disentanglement (∥ corr([ẑ]FC , [z]FS)∥F) for es-
timated factors, where ∥ · ∥F is the normalized Frobenius norm
(see Footnote 1). Here, ρ is the correlation between the first two
coordinates in true factors.

coordinates of z as the style factors, i.e. FS = {1, 2, . . . , 5},
and the rest of them as content factors.

The entangled representations are d′ = 10 dimensional
vectors and which we obtain as u = Az = LUz, where L
is a 10× 10 lower triangular matrix whose diagonal entries
are one and off-diagonal entries are 0.9 and U is a randomly
generated d× d orthogonal matrix.

Sample manipulations and annotations: For j-th style
coordinates we obtain two manipulated samples per latent
factor z, which (denoted as z(j),+ and z(j),− ) set the j-th
coordinate to it’s positive (resp. negative) absolute value, i.e.
[z(j),+]j = |[z]j | (resp. [z(j),−]j = −|[z]j |), and annotate
it as +1 (resp. −1). Since the first two coordinates have
correlation coefficient ρ, if either of them is changed by the
value δ then the other one must be changed by ρδ. Note
that one of z(j),+ and z(j),− is exactly equal to z. The
corresponding entangled representations to the manipulated
latent factors are used for recovering the style factors (as in
(3.2) and (3.5)), and content factors (as in (3.3)).

Style recovery: In our synthetic experiments we validate
the quality of sparse recovery for estimated latent factors
on two fronts: (1) recovery in the style factors, and (2)
disentanglement between style and content factors. To ver-
ify recovery in style factors we recall Theorem 4.1 that
the estimated style factors ([ẑ]FS ) approximate the true
style factors ([z]FS ) up to constant multiplications. This
implies that the cross-correlation between estimated and
true style factors (corr([z]FS , [ẑ]FS)) should be approxi-
mately identical to the correlation of the true style factors
(corr([z]FS)). In Figure 2 we verify this by calculating
∥ corr([z]FS , [ẑ]FS)− corr([z]FS)∥F where ∥ · ∥F is the nor-
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malized Frobenius norm of a matrix.1 We refer to it as the
discrepancy in style recovery and observe that it is small and
not affected by ρ. Even for ρ as large as 0.9 the recovery of
style factors has small discrepancy, which matches with the
conclusion of Theorem 4.1. Additionally, we observe that
the discrepancies are the same for different values of λ (that
appears in (3.3)) since the estimation of the style factors
doesn’t involve λ.

Style and content disentanglement: Note that the style
and content factors are uncorrelated with each other, i.e.
corr([z]FS , [z]FC) = 0. If the content factors and style
factors are truly disentangled then the cross-correlation be-
tween estimated content factors [ẑ]FC and true style factors
[z]FS should be approximately equal to zero. In Figure 2
we verify this by plotting ∥ corr([ẑ]FC , [z]FS)∥F, which we
refer to as the discrepancy in style-content disentanglement
(SCD) and notice that for large enough values of the pa-
rameter λ (i.e. λ > 100) the discrepancy is quite small.
Though ρ has a mild effect on disentanglement between
style and content factors for smaller values of λ, the effect
is indistinguishable for large λ (λ > 103).

5. Experiments
We verify the ability of PISCO (Algorithm 1) to isolate
content and style in pre-trained visual representations and
the utility of the learned representations for OOD general-
ization when (i) train data is spuriously correlated with the
style and the correlation is reversed in the test data; (ii) test
data is modified with various image transformations, i.e.,
domain generalization with style-based distribution shifts.
We consider nine transformations in our experiments: four
types of image corruptions (rotation, contrast, blur, and
saturation) on CIFAR-10 (Krizhevsky et al., 2009), simi-
lar to ImageNet-C (Hendrycks & Dietterich, 2018), four
transformations based on style transfer (Huang & Belongie,
2017) on ImageNet (Russakovsky et al., 2015), similar to
Stylized ImageNet (Geirhos et al., 2018), and a color trans-
formation on MNIST, similar to Colored MNIST (Arjovsky
et al., 2019) (see §D.1 for Colored MNIST experiment).
The experiments code is available on GitHub.2

5.1. Transformed CIFAR

In this set of experiments, our goal is to disentangle four
styles (m = 4) corresponding to image corruptions (ro-
tation, contrast, blur, and saturation) from content. For
feature extraction we consider a ResNet-18 (He et al.,
2016) pre-trained on ImageNet (Russakovsky et al., 2015)
(Supervised) and a SimCLR (Chen et al., 2020) trained

1The normalized Frobenius norm of a matrix A ∈ Rm×n is

denoted as ∥A∥F and defined as ∥A∥F ≜

√∑
i,j [A]2i,j
mn

.
2Code: github.com/lilianngweta/PISCO.

on CIFAR-10 via self-supervision with the same architec-
ture (SimCLR). For each feature extractor, we learn a single
PISCO post-processing feature transformation matrix P(λ)
as in Algorithm 1 to jointly disentangle all considered styles
from content. We report results for λ ∈ {1, 10, 50}.3

Baselines Our main baseline is the vanilla SimCLR rep-
resentations due to Kügelgen et al. (2021) who argued that
it is sufficient for style and content disentanglement under
some assumptions. Thus we study whether we can further
improve style-content disentanglement in SimCLR in a real
data setting in addition to experiments with features ob-
tained via supervised pretraining on ImageNet. We also
compare PISCO’s style-content disentanglement with IP-
IRM (Wang et al., 2021), which is an in-processing method
combining self-supervised learning and invariant risk mini-
mization (Arjovsky et al., 2019) to learn disentangled rep-
resentations. We use IP-IRM model trained on CIFAR-100
provided by the authors.

We note that there are many other methods for learning dis-
entangled representations (Wu et al. (2019); Nemeth (2020);
Ren et al. (2021); Kügelgen et al. (2021), to name a few),
however, they all require training an encoder-decoder model
from scratch and can not take advantage of powerful feature
extractors pre-trained on large datasets as in our setting. In
comparison to these works, the simplicity and scalability of
our method (as well as of using vanilla SimCLR features)
come at a cost, i.e., we forego the ability to visualize dis-
entanglement via controlled image generation due to the
absence of a generator/decoder. Instead, we demonstrated
disentanglement theoretically (§4) and verify it empirically
via correlation analysis of learned style and content fac-
tors, similar to prior works that studied disentanglement in
settings without a generator/decoder (Zimmermann et al.,
2021; Kügelgen et al., 2021).

Disentanglement In Table 1 we summarize the disentan-
glement metrics for the smallest considered λ = 1. In the
style correlation columns (Style Corr.), we report the corre-
lation between the corresponding style value (encoded as
−1 for the original images and +1 for the transformed ones)
and the factor corresponding to style in the learned repre-
sentations. None of the baselines explicitly identify style
factors, thus we use the coordinate maximally correlated
with the corresponding style as the style factor.

We notice that the blur style is the hardest to learn for both
supervised and unsupervised representations. As we will see

3In all experiments we set the number of content factors to
k = ηd′ −m, where d′ is the representation dimension. We set
η = 0.95 for all experiments in the main paper and report results
for other values of η in §D. As long as η is close to 1, baselines
and PISCO in-distribution results are similar. For smaller values
of η, PISCO in-distribution accuracy naturally deteriorates.
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(a) Rotation - Supervised (b) Contrast - Supervised

(c) Blur - Supervised (d) Satur. - Supervised

Figure 3. OOD accuracy of Supervised representations on
CIFAR-10 where the label is spuriously correlated with the cor-
responding transformation. PISCO significantly improves OOD
accuracy, especially in the case of rotation. Both λ = 1 and
λ = 10 preserve in-distribution accuracy, while larger λ = 50
may degrade it as per (3.3).

later, both representations are fairly invariant to this style.
Comparing PISCO on Supervised and SimCLR, the
style recovery is better on Supervised since SimCLR
representations are more robust to style changes (Kügelgen
et al., 2021).

In the style-content disentanglement (SCD) columns, we re-
port the disentanglement of style from content features as in
the synthetic experiment in Figure 2. Here SimCLR repre-
sentations appear slightly harder to disentangle using PISCO
than Supervised representations. In the SCD of original
representations for both Supervised and SimCLR, as
expected, we observe that these representations are more
entangled with the styles, especially the Supervised rep-
resentations. Comparing the SCD for PISCO with that
of IP-IRM, we see that PISCO can post-process popular
pre-trained representations to achieve comparable or bet-
ter disentanglement without re-training (i.e., in-processing).
Overall we conclude that PISCO is successful in isolating
style and content.

Spurious correlations Next, we create four variations of
CIFAR-10 where labels are spuriously correlated with one
of the four styles (image corruptions). Specifically, in the
training dataset, we corrupt images from the first half of the
classes with probability α and from the second half of the

(a) Rotation - SimCLR (b) Contrast - SimCLR

(c) Blur - SimCLR (d) Saturation - SimCLR

Figure 4. OOD accuracy of SimCLR representations on CIFAR-10
where the label is spuriously correlated with the corresponding
transformation. Results are analogous to Figure 3. The SimCLR
baseline representations are less sensitive to contrast and saturation
but remain sensitive to rotation.

classes with probability 1− α. In test data the correlation
is reversed, i.e., images from the first half of the classes
are corrupted with probability 1− α and images from the
second half with probability α (see §C for details). Thus,
for α = 0.5 train and test data have the same distribution
where each image is randomly transformed with the corre-
sponding image corruption type, and α = 1 corresponds to
the extreme spurious correlation setting.

For each α we train and test a linear model on the origi-
nal representations and on PISCO representations (in this
and subsequent experiments all learned style factors are dis-
carded for downstream tasks; see §C for additional details)
for varying λ. Recall that here we use the same PISCO
transformation matrices learned previously without knowl-
edge of the specific corruption type and spurious correla-
tion value α of a given dataset. We summarize results for
Supervised features in Figure 3 and for SimCLR fea-
tures in Figure 4. PISCO improves upon both original
representations and across all transformations. For λ = 1,
PISCO always preserves the in-distribution accuracy, i.e.
when α = 0.5, and improves upon the baselines in the pres-
ence of spurious correlations. Larger λ = 50 can degrade
in-distribution accuracy in some cases (recall that λ controls
the tradeoff between the reconstruction of the original fea-
tures with the content factors and style-content disentangle-
ment per (3.3)), while λ = 10 provides a favorable tradeoff
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Table 1. Content and style disentanglement of Supervised and SimCLR representations on CIFAR-10 with PISCO. The style
correlation columns (style Corr.) show correlations between styles in the data and representations corresponding to style. The isolation of
style from content is measured with style-content disentanglement (SCD, see Figure 2). In the last column we compare to representations
learned by IP-IRM. Bold denotes best results.

Style
Supervised Unsupervised

Supervised PISCO SimCLR PISCO IP-IRM
Style
Corr. SCD Style

Corr. SCD Style
Corr. SCD Style

Corr. SCD Style
Corr. SCD

blur 0.319 0.090 0.716 0.051 0.304 0.096 0.719 0.060 0.032 0.022
contrast 0.490 0.243 0.927 0.055 0.094 0.076 0.897 0.049 0.419 0.188
rotation 0.746 0.212 0.936 0.029 0.368 0.182 0.945 0.056 0.617 0.114
saturation 0.641 0.204 0.882 0.048 0.120 0.071 0.738 0.060 0.219 0.044

Table 2. Accuracy of Supervised representations on CIFAR-
10 test set in-distribution, i.e., no transformation (referred to as
“none”; last row), and OOD when modified with the correspond-
ing transformation. PISCO with λ = 1 provides significant im-
provements for rotation, contrast, and saturation while preserving
in-distribution accuracy.

Style
Baseline

(Supervised)

PISCO
(λ = 1)

PISCO
(λ = 10)

PISCO
(λ = 50)

rotation 0.678 0.737 0.733 0.710
contrast 0.625 0.683 0.744 0.726
saturation 0.699 0.758 0.745 0.721
blur 0.817 0.817 0.793 0.775
none 0.873 0.870 0.844 0.826

with a small reduction of in-distribution accuracy and large
improvements when spurious correlations are present.

Comparing results across the representations, we notice that
SimCLR features are less sensitive to image transformations
as discussed previously. However, for both representations,
spurious correlation with rotation causes a significant accu-
racy drop without PISCO post-processing.

Domain generalization To evaluate the domain general-
ization performance, we train a logistic regression classifier
on the corresponding representation of the clean CIFAR-10
dataset and compute accuracy on the test set with every
image transformed with one of the four corruptions, as well
as the original test set to verify the in-distribution accu-
racy. Results are presented in Table 2 for Supervised
features and in Table 3 for SimCLR features. We observe
significant OOD accuracy gains when applying PISCO post-
processing on the Supervised features while preserving
the in-distribution accuracy for λ = 1. In this experiment,
we see that SimCLR features are sufficiently robust and
perform as well as PISCO post-processing with λ = 1.
Overall we have observed that applying our method with
smaller λ = 1 never hurts the performance, while it yields
significant OOD accuracy gains in many settings.

Table 3. Accuracy of SimCLR representations on CIFAR-10 test
set in-distribution, i.e., no transformation (referred to as “none”;
last row), and OOD when modified with the corresponding trans-
formation. SimCLR features are robust to the considered transfor-
mations and perform similarly to PISCO with λ = 1.

Style
Baseline
(SimCLR)

PISCO
(λ = 1)

PISCO
(λ = 10)

PISCO
(λ = 50)

rotation 0.620 0.625 0.697 0.696
contrast 0.816 0.814 0.806 0.794
saturation 0.810 0.806 0.789 0.774
blur 0.808 0.801 0.793 0.780
none 0.828 0.827 0.808 0.792

5.2. Stylized ImageNet

In this experiment, we evaluate the domain generalization
of PISCO on more sophisticated styles obtained via style
transfer (Huang & Belongie, 2017), similar to the Stylized
ImageNet (Geirhos et al., 2018) dataset. In addition, we
evaluate the ability of PISCO to generalize to styles that
are similar to but weren’t used to fit PISCO. We used the
“dog sketch” and ”Picasso dog” styles to obtain PISCO
transformation and evaluate on two additional similar but
unseen styles, “woman sketch” and “Picasso self-portrait”.
See Figure 5 and §C for visualization and additional details.

As in the CIFAR-10 domain generalization experiment, the
logistic regression classifier is trained on the original train
images and tested on transformed test images. In Table
4 we report results for ResNet-50 features pre-trained on
ImageNet (Baseline) and for the same features transformed
with PISCO with λ = 1. PISCO improves OOD top-1 and
top-5 accuracies across all four styles, including the unseen
ones, while maintaining good in-distribution performance.
We also report analogous results for another popular feature
extractor, MAE-ViT-Base (He et al., 2022), in Table 5. We
again observe that PISCO (λ = 1) improves top-1 and
top-5 OOD performances with no degradation of the in-
distribution performance. We present results for other values

8



Simple Disentanglement of Style and Content in Visual Representations

Table 4. Top-1 and top-5 accuracies on 5 variations of the Ima-
geNet test set for Baseline pre-trained ResNet-50 features and the
corresponding post-processed PISCO (λ = 1) features.

Style Baseline PISCO
Top-1 Top-5 Top-1 Top-5

dog sketch 0.516 0.752 0.546 0.777
woman sketch 0.478 0.712 0.518 0.752
Picasso dog 0.445 0.686 0.500 0.738
Picasso s.-p. 0.474 0.706 0.514 0.747
none 0.757 0.927 0.749 0.921

Table 5. Top-1 and top-5 accuracies on 5 variations of the Ima-
geNet test set for Baseline pre-trained MAE-ViT-Base features and
the corresponding post-processed PISCO (λ = 1) features.

Style Baseline PISCO
Top-1 Top-5 Top-1 Top-5

dog sketch 0.530 0.749 0.575 0.773
Picasso dog 0.472 0.686 0.519 0.716
Picasso s.-p. 0.512 0.727 0.558 0.752
woman sketch 0.504 0.719 0.550 0.746
none 0.811 0.952 0.818 0.953

of λ in §D.

We note that in this experiment the sample manipulations
and annotations required for our method (§3) were sim-
ple to obtain. We generated the styles for fitting PISCO
with basic text prompts using DALL·E 2 and obtained pairs
of original and transformed images using a style transfer
method (Huang & Belongie, 2017). Thus, this experiment
demonstrates how PISCO can be applied to improve ro-
bustness to a variety of distribution shifts in vision tasks
where we have some amount of prior knowledge needed to
formulate a relevant prompt to obtain a style image.

6. Conclusion
In this paper, we studied the problem of disentangling style
and content of pre-trained visual representations. We pre-
sented PISCO, a simple post-processing algorithm with the-
oretical guarantees. In our experiments, we demonstrated
that post-processing with PISCO can improve OOD perfor-
mance of popular pre-trained deep models while preserving
the in-distribution accuracy. Our method is computationally
inexpensive and simple to implement.

In our experiments, we mainly were interested in discard-
ing the style factors and keeping the style-invariant content
factors for OOD generalization. However, we also demon-
strated both theoretically and empirically that the learned
style factors are representative of the presence or absence of
the corresponding styles. Thus, the values of the style fac-

tors can be used to assist in outlier/OOD samples detection,
or in some special cases of image retrieval, e.g., finding all
images with a specific style.

One limitation of our method is the reliance on the availabil-
ity of meaningful data transformations (or augmentations).
While there are plenty of such transformations for images,
they could be harder to identify for other data modalities.
Natural language processing is one example where it is not
as straightforward to define meaningful text augmentations.
However, text data augmentations is also an active research
area (Wei & Zou, 2019; Bayer et al., 2021; Shorten et al.,
2021) which could enable applications of PISCO to NLP.

Another interesting direction to explore is extending our
model to various weak supervision settings (Bouchacourt
et al., 2018; Shu et al., 2019; Chen & Batmanghelich, 2020).
In comparison to data augmentation functions, such forms
of supervision are typically easier to obtain outside of the
image domain. Thus, an extension of our model to weak su-
pervision could enable disentanglement via post-processing
for a broader class of data modalities.
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A. Supplementary proofs
A.1. Proof of Corollary 2.3

Proof. We denote ẑS ≜ [ẑ]FS , zS ≜ [z]FS , Σ ≜ cov(z) and
∆ as the diagonal matrix of Σ. Notice that

corr(z) = ∆−1/2Σ∆−1/2 . (A.1)

From Definition 2.2 ẑS = [PA]FS,FSzS where [PA]FS,FS

is a diagonal matrix. We denote [PA]FS,FS as D. Then the
covariance matrix of ẑS is

cov(ẑS) = cov(DzS) = DΣD (A.2)

and its diagonal matrix is

diag(DΣD) = Ddiag(Σ)D

= D∆D

= ∆D2 ,

(A.3)

where the last equality is obtained using the fact that the
matrix multiplication of the diagonal matrices is commuting.
Expressing corr(ẑS) in terms of cov(ẑS) and it’s diagonal
matrix we obtain

corr(ẑS)

= diag
{
corr(ẑS)

}−1/2
corr(ẑS) diag

{
corr(ẑS)

}−1/2

= {∆D2}−1/2DΣD{∆D2}−1/2

= ∆−1/2D−1DΣDD−1∆−1/2

= ∆−1/2Σ∆−1/2 = corr(zS)
(A.4)

and we obtain (2.1).

A.2. Proof of Theorem 4.1

Proof. The closed form of p̂j in (3.2) can be written as:

p̂j = Σ̂†
u

1

2n

n∑
i=1

[
(ui−ū)(y(j)

i −ȳ)+(u
(j)
i −ū)(ỹ

(j)
i −ȳ)

]
(A.5)

where ū = 1
2n

∑n
i=1

[
ui +u

(j)
i

]
, Σ̂u = 1

2n

∑n
i=1

[
uiu

⊤
i +

u
(j)
i {u

(j)
i }⊤

]
− ūū⊤, Σ̂†

u is the Moore-Penrose inverse
of Σ̂u, ȳ = 1

2n

∑n
i=1

[
y
(j)
i + ỹ

(j)
i

]
, and ϵ̄(j) =

1
2n

∑n
i=1

[
ϵ
(j)
i + ϵ̃

(j)
i

]
. Here, defining z̄ = 1

2n

∑n
i=1

[
zi +

z
(j)
i

]
and Σ̂z = 1

2n

∑n
i=1

[
ziz

⊤
i + z

(j)
i {z

(j)
i }⊤

]
− z̄z̄⊤ we

notice the following.

y
(j)
i − ȳ = βj

(
[zi]j − [z̄]j

)
+ (ϵ

(j)
i − ϵ̄(j)) (A.6)

ỹ
(j)
i − ȳ = βj

(
[z

(j)
i ]j − [z̄]j

)
+ (ϵ̃

(j)
i − ϵ̄(j)) (A.7)

Σ̂u = AΣ̂zA
⊤ (A.8)

and hence

1

2n

n∑
i=1

[
(ui − ū)(y

(j)
i − ȳ) + (u

(j)
i − ū)(ỹ

(j)
i − ȳ)

]
=

1

2n

n∑
i=1

[
A(zi − z̄)βj

(
[zi]j − [z̄]j

)
+A(z

(j)
i − z̄)βj

(
[z

(j)
i ]j − [z̄]j

)]
+

1

2n

n∑
i=1

[
A(zi − z̄)(ϵ

(j)
i − ϵ̄(j))

+A(z
(j)
i − z̄)(ϵ̃

(j)
i − ϵ̄(j))

]
≜ cov1 +cov2 ,

(A.9)
where

cov1 ≜
1

2n

n∑
i=1

[
A(zi − z̄)βj

(
[zi]j − [z̄]j

)
+A(z

(j)
i − z̄)βj

(
[z

(j)
i ]j − [z̄]j

)]
= βjA

1

2n

n∑
i=1

[
(zi − z̄)(zi − z̄)⊤ej

+ (z
(j)
i − z̄)(z

(j)
i − z̄)⊤ej

]
= βjAΣ̂zej .

and with Σ̂z,ϵ ≜ 1
2n

∑n
i=1

[
(zi − z̄)(ϵ

(j)
i − ϵ̄(j)) + (z

(j)
i −

z̄)(ϵ̃
(j)
i − ϵ̄(j))

]
we obtain

cov2 ≜
1

2n

n∑
i=1

[
A(zi − z̄)(ϵ

(j)
i − ϵ̄(j))

+A(z
(j)
i − z̄)(ϵ̃

(j)
i − ϵ̄(j))

]
= AΣ̂z,ϵ

Using the identities (A.8) and (A.9) we rewrite p̂j as

p̂j = (AΣ̂zA
⊤)†{βjAΣ̂zej +AΣ̂z,ϵ}

= (AΣ̂zA
⊤)†βjAΣ̂zej + (AΣ̂zA

⊤)†AΣ̂z,ϵ

≜ p̂
(1)
j + p̂

(2)
j ,

(A.10)

where p̂
(1)
j ≜ (AΣ̂zA

⊤)†βjAΣ̂zej and p̂
(2)
j ≜

(AΣ̂zA
⊤)†AΣ̂z,ϵ.

Since n ≥ d + 1 we notice that the covariance matrix Σ̂z

is invertible. This fact combined with left invertibility of
A implies that the matrix AΣ̂

1/2
z is also left invertible. We

recall the property of Moore-Penrose inverse that for any
left invertible matrix G it holds:

(GG⊤)†G = G(G⊤G)−1 .

12
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Letting G = AΣ̂
1/2
z and using the property in (A.10) we

obtain

p̂
(1)
j = βj(AΣ̂zA

⊤)†AΣ̂zej

= βj(GG⊤)†GΣ̂
1/2
z ej

= βjG(G⊤G)−1Σ̂
1/2
z ej

= βjAΣ
1/2
z

(
Σ

1/2
z A⊤AΣ

1/2
z

)−1

Σ̂
1/2
z ej

= βjAΣ
1/2
z Σ−1/2

z (A⊤A)−1Σ−1/2
z Σ̂

1/2
z ej

= βjA(A⊤A)−1ej .

(A.11)

Hence, we notice that

A⊤p̂
(1)
j = A⊤β̂jA(A⊤A)−1ej

= βjej .

Repeating same calculation as above we obtain

A⊤p̂
(2)
j = A⊤(AΣ̂zA

⊤)†AΣ̂z,ϵ

= Σ̂−1
z Σ̂z,ϵ .

From Assumption 3.1 we recall that (ϵ(j), ϵ̃(j)) and (z, z(j))
are uncorrelated and hence

Σ̂z,ϵ
a.s.−→ 0 .

Since Σz is invertible we obtain that

A⊤p̂
(2)
j

a.s.−→ 0 ,

and
A⊤p̂j

a.s.−→ βjej

almost surely. Noticing that p̂j is the j-th row of P we
conclude that at almost sure limit it holds: (1) [PA]FS,FS

converges to a diagonal matrix, and (2) [PA]FS,FC

a.s.−→ 0.

A.3. Proof of Theorem 4.3

We divide the proof in two steps which are stated as lemmas.

Lemma A.1. With probability at least 1− κn (κ is defined
in Theorem 4.3) the following holds:

Q̂(+∞)[A]·,FS = 0 .

Proof of Lemma A.1. At λ→∞ it necessarily holds:

1

m

∑
j∈S

tr

[
Q̂(+∞)⊤Q̂(+∞)

(∆⊤
j ∆j

n

)]
= 0

which equivalently means for every j ∈ S:

tr

[
Q̂(+∞)⊤Q̂(+∞)

(∆⊤
j ∆j

n

)]
= 0 . (A.12)

Combining (3.4) and the above we obtain

1

n

n∑
i=1

∥Q̂(+∞)(ui − u
(j)
i )∥22

= tr

[
Q̂(+∞)⊤Q̂(+∞)

(∆⊤
j ∆j

n

)]
= 0

which implies that for each i ∈ [n] and j ∈ FS

0 = Q̂(+∞)(ui − u
(j)
i )

= Q̂(+∞)A(zi − z
(j)
i ) ,

(A.13)

where the second equality follows from Assumption 2.1.
Since the latent factors {zi}ni=1 were drawn independently
from the distribution Pz, we conclude that one of the sam-
ples is in the event E with probability at least 1−κn. Denote
the sample as z0. Then defining Z0 = [z0 − z

(1)
0 , . . . , z0 −

z
(m)
0 ] we notice the following: (1) from (3.1) in Assumption

3.1 it follows [Z0]FC,· = 0, and (2) from the Assumption
4.2 we see that the matrix [Z0]FS,· is invertible and hence
we obtain

0 = Q̂(+∞)A[z0 − z
(1)
0 , . . . , z0 − z

(m)
0 ]

= Q̂(+∞)
[
[A]·,FS [A]·,FC

]
.

[
[Z0]FS,·
[Z0]FC,·

]
= Q̂(+∞)

[
[A]·,FS [A]·,FC

]
.

[
[Z0]FS,·

0

]
= Q̂(+∞)[A]·,FS [Z0]FS,· ,

where using invertibility of [Z0]FS,· we conclude

Q̂(+∞)[A]·,FS = 0

and the lemma.

Lemma A.2. Let H⊥ ∈ Rd′×d′
be the orthogonal pro-

jector onto span{[A]·,j : j ∈ FS}⊥. Then the matrix
H⊥ U⊤U

(m+1)nH
⊥ has exactly (d −m) many positive eigen-

values and Q(+∞) is the collection of the eigen-vectors
corresponding to them. Furthermore, [P(+∞)A]FC,FC is
invertible.

Proof. We start by noticing that U⊤U
(m+1)n = AΣ′

zA
⊤ where

the matrix

Σ′
z =

1

(m+ 1)n

n∑
i=1

ziz⊤i +
∑
j∈S

z
(j)
i {z

(j)
i }⊤


is invertible since n ≥ d+ 1. Without loss of generality we
assume that FS = [m]. Denoting CA ≜ col-space(A) we

13
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notice that for any x ∈ C⊥A

H⊥ U⊤U

(m+ 1)n
H⊥x

= H⊥AΣ′
zA

⊤x, since x ∈ C⊥A ⊂ span{[A]·,FS}⊥

= 0, since x ∈ C⊥A .
(A.14)

and for any x ∈ span{[A]·,j : j ∈ FS} it holds

H⊥ U⊤U

(m+ 1)n
H⊥x = 0 . (A.15)

Since dim{C⊥A} = d′ − d and dim{[A]·,j : j ∈
FS} = m, counting the degrees of freedom we obtain that
H⊥ U⊤U

(m+1)nH
⊥ doesn’t have rank more than d′−(d′−d)−

m = d−m. Expressing A as

A = ÃU, (A.16)

where Ã ∈ Rd′×d is an orthogonal matrix and U ∈ Rd×d

is an upper triangular such that span{[A]·,j : j ∈ FS} =
span{[Ã]·,j : j ∈ FS}. Such a decomposition can easily
be obtained from Gram-Schmidt orthogonalization of the
columns of A. Since [Ã]·,j ∈ span{[A]·,j : j ∈ FS} we
notice that

H⊥Ã =
[
0d′×m [Ã]·,FC

]
(A.17)

and defining M ≜ UΣ′
zU

⊤ which is an invertible matrix
we notice that

H⊥ U⊤U

(m+ 1)n
H⊥ = [Ã]·,FC [M]FC,FC [Ã]⊤·,FC

. (A.18)

and hence it has rank |FC| = d−m. This concludes a part
of the lemma.

Here, [M]FC,FC is a partition matrix of the non-negative
definite matrix M ≜ UΣ′

zU
⊤. We consider it’s spectral

decomposition

[M]FC,FC = WDW⊤ (A.19)

where W ∈ R(d−m)×(d−m) is an orthogonal matrix and
D ∈ R(d−m)×(d−m) is diagonal with positive diagonal
entries (since [M]FC,FC is full rank). This follows,

H⊥Ã = [Ã]·,FCWDW⊤[Ã]⊤·,FC
(A.20)

where [Ã]·,FCW is again a Rd′×(d−m) orthogonal ma-
trix whose columns are the only eigen-vectors of
H⊥ U⊤U

(m+1)nH
⊥ with positive eigen-values. Hence,

Q(+∞) = [Ã]·,FCW . (A.21)

Since [P(+∞)]FC,· = Q(+∞)⊤ we obtain

[P(+∞)A]FC,· = Q(+∞)⊤A

where using (A.16) and (A.21) we obtain

[P(+∞)A]FC,·

= W⊤{[Ã]·,FC

}⊤
ÃU

= W⊤ [
0(d−m)×d I(d−m)×(d−m)

]
U

= W⊤UFC,· .

Finally we obtain

[P(+∞)A]FC,FC = W⊤UFC,FC .

where, following that W is an orthogonal matrix and U an
invertible upper-triangular matrix, both W and UFC,FC are
invertible. This implies [P(+∞)A]FC,FC is invertible, and
we conclude the lemma.

A.4. Proof of Corollary 4.4

Proof. Note that the convergences in Theorem 4.1 are al-
most sure convergences. For each j ∈ FS we define Bj

as the probability one event on which A⊤p̂j → βjej . We
further define B ≜ ∩j∈FSBj which is again a probability
one event (an intersection of finitely many probability one
events), and on the event the convergences hold simultane-
ously over j ∈ FS.

Drawing our attention to the conclusions in Theorem 4.3,
we define Cn as the event that

Cn ≜ {The conclusions in Theorem 4.3 hold
with sample size n}

for each n ≥ d+ 1 and notice that Pz(Cn) ≥ 1− κn. This
implies ∑

n≥d+1

Pz(C
c
n) ≤

∑
n≥d+1

κn <∞ .

We define C = {Cc
n holds infinitely often} and use the

first Borel-Cantelli lemma to conclude that

Pz(C
c) = 0 or, Pz(C) = 1 .

Note that the event C is the same as the event that {Cn

holds all but finitely often}, or that {The conclusions in
Theorem 4.3 holds at n→∞ }, which are probability one
events. Thus it follows that B ∩C, an event on which the
conclusions in both the theorems 4.1 and 4.3 simultaneously
hold (for n → ∞), is a probability one event. Hence, we
conclude that with probability one the following hold at
the limit n → ∞: (1) [PA]FS,FS is a diagonal matrix, (2)
[PA]FS,FC = 0, (3) [PA]FS,FC = 0, and (4) [PA]FC,FC is
invertible. These are the exact conditions in Definition 2.2
that are required for sparse recovery. Hence, the corollary
follows.
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B. Details for synthetic data study in §4.1
B.1. The latent factors

The latent factors are generated as

R10 ∋ z ∼ N(0,Σ), (B.1)

where Σ is a 10× 10 covariance matrix whose entries are
described below. For i, j ∈ {1, . . . , 10}

[Σ]i,j =


1 i = j,

ρ ∈ [0, 1) (i, j) = (1, 2), or, (i, j) = (2, 1),

0 otherwise .
(B.2)

We fix the first five coordinates as style factors, i.e. FS =
{1, . . . , 5} and the rest of them as content factors, i.e.
FC = {6, . . . , 10}. Note that style and content factors
are independent, i.e.,

[z]FS ⊥ [z]FC .

We draw {zi}ni=1
iid∼ N(0,Σ).

B.2. The entangled representations

We fix d′ = 10 and obtain entangled representations as

u = Az = LUz ∈ R10 , (B.3)

where A = LU, U is a randomly generated 10 × 10 or-
thogonal matrix and L is a 10× 10 lower triangular matrix
described below.

[L]i,j =


1 i = j,

0.9 i > j,

0 i < j .

(B.4)

We use the same orthogonal matrix throughout our exper-
iment. Note that both L and U are invertible and hence
A = LU is also invertible.

B.3. Sample manipulations and annotations

For each of the latent factors z and j-th style coordinates we
obtain two manipulated latent factors which we denote as
z(j),+ and z(j),− and their description follow. z(j),+ (resp.
z(j),−) sets the j-th coordinate to its positive (resp. negative)
absolute value, i.e.

[z(j),+]j = |[z]j | (resp. [z(j),−]j = −|[z]j |) ,

and annotate it as +1 (resp. −1). Since the first two coordi-
nates are correlated with correlation coefficient ρ, if either
of them changes by the value δ then the other one changes
by ρδ. We provide a concrete example of change in the

second coordinate for the change in the first coordinate, but
a similar change happens vice-versa. Since

[z(1),+]1 − [z]1 = |[z]1| − [z]1 ,

it must hold

[z(1),+]2 − [z]2 = ρ
(
|[z]1| − [z]1

)
.

Note that one of z(j),+ and z(j),− is exactly same as z. We
obtain the entangled representations as u(j),+ = Az(j),+

and u(j),− = Az(j),−.

B.4. Style factor estimations

Note that A is invertible and hence the covariance matrix
of u = Az is also invertible. In this case, the minimum
norm least square problem in (3.2) is the simple least square
problem. For j ∈ FS we describe the estimation of j-th
style factor below.

[ẑ]j ≜ p̂⊤
j u, where

p̂j ≜ argmin
a∈R,p∈Rd′

1

2n

n∑
i=1

[(
+ 1− a− p⊤u

(j),+
i

)2
+
(
− 1− a− p⊤u

(j),−
i

)2]
(B.5)

C. Experimental details
C.1. Feature extractors and image style generation

(image transformations)

MNIST data For the colored MNIST experiment, we
train a multilayer perceptron (MLP) feature extractor, a 3-
layer neural network with ReLU activation function and a
hidden layer of size 50. The dataset for training the feature
extractor is obtained by randomly coloring some original
MNIST images green and some of them red. We then train
the feature extractor by making it predict both the color of
the image and the digit label. During training, we use a
batch size of 256 and a learning rate of 0.001.

After training the feature extractor, we use it to extract
features from MNIST images that we use in the experiments.
For the experiments, we use original MNIST images and
MNIST images colored green.

CIFAR-10 data For experiments on CIFAR-10, we
use two different feature extractors, Supervised and
SimCLR. For Supervised, we use a Supervised
model that was pre-trained on ImageNet (Russakovsky et al.,
2015) from Pytorch’s Torchvision package 4. For SimCLR,
we first train a SimCLR 5 model on the original CIFAR-10
dataset before using it to extract features.

4https://pytorch.org/vision/stable/index.html
5https://github.com/spijkervet/SimCLR
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We transform the CIFAR-10 dataset four different ways to
generate new sets of data that we use in our various experi-
ment settings. The first set of data is generated by rotating
the original CIFAR-10 data at angle 15 degrees, the sec-
ond set is generated by applying contrast to the original
CIFAR-10 data using a contrast factor of 0.3, the third set is
generated by blurring the original CIFAR-10 data using a
sigma value of 0.3, and the fourth set is generated by making
the original CIFAR-10 images saturated using a saturation
factor of 5. We selected transformation parameters that
transformed the original data without changing it into some-
thing completely different and unrecognizable. For the ex-
periments, we extract features from the original CIFAR-10,
rotated CIFAR-10, contrasted CIFAR-10, blurred CIFAR-
10, and saturated CIFAR-10 data. We then use the extracted
features to perform experiments as described in §5 and §3.

ImageNet data For experiments on ImageNet, we use a
pre-trained ResNet-50 model to extract features from the
ImageNet (Russakovsky et al., 2015) dataset. The ImageNet
data that we use contains 1,281,167 images for training,
50,000 images for validation, and 1000 classes.

The ImageNet dataset was used to demonstrate PISCO’s
ability to scale and generalize under distribution shifts. For
generalization, we use the code published by Geirhos et al.
(2018) to generate four stylized ImageNet datasets with
covariate distribution shifts by applying four styles on origi-
nal ImageNet images. The styles applied are “dog sketch”,
“woman sketch”, “Picasso self-portrait”, and “Picasso dog”
(see Figure 5). Two of the styles, “dog sketch” and “Pi-
casso dog”, were generated by DALL·E 2. For the “Picasso
dog” style, the prompt used to generate it from DALL·E 2
was, “portrait of a dog in Picasso’s 1907 self-portrait style”.
For the “dog sketch” style, the prompt used to generate it
from DALL·E 2 was, “artistic hand drawn sketch of a dog
face”. The other two styles, “woman sketch” and “Picasso
self-portrait”, were downloaded from a GitHub repository6

of the style transfer project by (Huang & Belongie, 2017).
The generated stylized ImageNet data is then used to test
PISCO’s out-of-distribution (OOD) generalization capabil-
ity. Figure 5 shows example images from the ImageNet
dataset and the four styles that we use to generate the styl-
ized ImageNet sets.

C.2. Spurious correlations and error bars

Spurious correlations for the experiments in both MNIST
and CIFAR-10 datasets are created by first dividing images
in each dataset into two halves, the first half contains images
with class label below 4 and the second half contains images
with class 4 and above. We then create datasets, where the

6https://github.com/xunhuang1995/
AdaIN-style/tree/master/input/style

image label is spuriously correlated with the image style,
i.e. color green, rotation, contrast, blur, or saturation, as
follows: in the training dataset, images from the first half are
transformed with probability α and images from the second
half are transformed with probability 1 − α. In the test
dataset, we do the reverse of what we did in the training data;
images from the first half are transformed with probability
1−α and images from the second half are transformed with
probability α. We perform experiments and report results
for α values 0.5, 0.75, 0.90, 0.95, 0.99, 1.0. At α = 0.5,
the train and test data have the same distribution, and at
α = 1, the spurious correlations between labels and styles
is extreme.

Results on experiments where there are spurious correlations
between label and transformations (styles) in the data are
reported in plots eg. Figure 3, Figure 4, Figure 13, etc. The
reported results are over 10 restarts. We include error bars
in the plots, but the errors are small so the error bars are not
very visible.

C.3. Training and testing logistic regression models for
classification

MNIST Data For MNIST data, the digits labels are from
0 to 9. For baseline results, we train and test the logistic
regression model using all the features extracted using the
MLP feature extractor. For PISCO results, we discard the
style feature corresponding to color green and train and
test the logistic regression model using only the remaining
content features.

CIFAR-10 Data For CIFAR-10 data, we use the orig-
inal image labels to train and test the logistic regression
model. For baseline results, we train and test the logistic
regression model using features extracted using SimCLR
or Supervised. For PISCO results, we first discard the
four style features corresponding to rotation, contrast, blur,
and saturation and then train and test the logistic regression
model using only the remaining content features.

ImageNet Data For ImageNet data, similar to CIFAR-
10 and MNIST settings, after fitting the logistic regres-
sion model on features extracted using ResNet-50 to obtain
baseline results, ImageNet features are post-processed with
PISCO to isolate content and style, and then style features
get dropped when fitting the model for OOD generalization.
The batch size used when training the logistic regression
model on ImageNet was 32768, the learning rate was 0.0001,
and the number of epochs was 50.

For more experimental details, check out our released code
on GitHub7.

7https://github.com/lilianngweta/PISCO

16

https://github.com/xunhuang1995/AdaIN-style/tree/master/input/style
https://github.com/xunhuang1995/AdaIN-style/tree/master/input/style
https://github.com/lilianngweta/PISCO


Simple Disentanglement of Style and Content in Visual Representations

Figure 5. Example images from the ImageNet dataset with the styles applied to them.

Selecting the hyperparameter λ: λ trades-off disentangle-
ment with the preservation of variance in the data (second
and first terms in eq. (3.1), correspondingly). The easi-
est, no-harm, way to select λ is to increase it until the in-
distribution performance starts to degrade. In our reported
results, λ = 1 is the best λ value because it improves OOD
performance without affecting the in-distribution accuracy.
Further increasing λ can provide additional OOD gains at
the cost of in-distribution performance. Our method works
best when the styles are easy to predict from the original rep-
resentations with a linear model (see first column in Tables
?? and ??; note that this is also easy to evaluate at training
time). For example, blur is hard to predict and PISCO with
larger values of λ degrades the corresponding OOD perfor-
mance in Tables 2 and 3, while rotation is easier to predict
and PISCO with λ = 10 improves the performance in both
tables. When a given style is hard to predict, it means that
the representation is robust to it (as is the case with blur
and some other styles for SimCLR representations) and it
might make sense to exclude it when applying PISCO to
avoid unnecessary trade-offs with the variance preservation.
However, if strong spurious correlation is present, PISCO
improves performance even for harder to predict styles (see
Figures 3 and 4).

D. Additional results and selecting the
hyperparameter η

In this section, we present results on the MNIST dataset
(see §D.1). We also present additional ImageNet results
(see §D.3) and additional CIFAR-10 results (see §D.2) on
different values of the hyperparameter η, as well as Ima-
geNet results for different values of λ. In experiments for
all datasets (MNIST, CIFAR-10, and ImageNet), we have
presented results for when η = 0.95. Here we present ad-
ditional ImageNet and CIFAR-10 results when η is 0.90,
0.93, 0.95 (for ImageNet only), 0.98, and 1.0 to demonstrate
its impact on performance. We also presented ImageNet
results for when λ = 1 in the main paper; here we present
additional results for when λ is 10 and 50 to demonstrate
how varying λ affects performance on ImageNet data.

D.1. Colored MNIST experiment

In this experiment, our goal is to isolate color green from the
digit class. First, to obtain representations with entangled
color green and digit information, we train a neural network
feature extractor to predict both color and digit label (see §C
for details) and then use it to extract features from original
and green MNIST images that we use in the experiment.
In this experiment, we have a single style factor, i.e. color
green, m = 1. We learn post-processing feature transfor-
mation matrices P(λ) with PISCO as in Algorithm 1 and
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report results for λ ∈ {1, 10, 50}.
Next, we create a dataset where the label is spuriously cor-
related with the color green, similar to Colored MNIST
(Arjovsky et al., 2019). Specifically, in the training dataset,
images from the first half of the classes are colored green
with probability α and images from the second half of the
classes are colored green with probability 1 − α. In test
data the correlation is reversed, i.e., images from the first
half of the classes are colored green with probability 1− α
and images from the second half with probability α (see
§C for additional details). Thus, for α = 0.5 train and test
data have the same distribution where each image is ran-
domly colored green, and α = 1 corresponds to the extreme
spurious correlation setting.

For each α we train and test a linear model on the original
representations and on PISCO representations (discarding
the learned color green factor) for varying λ. We summarize
the results in Figure 6. PISCO outperforms the baseline
across all values of α and matches the baseline accuracy
when there is no spurious correlation and train and test
distributions are the same, i.e., α = 0.5. Thus, our method
provides a significant OOD accuracy boost while preserving
the in-distribution accuracy.

Figure 6. OOD accuracy on Colored MNIST dataset where the
label is spuriously correlated with color green. The strength of the
correlation is controlled by α. For each α, we train a logistic regres-
sion on the training data using the corresponding representations
and report test accuracy. PISCO is robust to spurious correlations
across all values of α with only a slight accuracy drop for extreme
α values. The baseline is a multilayer perceptron (MLP).

(a) Rotation - Supervised (b) Contrast - Supervised

(c) Blur - Supervised (d) Satur. - Supervised

Figure 7. η = 0.90, OOD performance of Supervised repre-
sentations on CIFAR-10 where the label is spuriously correlated
with the corresponding transformation. PISCO significantly im-
proves OOD performance, especially in the case of rotation. Both
λ = 1 and λ = 10 preserve in-distribution accuracy, while larger
λ = 50 may degrade it as per (3.3).

D.2. Additional transformed CIFAR-10 experiment
results

Results for η = 0.90: Results for when η = 0.90 can be
found in Figure 7, Figure 8, Table 6, and Table 7.

Results for η = 0.93: Results for when η = 0.93 can be
found in Figure 9, Figure 10, Table 8, and Table 9.

Results for η = 0.98: Results for when η = 0.98 can be
found in Figure 11, Figure 12, Table 10, and Table 11.

Results for η = 1.0: Results for when η = 1.0 can be
found in Figure 13, Figure 14, Table 12, and Table 13. When
η = 1.0, it means the number of features in the baseline is
the same as the number of features learned using PISCO
and as a result, we observe the in-distribution performance
of PISCO is almost the same as that of baseline methods
even for higher values of λ.

Overall CIFAR-10 results discussion. Even with differ-
ent values of η, PISCO still outperforms the baselines in
almost all cases. An expected observation from the results
is as η increases, the in-distribution performance of PISCO
goes up even for high values of λ and its OOD performance
slightly goes down.
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(a) Rotation - SimCLR (b) Contrast - SimCLR

(c) Blur - SimCLR (d) Saturation - SimCLR

Figure 8. η = 0.90, OOD performance of SimCLR representa-
tions on CIFAR-10 where the label is spuriously correlated with
the corresponding transformation. Results are analogous to Figure
7. The SimCLR baseline representations are less sensitive to con-
trast and saturation but remain sensitive to rotation.

Table 6. η = 0.90, Performance of Supervised representations
on CIFAR-10 test set in-distribution, i.e., no transformation (re-
ferred to as “none”; last row), and OOD when modified with the
corresponding transformation. PISCO with λ = 1 provides sig-
nificant improvements for rotation, contrast, and saturation, while
preserving in-distribution accuracy.

Style
Baseline

(Supervised)

PISCO
(λ = 1)

PISCO
(λ = 10)

PISCO
(λ = 50)

rotation 0.678 0.741 0.722 0.693
contrast 0.625 0.680 0.741 0.718
saturation 0.699 0.759 0.742 0.714
blur 0.817 0.817 0.777 0.750
none 0.873 0.869 0.823 0.791

Table 7. η = 0.90, Performance of SimCLR representations on
CIFAR-10 test set in-distribution, i.e., no transformation (referred
to as “none”; last row), and OOD when modified with the cor-
responding transformation. SimCLR features are robust to these
transformations and perform similarly to PISCO with λ = 1.

Style
Baseline
(SimCLR)

PISCO
(λ = 1)

PISCO
(λ = 10)

PISCO
(λ = 50)

rotation 0.620 0.632 0.697 0.689
contrast 0.816 0.815 0.795 0.775
saturation 0.810 0.805 0.782 0.763
blur 0.808 0.804 0.783 0.762
none 0.828 0.828 0.800 0.778

(a) Rotation - Supervised (b) Contrast - Supervised

(c) Blur - Supervised (d) Satur. - Supervised

Figure 9. η = 0.93, OOD performance of Supervised repre-
sentations on CIFAR-10 where the label is spuriously correlated
with the corresponding transformation. PISCO significantly im-
proves OOD performance, especially in the case of rotation. Both
λ = 1 and λ = 10 preserve in-distribution accuracy, while larger
λ = 50 may degrade it as per (3.3).

(a) Rotation - SimCLR (b) Contrast - SimCLR

(c) Blur - SimCLR (d) Saturation - SimCLR

Figure 10. η = 0.93, OOD performance of SimCLR representa-
tions on CIFAR-10 where the label is spuriously correlated with
the corresponding transformation. Results are analogous to Figure
9. The SimCLR baseline representations are less sensitive to con-
trast and saturation but remain sensitive to rotation.
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Table 8. η = 0.93, Performance of Supervised representations
on CIFAR-10 test set in-distribution, i.e., no transformation (re-
ferred to as “none”; last row), and OOD when modified with the
corresponding transformation. PISCO with λ = 1 provides sig-
nificant improvements for rotation, contrast, and saturation while
preserving in-distribution accuracy.

Style
Baseline

(Supervised)

PISCO
(λ = 1)

PISCO
(λ = 10)

PISCO
(λ = 50)

rotation 0.678 0.741 0.726 0.700
contrast 0.625 0.678 0.744 0.723
saturation 0.699 0.759 0.742 0.718
blur 0.817 0.817 0.788 0.761
none 0.873 0.871 0.827 0.805

Table 9. η = 0.93, Performance of SimCLR representations on
CIFAR-10 test set in-distribution, i.e., no transformation (referred
to as “none”; last row), and OOD when modified with the cor-
responding transformation. SimCLR features are robust to these
transformations and perform similarly to PISCO with λ = 1.

Style
Baseline
(SimCLR)

PISCO
(λ = 1)

PISCO
(λ = 10)

PISCO
(λ = 50)

rotation 0.620 0.632 0.695 0.692
contrast 0.816 0.817 0.797 0.786
saturation 0.810 0.809 0.786 0.765
blur 0.808 0.804 0.783 0.762
none 0.828 0.826 0.804 0.782

Table 10. η = 0.98, Performance of Supervised representa-
tions on CIFAR-10 test set in-distribution, i.e., no transformation
(referred to as “none”; last row), and OOD when modified with the
corresponding transformation. PISCO with λ = 1 provides sig-
nificant improvements for rotation, contrast, and saturation, while
preserving in-distribution accuracy.

Style
Baseline

(Supervised)

PISCO
(λ = 1)

PISCO
(λ = 10)

PISCO
(λ = 50)

rotation 0.678 0.739 0.736 0.726
contrast 0.625 0.680 0.740 0.729
saturation 0.699 0.757 0.740 0.726
blur 0.817 0.817 0.807 0.797
none 0.873 0.871 0.861 0.851

(a) Rotation - Supervised (b) Contrast - Supervised

(c) Blur - Supervised
(d) Saturation -
Supervised

Figure 11. η = 0.98, OOD performance of Supervised repre-
sentations on CIFAR-10 where the label is spuriously correlated
with the corresponding transformation. PISCO significantly im-
proves OOD performance, especially in the case of rotation. Both
λ = 1 and λ = 10 preserve in-distribution accuracy, while larger
λ = 50 may degrade it as per (3.3).

(a) Rotation - SimCLR (b) Contrast - SimCLR

(c) Blur - SimCLR (d) Saturation - SimCLR

Figure 12. η = 0.98, OOD performance of SimCLR representa-
tions on CIFAR-10 where the label is spuriously correlated with
the corresponding transformation. Results are analogous to Figure
11. The SimCLR baseline representations are less sensitive to
contrast and saturation but remain sensitive to rotation.
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Table 11. η = 0.98, Performance of SimCLR representations on
CIFAR-10 test set in-distribution, i.e., no transformation (referred
to as “none”; last row), and OOD when modified with the cor-
responding transformation. SimCLR features are robust to these
transformations and perform similarly to PISCO with λ = 1.

Style
Baseline
(SimCLR)

PISCO
(λ = 1)

PISCO
(λ = 10)

PISCO
(λ = 50)

rotation 0.620 0.633 0.681 0.677
contrast 0.816 0.817 0.808 0.799
saturation 0.810 0.809 0.796 0.778
blur 0.808 0.806 0.795 0.793
none 0.828 0.826 0.815 0.806

(a) Rotation - Supervised (b) Contrast - Supervised

(c) Blur - Supervised
(d) Saturation -
Supervised

Figure 13. η = 1.0, OOD performance of Supervised repre-
sentations on CIFAR-10 where the label is spuriously correlated
with the corresponding transformation. PISCO significantly im-
proves OOD performance, especially in the case of rotation. Both
λ = 1 and λ = 10 preserve in-distribution accuracy, while larger
λ = 50 may degrade it as per (3.3).

(a) Rotation - SimCLR (b) Contrast - SimCLR

(c) Blur - SimCLR (d) Saturation - SimCLR

Figure 14. η = 1.0, OOD performance of SimCLR representa-
tions on CIFAR-10 where the label is spuriously correlated with
the corresponding transformation. Results are analogous to Figure
13. The SimCLR baseline representations are less sensitive to
contrast and saturation but remain sensitive to rotation.

Table 12. η = 1.0, Performance of Supervised representations
on CIFAR-10 test set in-distribution, i.e., no transformation (re-
ferred to as “none”; last row), and OOD when modified with the
corresponding transformation. PISCO with λ = 1 provides sig-
nificant improvements for rotation, contrast, and saturation, while
preserving in-distribution accuracy.

Style
Baseline

(Supervised)

PISCO
(λ = 1)

PISCO
(λ = 10)

PISCO
(λ = 50)

rotation 0.678 0.736 0.748 0.747
contrast 0.625 0.669 0.724 0.721
saturation 0.699 0.744 0.736 0.729
blur 0.817 0.820 0.819 0.819
none 0.873 0.872 0.872 0.872

Table 13. η = 1.0, Performance of SimCLR representations on
CIFAR-10 test set in-distribution, i.e., no transformation (referred
to as “none”; last row), and OOD when modified with the cor-
responding transformation. SimCLR features are robust to these
transformations and perform similarly to PISCO with λ = 1.

Style
Baseline
(SimCLR)

PISCO
(λ = 1)

PISCO
(λ = 10)

PISCO
(λ = 50)

rotation 0.620 0.629 0.647 0.624
contrast 0.816 0.816 0.814 0.811
saturation 0.810 0.808 0.806 0.805
blur 0.808 0.805 0.806 0.802
none 0.828 0.827 0.826 0.826
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D.3. Additional stylized ImageNet experiment results

In this section for the ResNet-50 baseline, for each value of
η, we report results for λ values 1, 10, and 50. For the MAE-
ViT-Base (He et al., 2022) baseline, we report additional
results for λ values 1, 10, and 50.

ResNet-50 results for η = 0.90: Results for when η =
0.90 can be found in Table 14.

ResNet-50 results for η = 0.93: Results for when η =
0.93 can be found in Table 15.

ResNet-50 results for η = 0.95: Results for when η =
0.95 can be found in Table 16. In the main paper we reported
results for η = 0.95 when λ = 1. Table 16 contains results
for λ value 1, and additional λ values 10 and 50.

ResNet-50 results for η = 0.98: Results for when η =
0.98 can be found in Table 17.

ResNet-50 results for η = 1.0: Results for when η = 1.0
can be found in Table 18. When η = 1.0, it means the
number of features in the baseline is the same as the number
of features learned using PISCO and as a result, similar for
CIFAR-10 results in §D.2, we observe the in-distribution
performance of PISCO in this case being almost the same
as that of baseline methods even for higher values of λ.

MAE-ViT-Base results for λ values 1, 10, and 50: Re-
sults for additional values of λ when MAE-ViT-Base is the
baseline are in Table 19.

Overall ImageNet results discussion. When we vary η
in ImageNet experiments, we observe behavior similar to
what we observed in the CIFAR-10 experiments in §D.2:
PISCO outperforms the baseline across all values of η and
λ = 1 provides the best PISCO results in all η values. An
expected observation from the results is as η increases, the
in-distribution performance of PISCO goes up even for high
values of λ and its OOD performance slightly goes down.
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Table 14. η = 0.90, Top-1 and top-5 accuracies on 5 variations of the ImageNet test set for Baseline pre-trained ResNet-50 features and
the corresponding post-processed PISCO features on different values of λ.

Style Baseline
(ResNet-50)

PISCO
(λ = 1)

PISCO
(λ = 10)

PISCO
(λ = 50)

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

dog sketch 0.514 0.752 0.542 0.769 0.522 0.723 0.520 0.717
woman sketch 0.477 0.711 0.511 0.743 0.490 0.693 0.488 0.686
Picasso dog 0.445 0.686 0.495 0.730 0.472 0.672 0.467 0.665
Picasso s.-p. 0.474 0.706 0.508 0.737 0.490 0.691 0.490 0.685
none 0.758 0.927 0.743 0.916 0.740 0.910 0.740 0.910

Table 15. η = 0.93, Top-1 and top-5 accuracies on 5 variations of the ImageNet test set for Baseline pre-trained ResNet-50 features and
the corresponding post-processed PISCO features on different values of λ.

Style Baseline
(ResNet-50)

PISCO
(λ = 1)

PISCO
(λ = 10)

PISCO
(λ = 50)

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

dog sketch 0.515 0.753 0.545 0.775 0.530 0.741 0.528 0.737
woman sketch 0.478 0.712 0.514 0.748 0.500 0.710 0.498 0.705
Picasso dog 0.446 0.686 0.495 0.735 0.480 0.692 0.479 0.688
Picasso s.-p. 0.474 0.706 0.511 0.742 0.501 0.709 0.499 0.706
none 0.757 0.927 0.746 0.918 0.742 0.914 0.743 0.913

Table 16. η = 0.95, Top-1 and top-5 accuracies on 5 variations of the ImageNet test set for Baseline pre-trained ResNet-50 features and
the corresponding post-processed PISCO features on different values of λ.

Style Baseline
(ResNet-50)

PISCO
(λ = 1)

PISCO
(λ = 10)

PISCO
(λ = 50)

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

dog sketch 0.516 0.752 0.546 0.777 0.534 0.751 0.532 0.750
woman sketch 0.478 0.712 0.518 0.752 0.506 0.723 0.504 0.719
Picasso dog 0.445 0.686 0.500 0.738 0.486 0.705 0.485 0.702
Picasso s.-p. 0.474 0.706 0.514 0.747 0.505 0.721 0.504 0.718
none 0.757 0.927 0.749 0.921 0.745 0.917 0.745 0.916

Table 17. η = 0.98, Top-1 and top-5 accuracies on 5 variations of the ImageNet test set for Baseline pre-trained ResNet-50 features and
the corresponding post-processed PISCO features on different values of λ.

Style Baseline
(ResNet-50)

PISCO
(λ = 1)

PISCO
(λ = 10)

PISCO
(λ = 50)

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

dog sketch 0.515 0.752 0.553 0.785 0.541 0.769 0.540 0.768
woman sketch 0.478 0.711 0.520 0.757 0.512 0.740 0.511 0.738
Picasso dog 0.446 0.686 0.504 0.744 0.492 0.725 0.492 0.722
Picasso s.-p. 0.474 0.706 0.518 0.752 0.512 0.737 0.512 0.737
none 0.757 0.928 0.754 0.926 0.751 0.922 0.751 0.921
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Table 18. η = 1.0, Top-1 and top-5 accuracies on 5 variations of the ImageNet test set for Baseline pre-trained ResNet-50 features and the
corresponding post-processed PISCO features on different values of λ.

Style Baseline
(ResNet-50)

PISCO
(λ = 1)

PISCO
(λ = 10)

PISCO
(λ = 50)

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

dog sketch 0.516 0.752 0.552 0.787 0.548 0.787 0.548 0.786
woman sketch 0.478 0.712 0.517 0.756 0.517 0.755 0.519 0.756
Picasso dog 0.446 0.686 0.501 0.742 0.499 0.744 0.501 0.745
Picasso s.-p. 0.474 0.706 0.517 0.752 0.518 0.754 0.517 0.755
none 0.758 0.928 0.758 0.929 0.758 0.929 0.757 0.929

Table 19. η = 0.95, Top-1 and top-5 accuracies on 5 variations of the ImageNet test set for when MAE-ViT-Base features are the Baseline,
and the corresponding accuracies for post-processed PISCO features on different values of λ.

Style Baseline
(MAE-ViT-Base)

PISCO
(λ = 1)

PISCO
(λ = 10)

PISCO
(λ = 50)

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

dog sketch 0.530 0.749 0.575 0.773 0.576 0.770 0.576 0.770
Picasso dog 0.472 0.686 0.519 0.716 0.520 0.714 0.520 0.714
Picasso s.-p. 0.512 0.727 0.558 0.752 0.558 0.748 0.558 0.748
woman sketch 0.504 0.719 0.550 0.746 0.549 0.744 0.549 0.744
none 0.811 0.952 0.818 0.953 0.817 0.953 0.817 0.953
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