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Abstract

Machine learning (ML) may be oblivious to hu-
man bias but it is not immune to its perpetua-
tion. Marginalisation and iniquitous group rep-
resentation are often traceable in the very data
used for training, and may be reflected or even
enhanced by the learning models. In this abstract,
we aim to clarify the role played by data geome-
try in the emergence of ML bias. We introduce
an exactly solvable high-dimensional model of
data imbalance, where parametric control over
the many bias-inducing factors allows for an ex-
tensive exploration of the bias inheritance mecha-
nism. Through the tools of statistical physics, we
analytically characterise the typical properties of
learning models trained in this synthetic frame-
work and obtain exact predictions for the observ-
ables that are commonly employed for fairness
assessment. Simplifying the nature of the prob-
lem to its minimal components, we can retrace
and unpack typical unfairness behaviour observed
on real-world datasets.

Introduction
Machine Learning (ML) systems are actively being inte-
grated into multiple aspects of our lives, making the ques-
tion about their failure points of utmost importance. Recent
studies (1; 2) have shown that these systems may have a
significant disparity in failure rates across the multiple sub-
populations targeted in the application. ML systems appear
to perpetuate discriminatory biases that align with those
present in our society (3; 4; 5; 6). Bias could originate at
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many levels in the ML pipeline, from the problem definition
to data collection, to the training and deployment of the ML
algorithm (7). Without minimising the importance of the
other factors, we will focus this study on data itself, which
often represents a critical source of bias (8). A dataset can
inadvertently contain the record of a history of discrimi-
natory behaviour, tangled in complex dependencies which
are hardly eradicated even when the explicit discriminatory
attribute is removed. The root of the discrimination can
indeed be hidden in the structural properties of the dataset,
since different sub-populations are almost inevitably hetero-
geneously represented. Thus, an important open question
is when and how such heterogeneity can induce bias in ML
systems.

Disproportional numerical representation of the different
sub-populations in a dataset is of course the most visible –
but not only possible – form of representation heterogeneity.
Learning with an unbalanced dataset, where some classes
are underrepresented, has been shown to drastically bias the
outcome of a classifier (9; 10). Furthermore, imbalances in
the relative representation can become particularly problem-
atic in the high-dimensional, feature-rich regime (11). In
this work, however, we aim at identifying the many other
geometrical properties of data that can systematically lead
to biased trained models.

In this work, we aim to build a theory for the understand-
ing of bias generated by geometrical properties of data. We
introduce the Teacher-Mixture (T-M) model, a novel exactly-
solvable generative model producing high-dimensional cor-
related data. This model offers a controlled setting where
data imbalances and the emergence of bias become more
transparent and can be better understood, allowing also for
the design of theoretically grounded and effective solutions.
The model is designed to capture common observations
about the data structure of real datasets, with a particular
focus on the coexistence of non-trivial correlations, both
among inputs and between inputs and labels, induced by the
presence of a sub-population structure. Surprisingly, the few
ingredients encoded in the model are capable of generating
a rich and realistic ML bias phenomenology.
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Bias-inducing geometries

Figure 1. The Teacher-Mixture (T-M) model can account for several types of data imbalance and gives rise to a bias-induction
phenomenology compatible with observations in realistic datasets. Panel A and B show cartoons of a possible realisation of the
T-M model in the context of drug testing where labels can indicate the presence of side effects and the population are given by the sex
of the individuals. In particular Panel B illustrate the data generation process. Panel C The panel exemplifies how manipulating the
parameters of the T-M model can alter the data distribution: C.1 represents the balanced condition with equally represented, distributed
and labelled samples; C.2 shows scarcity of data points in both clusters; C.3 displays an example of rule misalignment; C.4 shows different
sub-population variances; C.5 shows relative representation imbalance; C.6 represents the case of unbalanced labels; C.7 shows a case of
positive group-label correlation . Panel D shows the training performance of the student network on an instance of the problem as the
relative representation is manipulated. Not surprisingly, when one sub-population a largely predominant on the dataset, the classifier will
be biased to have higher accuracy on it. The plot shows the match between the analytic curves described in Appendix A (solid lines),
and numerical simulations on the synthetic framework (dots). Panel E contains a similar experiment, but with data from the ‘CelebA’
dataset (12). Details in the Appendix D.

1. Modelling Data Imbalance
The Teacher-Mixture (T-M) model is designed to allow a
theoretical characterisation of the impact of such data im-
balances on the inference process (e.g., determining a dis-
criminative rule for administering the drug to the patients).
While retaining analytical tractability, the T-M model re-
traces the main features of real data with multiple coexisting
sub-populations and allows for a richer phenomenology than
previously analysed data models. In panel A of Fig. 1, we
sketch a 2-dimensional cartoon of the T-M data distribution.

Formal definition We consider a synthetic dataset of n
samples D = {xµ, yµ}nµ=1, with xµ ∈ Rd, yµ ∈ {1,−1}.
We define the O(1) ratio α = n/d and we refer to it as the
dataset size parameter. Each input vector is i.i.d. sampled
from a mixture of two symmetric Gaussians with variances
∆ = {∆+,∆−}, x ∼ N (±v/

√
d,∆±Id×d), with respec-

tive probabilities ρ and (1 − ρ). The shift vector v is a
Gaussian vector with i.i.d. entries with zero mean and vari-
ance 1. The 1/

√
d scaling corresponds to the high-noise

noise regime, where the two Gaussian clouds are overlap-
ping and hard to disentangle (13; 14), e.g. as in the case of

CelebA and MEPS shown in the Appendix D. The ground-
truth labels, instead, are provided by two Gaussian teacher
vectors, namely W+

T and W−
T , with 1

dE[∥W
±
T ∥2] = 1 and

1
dE[W

+
T ·W−

T ] = qT . Each teacher produces labels for the
inputs with the corresponding group-membership, namely
yµ = sign

(
W±

T · xµ
±/

√
d+ b±T

)
. The thresholds b±T cor-

respond to the teacher bias terms, included in the model to
control the fraction of positive and negative samples within
the two sub-populations. Overall, the geometric picture
of the data distribution (sketched in Fig. 1) is summarised
by three sufficient statics, m̃± = 1

dWWW
±
T · vvv and qT , that

respectively quantify the alignment of the teacher labelling
rules with respect to the shift vector, controlling the group-
label correlation, and the alignment between the teacher
vectors, controlling the correlation between labels assigned
to similar inputs belonging to different communities.

Given the synthetic dataset D, we study the proper-
ties of a single-layer network W , with output ŷµ =

sign
(
W · xµ

±/
√
d+ b

)
, trained via empirical risk minimi-
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sation (ERM) with loss:

L(W , bs) =
∑
µ∈D

ℓ (W , bs;x
µ, yµ) +

λ||WWW ||22
2

(1)

where ℓ is assumed to be convex in student’s parameters, λ
is an external parameter that regulates the intensity of the
L2 regularisation, and the index cµ ∈ {+,−} denotes the
group membership of data point µ.

Given this framework, we derive a theoretical characteri-
sation of the training performance of this learning model
and consider the possible implications from an ML fair-
ness perspective. In particular, we aim to study the role
of data geometry and cardinality in the training of a fair
classifier. To quantify the level of bias in the predictions
of the trained model, we need to choose a metric of fair-
ness. We will employ disparate impact (DI) (15), an ML
analog of the 80% rule (16), which allows a simple assess-
ment of the over-specialisation of the classifier on one of
the sub-populations. In our framework, we characterise bias
against sub-population + using the following definition of
DI = p(ŷ = y|+)/p(ŷ = y|−), evaluating the ratio be-
tween test accuracy in sub-population + and sub-population
−. Note that how to measure bias is itself an active line of
research, and the DI alone cannot return a full picture of the
unfairness. In Sec. B, we compare these results with those
obtained with other metrics. Notice, that the T-M model
allows to parametrically move from a model-mismatched
scenario (qT < 1) where the rule to be inferred is not in
the function space of learnable rules, to a model-matched
scenario (qT = 1) where the rule is actually learnable but,
as we will discuss further in Sec. 2, the model may system-
atically fail to identify it. We will discuss in detail when
these failure modes occur and why.

Finally, the T-M model has, at the same time, the advan-
tage of being simple, allowing a better understanding of the
many facets of ML bias, and the disadvantage of being sim-
ple, since some modelling assumptions might not reflect the
complexity of real-world data. For example, we ignore any
type of correlation among the inputs other than the cluster-
ing structure. However, this modelling approach continues
a long tradition of research in statistical physics (17), which
has shown that theoretical insights gained in prototypical set-
tings can often be helpful in disentangling and interpreting
the complexity of real-world behaviour.
Remark 1. By looking at the available degrees of freedom
in the T-M, several possible sources of bias naturally emerge
from the model:

• the relative representation, ρ = n+/(n+ + n−), with
nc the number of points in group c.

• the group variance, ∆c, determining the width of the
clusters.

• the group label frequencies, controlled through the bias
terms bc.

• the group-label correlation, mc.

• the inter-group similarity, qT , which measures the
alignment between the two teachers, i.e. the linear
discriminators that assign the labels to the two groups
of inputs.

• the dataset size, α, representing the ratio between the
number of inputs and the input dimension.

We leave the technical analysis of the model in Appendix A
and next section will focus on the applications of its results
to the understanding of bias generation.

2. Investigating the sources of bias
With these analytical results in hand, we now turn to sys-
tematically investigating the effect of data structure to the
bias generation process, which potentially mine the design
of a fair classifier. We specialise on cross-entropy loss
and perform three separate experiments to summarise some
distinctive features of the fairness behaviour in the T-M:
namely, the impact of the correlation between the labelling
rules and the group structure, the interplay between rela-
tive representation and group variance, and the different
accuracy trade-offs between the sub-populations at different
dataset sizes. The parameters of the experiments, if not
specified in the caption, are detailed in the Appendix C.

Group-label correlation. In the two upper panels of
Fig. 2a, we consider a scenario where the labelling rules for
the two groups are not perfectly aligned, i.e. WWW+

T ̸= WWW−
T

(and/or b+ ̸= b−). Note that, in this case, we have a clear
mismatch between the learning model, a single linear clas-
sifier, and the true input-output structure in the data: the
learning model cannot reach perfect generalisation for both
sub-populations at the same time. For simplicity, we set an
equal correlation between the two teacher vectors and the
shift vector, m+ = m− > 0, and isolate the role of rule
similarity qT . The upper-left panel shows a phase diagram
of the DI (DI< 1 indicating a lower accuracy on group +),
as function of the similarity of the teachers and the fraction
of + samples in the dataset. As intuitively expected, the
induced bias exceeds the 80% rule when the labelling rules
are misaligned and the group sizes are numerically unbal-
anced (small qT and ρ). Indeed, in the cut displayed in the
upper-right panel, by lowering the group-label correlation
m± the gap between the measured accuracies on the two
sub-populations becomes smaller. However:

Remark 2. Even when qT = 1 and the task is solvable
(i.e. the classifier can learn the input-output mapping), the
trained model can still be biased.
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Figure 2. Simple geometrical properties cause the emergence of bias but data correlation can lead to benefit in classification of
both subpopulations. Panel A Each point in the left diagrams shows, for different values of the model parameters, the Disparate Impact
(DI) of the trained model (darker colours represent stronger biases). In particular, in the left upper (lower) diagram, on the x-axis we vary
the relative representation ρ, while on the y-axis we explore possible values of the rule similarity qT (group-label correlation m±). The
corresponding figures on the right show the values of the accuracy for the two sub-populations in correspondence of the cut represented by
the dashed line on the left. Panel B We show the disparate impact as the distribution of the two subpopulations is changed by altering
their variances (∆+ and ∆−). The diagonal line gives the configurations where the two subpopulations have the same variance. The two
figures consider different levels of representation, from left to right ρ = 0.1, 0.5. The latter is the situation with both subpopulations
being equally represented in the dataset. We use the red and blue colours to quantify the disparate bias against sub-population + and −
(respectively). Panel C With 10% of the data points in sub-population + (ρ = 0.1), we compare the performance with different levels of
rule similarity (qT ) as the size of the dataset is increased, showing the disparate impact in the upper figure and the individual accuracies in
central and lower ones. In central and lower figures, the baselines –plotted in black– show the accuracies attained when the model is
trained only on the corresponding group data. The inset of the lower figure highlights the differences in accuracy in the small dataset
regime. When the rules are sufficiently aligned, joint training on both groups will induce a better accuracy on the smaller sub-population
provided α is not too small. Moreover, at intermediate values of α also the larger group can benefit from the information transfer.

This is shown in the two lower panels of Fig. 2a, where a
large high-bias region (DI< 80%) exists. In particular, the
lower-left panel shows the cause of this effect in the presence
of a non-zero group-label correlation m±, and in the lower-
right panel we see how this effect is more pronounced in the
data-scarce regime. In all four panels, as ρ reaches 0.5, the
two sub-populations become equally represented and the
classifier achieves the same accuracy for both.

Bias and variance. In Fig. 2b, we plot the DI as a func-
tion of the group variances ∆±, for different values of the
fraction of + samples. One finds that the model might need
a disproportionate number of samples in the two groups to
obtain comparable accuracies. We can see that:

Remark 3. Balancing the group relative representation
does not guarantee a fair training outcome.

In fact, the quality of a group’s representation in the dataset
can increase if the number of points is kept constant but
the group variance is reduced. The blue regions in the
left panel indicate a higher accuracy for the smaller sub-
population even if the dataset only contains 10% of samples
belonging to it. This exemplifies the fact that a very focused
distribution (low ∆±) actually requires less samples. The
right panel (ρ = 0.5) shows the scenario one would expect
a priori: on the diagonal line the DI is balanced, but by
setting ∆+ > ∆− (or viceversa) one induces a bias in the
classification.
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Positive transfer. If mixing different sub-populations in
the same dataset can induce unfair behaviour, one could
think of splitting the data and train independent models.
In Fig. 2c, we show that a positive transfer effect (18) can
yet be traced between the two groups when the rules are
sufficiently similar. This means that the accuracy on the
under-represented group is enhanced when information is
shared across the two sub-populations.

Remark 4. The performance on the smaller sub-population
tends to further deteriorate if the dataset is split according
to the sub-group structure.

To clarify this point, in the top plot of Fig. 2c we show the
DI as a function of the dataset size α, for several values of
the rule similarity qT and at fixed ρ = 0.10. In the middle
and bottom plots in Fig. 2c, we also display the gain in
accuracy on each sub-population when the model is trained
on the full dataset, comparing with a baseline classifier
(black lines) trained only on the respective data subsets (+
in the central panel, − in the lower panel). These two plots
elucidate the positive transfer effect: for sufficiently similar
rules (large qT ), both populations can benefit from shared
training at intermediate dataset sizes. If the dataset is too
small (low α regime), the lack of data combined with a high
variance in the input distribution can induce over-fitting,
with a larger drop in performance for the smaller group. On
the other hand, as the dataset size becomes sufficiently large,
the positive transfer effect is eventually lost for the large
sub-population (large α regime).

Theory-driven mitigation. The emergence of classifica-
tion bias in the T-M traces back to the clear mismatch be-
tween the generative model of data and the learning model.
In order to move towards a matched inference setting, we
need to enhance the learning model to account for the pres-
ence of multiple sub-populations and labelling rules. This
inspires a mitigation strategy that we call coupled neural
networks, consisting in the simultaneous training of multi-
ple neural networks, each one seeing a different subset of
the data associated with a different sub-population. In Ap-
pendix B we discuss this strategy in detail and we compare
it we standard debiasing methods.

3. Mitigation
To assess or ensure the fairness of a ML model on a given
data distribution, a plethora of different fairness criteria have
been designed (19; 20). In convex settings, any of these
criteria can be separately enforced via a hard constraint
during the optimisation process (21; 22; 23). However, it
was proved that some criteria are completely incompatible
and cannot be exactly achieved simultaneously (24; 25; 26).
In this section we combine the results of the previous section
to propose a theory-informed mitigation strategy. Additional

details and experiments are reported in Appendix B.

In the T-M model, in order to move towards a matched in-
ference setting, we need to enhance the learning model to
account for the presence of multiple sub-populations and
labelling rules. This inspires a mitigation strategy that we
call coupled neural networks, consisting in the simultane-
ous training of multiple neural networks, each one seeing
a different subset of the data associated with a different
sub-population. This idea is represented by the following
modified loss

Lcnn(w) =
∑
c∈±

∑
µ∈Dc

ℓ (Wc, bs,c;x
µ, yµ)

+
λ

2

(
||WWW+||22 + ||WWW−||22

)
+

γ

2
||WWW+ −WWW−||22

(2)

where WWW± are the weights of the two networks and ŷµ± are
their respective estimation of label yµ. The networks ex-
change information through the elastic penalty γ that mutu-
ally attracts them, and the intensity of this elastic interaction
is obtained by cross-validation. Analytical investigation
on the T-M model (Fig. B.1) and simulations on CelebA
(Fig. B.2) show that this method achieves higher accuracy
with a low level of unfairness according to several fairness
metrics. This results open the door to further investigation
of theory informed methods for fairness and data imbalance.

4. Discussion
In this this abstract we discussed the effect of data structure
in generation of biases in a classifier. Surprisingly, with
few modelling ingredients, the T-M model can generate a
rich and realistic ML bias phenomenology. We derive an
analytical characterisation of its performance in the high-
dimensional limit, showing agreement with numerical sim-
ulations and producing realistic unfairness behaviour. By
isolating different sources of bias, we gain insights into situ-
ations where unfairness may persist despite apparent data
balance, cautioning against relying solely on simple rebal-
ancing techniques. We identify a positive transfer effect
among diverse sub-populations, leveraging shared underly-
ing features to enhance performance across groups.
Future directions for our research include incorporating
more complex elements into the data model, such as explor-
ing the multi-label classification case (27) and the effect of
feature dependencies (e.g., proxy variables) in the generated
data. Moreover, further explorations of the efficacy and
limitations of the coupled networks strategy in the context
of deep networks and more complex datasets is called for.
By investigating its performance in deeper architectures and
diverse real-world datasets, and connecting to the existing
literature (28; 29), we can assess the scalability and general-
isability of this approach for addressing fairness concerns.
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Appendix
A. Replica analysis
Theoretical analysis in high-dimensions. In principle, solving Eq. 1 requires finding the minimiser of a complex non-
linear, high-dimensional, quenched random function. However, statistical physics (30) showed that in the limit n, d → ∞,
n/d = α, a large class of problems, including the T-M model, becomes analytically tractable. In fact, in this proportional
high-dimensional regime, the behaviour of the learning model becomes deterministic and trackable due to the strong
concentration properties of a narrow set of descriptors that specify the relevant geometrical properties of the ERM estimator.
The original high-dimensional learning problem can be reduced to a simple system of equations that depends on a set of
scalar sufficient statistics: Q = 1

dWWW ·WWW , m = 1
dWWW · vvv, and R± = 1

dWWW ·WWW±
T , representing the typical norm of the trained

estimator, its magnetisation in the direction of the cluster centres, and its alignment with the two teachers of the T-M.

Analytical result 1. In the high dimensional limit when n, d → ∞ at a fixed ratio α = n/d, the scalar descriptors
Θ = {Q,m,R±, δq} of the vector w obtained by the empirical risk minimisation of Eq. 1 with a generic convex loss ℓ, and
their Lagrange multipliers Θ̂ = {Q̂, m̂, R̂±, δq̂}, converge to deterministic quantities given by the unique fixed point of the
system:
Q = −2∂s(Θ̂;λ)

∂ δq̂ ; m = ∂s(Θ̂;λ)
∂ m̂ ; R± = ∂s(Θ̂;λ)

∂ R̂±
; δq = 2∂s(Θ̂;λ)

∂ Q̂
; Q̂ = 2α∂e(Θ;∆)

∂ δq ; m̂ = α∂e(Θ;∆)
∂ m ; R̂± = α∂e(Θ;∆±)

∂ R±
;

δq̂ = 2α∂e(Θ;∆)
∂ Q . with:

s(Θ̂;λ) =
1

2 (δq̂ + λ)

[
Q̂+

m̂+
∑

c∈{±}

m̃cR̂c

2

++
∑

c∈{±}

(1− m̃2
c)R̂

2
c + 2

qT −
∏

c∈{±}

m̃c

 ∏
c∈{±}

R̂c

]
(A.1)

e(Θ;∆) = Ec

[
Ez

∑
y=±1

H

(
−y

√
Q(c m̃c + b̃c) +

√
∆cRcz√

∆c(Q−R2
c)

)
v(y, c,Θ)

]
(A.2)

where c ∈ {+,−} ∼ Bernoulli(ρ), z ∼ N (0, 1), H(·) = 1
2erfc(·/

√
2) is the Gaussian tail function, w is the solution

of: v(y, c,Θ) = maxw

[
−w2

2 − ℓ
(
y,
√
∆cδqw +

√
∆cQz + cm+ b

))
] and the bias b implicitly solves the equation

∂be(Θ;∆) = 0.

The result was obtained through the non-rigorous replica method from statistical physics (30; 31; 32). The derivation
details are deferred to the Appendix A. We remark that, in convex settings, the replica method was rigorously proven to
yield exact results in a range of different model settings. In particular, a lengthy but straightforward generalization of the
proofs presented in (33; 13; 34) could be derived for the T-M case, but this is out of the scope of the present work. In this
manuscript, we verify the validity of our replica theory by comparison with numerical simulations, as shown e.g. in the
central panel of Fig. 1.

The obtained fixed point for the scalar descriptors Θ can be used to evaluate simple expressions for common model
evaluation metrics, such as the confusion matrix or the generalisation error.

Analytical result 2. In the same limit as in Analytical result 1, the entries of the confusion matrix, representing the
probability of classifying as ŷ an instance sampled from sub-population c with true label y, are given by:

p (ŷ | y; c) =Ez

[
Heav

(
y
(√

∆cz + c m̃c + b̃c

))
×H

(
−ŷ

(cm+ b) +
√
∆cRcz√

∆c(Q−R2
c)

)]
, (A.3)

where z ∼ N (0, 1) and Heav(·) is the Heaviside step function. The generalisation error, representing the fraction of

wrongly labelled instances, can then be obtained as ϵg = Ec

[∑
ŷ ̸=y p(ŷ | y; c)

]
.

This second yields a fully deterministic estimate of the accuracy of the trained model on the different data sub-populations.
These scores will be used in the following sections to investigate the possible presence of bias in the classification output of
the model. Note that the results 1 and 2 allow for an extremely efficient and exact evaluation of the learning performance in
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the T-M, remapping the original high-dimensional optimisation problem onto a system of deterministic scalar equations that
can be easily solved by recursion.

We will directly present the most general setting for this calculation, where the learning model is composed of two linear
classifiers (“students” in the following), coupled by an elastic penalty of intensity γ. This allows us to characterise the novel
mitigation strategy proposed in this work, while the standard case with a single learning model can be obtained by setting
γ = 0. Each student, denoted by the index s = 1, 2, is assumed to be trained on a fraction of the full dataset Ds. Note that,
in principle, the data split could not be aligned with the group structure of the dataset.

The loss function for the coupled learning model reads:

L(W 1,W 2) =
∑
s=1,2

∑
µ∈Ds

ℓ

(
W cµ

T · xµ

√
d

+ b̃cµ ,
W s · xµ

√
d

+ bs

)
+
∑
s=1,2

λ

2

(
d∑

i=1

W 2
s,i

)
− γ

2
∥W 1 −W 2∥2 (A.4)

and we will focus in the following on the cross-entropy loss:

ℓ(y, q) = −Heav (y) log σ(q)− (1−Heav (y)) log (1− σ(q)) (A.5)

where Heav(·) is the Heaviside step function, which outputs 1 for positive arguments and 0 for negative ones, and
σ (x) = (1 + exp (−x))

−1 is the sigmoid activation function. The calculation also holds for alternative convex losses, e.g.
the Hinge loss or the MSE loss, since the only affected part is the numerical optimisation of the proximal operator, as shown
below.

TEACHER PARTITION FUNCTION

In the T-M model, the label distribution is non-trivially dependent on the mutual alignment of the shift vector v, determining
the means of the two Gaussians in the input mixture, and the two teacher vectors W±

T . Since we are allowed to fix a Gauge
for one of these vectors (compatible with its distribution), we choose for simplicity v = 1 to be a vector with all entries
equal to 1 (still normalized on the sphere of radius d). We define the teacher partition function:

ZT =

∫
dµ(W+

T ,W
−
T ) =

∫ ∏
c=±

[
dµ (W c

T ) δ
(
|W c

T |
2 − d

)
δ (W c

T · 1− dm̃c)
]
δ
(
W+

T · T− − d qT
)
,

where the measures µ(T±) are in this case assumed to be factorised normal distributions. The Dirac’s δ-functions ensure
that the geometrical disposition of the model vectors is the one defined by the chosen magnetisations m̃± and the overlap
qT , and that the vectors are normalised to the d-sphere.

At this point, and throughout this section, we use the integral representation of the δ-function:

δ(x− ad) =

∫
dâ

2π/d
e−iâ( x

d−a), (A.6)

where â is a so-called conjugate field that plays a role similar to a Lagrange multiplier, enforcing the constraint contained in
the δ-function. We can rewrite:

ZT =

∫ ∏
c=±

dQ̂c
T

2π/d

∫ ∏
c=±

d ˆ̃mc

2π/d

∫
dq̂T
2π/d

edΦT ({m̃±,qT },{Q̂±
T , ˆ̃m±,q̂T }), (A.7)

where the action ΦT represents the entropy of configurations for the teacher that satisfy the chosen geometrical constraints.
Given that the components of the teacher vectors are i.i.d., the entropy can be factorised over them. In high dimensions,
i.e. when d → ∞, the integral will be dominated by "typical" configurations for the vectors, and the integral ZT can
be computed through a saddle-point approximation. We Wick rotate the fields in order to avoid dealing explicitly with
imaginary quantities, and decompose ΦT = gTi + gTs:

gTi = −

(∑
c

ˆ̃mcm̃c +
∑
c

Q̂c
T + q̂T qT

)
, (A.8)
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gTs = log

∫
DT+

∫
DT− exp

(∑
c

Q̂c
TT

2
c +

∑
c

ˆ̃mcTc + q̂TT+T−

)
.

After a few Gaussian integrations the computation of the second term yields:

gTs =

(
1− 2Q̂−

T

)
ˆ̃m2
+ +

(
1− 2Q̂+

T

)
ˆ̃m2
− + 2q̂T ˆ̃m+

ˆ̃m−

2
((

1− 2Q̂−
T

)(
1− 2Q̂+

T

)
− q̂2T

) − 1

2
log
((

1− 2Q̂+
T

)(
1− 2Q̂−

T

)
− q̂2T

)
.

Now, in order to complete the computation of the partition function ZT , we have impose the saddle point condition for ΦT ,
which is realised when the entropy is extremised with respect to the fields we introduced. From the associated saddle point
equations one can find two useful identities:

1− m̃2
c =

(
1− 2Q̂−c

T

)
((

1− 2Q̂−
T

)(
1− 2Q̂+

T

)
− q̂2T

) (A.9)

qT − m̃+m̃− =
q̂T((

1− 2Q̂−
T

)(
1− 2Q̂+

T

)
− q̂2T

) (A.10)

FREE ENTROPY OF THE LEARNING MODEL

In this subsection we aim to achieve analytical characterisation of typical learning performance in the T-M, i.e. to describe
the solutions of the following optimisation problem:

W ⋆
1, W

⋆
2 = argmin

W 1,W 2

L(W 1, W 2;D), (A.11)

where D represents a realisation of the data and L(·) was defined in Eq. A.4. In typical statistical physics fashion, we can
associate this problem with a Boltzmann-Gibbs probability measure, over the possible configurations of the student model
parameters:

P (W 1, W 2;D) =
e−βL(W 1,W 2;D)

ZW
, (A.12)

where the loss L plays the role of an the energy function, β is an inverse temperature and ZW is the partition function
(normalisation of the Boltzmann-Gibbs measure).

Since the loss is convex in the student parameters, when the inverse temperature is sent to infinity, β → ∞, the probability
measure focuses on the unique minimiser of the loss, representing the solution of the learning problem. In the asymptotic
limit d → ∞, the behaviour of this model becomes predictable since the overwhelming majority of the possible dataset
realisations (with the same configuration of the generative parameters) will produce solutions with the same macroscopic
properties (norm, test performance, etc). We therefore need to consider a self-averaging quantity, which is independent of
the specific realisation of the dataset so that the typical learning scenario can be captured.

Thus, we aim to compute the average free-energy:

ΦW = lim
d→∞

lim
β

1

βd
⟨logZW (WWW 1,WWW 2;D1,D2)⟩D1,D2

. (A.13)

This type of quenched average is not easily computed because of the log function in the definition. The replica trick, based
on the simple identity limr→0(x

r − 1)/r = log(x), provides a method to tackle this computation. One can replicate the
partition function, introducing r independent copies of the original system. Each of them, however, sees the same realisation
of the data D (the "disorder" of the system, in the statistical physics terminology). When one takes the average over D, the r
replicas become effectively coupled, and can be intuitively interpreted as i.i.d. samples from the Boltzmann-Gibbs measure
of the original problem. At the end of the computation, one takes the analytic continuation of the integer r to the real axis
and computes the limit limr→0, re-establishing the logarithm and the initial expression.
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We start by computing the replicated volume (product over the r partition functions) Ωr(D), which is still explicitly
dependent on the sampled dataset:

Ωr(D) =

∫
dµ(W+

T ,W
−
T )

ZT

∫ ∏
s,a

dbasdW a
se

− βγ
2 ∥W a

1−W a
2∥

2 ∏
µ∈Ds

e
−β ℓ

(
W cµ

T ·xµ
√

d
+b̃cµ ,

Wa
s ·xµ
√

d
+bas

) , (A.14)

where s = 1, 2 indexes the two coupled student models and a = 1, ..., r is the replica index.

To make progress we have to take the disorder average, i.e. the expectation over the distribution of xµ as defined in the T-M
model. We can exploit δ-functions in order to replace with dummy variables, uµ and λa

µ, the dot products in the loss and
isolate the input dependence in simpler exponential terms:

1 =

∫ ∏
µ

duµ δ

(
uµ − W cµ

T · xµ

√
d

)∫ ∏
a,s,µ∈Ds

dλa
µδ

(
λa
µ − W a

s · xµ

√
d

)
(A.15)

=

∫ ∏
µ

duµdûµ

2π
e
iûµ

(
uµ−

∑d
i=1

Wcµ

T,ix
µ
i√

d

) ∫ ∏
a,s,µ∈Ds

dλa
µdλ̂

a
µ

2π
e
iλ̂a

µ

(
λa
µ−
∑d

i=1

Wa
s,ix

µ
i√

d

)
(A.16)

We can now evaluate the expectation over the input distribution, collecting all the terms where each given input appears. By
neglecting terms that vanish in the N → ∞ limit, for each pattern µ we get:

Exµe
−i
∑

a λ̂µ
a

∑N
i=1

Wa
sµ,i

x
µ
i√

d
−iûµ

∑d
i=1

Wcµ

T,ix
µ
i√

d = (A.17)

=

N∏
i=1

e
−icµ

(∑
a λ̂µ

a

Wa
sµ,i

vi

d +ûµ
Wcµ

T,iv
µ
i

d

)
Ezµ

i
e
−i

(∑
a λ̂µ

a

Wa
sµ,i√
d

+ûµ

Wcµ

T,i√
d

)
zµ
i

= e
−icµ

(∑
a λ̂µ

a

∑
i Wa

sµ,i
d +ûµ

∑
i Wcµ

T,i
d

)
−∆cµ

2

(∑
ab λ̂µ

a λ̂
µ
b

∑
i Wa

sµ,i
Wb

sµ,i
d +2ûµ∑

a λ̂µ
a

∑
i Wa

sµ,i
Wcµ

T,i
d +(ûµ)2

∑
i(W

cµ

T,i)
2

d

)
. (A.18)

To get Eq. A.18, we used the fact that the noise zµ is i.i.d. sampled from centred Gaussians of variance determined by the
group, and explicitly used our Gauge choice v = 1. In this expression, the relevant order parameters of the model appear,
describing the overlaps between the student vectors, the shift vector and the teacher vectors. We are thus going to introduce
via δ-functions the following parameters:

• ma
s =

W a
s ·1
d , m̃c =

W c
T ·1
d : magentisations in the direction of the + group centre of the students and the teachers.

• qabs =
∑

i w
a
siw

b
si

d : self-overlap between different replicas of each student.

• Ra
sc =

∑
i W

a
s,iW

c
T,i

d : overlap between student and teacher vectors.

• qcT =
∑

i T
2
ci

d : norm of the teacher vectors (equal to 1 by assumption).

After the introduction of these order parameters (via the integral representation of the δ-function) the replicated volume can
be expressed as:

Ωd =

∫ ∏
s,a

dma
sdm̂

a
s

2π/d

∫ ∏
sc,a

dRa
scdR̂

a
sc

2π/d

∫ ∏
s,ab

dqabs dq̂abs
2π/d

∫ ∏
c

dbacG
d
IG

d
S

∏
sc

GE(s, c)
αc,sd (A.19)

where αc,sN indicates the number of patterns from group c contained in the data slice Ds given to student s. We also
introduced the interaction, the entropic and the energetic terms:

GI = exp

−
∑
s,a

m̂a
sm

a
s −

∑
s,ab

q̂abs qabs −
∑
sc,a

R̂a
scR

a
sc

 (A.20)
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GS =

∫ ∏
c

DTc exp

(∑
c

Q̂c
TT

2
c +

∑
c

ˆ̃mcTc + q̂TT+T−

)

×
∫ ∏

s,a

dµ (wa
s ) e

−βγ(wa
1−wa

2 )
2

exp

∑
s,a

m̂a
sw

a
s +

∑
s,ab

q̂abs wa
sw

b
s +

∑
sc,a

R̂a
scw

a
sTc

 (A.21)

GE(s, c) =

∫
dudû

2π
eiuû

∫ ∏
a

(
dλadλ̂a

2π
eiλ

aλ̂a

)
e−

∆c

2

∑
ab λ̂aλ̂bq

ab
s −∆cû

∑
a λ̂aR

a
sc−∆c

2 (û)2

×
∏
a

e−β ℓ(u+cm̃c+b̃c,λ
a+cma

s+bas) (A.22)

The shorthand notation Dx = e−
x2

2√
2π

is used to indicate a normal Gaussian measure. Note that, after the factorization in the
GS , the variables Tc and wa

s denote a component of the vectors W c
T and W a

s respectively.

Replica symmetric ansatz. To make further progress, we have to make an assumption for the structure of the introduced
order parameters. Given the convex nature of the optimisation objective A.4, the simplest possible ansatz, the so-called
replica symmetric (RS) ansatz, is fortunately exact. Replica symmetry introduces a strong constraint for the overlap
parameters, requiring the r replicas of the students to be indistinguishable and the free entropy to be invariant under their
permutation. Mathematically, the RS ansatz implies that:

• ma
s = ms for all a = 1, ..., r (same for the conjugate)

• Ra
sc = Rsc for all a = 1, ..., r (same for the conjugate)

• qabs = qs for all a > b, qabs = Qs for all a = b (same for the conjugate)

• bas = bs for all a = 1, ..., r

Moreover, since we want to describe the minimisers of the loss, we are going to take the β → ∞ limit in the Gibbs-
Boltzmann measure. The replicas, which represent independent samples from it, will collapse on the unique minimum. This
is represented by the following scaling law with β for the order parameters, which will be used below:

Q− q = δq/β; Q̂− q̂ = −βδq̂; q̂ ∼ β2q̂; m̂ ∼ βm̂; R̂ ∼ βR̂ (A.23)

Interaction term. We now proceed with the calculation of the different terms in A.19, where we can substitute the RS
ansatz. In the interaction term, neglecting terms of O(n2), we get:

Gi = exp

(
−n

(∑
s

(
m̂sms +

∑
c

R̂scRsc +
Q̂sQs

2
− q̂sqs

2

)))
(A.24)

In the β → ∞ limit the expression becomes:

log(Gi)/d = gi = −β

(∑
s

(
m̂sms +

∑
c

R̂scRsc +
1

2
(q̂sδqs − δq̂sqs)

))
(A.25)

ENTROPIC TERM

In the entropic term the computation is more involved, due to the couplings between the Gaussian measures for the teachers
and for those of the students. We substitute the RS ansatz in expression A.21 to get:

GS =

∫
DT+

∫
DT− exp

(∑
c

Q̂c
TT

2
c +

∑
c

ˆ̃mcTc + q̂TT+T−

)∫ ∏
s,a

dµ (wa
s ) e

− γ
2 (w

a
1−wa

2 )
2
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×
∏
s

exp

m̂s

∑
a

wa
s +

1

2

(
Q̂s − q̂s

)∑
a

(wa
s )

2
+

1

2
q̂s

(∑
a

wa
s

)2

+
∑
c

R̂sc

∑
a

wa
sTc

 (A.26)

We perform a Hubbard-Stratonovich transformation to remove the squared sum in the previous equation, introducing the
Gaussian fields zs. Then, we rewrite coupling term between the teachers as q̂TT+T− = q̂T

2 (T+ + T−)
2 − q̂T

2 (T 2
+ + T 2

−),
and perform a second Hubbard-Stratonovich transformation, with field z̃, to remove the explicit coupling between T+ and
T−. Similarly, the elastic coupling between the students can be turned into a linear term with fields za12:

=

∫
Dz̃

∫ ∏
s

Dzs

∫
dTc√
2π

exp

(
−1

2

∑
c

(
1− 2Q̂c

T + q̂T
)
T 2
c +

∑
c

(
ˆ̃mc +

√
q̂T z̃

)
Tc

)∫ ∏
a

Dza12

×
∫ ∏

s,a

dµ (wa
s )
∏
s

exp

(
1

2

(
Q̂s − q̂s

)∑
a

(wa
s )

2 +

(
m̂s +

∑
c

R̂scTc +
√

q̂szs + is
√
γza12

)∑
a

wa
s

)
(A.27)

After rescaling the variances of the teacher measures and centring them, one can factorise over the replica index and take the
r → 0 limit, obtaining the following expression for gS = logGS/d:

gS = A+

∫ ∏
s

Dzs

∫ ∏
c

DTc

∫
Dz̃ log

∫
Dz12

∫ ∏
s

dµ (ws) exp

(
1

2

(
Q̂s − q̂s

)
w2

s +Bsws

)
(A.28)

where:

A =

∑
c
ˆ̃m2
c

(
1− 2Q̂−c

T

)
+ 2q̂T

(∑
c
ˆ̃mc

)2
2
((

1− 2Q̂+
T

)(
1− 2Q̂−

T

)
− q̂2T

) (A.29)

Bs = bs (T±, z±, z̃, zs) + is
√
γz12 (A.30)

bs = m̂s +
√
q̂szs +

∑
c

m̃cR̂sc +
R̂sc√(

1− 2Q̂c
T + q̂T

)Tc +

√
q̂T√

1−
∑

c′
q̂T

(1−2Q̂c′
T +q̂T )

R̂sc(
1− 2Q̂c

T + q̂T

) z̃
 (A.31)

In the β → ∞ limit, and considering the L2-regularisation on the student weights dµ (w) = dw√
2π

e−
βλ
2 w2

we get:

gS = A+

∫ ∏
s

Dzc

∫ ∏
c

DTc

∫
Dz̃ log

∫
Dz12 exp

(∑
s

max
ws

(
−λ+ δq̂s

2
w2

s +Bsws

))
(A.32)

and the maximisation gives:

w⋆
s =

Bs

(λ+ δq̂s)
; max

ws

(
−λ+ δq̂s

2
w2

s +Bsws

)
=

B2
s

2 (λ+ δq̂s)
(A.33)

Substituting the above described scaling laws for the order parameters in the β → ∞ limit one finds that the A term becomes
sub-dominant and can be ignored. The remaining steps are quite tedious, but the procedure to obtain the final result for the
entropic channel is straightforward:

• Expand the sums in Eq.A.32.

• Perform the z12 Gaussian integration and take the log of the result.

• Identify the terms that have even powers in the Hubbard-Stratonovich Gaussian fields and in the teacher variables. The
Gaussian integrations will kill all the remaining cross terms, so they can be ignored.
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• Perform the remaining Gaussian integrations.

• Use identities A.9 and A.10 to remove the dependence on the conjugate fields appearing in the Teacher measure and
only retain a dependence on m̃c, Qc

T , and qT .

The final expression reads:

gS =
β

2
(∏

s(λ+ γ + δq̂s)− γ2
) [(∑

s

(
m̂s +

∑
s

m̃cR̂sc

)2

(λ+ γ + δq̂¬s) + 2γ
∏
s

(
m̂s +

∑
c

m̃cR̂sc

))
(A.34)

+

(∑
s

q̂s (λ+ γ + δq̂¬s)

)
+

(∑
c

(
1− m̃2

c

)(∑
s

R̂2
sc (λ+ γ + δq̂¬s) + 2γ

∏
s

R̂sc

))
(A.35)

+

(
2 (qT − m̃+m̃−)

(∑
s

(∏
c

R̂sc (λ+ δq̂¬s)

)
+ γ

(∏
c

(∑
s

R̂sc

))))]
(A.36)

where the notation ¬s denotes the other student index with respect to the one used in the corresponding sum or product.

Energetic term. We can compute the energetic channel for a generic student s and a generic data group c. Each term
will be multiplied by αc,s, determining the fraction of inputs from group c in the dataset Ds of student s. For simplifying
the notation in this subsection we drop the indices s, c, with the understanding that the all the order parameters, and model
parameters, appearing in the following expressions are those corresponding to a specific pair of these indices.

Substituting the RS ansatz in Eq. A.22 we get:

GE =

∫
dudû

2π
eiuû

∫ ∏
a

(
dλadλ̂a

2π
eiλ

aλ̂a

)
e−

∆
2

∑
ab λ̂aλ̂bq−∆ûR

∑
a λ̂a−∆

2 (û)2qT (A.37)

×
∏
a

e−β ℓ(u+cm̃+b̃,λa+cm+b) (A.38)

We can start by evaluating the Gaussian in û, then performing a Hubbard-Stratonovich transformation, with field z, to
remove the squared sums on the replica index. Following up with the Gaussian integration in λ̂ we find that the argument of
the integrations factorises over the replica index. Up to first order in r when r → 0, we find for gE = logGE/d:

gE =

∫
Dz

∫
Du log

∫
Dλe

−β ℓ

(
√
∆qTu+cm̃+b̃,

√
∆(Q−q)λ+

√
∆R√
qT

u+

√
∆

(q−R2)
qT

z+cm+b

)
(A.39)

and in the the β → ∞ limit we can solve the integral by saddle-point:

log

∫
Dλe

−β ℓ

(
√
∆qTu+cm̃+b̃,

√
∆(Q−q)λ+

√
∆R√
qT

u+

√
∆

(q−R2)
qT

z+cm+b

)
= −βM (A.40)

with:

M = min
λ

λ2

2
+ ℓ

(√
∆qTu+ cm̃+ b̃,

√
∆δqλ+

√
∆R

√
qT

u+

√
∆
(q −R2)

qT
z + cm+ b

)
(A.41)

To simplify further, we can shift
√
∆R√
qT

u+
√
∆ (q−R2)

qT
z →

√
∆qz′. Then, given the definition of the logistic loss A.5, we

can split the u integration over the intervals
√
∆qTu+ cm̃c > 0 and

√
∆qTu+ cm̃c < 0 and eventually get (re-establishing

the s, c indices):

gE(s, c) =
∑
y

∫
DzH

−y
qs

cm̃c+b̃c√
1

+
√
∆cRscz√

∆c (qs −R2
sc)

ME (y, s, c) (A.42)

Where H(x) = 1
2 erfc(x/

√
2) is the Gaussian tail function and we defined the proximal:

ME (y, s, c) = max
λ

−λ2

2
− ℓ

(
y,
√
∆cδqsλ+

√
∆cqsz + cms + bs

)
(A.43)
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Note that this simple 1D optimisation problem has to be solved numerically in correspondence of each point evaluated in the
integral.

The reweighing strategy is easily embedded in this calculation by explicitly changing the definition of ℓ, adding a different
weight Wc,y for each combination of label and group membership. Defining a one-hot encoding vector for the teacher-
produced label, Y ∈ R2, and a output probability (constructed from the sigmoid function) for the student, P (Ŷ ), the
reweighed cross-entropy loss can be written as:

L(D) =
∑
c=±

∑
y=0,1

(W)(c,y)Yy logP (Ŷy). (A.44)

For the sake of simplicity we reduced the degrees of freedom to two, parameterising these weights as:

W = 2

(
w+w1 w+(1− w1)

(1− w+)w1 (1− w+)(1− w1)

)
(A.45)

where w+, w1 ∈ [0, 1] can be used to increase the relative weight of a misclassification errors in the group + and label 1
respectively.

Different losses could be chosen instead of the cross-entropy and, again, only the numerical optimisation of the proximal
would be affected.

SADDLE-POINT OF THE FREE-ENTROPY

We thus have found that the free-entropy ΦW can be written as a simple function of few scalar order parameters. In the
high-dimensional limit, the integral in A.19 is dominated by the typical configuration of the order parameters, which is
found by extremising the free-entropy with respect to all the overlap parameters:

ΦW = extr
o.p.

{
gI + gS +

∑
s,c

αs,c gE(s, c)

}
(A.46)

The saddle-point is typically found by fixed-poimnt iteration: setting each derivative, with respect to the order parameters, to
zero returns a saddle-point condition for the conjugate parameters, and vice-versa.

The fixed-point is uniquely determined by the value of the generative parameters, m̃± and qT , and the pattern densities αs,c.
In the main text, for simplicity, we parameterise αs,c through the fraction η, which represents the percentage of patterns
from group + assigned to the first student model.

The special case of a single student model is obtained from this calculation by setting γ = 0 and assigning all the inputs in
the first dataset D1.

Test accuracy. All the performance assessment metrics employed in this paper can be derived from the confusion matrix,
which measures the TP, FP, TN, FN rates on new samples from the T-M. These quantities can be evaluated analytically and
are easily expressed as a function of the saddle-point order parameters obtained in the previous paragraphs.

Suppose we obtain a new data point with label y from group c, then probability of obtaining an output ŷ from the trained
model s is given by:

P
(
Y = y, Ŷ = ŷ

)
= Ex(c)

〈
Θ

(
y

(
Wc

T · x(c)√
d

+ b̃

))
Θ

(
ŷ

(
Ws · x(c)√

d
+ b

))〉
µ(WT ,W )

(A.47)

= Ex(c)

〈∫
dudû
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iû
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WT,ixi√
d
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dλdλ̂

2π
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(
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i=1
Wixi√

d

)〉
Θ
(
y
(
u+ b̃

))
Θ(ŷ (λ+ b)) (A.48)

where, following the same lines as in the free-entropy computation, we used δ-functions to extract the dependence on the
input, to facilitate the expectation:

Ex(c)

〈
e
−iλ̂

W s·x(c)√
d

−iû
WT ·x(c)√

d

〉
(A.49)
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= e−ic(λ̂m+ûm̃)e−
∆
2 (λ̂

2Q+2ûλ̂R+û2). (A.50)

We have substituted the overlaps that come out of the average with their typical values in the Boltzmann-Gibbs measure of
the T-M. Note that we can substitute q = Q since in the β → ∞ limit they are equal up to the first order.

The Gaussian integrals can be computed and one gets the final expression:

P
(
Y = y, Ŷ = ŷ

)
=

∫ ∞

−∞
DuΘ

(
y
(√

∆cu+ cm̃c + b̃c

))
H

(
−ŷ

√
∆cRscu+ cms + bs√

∆c (qs −R2
sc)

)
(A.51)

Similarly, one can also obtain e.g. the label 1 frequency:

P (Y = 1) = ρH

(
−m̃+ + b̃+√

∆+

)
+ (1− ρ)H

(
m̃− − b̃−√

∆−

)
(A.52)

and the generalisation error:

ϵg =

∫ ∞

−∞
DuH

(
sign

((√
∆cu+ cm̃c + b̃c

)) √
∆cRscu+ cms + bs√

∆c (qs −R2
sc)

)
. (A.53)

B. Mitigation strategies

FAIRNESS METRIC CONDITION
Statistical Parity P[Ŷ = y|C = c] = P[Ŷ = y] ∀y, c

Equal Opportunity P[Ŷ = 1|C = c, Y = 1] = P[Ŷ = 1|Y = 1] ∀c
Equal Accuracy P[Ŷ = y|C = c, Y = y] = P[Ŷ = y|Y = y] ∀y, c

Equal Odds
P[Ŷ = 1|C = c, Y = 1] = P[Ŷ = 1|Y = 1] ∩

P[Ŷ = 1|C = c, Y = −1] = P[Ŷ = 1|Y = −1] ∀c
Predicted Parity P[Y = 1|C = +, Ŷ = y] = P[Y = 1|C = −, Ŷ = y] = P[Y = 1|Ŷ = y] ∀y

Table 1. List of Fairness Metrics. Statistical Parity: Equal fractions of each group should be treated as belonging to the positive class
(35; 24; 36). Equal Opportunity: Each group needs to achieve equal true positive rate(37). Equal Accuracy: Each group is required to
achieve the same level of accuracy. Equal Odds: Each group should achieve equal true positive and false positive rates(15; 38). Predicted
Parity. Given inputs that are classified by the model with label y, the fraction of input with true label y∗ should be consistent across
sub-populations. This gives two sub-criteria: predicted parity 1 requires the condition only for y∗ = 1, while predicted parity 10 requires
the condition for both y∗ = 1 and y∗ = −1 (39).

In the same spirit of (19), we drop the hard constraint and instead quantify exactly how far a given trained model is from
meeting the criteria. Each criterion requires the probability of obtaining a specific classification outcome E to be the same
across the sub-populations. For example, according to the definition of Equal Opportunity (Table 1), the true positive rate
P (E = (Ŷ = 1 |Y = 1)) should not depend on the group-membership C. A natural measure of the observed dependence
between E and C is given by the Mutual Information (MI):

I(E;C) = DKL(P[E,C]
∣∣ P[E]P[C]) = E log

P[E,C]

P[E]P[C]
. (B.1)

The fairness condition is exactly verified only when the joint distribution factorizes, i.e. P[E,C] = P[E]P[C], and the
mutual information goes to zero. Table 1 provides some other examples of classification events E, for some well-established
fairness criteria. Note that some criteria might not be sensible in specific settings (e.g., Statistical Parity is unlikely to be
guaranteed in a drug-testing scenario).

In the following, we consider two simple bias mitigation strategies that can be analysed within our analytical framework.
The required generalisations of the results shown in Sec. A are detailed in the Appendix A. First, we study the de-biasing
effect of a sample reweighing strategy where the relevance of each sample is varied based on its label and group membership

17



Bias-inducing geometries

(40; 41; 42). By adjusting the weights, one can indirectly minimise the MI relative to any given fairness measure. We use the
simultaneous quantitative predictions on the various metrics to assess the compatibility between different fairness definitions.
Then, we propose a theory-based mitigation protocol, along the lines of protocols used in the context of multi-task learning
(43), that couples two architectures trained in parallel.

coupled NNs

coupling strength

CelebA

coupling strength

Figure B.1. Fairness-accuracy trade-off with reweighing and coupled architecture. Panel A The figures show the effect of re-
weighting and coupled architectures de-biasing methods in a instance of the T-M model. The lowers figures shows the accuracy for
subpopulation + and subpopulation − and the upper figures show the mutual information for the several fairness metrics defined in
Table 1, namely statistical parity, equal opportunities, equal accuracy, equal odds, predicted parity 1, and predicted parity 10. The goal of
the algorithm is to identify regions with high accuracy (lower figures) and low mutual information (higher figures) for all metrics: this
would imply that fairness is approximately achieved under all the criteria. The first three group of figures refer to the reweighing strategy,
forcing higher relevance for a certain label in each panel (w1 = 0.1, 0.5, 0.9) and the relative importance of a given subpopultation
(parameter w+) on the x-axis. The last panels instead refer to the proposed coupled networks strategy and the x-axis represent the strength
of the coupling γ. The figures clearly show that our strategy achieves a higher accuracy in both subpopulations while preserving a higher
level of fairness. Interestingly the minimum of the mutual information roughly correspond to the same parameter of the coupling strength,
contrarily to what observed in the reweighing strategy. Panel B The two panels, show an example from the CelebA dataset splitting and
classifying according to the attributes “Wearing_Lipstick” and “Wavy_Hair” respectively, more details are provided in the Appendix D.1
and D. The observations made for the synthetic model applies also in this real-world case.

Loss Reweighing. Recent literature shows that some fairness constraints cannot be satisfied simultaneously. ML systems
are instead forced to accept trade-offs between them (24). This sort of compromise is well-captured in the simple framework
of the T-M model. The first three panels of Fig. B.1a show accuracies and MI measured with respect to the various fairness
criteria while varying the two reweighing parameters, w1 and w+, which up-weigh data points with true label 1 and in group
+, respectively. Thus, each loss term in Eq. 1 is reweighed as:

W(c, y) =


w1w+ if c = +, y = 1

w1(1− w+) if c = −, y = 1

(1− w1)w+ if c = +, y = −1

(1− w1)(1− w+) if c = −, y = −1 .

(B.2)

By changing these relative weights one can force the model to pay more attention to some types of errors and re-establish a
balance between the accuracies on the two sub-populations. The goal is to identify a classifier that achieves high accuracy
(lower panels) while minimising the MI for different fairness metrics. Notably, given a weight w1, these minima occur for
different values of the weight w+. Only w1 = 0.1 seems to have a value of w+ close to several minima of the MI, but this
point correspond to a sharp decrease in accuracy in both subpopulations, thus fairness is achieved but at the expense of
accuracy. These results are in agreement with rigorous results in the literature (26), but also show how the incompatibilities
between the different constraints extend to regimes where the fairness criteria are not exactly satisfied.
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The upper rightmost plots of Fig. B.1a, displaying the behaviour of the mutual information as a function of the coupling
parameter for different fairness metrics, shows the key advantage of using this method. We observe a more robust consistency
among the various fairness metrics: the positions of the different minima are now very close to each other. Moreover, the
value of the coupling parameter achieving this agreement condition is also the one that minimises the gap in terms of test
accuracy between the two sub-populations, as shown in the lower plot, without hindering the performance on the larger
group. Notice that this result does not contradict the impossibility theorem (26) which states that statistical parity, equal
odds, and predicted parity cannot be satisfied altogether. In fact, our result only concerns soft minimisation of each fairness
metrics. The result is in agreement with (44) whose results show that the trade-off between fairness and accuracy vanishes
when the true distribution of data is capture. Leveraging the universal approximation property of neural networks, the
coupled networks method seems a promising direction for applications. In the panels of Fig. B.1b we show promising
preliminary results in the realistic dataset CelebA1. We stress that real data often presents more complex correlations than
those modelled in the T-M, which may hinder the effectiveness of this strategy in unexpected ways.

The method of the coupled networks can be generalised to an arbitrary number of classes and sub-populations, and can be
combined with standard clustering methods when the group membership label is not available. A future research direction
will be to better investigate its range of applicability and, consequently, its limitations in real-world scenarios. In the
Appendix A and C we provide additional results for this method and we discuss the effect of training the networks on data
subsets that only partially correlate with the true group structure.

B.1. Real data.

In Fig. B.1 of the main text, we show the effect of reweighing in the synthetic model. The same analysis can be applied to
real data, yielding similar results. In particular, in line with the other validations, we present in Fig. B.2 the result for the
CelebA dataset when the splitting is done according to the "Wearing_Lipstick" and the target feature is "Wavy_Hair".

Figure B.2. Mitigation using re-weighting on real data. The four panels show the same quantities as in Fig. B.1A but applied to the
CelebA dataset. Each panels shows in upper figure the mutual information on the fairness metrics – statistical parity, equal opportunities,
equal accuracy, equal odds, predicted parity 1, and predicted parity 10– and in the lower figure the accuracy of for subpopulation + and
subpopulation −. The first 3 panels show the effect on the reweighing strategy for different values of the label weight (from left to right
wl = 0.1, 0.5, 0.9). The last panel shows the performance of the coupled neural network strategy.

1The illustrated checkpoints are used only to show the similarity of behaviour in synthetic data and realistic data (CelebA), and not
used or recommended to use in any face recognition systems or scenarios.
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Similarly to what observa in the synthetic dataset, the coupled neural network strategy allows for a better performance on all
the fairness metrics while retraining a high accuracy for both subpopulations.

B.2. Additional results varying group membership.

Some strategies require information concerning the group membership of each data point. Depending on the situation, this
information may contain errors or it may even be unavailable. Consequently we should take into account the robustness of
the mitigation strategies with respect to these errors. Call η the fraction of points for which the group was correctly assessed.
The phase diagrams in Fig. B.5a show the DI under the reweighing mitigation scheme (controlling the group importance
in the loss) and the coupled classifier mitigation. We can clearly observe a greater resilience to the error rates in the case
of our strategy. The reweighing strategy appears to have low DI only in extreme cases, where the accuracy on the largest
sub-population is greatly deteriorated.

We can understand the larger picture by looking at the different fairness metrics described in the main text, Fig. B.5b, for
which the same observations apply. Since η is not an actual hyper-parameter, but rather represents an imperfect imputation of
the group structure, we consider the maximum for each value of η. The picture seems quite robust on the side of reweighing
(upper group): for every η the maximum is achieved for different values of the parameters. Instead, the picture changes
for the coupled classifiers (lower group): the method is robust to this perturbation until a critical value (roughly 25% of
mismatched inputs), where the minima of the MI become inconsistent and therefore the fairness metrics cannot be optimised
all at once.

C. Parameters used in the figures
The following list contains the parameters of the T-M model used to plot the figures of the paper.

• Fig. 1d: ∆+ = 0.5,∆− = 20.5, α = 2.5, qT − 0.2.

• Fig. 2a (upper): m± = 0.2, α = 0.5,∆+ = 0.5,∆− = 0.5, b+ = 0, b− = 0.

• Fig. 2a (lower): α = 0.5, ∆+ = 0.5,∆− = 0.5, b+ = 0, b− = 0.

• Fig. 2b: α = 0.5, qT = 1,m = 0.5, b+ = 0, b− = 0.

• Fig. 2c: ρ = 0.1, m = 0.2,∆+ = 0.5,∆− = 0.5, b+ = 0, b− = 0.

• Fig. B.1a: ρ = 0.1, qT = 0.8,∆+ = 2.0,∆− = 0.5, α = 0.5,m+ = 0.3,m− = 0.1, b+ = 0.5, b− = 0.5.

D. Real data validation
In the next two sections, we demonstrate the ability of the Teacher-Mixture model to mimic unfairness scenarios in real-world
applications. In particular, we perform this validation through a set of numerical experiments on the CelebA dataset (12).
This dataset consists of a collection of face images of celebrities, equipped with metadata indicating the presence of specific
attributes in each picture. As can be seen in Fig. D.3, the consistent amount of these attributes allows to explore many
possible learning scenarios in unfairness conditions. This feature of CelebA together with its size and the high-dimensional
nature of face pictures, makes it a good candidate for validating the Teacher-Mixture model on real datasets. Moreover,
as shown in Fig. D.2 through a PCA clustering, the different sub-populations associated to a given CelebA attribute are
overlapping and hard to disentangle. This situation precisely corresponds to the high-noise regime the Teacher-Mixture
model is meant to describe. Interestingly, the picture emerging from the simulations on CelebA turned out to be quite
general and further extendable to lower-dimensional datasets such as the Medical Expenditure Panel Survey (MEPS) dataset
(45). More details on both datasets are discussed in Sec. D.2 and Sec. D.3. Here we provide a general overview on the
experimental framework applied to CelebA.

D.1. Model motivation

We construct a dataset by sub-sampling CelebA and by preprocessing the selected images through an Xception network (46)
trained on ImageNet (47). As depicted in the scatter plot in Fig. D.1, the first two principal components of the obtained data
clearly reveal a clustered structure. Many attributes contained in the metadata are highly correlated with the split into these
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two sub-populations. For example, in the figure we colour the points according to the attribute "Wearing_Lipstick". Now,
suppose we are interested in predicting a different target attribute, which is not as easily determined by just looking at the
group membership, e.g. "Wavy_Hair"2. What happens to the model accuracy if one alters the relative representation of the
two groups, e.g. when one varies the fraction of points that belong to the orange group?

The right panel of Fig. D.1 shows the outcome of this experiment. As we can see from the plot, the fact that a group is under-
represented induces a gap in the generalisation performance of the model when evaluated on the different sub-populations.
The presence of a gap is a clear indicator of unfairness, induced by an implicit bias towards the over-represented group.

Many factors might play a role in determining and exacerbating this phenomenon. This is precisely why designing a
general recipe for a fair / unbiased classifier is a very challenging, if solvable, problem. Some bias inducing factors are
linked to the sampling quality of the dataset, as in the case of the overall number of datapoints and the balance between the
sub-populations frequencies. Other factors are controlled by the different degree of variability in the input distributions
of each group. In other cases the imbalance is hidden and can only be recognised by looking at the joint distribution of
inputs and labels. For example, the balance between the positive/negative labels might differ among the groups and may
be strongly correlated with the group membership. Even similar individuals with different group memberships might be
labelled differently. The present work aims at modelling the data structure observed in these types of experiments, to obtain
detailed understanding of the various sources of bias in these problems.

D.2. Additional details on the CelebA experiments

The CelebA dataset is a collection of 202.599 face images of various celebrities, accompanied by 40 binary attributes per
image (for instance, whether a celebrity features black hairs or not) (12). To obtain the results presented in the main text we
apply the following pre-processing pipeline: We first downsample CelebA up to 20.000 images. Notice that this is done with
the purpose of considering settings with limited amount of available data. Indeed, as we have seen in the main manuscript,
data scarcity is one of the main bias-inducing ingredients. We are thus not interested to consider the entire CelebA dataset,
especially for simple classification tasks like the one described in the main text. By exploiting the deep learning framework
provided by Tensorflow (49), we then pre-process the dataset using the features extracted from an Xception convolutional
network (46) pre-trained on Imagenet (47). Finally, we collect the extracted features together with the associated binary
attributes in a json file.

By applying PCA on the pre-processed dataset, we observe a clustering structure in the data when projected to the space of
the PCA principal components. The clusters appear to reflect a natural correspondence with the binary attributes associated
to each input data point, however this is not a general implication and many datasets show clustering with a non interpretable
connection to the attributes. The clusters can be clearly seen in Fig. D.2, where we use colours to show whether a celebrity
features a given attribute (green dots) or not (orange dots). In the plot, the axes correspond to the directions traced by the two
PCA leading eigenvectors. As we can see from Fig. D.2, the two sub-populations are overlapping and hard to disentangle.
This situation precisely corresponds to the high-noise regime the T-M model is meant to describe. Among the various
clustering depicted in Fig. D.2, we decided to disregard those corresponding to ethically questionable attributes, such as
"Attractive", "Male" or "Young". Finally, we chose as sensitive attribute – determining the membership in the subpopulations
– the "Wearing_Lipstick" feature since it gives a more homogeneous distribution of the data points in the two clusters.

Anyone of the other attributes can be considered as a possible target, and thus be used to label the data points. The final
pre-processing step consist in downsampling further the data in order to have the same ratio of 0 and 1 labels in the two
subpopulations. This step helps mitigating bias induced by the different ratio of label in the two subpopulations and
simplifies the identification of the other sources of bias. The general case can be addressed in the T-M model, in Sec. E we
comment more on the bias induced by different label ratios.

As Fig. D.3 illustrates, there is a large number of possible outcomes concerning the behaviour of the test error as a function
of the relative representation. Indeed, as we have seen in the main text, the presence and the position of the crossing point
strictly depends on both the cluster variances and the amount of available data. Despite all these behaviours are fully
reproducible in the T-M model by means of its corresponding parameters, we here decided to chose the “Wavy_Hair" as
target feature because it shows a nicely symmetric profile of the test error that is more suitable for illustration purposes. To
get the learning curves in Fig. D.3, we train a classifier with logistic regression and L2-regularisation. In particular, we

2To be mindful on the Ethical Considerations of using the CelebA datast, we don’t use protected attributes like binary genders and age
(48)

21



Bias-inducing geometries

use the LogisticRegression class from scikit-learn (50). This class implements several logistic regression solvers, among
which the lbfgs optimizer. This solver implements a second order gradient descent optimization which can consistently
speed-up the training process. The training algorithm stops either if the maximum component of the gradient goes below a
certain threshold, or if a maximum number of iterations is reached. In our case, we set the threshold at 1e − 15 and the
maximum number of iterations to 105. The parameter penalty of the LogisticRegression class is a flag determining whether
an L2-regularisation needs to be added to the training or not. The C hyper-parameter corresponds instead to the inverse of
the regularisation strength. In our experiments, we chose the value of the regularisation strength by cross-validation in the
interval (10−3, 103) with 30 points sampled in logarithmic scale.

D.3. Other datasets

The observations made on the CelebA dataset are quite general and can be further extended to lower-dimensional datasets.
As example of this, we considered the Medical Expenditure Panel Survey (MEPS) dataset. This is a dataset containing a
large set of surveys which have been conducted across the United States in order to quantify the cost and use of health care
and health insurance coverage. The dataset consists of about 150 features, including sensitive attributes, such as age or
medical sex, as well as attributes describing the clinical status of each patient. The label is instead binary and measures the
expenditure on medical services of each individual, assessing whether the total amount of medical expenses is below or
above a certain threshold. As it can be seen in Fig. D.4, the behaviour is qualitatively similar to the one already observed in
the CelebA dataset of celebrity face images. Indeed, even in this case, PCA shows the presence of two distinct clusters when
considering the age as the sensitive attribute and then splitting the dataset in two sub-populations, according to the middle
point of the age distribution. Moreover, the generalisation error per community exhibits a crossing according to the relative
representation.

E. Exploration of the parameter space
E.1. Supporting results

This section presents supporting results on the sources of bias. In Fig. E.1, we re-propose the the study of the disparate
impact (DI) depending on the relative representation ρ and the rule similarity qT , paying close attention to the role of the
group-label correlation m+, m−. Interestingly, if m+ = m− = 0, when the rules become identical (qT = 1) the bias is
removed. However if m+ = m− ̸= 0 this is no longer true. This shows once again that it is not sufficient for a classifier to
be able of reproducing the rule, as bias can appear in reason of other concurring factors.

The main difference with respect to the case with qT ̸= 1 is that, if qT = 1, increasing the amount of training data can be a
solution. In fact, bias at qT = 1 is due to overfitting with respect ot the largest sub-population, and this effect can be cured
by increasing in α. This is illustrated in Fig. E.2, that extends the figure of the main text showing the effect of α. Moving
from left to right, α increases and the area where the 80% rule is violated shrinks down.

The results shown until this point are agnostic with respect to the relative fraction of labels inside the sub-populations. When
this quantity is strongly varied across the groups, it can contribute to an additional source of bias, especially if combined
with a small relative representation. Indeed, the classifier can simply bias its prediction towards the most likely outcome
reaching an accuracy that apparently exceeds random guessing, without effectively doing any informed prediction. Many
factors play a role in deciding the relative fraction of labels in the T-M model, the bias terms (b+ and b−) are the most
relevant since they directly shift the decision boundaries. We consider these two parameters in Fig. E.3 to exemplify this
concept.

When the sub-populations are equally represented ρ = 0.5, the separations between bias towards + or − is clearly marked
by two straight lines. One separation is simply given by the line of equal label fraction, the other is given by the uncertainty
of the classifier, receiving contrasting inputs from the two groups. As the relative representation ρ decreases, the classifier
accommodates the inputs from the largest group and the separation line is distorted. Finally, observe that the line of equal
label fraction (bottom right panel) is not centred in the diagram because m+ = m− ̸= 0.
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Figure B.3. MI with errors in the group membership under community re-weighting strategy.
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Figure B.4. MI with errors in the group membership under coupled neural networks strategy.

Figure B.5. Effect of noise in the attribute of the sub-communities. In the heatmaps we show in colors how having imperfect
information concerning the sub-community membership affect each fairness metrics (six left figures) and the accuracy (right two plots).
The vertical axis of the figures represents the probability of mismatch η, while the horizontal axis refer to the parameter of the strategy
(w+ and γ resepctively). For every value of the mismatch probability, we denote with red points the minima of the mutual information for
each fairness metrics.
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Figure D.1. Relative representation and bias. Numerical experiments on a sub-sample of the CelebA dataset. (Left) A 2D projection of
the pre-processed dataset, obtained from PCA, where the colours represent the two sub-populations. (Right) Per community test error, as
the fraction of samples from the two subpopulations is varied (dataset dimension is fixed).

Figure D.2. Clustering CelebA according to attributes. We show 6 of the 40 attributes in CelebA demonstrating a neat clustering.
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Figure D.3. Relative representation across attributes. The panels show the generalisation error depending on the relative representation
in different attributes. The sub-populations + (green) − (orange) are obtained splitting according to the attribute "Wearing_Lipstick". The
simulations are averaged over 100 samples.
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Figure D.4. MEPS dataset. (Left) Clustering in the MEPS dataset, according to be above or below the average age. (Right) Crossing of
the generalisation error as the relative representation ρ is changed. The simulations are averaged over 100 samples.
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Figure E.1. Bias with two different rules to be learned. The three phase diagrams give the DI depending on ρ (y-axis) and qT (x-axis).
Moving from the left panel to the right panel m+ and mi are increased. The other parameters are: α = 0.5,∆+ = 0.5,∆− = 0.5, b+ =
0, b− = 0.
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Figure E.2. Bias with a learnable rule. We show the accuracy gain as function of the proportion of group + (ρ) and the correlation
between label and group (m+,m−). The different figures show how of increasing the dataset size (increasing from left to right) mitigates
the bias. The other parameters are: qT = 1.0,∆+ = 0.5,∆− = 0.5, b+ = 0, b− = 0.
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Figure E.3. Labels within groups and classifier bias. The first row shows the DI as faction of b+ and b− with ∆+ = ∆− = 0.5,
α = 0.5, m+ = m− = 0.5. From left to right, the relative representation ρ moves from equally represented groups to having group +
under-represented. The 80% threshold is denoted by the dotted line. The dashed line indicates equal within-group label fraction. The
second row shows the average labelling in + (left), − (centre), and their difference (right). Notice that these diagrams are independent of
ρ and therefor apply to the three settings shown in the first row.
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