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ABSTRACT

Deep Reinforcement Learning (RL) has demonstrated remarkable success in solv-
ing sequential resource allocation problems, but often suffers from limited ex-
plainability and adaptability—barriers to integration with human decision-makers.
In contrast, LLM agents, powered by large language models (LLMs), provide
human-understandable reasoning but may struggle with effective sequential deci-
sion making. To bridge this gap, we introduce Rule-Bottleneck RL (RBRL), the
first LLM agent framework for resource allocation problems that jointly opti-
mizes language-based decision policy and explainability. At each step within
RBRL, an LLM first generates candidate rules—language statements capturing
decision priorities tailored to the current state. RL then optimizes rule selection
to maximize environmental rewards and explainability, with the LLM acting as
a judge. Finally, the LLM chooses the action (optimal allocation) based on the
rule. We provide conditions for RBRL performance guarantees as well as the
finite-horizon evaluation gap of the learned RBRL policy. Furthermore, we pro-
vide evaluations in real-world scenarios, particularly in public health, showing
that RBRL not only improves the performance of baseline LLM agents, but also
approximates the performance of Deep RL while producing more desirable human-
readable explanations. We conduct a human survey validating the improvement in
the quality of the explanations.

1 INTRODUCTION

Sequential resource allocation is a fundamental problem in many domains, including healthcare,
finance, public policy, and operations research (Considine et al., 2025; Boehmer et al., 2024; Yu et al.,
2024; Balaji et al., 2019). This task involves allocating limited resources over time while accounting
for dynamic changes and competing demands. Deep reinforcement learning (RL) is an effective
method to optimize decision-making in resource allocation offering scalable high-reward policies (Yu
et al., 2021; Talaat, 2022; Xiong et al., 2023), albeit generally providing action recommendations
without human-readable reasoning and explanations. Such lack of interpretability poses a major
challenge in critical high-stake domains where decisions must be transparent, justifiable, and in line
with human decision-makers to ensure trust and compliance with ethical and regulatory standards.

For example, in healthcare settings, doctors may need to decide whether to prioritize intervention for
Patient A or Patient B based on their current vital signs (Boehmer et al., 2024). An RL algorithm
might suggest: “Intervene with Patient A ” with the implicit goal of maximizing the value function.
However, the underlying reasoning may not be clear to the doctors, leaving them uncertain about the
factors influencing the decision (Milani et al., 2024). For doctors, a more effective suggestion could
be risk-based with specific information, e.g., “Patient A’s vital signs are likely to deteriorate leading
to higher potential risk compared to Patient B, so intervention with Patient A is prioritized” (Gebrael
et al., 2023; Boatin et al., 2021).

LLM agents (Sumers et al., 2024), on the other hand, leverage large language models (LLMs) for
multi-step decision-making using reasoning techniques like chain of thought (CoT) (Wei et al., 2022).
They enable natural language goal specification (Du et al., 2023) and enhance human understanding
(Hu & Sadigh, 2023; Srivastava et al., 2024). However, agents based solely on LLM reasoning often
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Figure 1: Overview of the framework of RBRL for joint sequential decision-making and explanation
generation at time instance t. Starting with current state st, a state-to-language descriptor generates
lang(st), which is used to create the input prompt pt. The LLM processes pt to produce a thought
τττ t and a set of candidate rules Rt . An attention-based policy network selects a rule arule

t obeying
the budget constraint B(st), which is used by LLM to derive an executable action aenv

t for the
environment and a human-readable explanation ℓℓℓexpl

t , while also providing a rule reward rrule
t . The

environment transitions to the next state st+1 , returning an environment reward renv
t . This process is

repeated iteratively at subsequent time steps.

struggle with complex sequential decision-making out of the box (Furuta et al., 2024), making RL a
crucial tool for grounding to specific tasks (Carta et al., 2023; Tan et al., 2024; Wen et al., 2024; Zhai
et al., 2024).

Consequently, aiming to combine the strengths of both deep RL and LLM agents, we pose the
following question:

Can we design an LLM agent framework that can simultaneously perform sequential resource
allocation and provide human-readable explanations?

Similar to the celebrated index policy for prioritizing arms in resource allocation problems (Whittle,
1988), we explore the potential of using rules-based prioritization in resource allocation tasks. In
the context of LLM agents, rules are defined as “structured statements” that capture prioritization
among choices in a given state, aligning with the agent’s goals (Srivastava et al., 2024). Building
on this, we propose a novel LLM agent framework called Rule-Bottleneck Reinforcement Learning
(RBRL), which integrates the strengths of LLM and RL to bridge the gap between decision-making
and interpretability. RBRL provides an agent framework (as shown in Figure 1) that simultaneously
makes sequential resource allocation decisions and provides human-readable explanations, in contrast
to prior work that generates post-hoc explanations for a learned policy (Peng et al., 2022; Milani
et al., 2024). RBRL leverages LLMs to generate candidate rules and employs RL to optimize
policy, allowing the creation of effective decision policies while simultaneously providing human-
understandable explanations. RBRL aims to increase efficiency and avoid the computational cost of
directly fine-tuning LLM agents, which can be highly challenging in interactive environments due to
the heavy computational costs and the complexity of token-level optimization (Rashid et al., 2024).

Our contributions are summarized as follows. First, LLMs are leveraged to generate a diverse
set of rules according to the environment state, where each rule serves as a prioritization strategy
for individuals in resource allocation, enhancing interpretability in decision-making. Second, we
extend the conventional environmental state-action space by integrating the rules into states generated
by LLMs, creating a novel framework that enables RL to operate on a richer, more interpretable
decision structure. Third, we introduce an attention-based training framework that maps states and
rules to queries and keys of a cross-attention network. The rule selection process is optimized by a
policy network trained using the Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018), ensuring
robust and efficient decision-making. In particular, the LLM also acts as a feedback mechanism,
providing guidance during RL exploration to improve policy optimization and promote more effective
learning. To the best of our knowledge, this is the first work to jointly optimize decision-making and
explanation generation in constrained RL tasks.

We evaluate our method in environments from three real-world domains: HeatAlerts, where
resources are allocated to mitigate extreme heat events; WearableDeviceAssignment, for
distributing monitoring devices to patients; and BinPacking, which models allocating limited
space in containers under constraints to optimize space utilization and minimize overflows. Using
cost-effective LLMs such as gpt-4o-mini (OpenAI, 2024) and Llama 3.1 8B (Meta AI, 2024), we first
assess decision performance by comparing RBRL with pure RL methods and language agent baselines.
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Two example thoughts: 
- There are only four warnings remaining in the budget.

- The current heat index is high, and issuing alert could raise public awareness.

Step 1: Generate Thoughts

An example rule:
- Background : Maintaining a balance in warning issuance is crucial for future effectiveness
- Rule: If there are 3 or more warnings remaining, issue a warning when the heat index is above 105 F.
- State Relevance: There are 4 warnings remaining, allowing for proactive issuance given the current 
heat index of 107 F.

Step 2: Generate Rules Based on Thoughts and the Current State

(a) Examples of generated rules for the Heat Alert Issuance task.

Task:  Assist policymakers in deciding when to issue public warnings to protect against heatwaves. Your goal is to 
minimize the long-term impact on health and mortality. Your decision should be based on the remaining budget, weather 
conditions, day of the week, past warning history, and remaining warnings for the season. The goal is to issue warnings 
when they are most effective, minimizing warning fatigue and optimizing for limited resources.

Action: A single integer value representing the decision: 1 = issue a warning, 0 = do not issue a warning. Warning can 
only be issued if the 'Remaining number of warnings/budget' is positive. Response in JSON format. For example: 
{'action': 1}.

State: Remaining warning budget: 4, - Current date and day of summer: 2008-07-10, - Current heat index: 107 F.

Example Language Wrapper for Heat Alert Issuance

(b) Examples of language wrapper, containing task description, available actions and current state.

Figure 2: Examples of task prompts and generated rules for HeatAlerts domain.

We then evaluate explanation quality through a human survey conducted under IRB approval. The
results demonstrate RBRL’s effectiveness in both decision quality and interpretability.

2 RELATED WORK

Our work is positioned at the intersection of RL for resource allocation, LLM agents, and Explain-
able RL (XRL). While traditional RL methods effectively optimize rewards for resource allocation
(Boehmer et al., 2024), they often lack the interpretability required for high-stakes domains. Con-
versely, LLM agents that provide reasoning (Wei et al., 2022) can struggle with sequential optimiza-
tion. Our framework is novel compared to hierarchical approaches that use LLMs for high-level
planning (Carta et al., 2023; Szot et al., 2023), as RBRL is the first to treat the natural-language rule
as a primary output, jointly optimizing for both decision-making performance and the rule’s quality
as an explanation. Furthermore, unlike post-hoc or attribution-based XRL methods that analyze
decisions after the fact (Guo et al., 2021; Chen et al., 2024), RBRL provides intrinsic explanations, as
the rule is a functional component within the decision-making loop. A detailed discussion of related
literature is provided in Appendix B.

3 PRELIMINARY, KEY CONCEPTS, AND PROBLEM FORMULATION

3.1 PRELIMINARY: RESOURCE-CONSTRAINED ALLOCATION

Resource-constrained allocation tasks are usually formulated as a special type of constrained Markov
Decision Process, which is defined by the tuple ⟨S,A, P,R,C, h, γ⟩, where S denotes a state space
and A denotes a finite action space. The transition probability function, specifying the probability of
transitioning to state s′ ∈ Rd1 after taking action a ∈ Rd2 in state s, is P (s′|s,a) : S × A × S →
∆(S), R(s,a) : S ×A → R represents the reward function, defining the immediate reward received
after taking action a in state s, and we let C(s,a) : S×A → Rd3 be the immediate cost incurred after
taking action a in state s. Often, each dimension i ∈ [d2] in a is either 0 or 1 in resource-constrained
allocation tasks. In addition, h is the time horizon and γ ∈ [0, 1] denotes the discount factor, which
determines the present value of future rewards.

The goal is to find a policy π : S → ∆(A) that maximizes the expected cumulative discounted reward
while satisfying the cost constraints with a budget function B : S → Rd3 :

π∗ = argmax
π

EπJ(π) :=

[
h∑

t=1

γt−1R(st,at)

]
, s.t. ∀t ∈ [h] : C(st,at) ≤ B(st). (1)
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3.2 KEY CONCEPTS FOR RULE-BASED LLM AGENTS

Our challenge is to design a rule-based LLM agent that jointly optimizes a language policy to both
solve the optimization problem and improve explanation quality—a direction rarely explored. We
next introduce the key concepts and terminologies underlying our main contribution.

LLM Agent For our LLM agent, the action space includes internal language actions Ã = A∪ L
(Yao et al., 2023). The LLM agent has two types of internal language actions: First, thoughts
athought ∈ L, are reasoning traces from the current problem state used to inform environment action
selection aenv ∈ A. Second, explanations ℓℓℓexpl, are generated from actions and thoughts to enhance
human trust and interpretability (Zhang et al., 2023), a focus of this work.

Rules Thoughts are useful to highlight relevant aspects of a problem. However, they often
lack detailed information to identify the next optimal action. In this work, we will consider
“rules” arule ∈ L, which are structured language statements derived from thoughts that gener-
ally take the form “[if/when][do/prioritize] ”. More formally, each rule arule consists of a triple
(background, rule statement, state relevance). Figure 2a shows examples of generated
rules from one of the domains used in the experiments.

Task and Constraints Description Language agents require: (1) a language description of the
environment and the agent’s goal, denoted task, containing the available actions for the task; (2) a
function describing the state of the environment in natural language, denoted lang : S → L. At each
state st, these descriptors are used to construct a natural language prompt pt = f(task,lang(st)).
Figure 2b exemplifies language wrapper generated for one of the environments in our experiments.

Rule-based Language Policy The objective is to jointly optimize the reward and explainability of
the environment. Hence, we have an LLM agent-driven policy πLLM for online interaction with the
environment:

athought
t ∼ πLLM(athought

t | pt), arule
t ∼ πLLM(arule

t | athought
t ,pt),

aenv
t ∼ πLLM(aenv

t | arule
t ,athought

t ,pt), ℓℓℓexpl
t ∼ πLLM(ℓℓℓexpl

t | aenv,arule
t ,pt). (2)

The rule acts as a “bottleneck” to the action and explanation. In the next section, we will introduce
RBRL, which allows an RL-based learnable selection policy πθ choosing among a set of dynamically
generated candidate rules.

3.3 PROBLEM STATEMENT

We aim to increase the quality of ℓℓℓexpl while also optimizing decision-making by selecting rules
that encourage both good quality explanations and high reward. To achieve this goal, we construct
a surrogate explainabilty “rule reward” Rrule

LLM(arule) using an LLM as judge (Shen et al., 2024;
Bhattacharjee et al., 2024; Gu et al., 2024), which will be detailed in Section 4. Then, we propose the
following augmented optimization objective under the joint environment/rule reward as R̃(st,a

env
t ) =

R(st,a
env
t ) +Rrule

LLM(arule
t ):

max
π

EπJ̃(π) :=

[
h∑

t=1

γt−1r̃t

]
, s.t. constraint in (1), (3)

where r̃t = R̃(st,a
env
t ). We emphasize that LLMs cannot fully replace the ultimate human assessment,

but they they provide a scalable alternative during the optimization process.

4 RULE-BOTTLENECK REINFORCEMENT LEARNING (RBRL)

In this section, we propose RBRL, a novel LLM agent based on the key concepts in Section 3.2,
which leverages the strengths of LLMs and RL to achieve both interpretability and robust sequential
decision-making for (3), thereby achieving our goal of jointly optimizing policies and explanations
for resource-constrained allocation in (1).

Algorithm Overview The framework of RBRL shown in Algorithm 1 involves four steps: (1) RULE
SET GENERATION (line 3), where the LLM processes the state-task pt to create candidate rulesRt

4
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Algorithm 1 RBRL
Require: Rule-selection policy πθ; and Replay buffer B.

1: Initialization: Initial state s0 and task-state prompt p0.
2: for t = 0, . . . ,max iters− 1 do
3: Generate rule candidatesRt using CoT from pt and athought

t . // Section 4.1
4: Select rule arule

t using the RL policy πθ fromRt and st. // Section 4.2
5: Generate the environment action aenv

t with the LLM from arule
t , pt, and previous thoughts.

6: Apply the action in the environment and obtain new state st+1 and environment reward renv
t .

7: Generate explanation with the LLM from aenv
t , rrule

t , pt, and previous thoughts.
8: Generate rule reward rrule

t with the LLM as judge. // Section 4.3
9: Update the prompt pt+1 from st+1, and the constraints C and budget B.

10: Append transition to the replay buffer B ← B ∪ {(s̃t,arule
t , r̃t, s̃t+1)}.

11: Sample from the replay buffer and update the policy network πθ(a
rule
t |s̃t). // Section 4.4

12: end for

Text representation

Embedded rules (attention queries)

Sentence embeddings
State (attention keys)

Attention-based RL
rule selection network

Probability vector of 
selecting each rule 

Figure 3: Overview of the RULE SELECTION step. The current state is encoded as a key vector, while
candidate rules are encoded as Queries using a text embedding API (e.b., BERT sentence embedding).
An attention-based policy network πθ computes a probability distribution over the candidate rules,
enabling the selection of the most suitable rule for decision-making and explanation.

for action selection; (2) RULE SELECTION (line 4), where an attention-based RL policy πθ selects
the best rule arule

t ∈ R; (3) DECISION, RULE REWARD AND EXPLANATION (lines 5-8), where the
LLM generates an environment action aenv

t and based on the chosen rule arule
t gives a human-readable

explanation ℓℓℓexpl
t ; (4) REINFORCEMENT LEARNING (line 11), where it updates the policy πθ based

on collected data with standard RL algorithm Haarnoja et al. (2018) and the combined environment
and rule reward r̃t. Algorithm 1 details the entire process. Further sections elaborate on these steps.

4.1 RULE SET GENERATION

The rule generation process seeks to create interpretable and actionable guidelines for decision-
making. Under this framework, a set of candidate rules Rt is generated according to Rt ∼
πLLM(Rt|pt,a

thought
t ). To enhance interpretability, each rule is accompanied by a rationale explaining

the reasoning behind the decision. The LLM is instructed to generate rules as a JSON format, which
is common for integration of LLMs with downstream applications (Shen et al., 2024). An example
generated rule is given in Figure 2a. See Figure 12 in the Appendix for the prompt templates used
rules generation.

4.2 RULE SELECTION

In this step, rules are converted from text to vector form, and a trainable attention-based policy
network πθ provides the probability distribution for sampling a rule. Figure 3 illustrates the process,
with a detailed procedure in Algorithm 2 of the Appendix. Below are the major components of the
architecture of πθ. We propose to base the architecture on cross-attention layers (Bahdanau et al.,
2015; Vaswani et al., 2017), with the state acting as the keys and values, and the rules as the queries.
This allows to learn from the embedding representations of rules, and efficiently handle dynamically
changing number of rules if needed.

State Representation The numeric state is projected by a linear layer: kt = Linear(st) ∈ R1×dh ,
with dh being to denote the architecture hidden dimension.

5
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Rule Candidate Embedding Each rule in the list of rule candidates Rt = {ρρρt1, ρρρt2, . . . , ρρρtq}
is embedded into a numeric representation using a Sentence Embedding language model (e.g.,
SentenceBERT (Reimers & Gurevych, 2019)) and further processed by a projection layer similar to
the state representation. This results in a query matrix Qt ∈ Rq×dh .

Attention-based Policy Network πθπθπθ The vector kt, serving as keys, engages with the rule em-
beddings Qt, acting as queries, via a cross-attention mechanism to derive a hidden state repre-
sentation h

(1)
t = Attention(Qt,k

⊤
t ,k

⊤
t ) ∈ Rq×dh , computed as Attention(Qt,k

⊤
t ,k

⊤
t ) =

softmax
(

Qtk
⊤
t√

dh

)
k⊤
t , which facilitates the rule candidate vector embeddings in attending to the

environment state. Subsequently, we sequentially apply self-attention layers to the hidden repre-
sentation h(k+1) = Attention(h(k)

t ,h
(k)
t ,h

(k)
t ), enabling the rule embeddings to attend to one

another to rank an optimal candidate. Ultimately, following K − 1 self-attention layers, a final linear
layer converts the rule representations into logit vectors αααt

θ = Linear(h(k)
t ) ∈ Rq used for the

computation of the probability of selecting each rule.

Rule Selection The policy distribution over the rules is calculated as: πθ,i(Qt,kt) =
exp(αt

θ,i(Qt,kt))∑q
j=1 exp(αt

θ,j(Qt,kt))
, i = 1, . . . , q. Therefore, a rule is selected at random from the distribution:

arule
t ∼ Categorical(R; (πθ,i(Qt,kt))

q
i=1).

4.3 DECISION, RULE REWARD, AND EXPLANATION

Upon selection of rule arule
t , the LLM determines the action to be applied within the environment

aenv
t ∼ πLLM(aenv

t |arule
t ,athought

t ,pt), ensuring concordance with the chosen strategy. Subsequently,
the LLM formulates an explanation ℓℓℓexpl

t ∼ πLLM(ℓℓℓexpl
t |aenv,arule,athought,pt) contingent upon the

rule. Figure 12 in the Appendix illustrates the prompt template employed to generate both the action
and explanation.

This procedure concurrently produces the rule reward Rrule
LLM(rrule

t ), used for RL in the next step. This
rewards is derived from using the LLM as a judge to answer the following three questions: ER1.
Without providing aenv

t , is arule
t sufficient to predict the optimal action? ER2. Does arule

t contain
enough details about the applicability of the rule to current state? ER3. Given aenv

t , is arule
t compatible

with this selection? Each question scores as 0 if negative or 1 if positive. The rule reward is calculated
as rrule

t = Rrule
LLM(arule

t ) ∝ (1/3)
∑

i ERi. Refer to Figure 12 in the Appendix for the full prompt.

4.4 POLICY UPDATE THROUGH RL

Augmented state space Traditional RL frameworks fail to directly return a policy based on current
environment state due to intermediate steps: generating the rule setRt, mapping rules arule

t to actions
aenv
t in an LLM-driven environment. RBRL addresses this issue by creating an augmented state

s̃t := (st,Rt) with transition dynamics P (s̃t+1|s̃t,arule
t ), integrating rules into the state space for

reasoning over both the environment’s dynamics and decision rules arule
t . The following theorem

explains the transition computation.
Theorem 4.1. The state transition of the RBRL MDP can be calculated as

P (s̃t+1|s̃t,arule
t ) = P (Rt+1|st+1)×

∫
a

P (st+1|aenv, st) · P (aenv|arule
t , st)da

env, (4)

where P (Rt+1|st+1) = πLLM(Rt+1|pt, τττ t) is the probability of the LLM generating rule
set Rt+1 provided the state st+1, P (st+1|aenv, st) is the original environment dynamics, and
P (aenv|arule

t , st) = πLLM(a
env|pt,a

rule
t ) is the probability of the LLM selecting the environment

action aenv.

Policy update step The attention-based policy network in Section 4.2 is optimized using the stan-
dard SAC algorithm, which balances reward maximization with exploration. The policy network in
SAC is updated by minimizing the KL divergence between the policy and the Boltzmann distribution
induced by Q networks Qϕi

, ∀i = 1, 2, which is expressed as

Lπ(θ) = ED

[
β log πθ(a

rule
t |s̃t)− min

i=1,2
Qϕi

(s̃t,a
rule
t )

]
, (5)

6
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where β is a temperature parameter. The detailed implementation for SAC update procedure is
detailed in Algorithm 3 in Appendix D.

5 PERFORMANCE GUARANTEE

In this section, we derive and prove conditions under which RBRL can learn the optimal task policy,
as well as characterize the potential trade-off between explainability and task performance when
rewarding rules for higher explainability.
Proposition 5.1 (Rule Set Coverage). Let A be a finite action space and Q∗(s,aenv) the optimal
state-action value function, with aenv,∗(s) := argmaxaenv∈A Q∗(s,aenv) denoting the optimal action
at state s. Given state s, an LLM samples N rules independently from a conditional distribution
πLLM(· | s), and each rule ρρρi maps s to an action aenv

i ∼ πLLM(a
env
i |ρρρi, s). Assume there exists δ > 0

and ηs ∈ (0, 1] such that: Pρρρi∼πLLM(·|s) [Q
∗(s,aenv

i ) ≥ Q∗(s,aenv,∗(s))− δ] ≥ ηs. Define the δ-
optimal rule set as: Rδ(s) := {ρρρi : Q∗(s,aenv

i ) ≥ Q∗(s,aenv,∗(s))− δ} . Then with high probability
over the sampled rules, there at least has a rule ρρρi and the induced action aenv

i ∼ πLLM(a
env
i |ρρρi, s)

that satisfies:

E [Q∗(s,aenv,∗(s))−Q∗(s,aenv
i )] ≤ δ + ϵworst · (1− ηs)

N , (6)

where ϵworst := maxρρρ/∈Rδ(s) (Q
∗(s,aenv,∗(s))−Q∗(s,aenv

i )) is the worst-case loss outside the δ-
optimal set.
Remark 5.2. Proposition 5.1 states the rule diversity property in the rule candidate set such that the
best possible action (when δ → 0) is included is guaranteed with high probability when number of
rules N goes large. This is crucial in guaranteeing that RBRL can learn a near-optimal policy with
high probability (with optimality when δ = 0 and ηs = 1). See Section E in Appendix for more
detail. We also numerically evaluate rule-coverage in Figure 8 of Appendix G.5.

Define the T-step value function V π,T
M′ (s0) = [

∑T−1
t=0 γtRM′

t (st, π(st))|s0], where RM′
is the reward

function inM′. We will denote the original MDP asM and use M̃ to denote the MDP for the RBRL
agent with transition function as in Theorem 4.1 and reward R̃. We have the following theorem.

Theorem 5.3. The evaluation gap Gap(T, s0) := V π∗,T
M (s0)− V πRBRL,T

M (s0) of RBRL is bounded as

Gap(T, s0) = V π∗,T
M (s0)− V πRBRL,T

M̃ (s0) + V πRBRL,T

M̃ (s0)− V πRBRL,T
M (s0) ≤ λ · 1− γT

1− γ
, (7)

where λ is a constant depending on the magnitude of the rule reward, and, with a slight notational
abuse, V πRBRL,T

M is the value of the RBRL policy when seen as a policy in the original MDP mapping
states to actions (i.e., by integrating out the rule generation and action selection via LLMs.)
Remark 5.4. This analysis focuses on the evaluation gap between the optimal policy π∗ under the
original MDPM and the policy πRBRL, captures the suboptimality of using πRBRL instead of the true
optimal policy π∗, assuming RBRL is optimized under the extended MDP M̃ (with same transitions
asM but additional rule-based reward). It can be decomposed into two interpretable terms. The first
part captures the optimism of using πRBRL under the extended MDP M̂ rather than the original MDP,
which is non-positive. The second part quantifies the accumulated reward difference induced by the
additional explanation rewards when using the same RBRL policy in both MDPs.

6 EXPERIMENTS & HUMAN SURVEY

In this section, we evaluate RBRL and empirically show that it can achieve a joint improvement in
both reward and explainability over comparable baselines. We briefly summarize these environments
here, with additional details in Appendix F.1.

Domains We evaluate RBRL in three main distinct resource-constrained allocation domains:

▷ WearableDeviceAssignment: We use two environments, Uganda and MimicIII, from
the vital sign monitoring domain introduced by Boehmer et al. (2024), modeling the allocation of
limited wireless devices among postpartum mothers as an MDP setting. ▷ HeatAlerts: We use the

7
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(a) Uganda (b) MimicIII (c) HeatAlerts (d) BinPacking

Figure 4: Results from Q1 using ChatGPT 4o-mini. The plots show the mean and standard error
across three seeds, using exponentially weighted moving averages (λema = 200).

(a) Q2: ablations (b) Q3: LLM finetuning (c) Q4: no rule rewards

Figure 5: Additional experiments and ablations. (a) Comparison of RBRL with thoughts-based
RL (TBRL) and the baseline rule-based LLM without RL training; (b) comparison against LLM
finetuning with PPO at the token level from the environment reward with CoT generation for the
Mimic; (c) shows the effect of removing the rule reward in the HeatAlerts environments. For (a)
and (c), we show distribution of rewards in the last 20% training steps.

weather2alert environment from Considine et al. (2025) , which formulates issuing heat alerts
as a constrained MDP to reduce hospitalization risk from the alert. ▷ BinPacking We adopt the
online stochastic BinPacking: environment introduced by Balaji et al. (2019), which Sequentially
places arriving items into bins with fixed capacity to minimize total waste, following the online
stochastic formulation. Detailed domain description can be found in Appendix F.1.

6.1 ENVIRONMENT REWARD OPTIMIZATION

We discuss the main results and refer to Appendix F for the detailed experiment setup and Appendix
G for additional experiments. Unless otherwise specified, we use gpt-4o-mini as LLM due to its
reasonable cost and high performance.

Q1. Did RBRL optimize the reward function? RBRL is compared to CoT (Wei et al., 2022) for
language reasoning and PPO (Schulman et al., 2017) for numeric states. Figure 4 indicates RBRL
outperforms CoT, showing RL-optimized rule selection improves decision-making. RBRL also
exceeds PPO in all environments with equal environment steps, suggesting a better online learning
performance. Notice that RBRL is compatible with a baseline LLM trained for advanced reasoning
techniques (e..g, GRPO Shao et al. (2024)). However, GRPO or similar cannot be used directly in
MDPs. Nevertheless, our experiments with the comparable GPT o3 (see Appendix G) prove that
RBRL can also help improve reasoning models in our tasks.

Q2. Did structured rules help optimization? We conduct two ablation studies on struc-
tured rules. First, we benchmark the use of structured rules without RL, called baseline
Rule-bottleneck(no RL), which is shown in Equation (2)-(5). Next, we compare RBRL
with a variant optimizing unstructured thoughts, termed thoughts-based RL (TBRL). The implementa-
tion mimics RBRL, utilizing a candidate pool P with the CoT prompt. Results in Figure 5a show that
comparing RBRL with RulesLLMOnly highlights RL training gains, suggesting rule generation
alone does not explain RBRL’s performance. Additionally, significant improvements over TBRL
suggest optimizing structured rules is more effective than optimizing free reasoning traces.

8
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Q3. How does RBRL compare to token-level LLM finetuning with RL? We implement LLM
finetuning on a Llama 3.1 8B model, termed FinetunePPO. A value head is trained on final hidden
states, with KL divergence from a reference model as regularization (Ziegler et al., 2019). CoT is
generated, followed by an action query, optimizing both. Training runs for 18 hours on 3 seeds
using an A100 40G GPU (1200 steps/seed). For fair comparison, RBRL is also run on Llama 3.1 8B.
Figure 5b shows RBRL outperforms the flatter trend of finetuning, indicating better online learning.
Moreover, RBRL runs on a regular laptop, whereas FinetunePPO requires specialized hardware
and takes 4× longer per step. Due to compute limits, results are shown only for the less noisy
MimicII domain.

Additional comparison with XRL benchmarks We further compare RBRL against a representative
XRL method that also targets joint optimization and intrinsic interpretability: Decision Diffusion
Trees (DDTs) (Silva et al., 2020). As shown in Table 1, RBRL is consistently competitive and often
outperforms the tree-based baseline across most domains, particularly in the early stages of training,
underscoring its sample efficiency. Although DDT achieves a higher average reward than RBRL in
HeatAlerts, it exhibits substantially higher variance, highlighting the greater stability of RBRL.

6.2 HUMAN SURVEY AND EXPLAINABILITY

Table 1: XRL Baselines Results Table

Dataset (@steps) RBRL SAC PPO DDT DDT w/rules
Uganda (@500) −0.56± 0.18 −0.83± 0.14 −0.91± 0.14 −1.01± 0.20 −1.20± 0.31
Uganda (@2500) −0.60± 0.20 −0.75± 0.14 −0.74± 0.05 −1.28± 0.35 −1.20± 0.30
MimicIII (@500) −0.36± 0.05 −0.61± 0.11 −0.78± 0.05 −0.92± 0.10 −1.02± 0.10
MimicIII (@2500) −0.39± 0.07 −0.43± 0.10 −0.64± 0.10 −0.97± 0.11 −0.99± 0.13
HeatAlerts (@500) 0.14± 0.11 −0.04± 0.33 0.00± 0.01 0.22± 0.25 0.15± 0.29
HeatAlerts (@2500) 0.13± 0.14 0.05± 0.04 0.00± 0.01 0.38± 0.57 0.38± 0.56
BinPacking (@500) −0.03± 0.00 −0.03± 0.00 −0.03± 0.00 −0.19± 0.03 −0.19± 0.04
BinPacking (@2500) −0.03± 0.00 −0.06± 0.00 −0.03± 0.00 −0.21± 0.02 −0.21± 0.02

Q4. Did RBRL increase the explainabil-
ity of explanations? A survey with 40
participants was conducted to assess expla-
nation quality, detailed in Appendix J. Each
prompt included the task, state, and action
space as originally given to the LLM, fol-
lowed by actions and explanations from
the CoT agent and the RBRL agent, with-
out disclosing agent types. Participants were asked to choose preference for explanation A, B, or
none. Prompts were split between WearableDeviceAssignment and HeatAlerts domains.
Figure 6 shows results, favoring RBRL’s explanations in both domains, with a detailed breakdown
in J. An additional experiment with an LLM judge using a large gpt-4o model showed strong
agreement with humans, preferring RBRL’s explanations in all cases.
Discussion on Explainability The trustworthiness of explanations is a core challenge in XAI.
Following recent work (Kunz & Kuhlmann, 2024; Parcalabescu & Frank, 2023; Jacovi & Goldberg,
2020), we highlight three concepts: Plausibility: whether an explanation is convincing to humans
(validated via our survey, Figure 6). Consistency: whether the stated reason logically entails the
action (Appendix G.3). Faithfulness: whether the explanation reflects the true decision mechanism.

Our work is motivated by the gap between plausibility and faithfulness in post-hoc methods. By
design, RBRL ensures consistency: explanations factually follow the State→ Rule→ Action pipeline,
where the rule is the verifiable cause of the action. As shown in Table 8 in Appendix G.3, including
reasoning traces does not affect the decision, confirming that consistency stems from the state and
rule rather than LLM self-explanation. While our experiments validate consistency, establishing
faithfulness—verifying the LLM’s internal reasoning for rule generation—remains an open challenge.

Figure 6: Results from the human survey.

Q5. What was the effect of the rule reward? During
training of RBRL, rules received rewards from two
prompts. We examine an ablation without this reward.
Figure 5c illustrates results for the HeatAlerts en-
vironment, noted for high variance and a challenging
reward function. We extended training to 5k steps
to understand these dynamics. Without rule reward,
environment reward remains steady (slightly increas-
ing), but explainability scores drop significantly. Re-
fer to Section 4.3 for the definition of the rule reward metrics. A decline in metric 1 indicates that
rules are less predictive of the optimal actions. A decline in metric 2 suggests rules lack detailed
applicability to the current problem state, indicating more generic rather than specialized rule selec-
tion. Metric 3 (not shown) was always 1 in all steps, indicating the limitations of directly evaluating
post hoc explanations. Although judged by the LLM, these results are encouraging, as our previous
experiment showed alignment between the LLM and human assessments.
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ETHICS AND REPRODUCIBILITY STATEMENTS

The authors of this work adhere to the ICLR Code of Ethics. Our research involves domains with
significant ethical considerations, particularly in healthcare and public policy, which we have carefully
addressed. Our work includes a human survey to evaluate the quality of explanations, which was
conducted under Institutional Review Board (IRB) approval.

We have taken extensive measures to ensure the reproducibility of our research. The complete source
code for our framework, including environment implementations and experiment scripts, is provided
as supplementary material, with an anonymous link included at the beginning of the Appendix. All
algorithmic details and hyperparameters for our proposed method (RBRL) and all baselines are
comprehensively documented in Appendix D and Appendix F.
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