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Abstract

The method of Common Spatial Patterns (CSP) is widely used for feature extraction
of electroencephalography (EEG) data such as in motor imagery brain-computer
interface (BCI) systems. It is a data-driven method estimating a set of spatial
filters so that the power of the filtered EEG data is maximally separated between
imagery classes. This method, however, is prone to overfitting and is known to
suffer from poor generalization especially with limited calibration data. In this
work, we propose a novel algorithm called Spectrally Adaptive Common Spatial
Patterns (SACSP) that improves CSP by learning a temporal/spectral filter for
each spatial filter so that the spatial filters are concentrated on the most relevant
temporal frequencies for each user. We show the efficacy of SACSP in motor
imagery BCI in providing better generalizability and higher classification accuracy
from calibration to online control compared to existing methods while providing
neurophysiologically relevant information about the temporal frequencies of the
filtered signals.

Introduction:The method of Common Spatial Patterns (CSP) [1] is among the most commonly
used methods for feature extraction in electroencephalography (EEG) data [2, 3]. One of its main
applications is to learn relevant features in motor imagery brain-computer interface (MI-BCI) systems
[4]. Imagined movement, similar to actual movement, results in a decrease in power in user specific
frequency ranges within the mu (7-13 Hz) and often beta (13-30Hz) frequency bands over the
contralateral sensorimotor cortex. CSP is a data-driven supervised approach that learns a set of
spatial filters to maximally discriminate the two classes. That is, the power of the projected EEG data
through the selected filters is maximally different for the two imagery classes [5]. CSP counters the
spatial blurring in EEG data caused by measuring electrical activity through bone and several layers
of tissue [5].

During the calibration session in MI-BCI, the user is instructed to imagine the movement of different
body parts (e.g., the right and the left hand) and is provided with no feedback or sham feedback.
The recorded EEG data during this calibration session – calibration data – is then used to train the
classifier (CSP filters + linear classifier [5]) and deployed for real-time online control of the BCI.
However, CSP suffers from poor generalizability from calibration to online control [6].
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While CSP learns the user-specific spatial filters, it does not learn the spectral filters and equally
weights the spectral information within the 7-30 Hz frequency band. The Canonical correlation
approach to common spatial patterns (CCACSP) [7] combines canonical correlation analysis (CCA)
and CSP approaches and its cost function considers a temporal filter with a forward and backward one
sample temporal shift. This results in a weighted spectral filter that emphasizes the lower frequencies,
but this method does not learn user specific frequency bands. Spectrally-weighted CSP (spec-CSP)
attempts to find a set of user specific spatial and spectral (frequency transformed temporal) filters
through alternating optimization of the cost function [8] but it is computationally expensive and does
not result in robust filters in practice.

Instead of learning the optimal temporal/spectral filters, another line of CSP variants finds the relevant
sub-bands through a filter bank approach [9, 10]. These methods require a priori assumptions on
the length and location of the sub-bands and require significant amounts of calibration data to find a
robust feature space to be transferred from calibration data to online BCI control [11].

Deep learning methods have been developed for EEG data as well. EEGNet is one such technique
that is widely used for EEG data [12] that attempts at learning user specific temporal and spatial
filters in an end-to-end fashion; however, the major limitation of deep neural networks for EEG-based
BCI is that such networks have a very large number of parameters, which thus requires a very large
number of training examples to calibrate them. In practice, the access to calibration data from each
user is limited.

To overcome the limited generalizability of CSP and the approaches mentioned above, we propose a
novel approach to learn spatial and spectral filters to emphasize the most relevant frequencies for each
user in motor imagery data by solving an optimization problem that generalizes the cost function in
CSP. We apply our method to motor imagery data that we recorded from 12 participants and show
improved classification accuracy as well as more interpretable spatial patterns and spectral filters
compared to the closely related methods of CSP [1], CCACSP [7], spec-CSP [8] and a deep learning
method developed for EEG data called EEGNet [12].

Methods: CSP estimates the spatial covariance for the two classes and uses a Rayleigh quotient cost
function to find the optimal directions for such projection [1, 5]. In SACSP however, we define the
spectrally-weighted spatial covariance instead, to weight the motor imagery related frequencies.

Let Xi ∈ Rn×t represent the bandpassed EEG data epoch over n channels with t time samples that
belongs to class i ∈ {1, 2}, e.g. the two motor imagery classes. Since EEG data is bandpassed,
E[X1] = E[X2] = 0. Let C be a circulant matrix. We define the spectrally-weighted spatial
covariance matrices for classes 1 and 2 as ΓS1 = E[X1CXT

1 ] and ΓS2 = E[X2CXT
2 ], where (·)T

indicates the transpose of a matrix/vector. As C is circulant, we can write it as C = Fdiag(h)FH

where h is a vector, diag(h) is a matrix whose diagonal elements are the elements of the vector h, F
is the t× t Fourier matrix and (·)H indicates the complex conjugate transpose of a matrix. Replacing
this in the above and defining X̂1 = X1F and X̂2 = X2F as the Fourier transform of an epoch along
its temporal dimension we can write the following set of optimization problems:

arg max
w,h

wTE[X̂1diag(h)X̂H
1 ]w

wT (Σ1 + Σ2)w
, arg max

v,l

vTE[X̂2diag(l)X̂H
2 ]v

vT (Σ1 + Σ2)v
, (1)

where Σi = E[XiX
T
i ] is the spatial covariance of each class. We solve the two optimization problems

in (1) via an alternating maximization procedure.

Classification: After finding the optimal 2 × R (where R is the number of filters for each class)
spatial and spectral filter pairs (fwv, fhl), then 2×R features were extracted by filtering each epoch,
x as follows:

log(fT
wv (x̂ diag(fhl)x̂

H) fwv), (2)
where x̂ = xF . Next, linear discriminant analysis (LDA) [13] with automatic shrinkage using the
Ledoit-Wolf lemma [14] was trained as the classifier.

Data: Participants were instructed to use movement imagination of their right or left hand to move a
cursor on the screen. Each participant participated in 9 blocks with 20 trials in each block. Each trial
began with a cursor (blue circle about 2 cm in diameter) in the center and a target (white circle about
2 cm in diameter) at either side of the screen and three steps away from the cursor. The cursor moved
one step per 1.2 seconds towards or away from the target until it reached the target location or the
corresponding location on the other side of the screen.
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During the first three blocks, the cursor moved according to a pre-determined pseudo-randomly
generated sequence of movements but the participants were not aware of this and were led to believe
that they were in control of the cursor movements. The recorded EEG data from the first three blocks
were used for calibration. CSP was trained for feature extraction where the top three CSP filters for
each class were selected. The logarithm of the power of the CSP-filtered EEG data were selected as
features and shrinkage-LDA [14] was trained for classification. This classifier was used during the
online control of the cursor in the latter 6 blocks which had a similar structure as the calibration data
except that the cursor moved based on the participant’s motor imagery data.

In offline analysis, we used the data from the calibration blocks to train CSP, CCACSP, spec-CSP,
EEGNet and SACSP separately. Each method was then tested on data recorded during online control
blocks.

Pre-processing: Data from calibration and online blocks were downsampled to 100 Hz and epoched
0-1 second with respect to each cursor movement (step) excluding the last. After downsampling
and epoching, data were re-referenced to the common average and bandpass filtered in 7–30 Hz to
include the mu (about 7–13 Hz) and beta (about 13–30 Hz) frequency bands [15, 16].

We balanced the right and left classes (including movements towards and away from the target in
each class) for both calibration and online blocks to alleviate any potential bias in learning features
and for easier interpretation of the results. Balancing the classes was done 10 times to allow steps to
be in the training (from calibration data) or test (from online data) sets.

Classification accuracy: The classification accuracy of the CSP, CCACSP, spec-CSP, EEGNet and
SACSP when the feature extraction and classifiers were trained on the calibration data and tested on
the online data, are presented in table 1. The first number in each entry for participants 1 to 12 (P1-
P12), represents the mean classification accuracy over 10 instances of train-test data and the second
number reports the standard deviation. In the last row, the average performance across participants is
reported where in each entry, the first number indicates the average for the corresponding column
and the second number indicates the standard error of the mean. We should emphasize that the
classification accuracy is for only one second of motor imagery data (one cursor movement or step)
and still more than half of the participants perform around 0.7 or higher with the proposed algorithm.
Across participants, SACSP performs significantly better compared to CCACSP, spec-CSP, CSP and
EEGNet (Wilcoxon signed rank test, p < 0.01).

We also looked at the classification accuracy when each method was trained on calibration data
and tested on calibration data through cross-validation (we call it ‘calibCV’ case) as well as when
trained on online data and tested on online data through cross-validation (we call it ‘onlineCV’ case).
Note that both of these conditions are different from the practical scenario of interest in this work,
where the methods are trained on the calibration data and tested on the online data (we call it ‘test’
case). Our results show that for CSP, calibCV and onlineCV are not different across participants
(average 0.73 and 0.71, Wilcoxon signed-rank test, p = 0.42). However, there is a large drop in
performance of CSP in the test condition (across participants significantly lower that calibCV and
onlineCV, Wilcoxon signed rank test, p < 0.001). Our results show that spec-CSP, CCACSP, and
SACSP were all able to close this gap from calibration to online performance with SACSP performing
significantly better than all other methods (Wilcoxon signed rank test, p < 0.01).

Visualization: We visualize the optimal spatial patterns and spectral filters to compare their neu-
rophysiological interpretation. Normalized spectral filters were plotted against frequency (Hz) as
line plots using MATLAB [17]. Spatial patterns were estimated for each method accordingly and
topoplot from EEGLAB [18] was used to plot them as heatmaps on a 2-D scalp. Figure 2 compares
the spatial patterns and spectral filters of the SACSP with CSP, CCACSP, and spec-CSP in one of the
participants (P1). Note that these are the filters and patterns that were trained on the calibration data
and used later for classification of the online data. The last two rows show the results for SACSP.
The filters and patterns for each class (Pw1, Pw2 and Pw3, h1, h2 and h3) and (Pv1, Pv2 and
Pv3, l1, l2 and l3) converge to similar values. This is because our algorithm, different from the
others presented here, does not result in spatial filters/patterns that are necessarily orthogonal to each
other and convergence to the same solution from different initializations in fact shows that SACSP
converged to a robust solution.Furthermore, we tested SACSP with random initialization and received
the same filter and patterns.
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Figure 1: Comparison of the normalized spectral filters in one of the participants (P9). SACSP and
spec-CSP lines show the top spectral filter for the right hand motor imagery class. Note that CSP and
CCACSP have fixed spectral filters.

Table 1: Motor imagery (right/left hand) classification accuracy. For P1-P12, the first number in each
entry reports the average accuracy across 10 instances of the data and the second number reports the
standard deviation of the mean. In the last row, the first number in each entry reports the average
classification accuracy across participants for the corresponding column and the second number
reports the standard error of the mean.

PID CSP spec-CSP CCACSP EEGNet SACSP

P1 0.55/0.035 0.61/0.039 0.74/0.033 0.61/0.032 0.81/0.022
P2 0.56/0.028 0.63/0.091 0.69/0.012 0.56/0.051 0.69/0.030
P3 0.63/0.038 0.61/0.037 0.61/0.057 0.60/0.074 0.72/0.096
P4 0.72/0.019 0.70/0.051 0.71/0.020 0.60/0.028 0.73/0.009
P5 0.59/0.118 0.59/0.105 0.56/0.071 0.56/0.058 0.62/0.117
P6 0.50/0.014 0.52/0.032 0.54/0.017 0.52/0.016 0.52/0.013
P7 0.62/0.027 0.65/0.035 0.68/0.019 0.58/0.044 0.70/0.040
P8 0.57/0.023 0.59/0.034 0.71/0.023 0.56/0.050 0.72/0.036
P9 0.68/0.048 0.67/0.033 0.73/0.019 0.69/0.023 0.76/0.023
P10 0.49/0.021 0.49/0.024 0.49/0.017 0.52/0.027 0.50/0.019
P11 0.60/0.019 0.64/0.028 0.64/0.034 0.61/0.023 0.67/0.027
P12 0.47/0.032 0.45/0.025 0.49/0.024 0.49/0.026 0.51/0.010

Average 0.58/0.022 0.60/0.022 0.63/0.027 0.58/0.015 0.66/0.030

Comparing the spectral filters for spec-CSP and SACSP, we can see that the spec-CSP spectral filters
fail at selectively extracting the underlying features in an interpretable way. SACSP shows smoother
and less noisy filters with a peak at/around the mu band for both the right and left hand motor imagery
classes and a small beta peak for the left hand motor imagery class. Another example comparing
spectral filters for another participant (P9) is presented in figure 1.

SACSP shows spatial patterns typical for right and left hand motor imagery [4, 15]. Pv3 in spec-CSP
can be regarded as a similar pattern to Pv3 in SACSP but the rest of the patterns in spec-CSP and
those in CSP are neurophysiologically implausible for motor imagery. Pv1 and Pv3 in CCACSP are
motor imagery patterns. However, CCACSP fails at finding appropriate patterns for the other class.

Discussion and Conclusion: Most work in the literature focuses on cross-validation accuracy (not
the practical use case of calibration to online transfer) and over longer lengths of motor imagery
data. In this work, we proposed SACSP and showed its superiority in classification accuracy when
trained on limited amount of calibration data and tested on online data as well as neurophysiologically
plausible spatial patterns and spectral filters.
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(a) P1 – CSP spatial patterns.

(b) P1 – CCACSP spatial patterns.

(c) P1 – spec-CSP spatial patterns.

(d) P1 – spec-CSP spectral filters.

(e) P1 – SACSP spatial patterns.

(f) P1 – SACSP spectral filters.

Figure 2: Spatial patterns and spectral filters trained on the calibration data for one of the participants
(P1). Compared to other methods, SACSP results in spatial patterns that are typical for right and left
hand motor imagery while providing neurophysiologically relevant frequency selectivity in spectral
filters. Normalized spectral filters were plotted against frequency (Hz) as line plots using MATLAB.
Spatial patterns were estimated for each method accordingly and topoplot from EEGLAB was used
to plot them as heatmap on a 2-D scalp.
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