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Prediction of PM2.5 concentration based on

ARIMA, LSTM, and TCN models in Kigall,

Rwanda

Introduction/Background

Air pollution, a critical global issue, has significant effects on health, the
environment, and climate [1]. Among pollutants, PM2.5 (particulate matter
with a diameter of 2.5 micrometers or smaller) is particularly concerning
because it can penetrate deep into the respiratory system, causing
conditions like asthma, cardiovascular diseases, and lung cancer. In
Rwanda, and especially in its urban centres such as Kigali, the rapid pace
of urbanization heightens air pollution risks, making it essential to monitor
PM2.5 levels to protect public health [2].

This study leverages data from the Rwanda Environmental Management
Authority (REMA) to forecast PM2.5 levels in Kigali using three machine
learning models which analyze daily average PM2.5 levels, aiming to
support air quality interventions and improve public health outcomes in
Rwanda:

- AutoRegressive Integrated Moving Average (ARIMA)

- Long Short-Term Memory (LSTM)

- Temporal Convolutional Networks (TCN).

Data Collection & Pre-processing

Comprehensive data collection and pre-processing steps were applied to
enhance model reliability.

The study uses air quality data from Kigali, Rwanda, collected from four
monitoring stations: Gikondo-Mburabuturo, Jali, Mont Kigali, and Rusororo.
The dataset covers the period from 2020 to 2024 and includes hourly PM2.5
concentration measurements obtained from the Rwanda Environment
Management Authority (REMA). The key other variables used are
presented in the table below:

Variables & Source Health Impact
Description
SO,, Sulfur Dioxide Industry, power plants Respiratory issues
CO, Carbon Monoxide Vehicles, combustion Reduces blood oxygen
PM10, Particles <10 Construction, dust Respiratory irritation

micrometers

NO,, Nitrogen Dioxide Vehicles, industry Aggravates respiratory conditions

O3, Ground-level Ozone NO, + VOCs in sunlight Lung damage

Key Variables — Meaning, Source and Health impact

Data Pre-Processing chart flow

Methodology

Approaches for Time Series Forecasting and PM2.5 Prediction

Besides feature engineering, the study has tested three models and the
specificities of each are outlined on the following image:

— ARIMA Model

* LIsed for time series forecasting, with adjustments for stationarity.
* Applied differencing to achieve stationarity; then used AR and MA components to forecast PM2.5 levels.

* Configuration: p=2, d=1, and g=2, where p and q represent the orders of the AutoRegressive (AR) and Moving Average (MA)components,
respectively, and d indicates the number of differences applied to achieve stationarity.

» Model fit om training data (B0% of dataset), with forecast accuracy measured using Root Mean Squared Error (RMSE).

— L5TM Model

* Implemented a bidirectional Long Short-Term Memory (L3TM) network for capturing seguential dependencies.
* Architecture: Three bidirectional LSTM layers with 150 units, followed by dense layers and dropout to prevent overfitting.
* Sequences of 30 past cbservations used to predict the next value; trained with Mean Absolute Error {MAE) loss and Adam optimizer.

— TCN Model

# Temporal Convolutional Network (TCN) used to model long-range temporal dependencies with dilated causal convolutions.
* Configuration: 16 filters, kernel size of 3, with dilations set to capture dependencies.

* Sequences of 30 past observations created for forecasting; layer normalization and dropout rate of 0.02 applied.

* Dptimized wsing G0 with learming rate of 0.001 and momentum of 0.8, evaluated with Mean Squared Error (MSE).

Methodology - Models’ specificities

Results & Discussion

The performance of ARIMA, LSTM, and TCN models was evaluated across
four locations, with metrics reported for both RMSE and MAE. As can be
seen in the table below, LSTM and TCN models consistently outperform
ARIMA across all locations, with LSTM generally achieving slightly better
results. TCN also performs well but shows some variability, with
performance close to that of LSTM in certain locations.

Region Model [ RMSE [ MAE The results highlight variability in
Jali ARIMA | 0.558 00.492 i
LSTM | 0273 [ 0212 model performance across sites,

TCN 0.210 0.164 . .
Mount Kigali ARIMA | 0.170 0.127 Suggestlng that effectiveness may

LSTM [ 0135 | 0.088 be influenced by location-specific
TCN 0.155 0.103

Gikondo-Mburabuturo | ARIMA | 0.188 | 0.123 factors and dataset size. Notably,
LSTM | 0.161 | 0.098 o
TCN 0162 10123 the Jali site had a shorter dataset

Rusororo M oTa—oog-|  period and a significant number of
TCN 0.133 | O.111 missing values, which may have

Models Performance across regions in Kigali affected the results

Normalized PM2.5 Levels: Train Set, Ground Truth, and Predictions for Mount Kigali Station

1.0 =~ —— Train Set {(Normalized PM2.5)
—— Ground Truth (Test Set, Normalized PM2.5)
== Predictions using LSTM (Nermalized PM2.5)
== Predictions using TCN (Normalized PM2.5)

o
o

=
=

Normalized PM2.5 Levels
2
—

o
%)

0.0

2021-05 2021-09 2022-01 2022-05 2022-09 2023-01 2023-05 2023-09 2024-01
Date

PM2.5 Forecasting for Mount Kigali Station: Comparing the Two Best Performing Models

Implications & Conclusion

Advancing Air Quality management through Machine Learning insights

The success of machine learning models, particularly the LSTM and TCN, In
forecasting PM2.5 levels highlights the potential of advanced algorithms in
environmental monitoring. Given the accuracy of these models in capturing
temporal dependencies, similar methodologies could be applied to forecast
other air pollutants, supporting a proactive approach in pollution
management. By integrating ML, these findings provide enhanced insights
for climate policymakers and urban planners, enabling more accurate, data-
driven strategies to improve air quality and mitigate environmental health
risks in Kigali.

- This study demonstrates the effectiveness of Machine Learning
approaches, with the LSTM model emerging as the most accurate for
PM2.5 predictions.

- By extending this methodology, researchers and policymakers can
develop more comprehensive air quality monitoring frameworks,
contributing to healthier, sustainable urban environments in Kigali areas.

Future Work

Enhancing PM2.5 Prediction with Satellite Imagery and Deep Learning

Future work will address the limitations of our current
research— namely to dive deeper into the anthropogenic
factors, the spatio-temporal correlations and to reveal
more multivariate dependencies. Moreover, future work
could combine satellite imagery, like Sentinel 5P, with
Deep Learning models [3,4,5] to enhance PM2.5
prediction accuracy by capturing environmental factors
linked to air quality.
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