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ABSTRACT

The ability to process information from multiple modalities and to reason through
it step-by-step remains a critical challenge in advancing artificial intelligence.
However, existing reasoning benchmarks focus on text-only reasoning, or employ
multimodal questions that can be answered by directly retrieving information from
a non-text modality. Thus, complex reasoning remains poorly understood in multi-
modal domains. Here, we present MARBLE, a challenging multimodal reasoning
benchmark that is designed to scrutinize multimodal language models (MLLMs) in
their ability to carefully reason step-by-step through complex multimodal problems
and environments. MARBLE is composed of three highly challenging tasks, M-
PORTAL, M-CUBE and M-MAZE, that require the crafting and understanding of
multistep plans under spatial, visual, and physical constraints. We find that current
MLLMs perform poorly on MARBLE—all 12 advanced models obtain around
0% accuracy performance on M-CUBE and M-MAZE, while only Grok-4 and
GPT-5 slightly outperformed the random baseline on M-PORTAL. These results
indicate that complex reasoning is still a challenge for existing MLLMs. Moreover,
we show that perception remains a critical bottleneck to mulitmodal reasoning. By
shedding light on the limitations of MLLMs, we hope that MARBLE will spur the
development of the next generation of models with the ability to reason and plan
across many multimodal reasoning steps.

1 INTRODUCTION

Human reasoning is inherently multimodal and sequential—integrating modalities such as language
or vision as context to draw conclusions through structured, step-by-step thought. While LLMs have
made significant strides in step-by-step reasoning (Wei et al., 2022; Jaech et al., 2024; Guo et al.,
2025; OpenAI, 2025), the multimodal reasoning abilities of Multimodal LLMs (MLLMs) are still in
their infancy and not yet well understood. Achieving complex, multi-step, multimodally grounded
reasoning is critical for building intelligent systems that can generalize across domains and interact
adaptively with complex environments.

Recent benchmarks – such as ScienceQA (Lu et al., 2022), MathVista (Lu et al., 2023b), and
MMMU (Yue et al., 2024) – have shown that MLLMs can solve tasks involving both visual and
linguistic understanding. However, these benchmarks often emphasize relatively shallow forms
of reasoning, such as single-step question answering or factual retrieval. They frequently conflate
perception (e.g., interpreting an image or diagram) with reasoning (e.g., drawing logical inferences,
comparing evidence, or crafting a multi-step plan), reducing complex reasoning to pattern matching
and multimodal integration. As a result, current evaluations underexplore and undermeasure an
MLLM’s capacity for deep, structured reasoning. Moreover, the recent literature has focused
heavily on abstract reasoning in domains such as advanced mathematics or code generation, where
multimodal embodiment plays a limited role. In contrast, interacting with and planning in spatially
and physically constrained environments is a fundamental dimension of human intelligence but it
is largely missing from today’s MLLM evaluations. While a recent effort introduced an escape
room-inspired benchmark (Wang et al., 2025b), frontier models were not sufficiently challenged by
its task complexity, achieving up to 100% escape rate. Thus, hard benchmarks that stress multi-step
planning and spatial reasoning under physical constraints remain an open need. Analogous to how
difficult challenges have historically driven progress, we believe that an ARC-like test (Chollet et al.,
2024) for multimodal reasoning could spark foundational advances in MLLM capabilities.
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Table 1: Conceptual overview of the MARBLE benchmark.

Dataset Description Subtasks # Samples Metrics

M-PORTAL Solving complex multi-
modal spatial reasoning
and planning problems.

Plan correctness,
Fill-the-blanks

512
512

F1-Score,
Accuracy

M-CUBE Assembling 3D Cube from
six jigsaw pieces.

CUBE,
CUBE-easy

1,000
1,000

Accuracy

M-MAZE Solving dynamic mazes by
combining tile insertion
and player navigation.

MAZE,
MAZE-easy

1,000
1,000

Success
Rate

In this work, we present MARBLE (MultimodAl Reasoning Benchmark for Language modEls), a
highly challenging multimodal reasoning benchmark specifically designed to evaluate step-by-step,
multimodally grounded reasoning in MLLMs. Our benchmark introduces tasks that are cognitively
demanding, requiring models to decompose complex multimodal prompts into interpretable interme-
diate steps, align information across inputs, and to carefully craft a multi-step plan to solve complex
problems under diverse spatial and physical constraints. Unlike prior datasets that overemphasize
final-answer accuracy, our benchmark emphasizes reasoning trajectories and plans, providing both
gold-standard rationales and mechanisms for evaluating intermediate step fidelity. MARBLE con-
sists of three main tasks, M-PORTAL which tests complex spatial reasoning and planning abilities,
M-CUBE, which tests the ability to understand and assemble 3D jigsaw pieces into a target cube
shape, and M-MAZE, which test the ability to plan the path to target in an editable maze. Each
dataset also contains two subtasks at different difficulty levels, as shown in Table

We conduct an extensive evaluation of MARBLE across 12 state-of-the-art MLLMs and reasoning
models. Intriguingly, most of the models obtain near-random performance on M-PORTAL and around
0% accuracy on M-CUBE and M-MAZE. Even in simplified configurations, only about half of
the models are able to outperform the random baseline. Notably, Grok-4 and GPT-5 are the only
model demonstrating reasonable performance on M-PORTAL, achieving 18.2% and 14.2% F1 score,
respectively. However, they still completely fail on the harder tasks of M-CUBE and M-MAZE.
These results indicate that complex multimodal reasoning remains a significant challenge for current
MLLMs. Our further analysis shows that perception is still a bottleneck for multimodal reasoning:
all the advanced MLLMs completely fail to understand and extract structured information from the
visual inputs. Additionally, we present an interactive setup for M-CUBE and M-MAZE to help the
multimodal reasoning via the feedbacks from the environments, reflecting the real-world and agentic
problem-solving processes. We hope that MARBLE will serve as a probing benchmark to reveal the
limitations of current MLLMs and drive the development of next-generation models with stronger
capabilities in multi-step multimodal reasoning and planning.

2 MARBLE: A BENCHMARK FOR MULTIMODAL SPATIAL REASONING AND
PLANNING

We present MARBLE, a challenging game-inspired multimodal reasoning benchmark designed to
evaluate the complex reasoning abilities of multimodal LLMs (MLLMs). In contrast to prior reasoning
benchmarks that evaluate only the final answer independent of the reasoning trace, MARBLE focuses
on assessing the correctness of the reasoning process itself. MARBLE consists of three tasks, M-
PORTAL, M-CUBE and M-MAZE, all require complex, multi-step and multimodal reasoning skills
to forge an appropriate plan that accounts for complex spatial and physical problem constraints.
The M-PORTAL task challenges MLLMs to solve problems derived from Portal 2 videogame with
multi-step reasoning and planning. The M-CUBE evaluates MLLMs in their ability to solve Happy
Cube puzzles, i.e., rotate complex shapes to arrange them into 3D cubes under physical constraints.
Finally, the M-MAZE tests the ability of MLLM to plan the correct path to the target, in a dynamic
and editable maze.

2
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Figure 1: Data generation and evaluation pipeline for the M-PORTAL task. The top row illustrates
how a given Portal 2 map (sourced from the community test chambers) was analyzed with human
annotation to produce a set of illustrative screenshots that fully depict the map, textual map instruc-
tions, a ground-truth solution chain of thought (CoT), as well as a set of five mistaken steps. The
steps are designed to operate independently so that mistakes and correct steps can be easily com-
bined. The bottom row indicates two evaluation types of M-PORTAL: first, plan correctness,
a binary evaluation where candidate solutions have to be rated as correct or wrong. Second, a
fill-the-blanks evaluation, where multiple steps of the ground truth CoT solution are masked,
and multiple options are available to fill in at the right place.

2.1 M-PORTAL

The M-PORTAL task is a multimodal reasoning task that involves planning, spatial reasoning, as well
as multimodal integration. M-PORTAL is inspired by the game Portal 2, a first-person perspective
puzzle videogame released by Valve in 2011. Portal challenges players to overcome obstacles and
to pass through rooms by means of placing two portals through which players can teleport. A key
mechanic in Portal is the conservation of momentum: when a player enters one portal with a given
velocity, they exit the second portal with the same relative momentum. This enables creative traversal
strategies, such as jumping across large gaps or over obstacles, by combining gravity-driven falls
with portal placement. Various additional features (e.g., buttons, lasers, tractor beams, liquids) add
further complexity to the puzzle environments. The ultimate trial will be for MLLMs to interactively
navigate and solve the game. However, to enable broad accessibility and usability of this benchmark,
we abstract a given map into a set of visual question-answering tasks that require the MLLM to
integrate several depictions of the map, a textual instruction to the map, in order to examine partial
or complete chain of thought (CoT) solution plans that may consist of dozens of steps. Figure 8 in
Appendix D gives an introductory overview of how a basic portal map could look like, displaying a
scene overview (top left), the step-by-step solution, and a few in-game screenshots.

Problem statement. Given an input X = (I, T ), where I is a set of multimodal inputs (e.g.,
screenshots of a Portal map or textual contextualization of the environment) and T is a task instruction,
the objective is to generate a Chain-of-Thought (CoT) plan P = (s1, s2, . . . , sn) consisting of
interpretable, physically sound reasoning steps that, if executed, would successfully solve the problem.
The reward of a plan R(P ) is 1 if the exit door is passed, and 0 otherwise. Then the objective is to
evaluate the ability of models to implement the mapping F ∗ that maximizes the reward, i.e.,

F ∗ = argmax
F

EX∼D [R(F (X))] , where (1)

F : X 7→ P = (s1, s2, . . . , sn). (2)

3
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Data collection. For data collection, a human annotator with advanced Portal 2 experience browsed
through top-rated maps from the Portal 2 community test chambers. We focused on the community
test chambers, as they were often self-contained, well-defined problems in a single room. The
annotator selected 16 high-quality maps that received top user-rating, while being compactly shaped
such that they would be amenable to capture within a few screenshots. Figure 1 gives an overview
of how the M-PORTAL dataset was created in the top row, whereas the bottom row indicates the
evaluation strategies employed in the M-PORTAL task.

Evaluation subtasks. Since direct execution and success validation in the Portal environment
would depend on a closed-source game environment and could involve a brittle interfacing and
limited accessibility, we focus on evaluating the ability of a model to reason about the correctness of
candidate plans or the missing steps in incomplete plans. For this, we consider two types of closed-
ended evaluations: plan correctness and fill-the-blanks tasks, each contributing to
512 problems.

i) Plan correctness: Is the provided candidate plan correct?
Plan correctness is the binary classification task and requires answering yes/no questions. It
is a harder task compared to fill-the-blanks because models have to carefully review lengthy
candidate plans that may be dozens of steps long and involve various spatial and physical
constraints and dependencies. These candidates may contain no mistake at all up until five
mistaken steps. This task has a significant class imbalance, as one Portal map with five available
mistaken steps allows the creation of 25 = 32 candidates that leverage individual mistakes,
whereas only one out of 32 candidates is correct.

ii) Fill-the-blanks: Can the model accurately identify several missing steps given surrounding
context and a few candidate options?
On the easier fill-the-blanks task, models receive a partial plan to solve the Portal map whereas
several steps are masked. To fill the missing steps, the model needs to choose five correct options
from five mistake or distracting options in a correct order. Even though this task is hard for a
naive random baseline, for a model that is able to interpret the multimodal inputs X as well as the
partial solution, it should be easier to identify the correct missing steps especially since mistaken
steps also appear in their correct version as highly similar options. Furthermore, fill-the-blanks
can also be seen as a simplification as it helps the model focus its attention on a few relevant
steps out of a large sequence, whereas in the binary evaluation any step could be potentially
mistaken.

2.2 M-CUBE

Problem statement. The M-CUBE task is a 3D spatial puzzle inspired by the Happy Cube, a
mechanical puzzle originally invented by Dirk Laureyssens in 1986. In this task, one is presented with
6 jigsaw-style pieces taken from the faces of a 5× 5× 5 Cube. Each piece is featured by the bump
and gap pattern on its edges. The goal is to assemble the pieces into a valid cube where the edges are
aligned seamlessly without gap or overlap. To solve the M-CUBE task, an MLLM needs to assign
each piece into a cube face with proper orientation, i.e., to rotate and/or flip the piece accordingly
to align with other pieces. For each problem, an MLLM must account for 6! possible piece-to-face
assignments (modulo rotational symmetries), and for each piece, 8 discrete states of rotations and
flips, resulting in a combinatorial explosion of candidate solutions. Among the vast search space,
only very few solutions are valid given the geometric constrains imposed by the interlocking bump
and gap patterns. András et al. (2013) reported that most commercially available cubes have only one
solution (up to rotational equivalences), making this a challenging reasoning problem.

Data generation. While the M-CUBE tasks are inspired by the Happy Cube puzzle, we generate all
samples synthetically. Figure 2 gives an overview of the workflow. Specifically, the data generation
pipeline starts with a 5× 5× 5 cube and disassembles the surface into 6 interlocking pieces. Each
piece can be regarded as a 5 × 5 grid, where the center 3 × 3 region is always preserved. For
remaining cells located on the edges, we randomly assign each cell to one of the adjacent faces of
the big 5 × 5 × 5 cube, to create the bump and gap patterns along the boundary. After that, the
obtained pieces are shuffled and rendered from a random 3D viewpoint as the input to an MLLM. We
interactively selected viewpoint ranges such that the shape was clearly discernible. Concretely, we

4
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Cube Rendered problem

Solution validator

Sampling of pieces

{‘left’:  [[…]] ,
’top’:  [[…]] ,
…
}

Data object MLLM

Assembly
plan

Figure 2: Overview of the M-CUBE workflow including data generation, problem rendering, as well
as solution validation. Appendix D provides more dataset examples.

render the objects by sampling a camera elevation in the range of –155° to –115° and an azimuth
in the range of –150° to –90°, relative to the canonical front view. The base view corresponds to an
elevation of –135° and an azimuth of –120°, with uniformly random perturbations of ±20° and ±30°,
respectively.

Solution validator. The model is required to find the correct piece-to-face mapping and the
orientation of 6 pieces. However, for each problem, there is no unique solution since a cube contains
24 rotational symmetries. Therefore, instead of directly comparing the answer to ground-truth, we
provide a solution validator by testing whether the solution from MLLM could successfully assemble
the pieces into a perfect cube. Beside binary evaluation, the solution validator could also identify the
conflicts in a given configuration, such as mismatched edges. This diagnostic feedback can be used
by an MLLM to iteratively refine its solution. See Appendix D for example.

Evaluation subtasks. To measure the performance of MLLMs with controlled difficulty level,
we create two subtasks called CUBE and CUBE-easy. Each subtask contains 1000 examples.
CUBE-easy is a simplified version of CUBE along three axes: i) the input pieces are represented as
2D arrays instead of the rendered image to reduce the perception error of MLLM (see the discussion
in Section 3.2 for more details); ii) each puzzle is specially designed such that the solution does not
require flipping of any pieces; iii) a partial solution with the arrangement of 4 pieces is provided
in the prompt, leaving only 2 missing pieces to be placed. Consequently, ii) and iii) significantly
reduce the size of search space. In comparison, CUBE retains the full complexity of the task, where
the MLLM needs to understand the input images, and explore over all the possible arrangements of
the 6 pieces.

2.3 M-MAZE

Problem statement. The M-MAZE task is 2D spatial–planning puzzle directly inspired by The
aMAZEing Labyrinth board game. Each game contains a 7× 7 maze and one off–board spare tile.
The tile contains three shapes I/L/T and can have different orientations on the board. There are two
types of actions in the action space: (i) insert the spare tile into one row or column to shift the whole
line (ii) move along connected corridors. The insert action will change the connectivity of the board
and make the maze dynamic. Given a board image, a model must produce a valid multi–turn plan to
move the player to the target, which poses unique challenges to MLLMs in terms of perception and
multi–step reasoning.

Data generation. Similar to M-CUBE, we synthesize M-MAZE tasks by generating initial board
configurations, starting with 16 fixed path tiles and 12 fixed treasures (see Appendix F.1), then
sampling the remaining I/L/T tile shapes, random player positions, and 12 scattered treasures to
complete the board. The process begins with board sampling, followed by BFS to compute all
trajectories to each target via TILE INSERTION (shifting rows/columns) and PLAYER MOVE (along
connected tiles), determining minimal depth D (the fewest turns to reach a target). We subsample
trajectories by D, a difficulty proxy since higher D increases the search space and planning complexity,
and retain one solution per (board, seed, depth) triplet for diversity. Evaluation uses only the initial
configuration (board grid, player position, and target, excluding other objects to reduce clutter),
providing a lower bound on the planning depth required to solve the puzzle.

5
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1. Tile Insertion 2. Player Move

M-Maze
Labyrinth Multistep Planning

Insert(side=‘bottom’, index=3, rotation=1) Move(x=3, y=0)

Your goal is to reach the target using the available action space: 
- Insert(side=..., index=…, rotation=…)

- Move(x=0…6, y=0…6)

Figure 3: Overview of the M-MAZE task. Appendix D provides more dataset examples.

Evaluation subtasks. Similar to M-CUBE, we create two subtasks to measure the performance
of MLLM with controlled difficulty levels: MAZE and MAZE-easy. Each subtask contains 1000
examples. MAZE-easy is a simplified version of MAZE along two axes: i) the input board includes a
visual harness overlay (tile types and coordinates) and the full symbolic state (board grid, object grid,
extra tile, player position, see Appendix D for details); ii) a reduced depth D = 2. These adjustments
minimize perception errors and shrink the search space. In contrast, MAZE retains full complexity at
depth D = 4, requiring the MLLM to interpret the raw board image demanding deep planning and
strong visual parsing capabilities.

3 EXPERIMENTS

We evaluate performance on the MARBLE benchmark using eight state-of-the-art MLLMs, includ-
ing both open-source and closed-source models with advanced multimodal reasoning capabilities.
Specifically, we assess three representative open-source MLLMs: Qwen2.5-VL-72B (Bai et al., 2025),
InternVL3-78B (Zhu et al., 2025) and Llama-4-Scout (Meta, 2025), alongside eight closed-weight
models: GPT-4o (Hurst et al., 2024), GPT-o3, GPT-o4-mini, GPT-5, Claude-3.7-Sonnet (Anthropic,
2025) Gemini-2.5-pro (Google DeepMind, 2025), Seed1.5-VL Team (2025) and Grok-4. In addition,
we also include one text-only model DeepSeek-R1-0528 Guo et al. (2025) in the evaluation. We
remove or manually convert the input images into textual descriptions to evaluate the models that
only takes text inputs. Besides, we provide evaluation of experienced human players on all the tasks.
All the experiment configurations, prompts and hyperparameters are detailed in the Appendix E.
Experiments are conducted on a single node server with 8 Nvidia H200 GPUs. The overall results
are repoted at Table 2.

3.1 RESULTS ON M-PORTAL

We evaluate state-of-the-art MLLMs on the plan correctness and fill-the-blanks tasks
of the M-PORTAL, as reported in Table 2. On the plan correctness task, all the investigated
models (except GPT-5 and Grok-4) performed very poorly with a minority class F1 score of around
6%, similar to the random baseline. In comparison, on the easier fill-the-blanks task, 8
out of 12 models outperform the random baseline. In particular, the performance gap compared to
the random baseline is substantial (≥ 20%) for Gemini-2.5-pro, GPT-o3, Grok-4 and GPT-5 that
significantly outperforms all other models. Interestingly, the best performing model, Grok-4, manages
to correctly solve only 46.7% of the problems on fill-the-blanks tasks and achieves 18.2% F1
score on the plan− correctness binary classification. Note that although the fill-the-blanks
task results in random baseline scores, it is expected to be easier than the plan correctness task
for models capable of interpreting the multimodal inputs and leveraging the partial solution. Also, it’s
worth noting that the experienced human player could obtain 37.5% on the fill-the-blanks
subtask, surpasing all the frontier models except Grok-4.
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Table 2: Performance of state-of-the-art MLLMs on the MARBLE benchmark and three tasks:
M-PORTAL, M-CUBE and M-MAZE. Each task contains two difficulty levels. We report F1-score
(%) for binary evaluation (plan correctness) of M-PORTAL and success rate (%) for all the
other tasks. Humen performance are evaluated with 2-3 experienced players on each task. *All the
visual inputs are removed or converted to texts for text-only LLMs.†Random baselines for M-MAZE
are defined and derived in Appendix F.4.

M-PORTAL M-CUBE M-MAZE

Models Binary Blanks CUBE CUBE-easy MAZE MAZE-easy

Human - 37.5 0.0 85.0 55.0 80.0
Random 6.1 3e-3 1e-5 3.1 5e-9† 1e-4†

Qwen2.5-VL-72B 6.6 0.0 0.0 2.0 0.0 0.1
InternVL3-78B 6.4 0.0 0.0 2.8 0.0 0.0
Llama-4-Scout 6.5 0.0 0.0 1.6 0.0 0.3
GPT-4o 6.5 0.4 0.0 2.0 0.0 0.0
Seed1.5-VL 7.6 4.1 0.0 2.0 0.0 0.0
Claude-3.7-Sonnet 6.3 8.8 0.0 7.4 0.0 1.0
DeepSeek-R1-0528* 0.0 10.0 0.0 8.0 0.0 2.0
GPT-o4-mini 0.0 5.5 0.0 16.0 1.0 23.0
Gemini-2.5-pro 4.7 20.0 0.0 11.0 0.0 20.0
GPT-o3 6.6 23.4 0.0 72.0 0.0 69.0
Grok-4 18.2 46.7 0.0 38.6 0.0 47.0
GPT-5 14.2 29.1 0.0 84.0 0.0 66.0
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60
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cu
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cy
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)

Qwen2.5-VL-72B

Figure 4: The influence of number of
blanks to M-PORTAL.

Influence of blanks. In the fill-the-blanks task
on M-PORTAL, each question contains multiple steps in
the complete solution, and part of them are masked. To
systematically understand the impact of missing informa-
tion, we construct a series of questions where the model
is asked to fill n blanks from 2n candidate options. We
evaluate the performance of Qwen2.5-VL-72B and the
result is shown in Figure 4. Notably, the model obtains
around 70% accuracy when only a single blank is present.
However, the performance declines rapidly as the number
of blanks increases, dropping to less than 1% when n ≥ 4,
which indicates the challenges of the subtask under the
conditions of extensive missing information.

3.2 RESULTS ON M-CUBE

The results on the CUBE and CUBE-easy tasks of M-CUBE are shown in Table 2. Intriguingly,
all the advanced MLLMs completely fail on the harder subtask CUBE and obtain 0% accuracy
despite more than 10, 000 tokens spent on thinking the problems. The results highlight the complex
multimodal reasoning process involved in CUBE, where the model has to iterate over verification
and backtracking through a long reasoning chain to make a final answer. In comparison, on the
simplified CUBE-easy task, 7 out 12 frontier models are able to perform better than random
guess. Among them, GPT-5 and GPT-o3 achieves remarkable performance of 84.0% and 72.0
accuracies, substantially outperforming the remaining models, but are still slightly worse than the
human performance of 85.0% accuracy.

Error on perception. To solve the M-CUBE puzzle, the first step is to understand the visual input
and retrieve the relevant information, which serves as the basis of the reasoning steps afterwards.
Thus, we design a perception task to measure whether the MLLMs could correctly extract information
from the input image: given a jigsaw-style piece in a 3D viewpoint, the model is asked to convert
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Question:
Convert the image into a 5x5 array, 
where 0 = gap and 1 = bump …

MLLM response:
[[1, 1, 1, 0, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 0, 1, 1, 1]]

Single Jigsaw-style piece
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Figure 5: Left: Perception remains a bottleneck for M-CUBE. A perception task designed to test
MLLM’s ability on retrieve structured information from visual input (full prompt in Appendix D). :
Middle: Search space of the M-CUBE dataset under different configurations. Right: Performance of
DeepSeek-R1 across varying levels of task difficulty of the M-CUBE dataset.

the piece into a 5 × 5 array. We evaluate all the 8 MLLMs on this perception task with 200 test
examples, and report the accuracy on cells and accuracy of the whole piece also on Figure 5 left.
Surprisingly, we found all the models could only achieve around 70% accuracy per cell. The best
perception performance, is 76% accuracy from Gemini-2.5-pro, meaning that the model could still
occasionally make mistakes. As a result, all the models achieve 0% accuracy on the whole piece.
These results highlight that even advanced MLLMs struggle with this seemingly simple perception
task, posing a potential bottleneck for multimodal reasoning in complex scenarios like CUBE.

Error on reasoning. Apart from the perception errors, M-CUBE still remains a highly challenging
problem due to the vast search space from the combination of all possible arrangements and orienta-
tions of 6 pieces. Figure 5 illustrates the size of search space of M-CUBE as a function of both the
number of missing pieces and whether a solution requires flipping the pieces. In particular, CUBE
comprises 6! ∗ 86 = 188, 743, 680 possible solutions. In comparison, CUBE-easy only contains
32 possible solutions, a 5, 000, 000 fold reduction of the hypothesis space. To isolate the reasoning
challenge from perceptual limitation, we manually convert the visual inputs into corresponding text
arrays. We then compare the performance of DeepSeek-R1 in different search space configurations,
as shown in Figure 5. The model obtains 57% accuracy in the simplest setting with only one missing
piece. However, the performance drops drastically as the search space expands, falling to 0% when
more than 3 pieces are missing. The substantial decline underscores the difficulty of reasoning among
expanding combinatorial search space, a major bottleneck for existing reasoning models. In summary,
besides perception error, reasoning among the vast search space is also a challenge, making M-CUBE
an especially difficult task for state-of-the-art MLLMs.

3.3 RESULTS ON M-MAZE

We evaluate state-of-the-art MLLMs on M-MAZE (MAZE, MAZE-easy) as reported in Table 2.
Similarly, all the models performs around 0% on the harder subtask, while on the simper subtask
MAZE-easy, GPT-o3, Grok-4, GPT-5 are the models significantly outperforming the other models.
Interestingly, there is a clearly performance gap between human player and MLLMs on this task:
human achieves remarkably 55.0% on MAZE, 80.0% on MAZE-easy, respectively. Moreover,
we observe similar perception bottleneck as M-CUBE where MLLM struggles on extracting the
structured visual information from the input. We defer the empirial results to the Appendix F.2.

Error on Reasoning. Beyond perception errors, M-MAZE challenges models due to the need to
reason over state transitions and rules across multiple steps, not just static layouts. To isolate reasoning
from perception, we use a Visual Harness + Symbolic setup, providing the board state in two forms:
a compact symbolic grid as text in the prompt, and the input image with labels overlaid directly onto
the board (see Appendix F.2). We evaluate GPT-5-MINI, with results in Figure 6: 100% success at
D = 0, 70% at D = 1, 30% at D = 2, 15% at D = 3, and below 10% at D = 4. The steep decline
with depth, driven by error accumulation, highlights several of the most frequent failure modes: (i)
adjacency misinterpretation errors, where a model either misjudges non-reciprocal openings as
being connected or hallucinates a change in a tile’s type to force a valid path, leading to illegal player
movement; (ii) state-update errors, where the model incorrectly processes a row/column shift by

8
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Figure 6: Success rate (%) of GPT-5-mini
across depths D on M-MAZE, comparing four
input settings described in the Appendix F.2.

Figure 7: Success rate of GPT-5-nano on M-
Maze using Visual Harness + Symbolic, across
depths, comparing Online vs. Offline settings.

failing to also update the positions of players or items on the affected tiles, leading to an incorrect
internal representation of the board state; (iii) insert legality errors, a form of instruction-following
error, where models attempt illegal moves like using the wrong slots; and (iv) shallow planning
errors, where a model fails to find a solution and does not output any plan.The steep drop with depth
indicates that multi-step reasoning over dynamic, rule-bound states is inherently hard. In summary,
beyond perception, planning across multiple turns in a large combinatorial space makes M-MAZE a
challenging task for current MLLMs.

Online Evaluation We evaluate GPT-5-NANO in a per–action loop: at each phase the agent emits
one atomic action (INSERT or MOVE); the environment executes it and returns the next observation.
Episodes end on success, illegality (no-reverse, lane legality, invalid move), or budget exhaustion. We
report Success Rate@B with B = 2D, where D is the optimal depth (two actions per optimal turn:
INSERT+MOVE). Results (Fig. 7) show around 80% at D=0 and online surpassing offline once
multi-step planning is required: around 42% vs. 24% at D=1, around 19% vs. 2% at D=2; online
then plateaus at around 17–18% for D=3–4 while offline collapses to 0%. Overall, step-wise state
updates mitigate error accumulation, but performance still degrades with increasing depth, indicating
persistent bottlenecks in multi-step transition modeling, spatial consistency, and rule adherence.

4 DISCUSSION

This paper introduces MARBLE, a hard multimodal reasoning benchmark for MLLMs. MARBLE
provides a focused testbed for evaluating MLLMs on complex spatial reasoning and planning
tasks that are underlying heterogenous physical constraints. Our tasks are designed such that an
MLLM must first understand the physical constraints imposed by the multimodal input, and then
formulate a coherent, multi-step plan that draws from a vast search space in order to solve the
problem. MARBLE fills the gap of multimodal reasoning evaluation by shifting the focus from
outcome accuracy to process-oriented, multi-steps reasoning that requires coherent multimodal
understanding. By contributing a challenging benchmark for multi-step, multimodal reasoning
amidst spatial and physical constraints, MARBLE aspires to elicit more progress and innovation
in MLLM development that will unlock unprecedented abilities in reasoning and planning amidst
complex and multimodal environments—capabilities that are essential for real-world, embodied, and
general-purpose intelligence.

Our empirical evaluation reveals that state-of-the-art MLLMs struggle significantly with MARBLE.
Most of the models can only outperform random baselines in simplified ablations and fail even on
structured perception tasks, underscoring limitations in both reasoning and visual understanding.

Limitations and future work. We do not explore fine-tuning or adapting models at test time.
Future work should investigate adaptive approaches, enabling models to reason with and through
different modalities—such as “thinking with images”—in a more compositional way.

9
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A LLM USAGE STATEMENT

Generative AI has been used to check for typos and grammatical errors in this manuscript, and to
rephrase certain original sentences of the authors for correctness, conciseness and style, as they
are not of English mother tongue. Any use of generative AI in this manuscript adheres to ethical
guidelines for use and acknowledgment of generative AI in academic research. Each author has made
a substantial contribution to the work, which has been thoroughly vetted for accuracy, and assumes
responsibility for the integrity of their contributions.

B ETHICAL STATEMENT

As with any benchmark, there is a risk of overfitting to dataset-specific patterns. However, our setting
involves abstract puzzle domains, which do not raise direct societal risks. Advancing multimodal
reasoning has strong potential for positive impact in domains like healthcare, accessibility, and
education. Rigorous benchmarks like MARBLE can help ensure that future systems are robust and
beneficial ahead of deployment.

C RELATED WORK

Chain-of-Thought and multimodal reasoning paradigms. The Chain-of-Thought (CoT) prompt-
ing paradigm has significantly advanced reasoning in language models by enabling stepwise de-
composition of complex problems (Wei et al., 2022). The Multimodal Chain-of-Thought (MCoT),
its extension to the multimodal domain, represents a natural progression, encouraging models to
articulate intermediate reasoning steps while integrating multiple modalities such as images, text, and
diagrams. Recent works like Wang et al. (2025a) highlight prompt-based, plan-based, and learning-
based MCoT strategies, yet also underscore the lack of robust, diagnostic benchmarks tailored to
multimodal reasoning.

Recent multimodal instruction tuning approaches fine-tune LLMs augmented with visual encoders
to follow multimodal prompts (Li et al., 2024; Zhu et al.). While these models can generate fluent
outputs, their reasoning often lacks depth or consistency, particularly on tasks involving spatial,
numerical, or abstract visual patterns (Yue et al., 2024; Chia et al., 2024).

Multimodal reasoning benchmarks. Several datasets have been proposed to evaluate multimodal
reasoning, such as ScienceQA (Lu et al., 2022), MMMU (Yue et al., 2024), MathVista (Lu et al.,
2023a), EMMA Hao et al. (2025) and MEGABench (Chen et al., 2024). These benchmarks span
academic knowledge domains and require integrating visual and textual information. However, they
often prioritize answer accuracy over the evaluation of the full reasoning trace, making it difficult
to diagnose model errors. Others, like PuzzleVQA (Chia et al., 2024) and NLVR (Wu et al., 2024),
introduce abstract reasoning challenges but are limited in modality diversity and stepwise supervision.
Recent works like Critic-V Zhang et al. (2025) and MMIR Yan et al. (2025) introduced frameworks
for multimodal inconsistency detection or critic-guided refinement, which improved performance but
was limited to rather shallow reasoning paths.

There are few previous benchmarking approaches that leveraged multimodal tasks inspired by
video game puzzle environments (Zheng et al., 2025; Paglieri et al., 2024; Topsakal et al., 2024).
Most recently and closely related, Wang et al. (2025b) proposed MM-Escape, an escape-room like
environment where MLLMs have to navigate and leverage the surroundings (e.g., retrieving a hidden
key) in order to escape a room. While this benchmark shares some similarity with the M-PORTAL task
in MARBLE, M-PORTAL introduces a novel and much harder, multi-step problem solving challenge.
To illustrate this, consider GPT-4o model which solved 70− 100% of the maps in MM-Escape, but
performed very poorly on M-PORTAL (e.g., 4.1% accuracy on fill-the-blanks).
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D ILLUSTRATION OF EXAMPLE PROBLEMS

D.1 M-PORTAL

Portal 2: Complex multi-step problem solving Solution:

Step 1: Place portals in positions a, b and 

jump down into b to get ejected from a to 

press the button c.  

Step 2: Button c releases a cube to land on 

button d which activates the bridge e.
Step 3: Place portals in positions f, g to walk 

across the bridge towards the cube at 

location d.

Step 4: Pick up the cube and step on button 

d which also activates the downwards 
pushing tractor beam at location h.

Step 5: Throw the cube down to the device 

at i that catapults it over to the target area. 

Step 6: The tractor beam intercepts the cube 

and pushes it on the slot j which opens the 
(blue) exit door and elevates a platform at 

location k.

Step 7: Place portals in positions l, a, walk 

through l, walk across k to reach the exit.

a

b

c

d

e

f

g

h

i

j

k

l

Step 2 Step 3

Step 5
Step 6

Step 7 Step 7

Figure 8: Overview of the Portal-2 Dataset of the MARBLE-Benchmark. Illustrated is a rather basic
level Portal 2 problem, which only requires seven steps to solve. For comparison, the advanced
problems introduced in this benchmark may involve several dozens of steps. Also, steps are not
always decomposed into their most atomic form to keep enough complexity within a step to make
mistaken steps harder to detect.
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"Step 1: Go to room 2 (on the right) and press the switch to drop a cube.",

"Step 2: Shoot a blue portal where the laser hits the wall and one on the wall 
that points to the central room (room 1).",

"Step 3: Place the cube on the laser teleportation machine and press the 
switch to send the cube via laser to room 1.",

"Step 4: Go to room 1 and place the cube on the button.",

"Step 5: Walk up the stairs to press the little button, which drops a mirror cube 
in room 1.",

"Step 6: Pick up the mirror cube and place it in front of the laser source such 
that the laser points towards room 3.",

"Step 7: Create a new cube by pressing the little button in room 2.",

"Step 8: Place the new cube on the laser teleportation machine and press the 
button to send the cube.",

"Step 9: Pick up the mirror cube and place it on the teleportation device.",

"Step 10: Shoot an orange portal where the laser source hits the wall and a 
blue portal at the wall next to the teleportation device to direct the laser to the 
mirror cube which needs to point to room 3.",

"Step 11: Activate the teleportation machine by pressing the button next to 
the machine.",

"Step 12: Go to room 3, pick one cube, and place it on the button to open the 
door to room 4. Take the other cube and bring it to room 4, placing it on the 
button on the floor to open the exit door.",

"Step 13: Go through the exit door. Problem solved."

Problem images (excerpt)
"You enter room 1, which is connected to room 2 on the right, separated by a 
shield wall. Room 1 contains a button on the floor that activates a stair leading 
up to a platform. On this platform, there is a switch that controls a mirror cube 
machine located in room 2. Room 2 features a laser source that hits the wall 
and a laser teleportation machine. When activated by a button press, this 
teleportation machine sends any object placed on it (such as a cube) to the 
endpoint of the laser ray, wherever the laser is directed. This allows cubes to 
travel through shield walls that would otherwise block movement. However, 
teleportation does not work through solid walls. Room 2 also has a button that 
activates a cube machine located next to the teleportation device. Room 3 is 
separated from room 1 by a shield wall and contains a button that opens the 
door to room 4. Room 4 is a small area with only a button on the floor, which 
opens the exit door."

Problem description

Hint image
"Step 2: Shoot a blue portal where the laser hits the wall and an orange portal 
on the same wall close to the boundary to room 1 such that the cube gets sent 
to room 1.",

"Step 5: Go to room 2 and collect the mirror cube who dropped due to the 
button press in room 1.",

"Step 6: Pick up the mirror cube and place it in front of the laser source such 
that the laser points towards room 2.",

"Step 10: Shoot an orange portal where the laser source hits the wall and a 
blue portal at the wall of the entrance in room 1, such that the laser points to 
room 3.",

"Step 12: Go to room 3, pick one cube, and place it on the button of room 4 to 
open the door in room 4. Take the other cube and placing it on the button of 
room 3, now both doors are open."

Solution

Mistakes

Figure 9: Illustration of an example problem of the M-PORTAL dataset (problem 5), composed of a
problem description, images, solution steps, mistakes, and optional hint images.

Figure 8 gives an extended overview of the M-PORTAL problem. It introduces a simple example
problem, created for illustrative purposes and does not cover the full complexity the benchmark.
Each map in M-PORTAL requires a sequence of actions to solve, making it a complex multimodal
reasoning problem.

Figure 9 shows a challenging example problem of the M-PORTAL task of MARBLE Figure 9 shows
input images and instruction text that describe the problem. A manually curated solution is shown on
the right side, together with five mistaken steps, below. A hint image depicts the crucial insight that
allows to solve the map.
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D.2 M-CUBE

Figure 10 presents a complete example question of M-CUBE task, and the solution to the instance
with the corresponding 2D and 3D visualization. Figure 11 shows the prompt of the perception task.

You are a spatial-reasoning assistant that solves Happy Cube puzzles.

INPUT
• Six jigsaw-style pieces, labelled A–F.
• Each piece is described by the bump/gap pattern on its four edges (Edge1, Edge2, Edge3 and Edge4) as shown in the image, 
the center squares are always filled.

TASK
Build a 5 × 5 × 5 cube that uses every piece exactly once. 
• Assign face (Top, Bottom, Front, Back, Left, Right) with proper orientation (rotation and/or flip).
• The finished cube closed perfectly—no overlaps, no gaps.

The first and last 'square' of the edge contribute to the corners of the cube, make sure:
• When two cube faces touch, the non-corner part of their edges must be complementary bit-for-bit.
• At cube corners (where three faces meet), all connecting edges each piece to one cube must align seamlessly.

NOTE
For each piece, report the orientation via the following mental exercise:
1. Hold the finished cube in both hands.
2. Turn the whole cube until the face you are about to name is now facing you like the front of a box.
3. In this view, write down the edge numbers located on left and top. 
  • Format: (Cube-Face, Left-Edge#, Top-Edge#)
Note that left-edge and top-edge must be adjacent.

OUTPUT
Answer the question with the arrangement of 6 pieces. Your response should end with:
The final solution is
```
A: (Cube-Face, Left-Edge#, Top-Edge#)
B: (Cube-Face, Left-Edge#, Top-Edge#)
C: (Cube-Face, Left-Edge#, Top-Edge#)
D: (Cube-Face, Left-Edge#, Top-Edge#)
E: (Cube-Face, Left-Edge#, Top-Edge#)
F: (Cube-Face, Left-Edge#, Top-Edge#)
```

[Thinking…]

SOLUTION
 A: (Back, 2, 1),
 B: (Bottom, 1, 2),
 C: (Top, 1, 2),
 D: (Right, 3, 2),
 E: (Left, 3, 2),
 F: (Front, 4, 3)

2D Visualization 3D Visualization

Figure 10: Illustration of M-CUBE Problem. Top: Example input image and prompt of the problem.
Bottom: Example solution to the problem (left) and corresponding 2D and 3D visualization (right).
The visualization is not part of the inputs or outputs of the benchmark.
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You are given an image of a 5 x 5 grid. In the grid, each cell on the 
edges is randomly preserved or dropped, while the center 3 x 3 
region is always preserved. Now convert the input image into a 2D 
array, where 0 = gap and 1 = bump, and ensure edge1 = left, edge2 
= top, edge3 = right, edge4 = bottom in the 2D array. You should 
answer with "Here is the converted 2D array: [array]" where [array] 
is a 2D array in the format of Python list of lists.

Figure 11: Prompt for evaluating the perception ability of MLLMs on M-CUBE.

The solution validator of M-CUBE can serve as an auxiliary tool to assist MLLM in solving the
reasoning problems. Given a candidate solution, the solution validator could determine whether the
solution is correct or not (binary feedback). In addition, it can also provide diagnostic information
such as edge conflicts (detailed feedback). Figure 12 illustrates an example where the MLLM
leverages feedback from the validator to iteratively refine its solution.

[Thinking]...
The final solution is:
A: (Back, 2, 1)
B: (Bottom, 1, 2)
C: (Top, 1, 2)
D: (Right, 3, 2)
E: (Left, 3, 2)
F: (Front, 4, 3

The solution is correct!

The solution is incorrect! 
Edge conflicts (5): 
• Edge at top-back: Top face (piece C – edge 2) is not compatible with Back face (piece A - edge 2) 
• Edge at top-front: Top face (piece C – edge 4) is not compatible with Front face (piece F - edge 2) 
• Edge at top-left: Top face (piece C – edge 1) is not compatible with Left face (piece B - edge 2) 
• Edge at top-right: Top face (piece C – edge 3) is not compatible with Right face (piece D - edge 2) 
• Edge at bottom-back: Bottom face (piece E – edge 4) is not compatible with Back face (piece A - edge 4)

[Thinking]...
The final solution is:
A: (Back, 2, 1)
B: (Left, 1, 4)
C: (Top, 2, 1)
D: (Right, 3, 2)
E: (Bottom, 3, 4)
F: (Front, 4, 3)

MLLM

MLLM

Solution 
validator

Solution 
validator

Question

[Instruction]...

Figure 12: Example of MLLM using solution validator as a tool to gather feedback and iteratively
refine its response on the M-CUBE dataset.

Results with solution validator. The ability to use tools or perform function calls has emerged as
a crucial feature in latest MLLMs Schick et al. (2023). In case of M-CUBE, the solution validator
could serve as an auxiliary tool to assist MLLMs in tackling complex reasoning tasks. In each
round, the model proposes a candidate solution and evaluates it with the solution validator. Based on
the validator’s feedback, the model could iteratively refine its response towards a better solution in
the next round. Specifically, we design two types of feedback: (i) Binary feedback, which simply
indicates whether a solution is correct or not in a black box manner, (ii) Detailed feedback, which
not only verifies the correctness of the solution but also provides diagnostic information such as
which edges of the cube are in conflict. Figure 13 shows the performance of GPT-o4-mini under
both types of feedback. On CUBE-easy, the performance increases significantly for both binary
and detailed feedback and detailed feedback consistently outperforms binary feedback, increasing
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the performance from 10% to up to 28% accuracy after 5 rounds of interactions, which indicates the
value of diagnostic information. However, on more challenging CUBE dataset, the performance using
the solution validator tool remains 0% regardless of the feedback type, highlighting the limitation of
current MLLMs in solving harder multimodal reasoning problems.

In summary, we introduce a multi-step setup within M-CUBE that enables iterative refinement through
the feedback from a solution validator. This setup closely mirrors how humans tackles real-world
problem-by making initial attempts, gathering feedback from the environment, and refining their
strategies accordingly. However, many current reasoning models would not retain and build upon
previous reasoning steps, often discarding the reasoning in earlier context1, resulting in less effective
reasoning in multi-round setup. Therefore, future models capable of interleaved thinking and tool use
would benefit more from such validator-assisted setup.

1 2 3 4 5
Round of Conversation

10

15

20

25

Ac
cu

ra
cy

 (%
)

CUBE-easy with Solution Validator
Feedback Type

Binary
Detailed

Figure 13: Performance of GPT-o4-mini on CUBE-easy with binary or detailed feedback from
solution validator. On CUBE, the performance will remain 0%.

1Check this OpenAI API document for example.
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D.3 M-MAZE

Figure 14 presents an example question of M-MAZE task while figure 15 presents a potential
solution for this problem.

Labyrinth Puzzles – Easy

You are a spatial-planning assistant that plays Labyrinth from 
arbitrary board states.

INPUT
You will be given the current game observation:
- Phase: one of {INSERT, MOVE} indicating which action you 
must take now.
- Board (7x7): each tile has corridors/walls (shape in {I, L, T} 
plus rotation in {0,1,2,3}), indexed 0..6 on both axes.
- Objects grid (size x size): a Python list of lists of strings (letters 
or '-' for empty) indicating item placement.
- Extra tile: the tile currently out of the board (with 
shape/rotation), encoded by a token (see conventions below).
- Player position: (x,y) of our player, 0-based.
- Target: a treasure object represented by its name mapped to a 
letter (A–X) in symbolic representation.
- Visual encoding: the player is a green circular pawn labeled 
"P1"; the target is a black icon of the object.
- Right-side panel on the image: shows "Extra Tile" and "Target" 
sections with the current extra tile and the target.
- last_insert: the previous insertion, if any, as (side, slot); used 
to enforce the “no immediate reversal” rule.

TASK
Propose a complete multi-turn plan at once. Each turn consists 
of INSERT then MOVE. Aim to reach the Target as soon as 
possible 
Include only the turns necessary to reach the target; stop at 
success (no extra turns).

RULES

Phase = INSERT (must happen before any move each turn):
- Set the loose tile to the specified rotation (see tile 
conventions below), then insert it from side into slot.
- This shifts that entire row/column by one; the opposite edge 
tile is ejected and becomes the new loose tile.
- Direction→ejection: Left inserts eject Right edge; Right ejects 
Left; Top ejects Bottom; Bottom ejects Top.
- Objects behavior: treasures/items stay attached to their 

tiles; they shift with the row/column and if on the ejected tile, 
they leave the board (no wrap) and only re-enter if that tile is 
later re-inserted.

- Any pawns on that line shift with the tiles; if pushed off, they 
wrap to the newly inserted tile on the opposite edge.
- No immediate reversal: you cannot insert from the opposite 
side into the same slot as last_insert.
- After inserting, the environment will switch to Phase = MOVE.

Phase = MOVE:
- Move your pawn along open corridors to any reachable cell 
(unlimited distance along connected paths).
- Adjacency rule: a step to an orthogonal neighbor is legal only 
if both tiles open toward each other (N/S, S/N, E/W, W/E).
- To stay, output MOVE(); the keyword is required (not optional).
- After moving, the environment will switch to Phase = INSERT 

(next turn) or declare success if the Target is reached.

Tile/token convention for Extra
- Shapes: I (straight corridor), L (corner/bend), T (three-way 
junction).
- Openings are on North (up), East (right), South (down), West 
(left).
- Rotation is clockwise; board top is North.

Visual Descriptions:
- I (straight): A corridor connecting two opposite sides
* I0 = vertical corridor (connects top↔bottom, North↔South)
* I1 = horizontal corridor (connects left↔right, East↔West)
* I2≡I0, I3≡I1 (same visual appearance). Prefer I0/I1.

- L (corner): A bent corridor connecting two adjacent sides
* L0 = connects top+right (North+East)
* L1 = connects right+bottom (East+South)
* L2 = connects bottom+left (South+West)
* L3 = connects left+top (West+North)

- T (junction): A corridor with three openings
* T0 = opens to top+left+right (North+East+West)
* T1 = opens to right+bottom+top (East+South+North)
* T2 = opens to bottom+left+right (South+West+East)
* T3 = opens to left+top+bottom (West+North+South)

Figure: Tile conventions 

NOTE
- Grid coordinates: x,y in [0..6]; x is column index (left→right), y is row index (top→bottom).
- Inserts:
- side in {{left, right, top, bottom}}.
- slot in {{1,3,5}} (the only shove-able rows/columns).
- For left/right, slot = row index (y). For top/bottom, slot = column index (x).
- rotation in {{0,1,2,3}} = absolute rotation (0°, 90°, 180°, 270° clockwise) to set the loose 
tile before insertion following the convention above.
Example: Extra Tile: L2, rotation=0 will insert L0 (not L2).
Do not apply relative rotations; ignore the current extra tile orientation.
- The target is an object represented by its name mapped to a letter (A–X) in symbolic 
representation.
- The extra tile token encodes shape+rotation: I0/I1, L0..L3, T0..T3.
- Do not ask for more information; use only the provided image/text to decide

OUTPUT
Your response should end with:
The final solution is: 
```
Turn 1: INSERT(side='<left|right|top|bottom>', slot=<1|3|5>, rotation=<0|1|2|3>); 
MOVE(x=<0..{size-1}>, y=<0..{size-1}>) (use MOVE() to stay)
Turn 2: INSERT(...); MOVE(...)
...
Turn N: INSERT(...); MOVE(...)
```

STATE
Phase: INSERT
Last Insert: None
Board grid: 
[['L1', 'T1', 'T2', 'T1', 'T2', 'I0', 'L2’], 
…
['L0', 'L1', 'T0', 'L0', 'T0', 'L1', 'L3’]]

Objects grid: 
[['-', '-', '-', '-', '-', '-', '-’]
…

['-', '-', 'H', '-', '-', '-', '-’]
…
Target: Keys - H
Player Position: P1 at (2, 2)
Extra tile: L0

Figure 14: Illustration of M-MAZE Problem: Example input image and prompt of the problem in
Visual Harness + Symbolic Representation setting.
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Insert(side=left, 1, rotation=0); Move(x=3, y=4)

Insert(side=top, 3, rotation=2); Move(2, 4)

Turn 1:

Turn 2:

Figure 15: Example solution from M-MAZE for the problem presented on figure 14.

You are a spatial-planning assistant 
that plays Labyrinth from arbitrary 

board states.
Your goal is to reach the target       using 

the available action space: 
- Insert(side=..., index=…,rotation=…)

- Move(x=0…6, y=0…6)
[…]

Environment Observation

INSERT(side='top', slot=3, rotation=0)

INSERT(side='top', slot=3, rotation=0) MOVE(x=3, y=4) INSERT(side='top', slot=3, rotation=0)

MOVE(x=4, y=4) INSERT(side='top', slot=5, rotation=0) MOVE(x=6, y=4)

Target Reached: Success

MOVE(x=3, y=2)

Figure 16: Illustration of the Interactive setting where the ReAct Agent MLLM receives a new board
observation at each action step (Insert or Move)
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E EXPERIMENT DETAILS.

Table 3 provides a comprehensive list of all the models evaluated oin this paper, along with the
hyperparameters. We use the same hyperparameters for evaluating both the M-PORTAL and M-CUBE
tasks. For open-source models such as Qwen2.5-VL-72B, InternVL3-78B and Llama-4-Scout, we
use vLLM Kwon et al. (2023) for efficient inference, with a setting of temperature of 0 and maximum
output token length of 16, 000 for all the models. The open-source models are evaluated on the whole
evaluation suite of M-CUBE and M-PORTAL.

In contrast, close-source models such as GPT-4o, Claude-3.7-Sonnet, Gemini-2.5-pro, GPT-o3 and
GPT-4o-mini are evaluated with their respective APIs. The "reasoning effort" parameter, which
controls the allowed length of reasoning chain, is set to "medium" for GPT-4o-mini and Gemini-2.5-
Pro, and 12,000 for Claude-3.7 Sonnet. Due to the limit of budget, we choose 200 representative
examples on M-CUBE and M-MAZE. The whole set of M-PORTAL is used for evaluating close-
source models.

The prediction of a reasoning model can vary significantly on different random seed. Due to the
budget constraints, we do not re-run each experiment multiple times to directly measure the variance.
Instead, we report standard deviation estimated by bootstrapping, as shown in Table ??.

Table 3: MLLMs and corresponding hyperparameters for evaluating MARBLE benchmark. “Rea-
soning effort” represents the budget of reasoning tokens to generate before the final response. * For
reasoning models, max tokens denote the sum of tokens generated for reasoning and final response.

Model Date Temperature Reasoning Effort Max Tokens*

Qwen2.5-VL-72B 2025.02.19 0.0 - 16,000
InternVL3-78B 2025.04.11 0.0 - 16,000
Llama-4-Scout 2025.04.05 0.0 - 16,000
Qwen3-235B-A22B 2025.04.29 0.6 - 16,000
GPT-4o 2024.08.06 0.0 - 16,000
DeepSeek-R1 2025.01.22 - - 16,000
DeepSeek-R1-0528 2025.05.28 - - 16,000
Seed-1.5-VL 2025.04.28 - - 16,000
Claude-3.7-Sonnet 2025.02.19 - 12,000 16,000
Gemini-2.5-pro 2025.05.06 - medium 25,000
GPT-o4-mini 2025.04.16 - medium 25,000
GPT-o3 2025.04.16 - medium 40,000
GPT-5 2025.08.07 - medium 40,000
Grok 4 2025.07.09 0.0 - 25,000
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F M-MAZE

F.1 DATASET GENERATION

Board Sampling

Labyrinth Solver 
Minimal Turn Solution Finder

Stratification by Depth
Minimal-Turn Insert Count

1-Insert Trajectories

2-Inserts Trajectories

3-Inserts Trajectories

4-Inserts Trajectories

0-Insert Trajectories

Game Initial Configurations:

Depth 0: {”board_grid”: [[‘L1’, …, ]],”object_grid”: [[“-”, “A”, 
…, ]], “player_position”: (), ”target”:     , “depth”: 0}

Depth 1: {”board_grid”: [[‘L1’, …, ]],”object_grid”: [[“-”, “A”, 
…, ]], “player_position”: (), ”target”:     , “depth”: 1}

Depth 2: {”board_grid”: [[‘L1’, …, ]],”object_grid”: [[“-”, “A”, 
…, ]], “player_position”: (), ”target”:     , “depth”: 2}

1. Tile Insertion

Game Configurations stratified by difficulty

2. Player Move

M-Maze
Labyrinth Multistep Planning

Goal: Reach a Target piece

Rules
At each turn 

1. [Mandatory] Tile Insertion – shifts 
the row/column of the Labyrinth 

2. [Optional] Player Move – free 
movement along connected tiles

Stratified Subsampling

Figure 17: Overview of the M-MAZE dataset generation process. For each seeded board and
starting position, we solve a forward shortest-turns problem to compute the minimal depth D
(number of INSERT+MOVE turns to reach the target). Instances are generated across multiple depths,
with D serving as a lower bound and proxy for difficulty. To ensure diversity, at most one solution per
(board, seed, depth) triplet is retained. The evaluation uses the initial board state of each solved
instance, allowing for multiple valid solutions.

F.2 ENVIRONMENT

Vanilla

Board Grid:
['L1', 'I2', 'T2', 'L2', 'T2', 'L1', 'L2’] 
['L1', 'L2', 'T0', 'L0', 'I3', 'L0', 'I2’] 
['T1', 'L2', 'T1', 'L2', 'T2', 'L0', 'T3’] 
['I3', 'I0', 'T3', 'I0', 'L2', 'I2', 'T1’]
['T1', 'L0', 'T0', 'L0', 'T0', 'I1', 'T3’] 
['T2', 'L0', 'L1', 'I0', 'L3', 'I2', 'T3’] 
['L0', 'T2', 'T0', 'L1', 'T0', 'I2', 'L3']

Object Grid:
['-’,  ,     , ‘-’,    ,    , '-’] 
['-', '-’,      , '-', '-', '-', '-’]
[    ,    ,      , '-’,  , '-’,  ] 
['-', '-’,      , '-', '-’,  , '-’] 
[    , '-’,      , '-’,  , '-’,  ] 
[    , '-', '-', '-', '-’,  ,     ] 
[    , '-’,  ,    ,     , '-’,  ]

State:
Target: Ghost - R
Player Position: (1, 4)
Extra tile: I2
Phase: INSERT
Last Insert: None

Textual Representation

Harness

Labyrinth Environment

Figure 18: Overview of the M-MAZE environment representation. Visual Only corresponds to
the Vanilla setting where only the board image along selected textual game informations (Phase,
target) are given. Visual Harness adds an overlay of the coordinates on each tile (with respect to the
Vanilla setting). Symbolic/Textual representation adds the board grid and object grid as arrays in
the prompt thereby reducing the required visual parsing capabilities required by the models.
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F.3 PERCEPTION

F.3.1 BOARD PARSING

Parse this Labyrinth board using 
the following tile convention*

Question:

MLLM response:
[['L0', ‘L1', ‘I0', ‘L2', ‘T0', 'I1', 'L0’],
[‘I0', ‘T2', 'T0', 'T1', ‘L2', ‘T1', 'T2’]

…
[‘T2', ‘L3', ‘I1', ‘T1', ‘T0', ‘L0', ‘T1']]

Board Parsing

Figure 19: Perception is also a bottleneck for M-MAZE. Left: Similar to 5, board parsing is a
perception task designed to test MLLM’s ability on retrieve structured information from visual input
and example response of an MLLM. Right: Performance of 7 MLLMs on this perception task based
on 200 test examples. Accuracy is measured both at individual cells and for the entire 7× 7 board.
All the MLLMs perform poorly and completely fail on the whole-board accuracy. *we modify the
prompt for readability and avoid redundancy with earlier sections

F.3.2 GAMESTATE PARSING

Extract the following 
informations using the 
following conventions*:
- Treasures array
- Target | Target position
- Player position
- Extra tile

Question:

MLLM response:
Extra tile: T0 | Target: G
Treasures: 
[[-’, ‘-’, ‘A’, ‘-’, ‘-’, -', ‘-’],

…
[‘-’, ‘-’, ‘C’, ‘-’, ‘M’, ‘-’, ‘-']]

GameState Parsing

Figure 20: Left: GameState parsing task testing MLLMs’ ability to extract structured information
(treasures array, target and position, player position, extra tile) from visual board input (full prompt
in Appendix) and example MLLM response. Right: Performance of 7 MLLMs on this perception
task based on 200 test examples. Accuracy measured at individual cells (per cell, non-empty, empty)
and for the entire board. All MLLMs perform poorly and completely fail on whole-board accuracy.
*we modify the prompt for readability and avoid redundancy with earlier sections
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F.4 RANDOM BASELINE

Simplifying assumption. For tractability, we define the random baseline over optimal plans only:
at depth D we consider first-hit (minimal-length) solution sequences of length D and ignore any
non-minimal successes (> D). This bounding simplifies analysis but constitutes a limitation, since it
may underestimate random success when longer trajectories exist.

At depth d, the permissive plan space with rotation collapse is

H(d) =

d∏
t=1

(
12 rt · 49

)
, rt =

{
2, if all parents at turn t have I as spare,
4, otherwise.

Let Sd be the number of minimal solutions of length d (first success at d). We compute Sd exactly for
d ∈ {1, 2, 3} by layered sequence counting over legal (insert, reachable–endpoint) transitions. The
random success is

qd =
Sd

H(d)
.

Exact counting at depth 4 is infeasible due to combinatorial blow-up and extreme solution sparsity;
therefore we estimate the first-hit probability via a simple hazard trend fitted from q1, q2, q3. //
Extrapolation to d = 4. Define hazards h1 = q1, h2 = q2

1−h1
, h3 = q3

(1−h1)(1−h2)
, set r =

clip(h3/h2, 0, 1), then

h4 = r h3, q̂4 = (1− h1)(1− h2)(1− h3)h4.

Depth d qd (mean) Diffd = − log10 qd

1 2.66× 10−3 2.57
2 9.20× 10−5 4.04
3 6.97× 10−7 6.16
4 (est.) 5.29× 10−9 8.28

Table 4: Random-plan success qd = Sd/H(d); d ≤ 3 exact, d=4 hazard extrapolation.

Figure 21: Random-plan success qd versus depth d (log scale); exact for d ≤ 3, with d=4 shown via
hazard extrapolation.
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