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Abstract. Artificial intelligence (AI) has made significant progress in
the healthcare domain, where multimodal large models integrating med-
ical imaging and text have garnered considerable attention, yet remain
challenging, particularly in generative tasks. This study develops a vision-
language model architecture specifically tailored for medical scenarios,
based on multimodal medical images (e.g., X-ray, ultrasound, and oph-
thalmic images) and their corresponding textual descriptions. The model
demonstrates remarkable adaptability across diverse imaging modalities
and integrates multiple key functionalities, including medical report gen-
eration, visual question answering (VQA), and lesion detection in med-
ical images. In the regression task of the MICCAI FLARE 2025 Task 5
challenge, our model achieves state-of-the-art performance with an error
of only 13.63 and a detection score of 0.80, classification score of 0.70. It
exhibits potential as a unified interface for radiological diagnosis, promis-
ing to significantly enhance diagnostic efficiency across various medical
imaging applications. Our code have been made publicly available at
here.

Keywords: Multimodal - Vision-language - Medical imaging applica-
tions.

1 Introduction

Large language models acquire general semantic understanding capabilities thro-
ugh pretraining on massive text corpora, achieving breakthrough advances in
natural language processing. Models such as the GPT series and LLaMA demon-
strate powerful text generation, question answering, and reasoning abilities. In
the medical domain, specialized LLMs like BioBERT and Clinical BERT, fine-
tuned on medical literature and clinical records, significantly enhance the accu-
racy of entity recognition (e.g., drugs, diseases) and medical question answer-
ing. Deep learning-based vision models (e.g., CNNs, Vision Transformers) have
become core tools in medical image analysis. Models such as CheXNet (chest
X-ray diagnosis) and UNETR (3D medical image segmentation) surpass tradi-
tional approaches in tasks like lesion detection and organ segmentation through
end-to-end learning. To integrate visual and textual information, multimodal
models achieve cross-modal alignment via joint training. General-domain mod-
els like CLIP (image-text matching) and BLIP-2 (visual question answering)
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demonstrate the feasibility of cross-modal understanding. In healthcare, Med-
Flamingo (based on Flamingo architecture) and RadFM (radiology-specific) in-
tegrate imaging with diagnostic reports, supporting medical image captioning
and visual question answering (VQA).

In the field of multimodal AI, the Qwen-VL series has consistently focused
on open-source development and iterative improvements. For instance, Qwen2.5-
VL pioneered a dynamic resolution mechanism (spatial dimension) and dynamic
frame-rate sampling (temporal dimension), enabling cross-scale analysis from
single images to hours-long videos with second-level event localization. It in-
corporates windowed attention mechanisms to reduce computational complexity
and employs SwiGLU activation functions with RMSNorm to enhance vision-
language alignment efficiency. LLaVA is designed to improve large language
models’ understanding of visual content through diverse multimodal instruc-
tions. This enhanced comprehension is critical for integrating different types
of data inputs. XrayGPT freezes the MedClip visual encoder and Vicuna lan-
guage model, training only a linear projection layer to achieve cross-modal fu-
sion, thereby reducing data requirements. MedGemma’s multimodal variants
utilize SigLIP image encoders specifically pretrained on various de-identified
medical datasets, including chest X-rays, dermatological images, ophthalmic im-
ages, and histopathology slides. Their large language model (LLM) components
are trained on diverse medical datasets, encompassing medical texts, medical
question-answer pairs, FHIR-based electronic health records (exclusive to the
27B multimodal version), radiology images, histopathology samples, ophthalmic
images, and dermatological images.

2 Method

2.1 Model architecture

Our model architecture, as illustrated in the Fig.1, consists of three key com-
ponents: a vision encoder, a linear projection layer, and a large causal language
model.

2.2 Vision Encoder

The vision encoder employs the visual branch of MedSigLIP|[1]. MedSigLIP is a
variant of SigLIP (Sigmoid Loss for Language-Image Pre-training), specifically
designed for cross-modal alignment between medical images and text, mapping
medical images and their corresponding textual descriptions into a shared em-
bedding space through contrastive learning. The model supports an input image
resolution of 448x448. Throughout the entire training process in this study,
the parameters of this visual backbone are kept fixed and frozen to preserve
the representational capabilities acquired during pre-training on medical vision-
language tasks.
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Fig. 1. Overview of our multimodal model architecture.

2.3 Vision Language Alignment

To effectively inject visual information into the language model, this paper em-
ploys a learnable linear projection layer to perform cross-modal dimensionality
transformation on the visual features. Specifically, four spatially adjacent visual
tokens are first aggregated to generate a dimensionality-reduced joint embedding
representation, thereby reducing the sequence length and enhancing the seman-
tic consistency of local features. Subsequently, the aggregated visual features are
projected into the latent space of the language model through a trainable lin-
ear mapping layer, enabling cross-modal semantic alignment. During training,
the parameters of this projection layer are continuously updated via end-to-end
backpropagation to optimize the fusion of visual and linguistic representations.

2.4 Causal Language Model

In this study, we adopt the open-source causal language model LLaMA2-Chat
(7B)[2] as the core linguistic backbone. This large language model has been pre-
trained on extensive text corpora and has internalized rich linguistic and domain-
specific knowledge, including a broad range of medical expertise. Leveraging its
strong capabilities in language understanding and generation, we employ it as
a unified interface to handle various medical vision-language tasks, enabling
cross-modal semantic reasoning and natural language response generation. To
enhance the model’s adaptability to specific tasks while preserving the stability
of pre-trained knowledge, we apply the Low-Rank Adaptation (LoRA) method
for parameter-efficient fine-tuning. Specifically, only the low-rank decomposition
matrices are optimized, allowing for effective adaptation and performance im-
provement under limited computational resources.
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2.5 Prompt Template

To enable unified modeling and effective generalization across diverse medi-
cal vision-language tasks, this paper proposes a structured prompt template
that covers a variety of tasks, including Visual Question Answering (VQA),
Report Generation, Object Counting, Disease Detection, and Grounded Image
Understanding and Detection. To mitigate potential ambiguities in instruction
semantics under multi-task learning scenarios and enhance the model’s ability to
recognize task intentions, we introduce explicit task-specific identifiers into the
training framework to clearly distinguish between different task types. Based on
this design, the instruction templates are systematically constructed to ensure
clarity of input semantics and consistency in task orientation, thereby improv-
ing the model’s understanding and reasoning performance in cross-task settings.
We present diverse prompt templates in Table 1 to demonstrate how our model
effectively deals with the different tasks through task identifiers.

Table 1. Task-specific instruction format. During our model training process, we em-
ploy six distinct types of task identifiers to handle diverse tasks (excluding instance
detection).

Task Prompt
Classification [classification]. What is the final diagnostic impression? A) Benign B) Malignant.
Detection |[detection].Capture the lesion coordinates as [x1, y1, Z2, Y2]-.

Multi label Classification [multi-label classification]. What abnormalities would you report on tooth 117 ...

Report Generation [report_generation]. What are the findings in this chest radiograph?
Counting |counting].Quantify the number of cells shown in this microscopic capture.
Regression [regression].Compute the ABR% by analyzing this dental panoramic radiograph.

3 Experiments

3.1 Dataset

The dataset used in the experiments consists of a total of 50,216 image-text
pairs, covering both the training set and the public validation set. All images are
uniformly resized to a resolution of 448x448 pixels, and no data augmentation
techniques are applied. Notably, instance detection is not included as a training
task in this study. Based on extensive experimental results, this task exhibits
significantly inferior performance under the current multimodal framework, and
its optimization process negatively impacts the training of other vision-language
tasks. It may introduce gradient interference or attention misalignment during
multi-task learning, thereby degrading the overall model’s generalization capa-
bility. Therefore, to ensure stable convergence and optimal performance on the
primary tasks, instance detection is excluded from the training objectives.
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3.2 Implementation details

In this experiment, the vision encoder is initialized with the visual branch of
MedSigLIP, while the language backbone is initialized based on LLaMA2-7B.
Throughout the training process, the parameters of the vision encoder are kept
frozen to preserve the representational capabilities acquired during pre-training
on medical image-text alignment tasks. To achieve cross-modal feature align-
ment, a learnable linear projection layer is employed to map visual features
into the latent space of the language model, and it is updated in an end-to-end
manner. Additionally, Low-Rank Adaptation (LoRA) is applied for parameter-
efficient fine-tuning of the LLaMA?2 language model, where only the low-rank
decomposition matrices are optimized, enabling effective task adaptation while
maintaining computational efficiency. Model training is conducted using the
standard cross-entropy loss function, optimized with the AdamW optimizer.
Training is performed on a single NVIDIA GeForce RTX 3090 GPU for 10
epochs, with a batch size of 2, a maximum learning rate of le~*, and a learn-
ing rate warm-up ratio of 0.1. The entire training process lasts approximately 4
days, ensuring sufficient model convergence.

Environment settings The development environments and requirements are
presented in Table 2.

Table 2. Development environments and requirements.

System Linux-5.15.0-139-generic-x86 _64-with-glibc2.35
CPU Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz
GPU (number and type) Four NVIDIA GeForce RTX 3090 24G
CUDA version 12.4
Programming language Python 3.9.21
Deep learning framework torch 2.0.0, torchvision 0.15.1

Training protocols The training protocols are presented in Table 3.

4 Results and discussion

As illustrated in the Fig.2, the changing trend of the loss function during the
model’s training process is demonstrated. It can be observed that in the early
stages of training, despite the base model’s strong representational capabilities,
the initial loss value remains relatively high due to the lack of established cross-
modal alignment. As training progresses, the model gradually achieves semantic
alignment between visual and language modalities through the use of a learnable
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Table 3. Training protocols.

Network initialization MedSigLIP(vision encoder), LLaMA2-Chat(7b)

Batch size 2
Patch size 448 %448
Total epochs 10
Optimizer AdamW
Initial learning rate (Ir) le™*
Lr decay schedule linear_ warmup_ cosine Ir
Training time 4 days
Loss function cross-entropy
number of trainable parameters 52432896 !

linear projection layer for spatial mapping of visual features and parameter-
efficient fine-tuning of the language model via LoRA (Low-Rank Adaptation).
Concurrently, the model continuously optimizes its performance across multiple
tasks. The loss value exhibits a steady downward trend, indicating that the
model progressively adapts to various downstream tasks and eventually reaches a
converged state. This demonstrates the effectiveness and stability of the proposed
method within the joint training framework.

Fig. 2. Loss of training.

4.1 Quantitative results on validation set

We conducted inference and performance evaluation on the hidden validation
set, with the inference time for each task presented in Table 4. For comparative
analysis, we also performed inference using the competition’s officially released
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open-source models, Qwen-VL and MedGemma, which exhibited inference du-
rations extending to several hours, indicating relatively low computational effi-
ciency. The performance scores of different models across tasks are summarized
in Table 5. Experimental results show that our proposed method achieves the
lowest mean absolute error (MAE) of 13.63 on the regression task and a detection
score of 0.80, classification score of 0.70, significantly outperforming the baseline
models. These results demonstrate the effectiveness and competitiveness of our
approach in multi-task medical vision-language understanding scenarios.

Table 4. Inference time for different tasks(batch size is 2).

Task Inference time(m)
Classification 7.0
Detection 2.5
Multi label Classification 15.0
Regression 2.0

Table 5. Ranking performance on the hidden validation set(top_p is 0.9, temperature
is 1).

Participant Metrics

Classification Multi-label Detection Instance Regression

Classification Detection
maiahmed 0.71 0.56 0.82 0.0 18.67
lujiazho 0.68 0.17 0.69 0.0 16.50
phucnlt 0.45 0.54 0.85 0.0 22.89
mtyw (ours) 0.70 0.54 0.80 0.0 13.63

4.2 Qualitative results on validation set

We randomly selected a set of samples from the validation set for qualitative anal-
ysis, with the results presented in Fig.3, to visually illustrate the model’s output
performance and semantic understanding capabilities across different tasks.

4.3 Limitation and future work

The medical multimodal large model developed in this study still faces chal-
lenges due to insufficient training data diversity and the scarcity of high-quality
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Question: To which age
group does the patient
with this fundus image
likely belong? A: Child
(0-17), B: Young Adult
(18-39), C: Middle-aged
(40-64), D: Elderly (65+)

Model Answer: B

Question: What
clinically significant
findings are present on
tooth 37 in this
radiograph?

Model Answer:
Endodontic Treatment,
Restorative Treatment,
and Complications.

Task: regression

Question: Quantify the
bone resorption
percentage (ABR%)

visible in this
orthopantomogram

Model Answer: 35.5

Question: Determine
the precise location of
fetal head expressed as a
bounding box.

Model Answer:
[[218, 40, 332, 96]]

Question: Specify the
bounding box
coordinates that enclose
pubic symphysis.

Model Answer:
[[171, 120, 364, 346]]

Fig. 3. Examples of our model’s multi-task abilities.

annotated datasets, which limits its generalization capability across broad clin-
ical scenarios. To further improve model performance, there is an urgent need
to construct larger-scale, more diverse medical vision-language datasets with
broader disease coverage and richer modalities. Meanwhile, it is advisable to
adopt more advanced vision backbone architectures, particularly medical-specific
visual encoders that support higher-resolution inputs, to enhance the represen-
tation of subtle lesions and complex anatomical structures. Furthermore, the
current model is built upon LLaMA2, whose pre-training corpus has an early
cutoff date, leading to limitations in linguistic coverage and depth of medical se-
mantic understanding. Therefore, future work should consider integrating next-
generation large language models, such as LLaMA3 or Qwen3 to improve context
comprehension, logical reasoning, and domain-specific terminology modeling,
thereby comprehensively enhancing the multimodal system’s clinical semantic
alignment and diagnostic assistance capabilities.
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5 Conclusion

In this study, we propose a specialized multimodal large model designed for
radiological diagnosis applications, aiming to achieve deep semantic alignment
between medical images and natural language. The model is capable of handling
a wide range of medical vision-language tasks in a unified framework, including
medical report generation, disease classification, lesion detection, numerical re-
gression, and visual question answering. To effectively distinguish task semantics
and enhance the robustness of multi-task learning, we introduce explicit task-
specific identifiers at the input level, enabling the model to accurately recognize
and execute corresponding tasks within a shared parameter architecture. Exper-
imental results demonstrate that the proposed model significantly outperforms
existing baseline methods on key tasks such as classification, detection, and re-
gression, exhibiting strong cross-modal understanding capabilities and promising
clinical applicability.

Future work will focus on several directions: further integrating more diverse
and representative medical imaging datasets to improve generalization across
rare diseases and multi-modal scenarios; deepening the understanding of com-
plex medical terminology and clinical expressions to enhance the accuracy and
professionalism of language generation; improving model interpretability through
techniques such as attention visualization and reasoning chain analysis; strength-
ening reliability and robustness; and conducting large-scale prospective clinical
validation studies to systematically evaluate the model’s effectiveness, safety,
and integration feasibility in real-world healthcare settings, thereby facilitating
its translation into practical clinical decision-support systems.
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