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Abstract

The inclusion of task-relevant geometric embeddings in deep learning models is
an important emerging direction of research, particularly when using hierarchical
data. For instance, negatively curved geometries such as hyperbolic spaces are
known to allow low-distortion embedding of tree-like hierarchical structures, which
Euclidean spaces do not afford. Learning techniques for hyperbolic spaces, such as
Hyperbolic Neural Networks (HNNs), have shown empirical accuracy improvement
over classical Deep Neural Networks in tasks involving semantic or multi-scale
information, such as recommender systems or molecular generation. However,
no research has investigated generalization properties specific to such geometries.
In this work, we introduce generalization bounds for learning tasks in hyperbolic
spaces, marking the first time such bounds have been proposed. We highlight a
previously unnoticed and important difference with Euclidean embedding models,
namely, under embeddings into spaces of negative curvature −κ < 0 and dimension
d, only the product

√
κ d influences generalization bounds. Hence, the curvature

parameter of the space can be varied at fixed d with the same effect on generalization
as when varying d.

1 Introduction

Data representations are a crucial element in current Machine Learning techniques, with a major
impact on the efficiency of the algorithms. It has been observed [11],[26], [30], [27] that hyperbolic
embeddings of much lower dimensions than Euclidean ones allow equivalent performance for tree-
like types of data, e.g. hyperbolic spaces of dimension five can outperform usual 200-dimensional
spaces for embedding taxonomic data. An increasing variety of classes of datasets is being shown
to have a tree-like, or hyperbolic structure, starting from the first popularization of the subject by
Krioukov [23] in the context of complex networks [32], [36].

Recall that hyperbolic spaces are homogeneous spaces of constant curvature equal to −1. The more
relevant and crucial theoretical property of hyperbolic spaces and of spaces of negative curvature
[10] in general is that they are able to embed graphs such as trees with arbitrarily low distortion of
the natural metrics. This has been first observed by Gromov [21], who introduced a much larger
class of spaces, called δ-hyperbolic spaces, which are shown to be almost isometric to trees [20],
including cases of graphs with control on the diameter of cycles [31], whereas euclidean and positively
curved spaces do not allow to embed trees with bounded distortion of the metric [8, 22, 12, 1, 29, 7].
Hyperbolic embeddings have also shown promise for routing [17], clustering [13, 24], biological
networks [2], phylogenetic trees [6, 25], neuroscience [3], text embedding [18, 4], knowledge graphs
[33].

Practically, many formulas used in classical Deep Neural Networks (DNN) have direct counterparts
applicable in hyperbolic spaces, originally developed for relativity applications [35]. These formulas
enable the creation of Hyperbolic Neural Networks (HNN), designed for operations within hyper-
bolic embeddings [19], [26], [30]. HNNs utilize hyperbolic distance between neurons instead of
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Euclidean distance, facilitating geometry-aware information processing. The motivation stems from
the connection to tree-like structures in real-world datasets and the natural hyperbolic space structure
inherent in entailment relations, as exemplified by the negative curvature of the space of Gaussian
variables with the Fisher Information metric [16]. For an in-depth exploration of HNN models and
applications, refer to [28], [38].

While, as said above, it is well understood empirically that low-dimension hyperbolic spaces work
well for learning in hierarchical datasets and that the link to embedding theory has a long history, to
the best of our knowledge, no theoretical bounds for generalization in hyperbolic spaces has been
yet developed. This article contributes to filling this gap in the literature with the following main
contributions:

• We prove PAC-learning bounds for arbitrary learning models in hyperbolic and negatively
curved geometries. The techniques of proof are new, as hyperbolic spaces are not doubling,
and a large part of previous literature on PAC-learning was set up on doubling metric
spaces. In particular, we prove new covering number bounds in hyperbolic spaces, which
are interesting in themselves.

• We show that curvature −κ < 0 and dimension d mix up in the quantity
√
κd, which is

the one relevant for generalization. This means that the effects of increasing dimension
at fixed −κ ≤ 0 or decreasing −κ < 0 while keeping d fixed have interchangeable roles.
As κ = 0 corresponds to Euclidean spaces, this gives the first rigorous statement for the
observation that hyperbolic learning techniques require lower dimensions than Euclidean
ones for equivalent performance.

2 Preliminaries

Learning model. We consider a model space F̃ composed of Lipschitz functions f̃ : X → Y ,
in which X ,Y will be metric spaces. As previously mentioned, we focus on the case of X ,Y of
curvature bounded from above by −c ≤ 0. We also consider a loss function l : X × Y → [−M,M ],
which will also be assumed to be Lipschitz. We assume that our learning task is modeled by a
data distribution D, which is a probability measure over X × Y , and the goal of our learning
algorithms is to approximate, i.e. minimize the average loss, of D via graphs of functions from
F̃ : minf̃∈F̃ EZ=(X,Y )∼D[l(f̃(X), Y )]. Here the distribution D of a random variable Z = (X,Y )

represents the desired optimal rule that we want our optimum models f̃∗ to learn to use in order to
assign label y ∼ f̃∗(x) to each x ∈ X .

We will simplify notation below and consider only the space Z = X × Y , and focus on the function
spaces F defined in terms of F̃ and l(y, y′) as follows:

F := {f : X × Y → [−M,M ] : ∃f̃ ∈ F̃ , f(x, y) = l(f̃(x), y)}.

We also assume that all elements of F are L-Lipschitz for some constant L > 0. This assumption
is guaranteed if the loss function is Lipschitz and F̃ is composed of Lipschitz functions. This is
commonly satisfied for applications of learning models, such as DNN.

A function f : X → Y defined between two metric spaces (X, dX), (Y, dY ) is L-Lipschitz when
dY (f(x), f(x

′)) < LdX(x, x′) for all pairs of points x, x′ ∈ X .

Metric PAC-Learning bounds. Based on covering growth bounds, classical concentration inequal-
ities can be used to control the sampling complexity of the loss function over a given class. We follow
the standard approach, such as that outlined in [9]. Classical generalization bounds guarantee that the
empirically measured error is not much lower than the actual error. Thus the relevant concentration
bounds are as follows:

P

[
sup
f∈F

GenErr(f, Z(n),D) ≥ R(FZ) + ϵ

]
≤ 2 exp

(
− ϵ2n

2M

)
. (2.1)

In the above, for an i.i.d. random sample Z(n) = {Zi = (Xi, Yi) ∼ D, 1 ≤ i ≤ n}, we define
GenErr(f, Z(n),D) := EZ=(X,Y )∼D[f(Z)]− 1

n

∑n
i=1 f(Zi), and R(FZ) denotes the Rademacher
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complexity: R(FZ) := Eσ supF
1
n

∑n
i=1 σif(Zi), where σ = (σ1, . . . , σn) denotes the so-called

Rademacher variables, which is a uniformly distributed random variable over {−1, 1}n, independent
of the Zi’s. Intuitively, Rademacher complexity measures how well a set of functions or a hypothesis
class can fit random noise, which is a way of assessing the flexibility of the class of functions.

Covering and packing numbers. If (X, d) is a metric space, we define the covering number
N(X, ϵ, d) as the smallest number N such that X can be covered by N balls of radius ϵ. The packing
number M(X, ϵ, d) in the largest M such that X contains M disjoint balls of radius ϵ. We will see
below that generalization error bounds for F will be performed in terms of integrals (with respect to
ϵ) of N(Z, ϵ, d), thus it is important to study their growth.

PAC-bounds via covering numbers. We can bound R(FZ) via the Dudley entropy integral or the
chaining bound (see e.g. [37, Thm. 17] or [5, Thm. 1.1]). These bounds are usually proved for Z a
normed space, which is not the case for Md

κ . We can prove that for Z equal to the unit ball of Md
κ we

have the following:

R(FZ) ≤ 4 inf
α>0

(
α+

3√
n

ˆ 2

α

√
lnN(F , t, ∥ · ∥∞)dt

)
, (2.2)

where N is the covering number of F in supremum norm ∥f − g∥∞ := supz∈Z |f(z)− g(z)|).
It is known that by rescaling the fundamental estimate due to Kolmogorov-Tikhomirov [34, eq. 238,
with s = 1, and eq. 1], and under the mild assumption that F is composed of L-Lipschitz functions
on Z with values in an interval [−C,C], for a centralizable1 metric space Z , the following holds

N(Z, 2ϵ) ≤ log2 N(F , ϵ, ∥ · ∥∞) ≤ log2

(
2C

ϵ
+ 1

)
+N(Z, ϵ/2). (2.3)

Hyperbolic spaces. A differentiable manifold X with an inner product gp(·, ·) on each tan-
gent space TpX ≃ Rd is a Riemannian manifold. The only Riemannian manifold of con-
stant negative curvature −1 and dimension d is the hyperbolic space Hd, which can be identi-
fied (in the so-called Poincaré model) with the unit ball of Rd with the non-euclidean distance:
ρ(x, y) = arccosh

(
1 + 2(∥x− y∥2)/(1− ∥x∥2)(1− ∥y∥2)

)
.

Model spaces. For κ > 0 and an integer d ≥ 2 we define the homogeneous model space of
dimension d and constant curvature −κ, Md

κ , as the space obtained from the hyperbolic space Hd by
multiplying the metric by the constant 1/

√
−κ

Growth of balls, model spaces. A metric space (X, d) is called doubling if there exists a constant
λ > 0 such that for all R > 0, every ball of radius R in X can be covered by no more than λ balls
of radius R/2. This is a common assumption, and it is true for Rd and for compact Riemannian
manifolds, as well as for discrete spaces such as finite groups endowed with the word metric.

However, for hyperbolic spaces Hd, and more generally for model spaces Md
κ , the doubling condition

does not hold, as shown in Theorem 3.1. To our knowledge the covering bound in the following result
is new, and is of independent interest.

3 Growth of balls and generalization bounds in negative curvature

Now, we present a formula to bound the covering number of a ball of radius R in the model space
with negative curvature.

Theorem 3.1. Let Z be a ball of radius R > 0 in the model space Md
κ . Then, in the regime ϵ ≲ 1

and R ≳ 1 we have

N(Z, ϵ, ρ) ≃ ed
√
κ R

(
√
κ ϵ)d

. (3.1)

1This mild condition signifies that for any open set U of diameter at most 2r there exists a point x0 so that U
is contained in B(x0, r), which is true for the spaces Md

κ .
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Proof. We use the following bound (see e.g. [14, eq. III.4.1]):

Vol(Z) = Voldκ(R) :=
2πd/2

Γ(d/2)

ˆ R

0

(
sinh(

√
κt)√

κ

)d−1

dt. (3.2)

Next, note that sinh(t) ≃ t for t ≲ 1 and sinh(t) ≃ 1
2e

t for t ≳ 1. Therefore we have, in the regime
ϵ ≲ 1, R ≳ 1,

Voldκ(R)

Voldκ(ϵ)
=

´ R
0
(sinh(

√
κt)d−1 dt´ ϵ

0
(sinh(

√
κt)d−1 dt

=

´√κR

0
(sinh(t))d−1 dt´√κϵ

0
(sinh(t))d−1 dt

≃ e
√
κ d R

κd/2ϵd
,

where the implicit constants can be chosen to be independent of d, κ, ϵ, R. If a cover of Z by balls
of radius ϵ has cardinality N , then we have Vol(Z) ≤ NVoldκ(ϵ), which shows the lower bound for
N(Z, ϵ, ρ) in (3.1).

For the upper bound, we observe that a maximal ϵ/2-packing of Z , i.e., a maximal finite set in Z
such that open balls of radius ϵ/2 centered at points in the set are disjoint, is an ϵ-covering. If it were
not, then there would be an extra point at distance ≥ ϵ from all the rest, and thus an ϵ/2-ball at the
extra point would be disjoint from the rest, a contradiction to assumed maximality. The maximum
packing number M(Z, ϵ/2, ρ) ≥ N(Z, ϵ, ρ) has been studied in more detail than minimum covering
number, and it is known that it scales like (3.1), see e.g. [15, Sec. 4] for the case κ = 1, and the
technique generalizes to general κ. This proves the upper bound in (3.1) and concludes the proof.

Corollary 3.2. Under the same hypotheses ϵ ≲ 1, R ≳ 1, as in Theorem 3.1, we have:

lnN(F , ϵ, ∥ · ∥∞) ≃ ed
√
κ R

(
√
κ ϵ)d

. (3.3)

Proof. We use (2.3) in combination with Theorem 3.1, as follows. Note that for ϵ ≲ 1 the dependence
in ϵ is by a power law, implying that covering numbers with radius 2ϵ or ϵ/2 are comparable.
Furthermore, due to the result of Theorem 3.1, for R ≳ 1 the logarithmic factor from (2.3) is not
leading and can be absorbed.

Using the above bounds, we obtain from (2.2) the following bound, provided m is large enough:

Corollary 3.3. Assuming that m ≥ exp(
√
κ R)

2d
√
κ

, we have

R(FZ) ≲
exp(

√
κ R)√
κ

m−1/d. (3.4)

Proof. The optimal choice of α in (2.2) is the one for which m ≃ lnN(F , α, ∥ · ∥∞), and thus, in
view of the control given in Corollary (3.2), we choose

α :=
C

m1/d
, for C :=

exp(
√
κ R)√
κ

.

This choice is allowed due to our hypothesis on m. Substituting this in (2.2), we thus find

R(FZ) ≲
C

m1/d
+

Cd/2

m1/2

ˆ 2

C/m1/d

dt

td/2
=


d

d−2

(
C

m1/d − 2−d/2+1 Cd/2

m1/2

)
, if d > 2,

exp(
√
κR)√

κ
√
m

(1 +
√
κ R− ln(2

√
κ
√
m)) if d = 2.

Due to the hypothesis on m we can absorb all but the first term in each parenthesis, and for d ≥ 3
we can bound d/(d− 2) ≲ 1, obtaining the same bound in both cases d > 2, d = 2, up to universal
factor.

Note that as a consequence of the above we have the following:
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Corollary 3.4. Under the above assumptions, and if Z(n) = {Zi}ni=1 is an i.i.d. sample from data
distribution D, in order for the generalization error to satisfy with probability larger that 1− δ the
bound

sup
f∈F

GenErr(f, Z(n),D) ≤ ϵ,

the following requirement on the number of samples n is sufficient:

n ≳ max

{
exp(

√
κ d R)

ϵdκd/2
,
2M log(2/δ)

ϵ2

}
.

In particular we see that the leading dependence on dimension is given by the factor exp(
√
κdR), in

which only the quantity
√
κd mixes the roles of κ and d.

4 Conclusions and future work

PAC-learning bounds quantify the minimum training data required for a learning algorithm to achieve
a desired level of generalization accuracy. These bounds depend on the learning model’s complexity,
training data size, and desired accuracy level. In our study, we derived PAC-learning bounds
for models operating in negatively curved geometries. While our initial focus was on hyperbolic
neural networks, our findings yielded broader insights regarding the tradeoff between the model
space’s curvature and its dimension, particularly in the parameter

√
κd. This suggests potential

optimization opportunities for learning algorithms by carefully balancing model space curvature and
dimensionality.

The proposed framework is versatile, extending beyond graphs to encompass all Gromov-hyperbolic
spaces, including structures with bounded-length cycles as highlighted by Sarkar [31]. This broader
applicability also encompasses parameterized probability measures’ geometry, like Gaussian measures
([16]), which exhibit negative curvature. This framework is suitable for learning entailment relations
without relying on fixed graphs.

As a future work we will to consider implications for more general Gromov-hyperbolic geometries,
including metric trees. Furthermore, another area of future work is to explore the use of empirical
methods to study the bounds for the Rademacher complexity. While our theoretical results provide
useful upper bounds, it would be interesting to see how these bounds play out in practice and how
they can be used to guide the design of machine learning algorithms.

Overall, our work contributes to a deeper understanding of the relationship between geometry,
complexity, and learning in spaces with negative curvature, and opens up new avenues for research in
this important area.
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