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Abstract001

The increasing adoption of telehealth tech-002
nologies presents both opportunities and chal-003
lenges, offering greater convenience for pa-004
tients while increasing clinicians workload,005
particularly in managing remotely collected006
data. Bilingual speech-language pathologists007
(SLPs) spent substantial effort in evaluat-008
ing parent behaviors when conducting family-009
centered language assessments. In this study010
we collaborate with SLPs to examine how011
large language models (LLMs) can support012
clinical workflows and address real-world013
challenges in telehealth. We collected a014
detailed bilingual dataset of 59 Mandarin-015
English child language assessment sessions016
(16 in-person and 43 via telehealth) and bench-017
marked three open-source LLMs and one018
closed-source LLM on this task. All four019
LLMs are still inferior to human experts de-020
spite notable accuracy, and additional error021
analysis revealed that domain complexity, cul-022
tural context, and multimodal cues pose sig-023
nificant challenges for both LLMs and human024
annotators. This work highlights the need for025
domain-specific NLP advancement and eval-026
uation methods that extend beyond standard027
benchmarks to include clinical utility, work-028
flow integration, and cultural appropriateness029
in bilingual telehealth assessment.030

1 Introduction031

Language assessments play a critical role in the032

early detection and intervention of children’s com-033

munication disorders, particularly in bilingual con-034

texts where assessments must account for lin-035

guistic proficiency in multiple languages (Wang036

et al., 2020; Gorman et al., 2015; Wang et al.,037

2024). With the rapid expansion of telehealth038

technologies recently, especially after COVID-039

19, more bilingual families can access essential040

medical resources remotely, such as interacting041

with web-based child language assessment tools042

at home (Pratt et al., 2022; Dam and Pham, 2023).043

However, bilingual speech-language pathologists 044

(SLPs) are already in severe shortage in the United 045

States because of the challenging but necessary 046

expertise to evaluate children’s language abilities 047

across different linguistic and cultural contexts 048

(Du et al., 2020; Pratt et al., 2022; Dam and Pham, 049

2023). The adoption of telehealth technologies fur- 050

ther poses a significant workload for SLPs because 051

they need to spend a considerable amount of time 052

reviewing large-scale data collected remotely. 053

During remote assessments, parents are re- 054

quired to supervise and facilitate children’s in- 055

teraction with the telehealth tool. For instance, 056

parents could help provide technical assistance 057

with digital platforms and offer behavioral sup- 058

port (Pozniak et al., 2024; Edwards-Gaither et al., 059

2023). However, due to the lack of special- 060

ized training, parents can unintentionally exhibit 061

interference behaviors, such as repeating assess- 062

ment instructions and “leaking” the correct an- 063

swer, which can compromise the validity of as- 064

sessment results (Du et al., 2020; Tomlinson 065

et al., 2018). Identifying these behaviors typi- 066

cally requires SLPs to conduct manual transcrip- 067

tion and meticulous behavioral coding from video- 068

recorded sessions, which is an extremely time- 069

intensive and laborious process (Sun et al., 2024; 070

Cao et al., 2019; Lønfeldt et al., 2023). 071

Recent advances in Natural Language Process- 072

ing, particularly large language models (LLMs), 073

have shown promise in automating complex be- 074

havioral coding tasks in domain-specific contexts 075

like motivational interviewing and mental health 076

counseling (Cao et al., 2019; Tavabi et al., 2020; 077

Mayer et al., 2024; Pellemans et al., 2024). Nev- 078

ertheless, these applications are mainly limited 079

to monolingual, adult, and face-to-face interac- 080

tions, and the application scenarios, unlike medi- 081

cal assessments, often do not require highly pro- 082

fessional expertise and strict step-by-step require- 083

ments. Little research has explored the potential of 084
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Figure 1: The clinical workflow of speech-language pathologists (SLPs) for remote patient assessment.

LLMs to support clinicians’ workflow within the085

unique context of remote language assessments for086

bilingual children, where the interplay of linguis-087

tic, cultural, and technological factors significantly088

complicates analysis (Zhang et al., 2023a,b; Lin089

et al., 2022; Karacan et al., 2024).090

In this paper, we address this critical gap091

by systematically examining how state-of-the-092

art (SOTA) LLMs, including open-sourced and093

closed-sourced ones, can support bilingual SLPs’094

clinical workflows by automating the coding of095

parental behaviors during Mandarin-English lan-096

guage assessments. We introduce a novel and097

comprehensive dataset consisting of transcripts098

and meticulously annotated behavioral descrip-099

tions from 59 bilingual parent-child dyads, includ-100

ing both in-person (16) and telehealth (43) ses-101

sions. Our dataset encompasses 1,304 annotated102

parental behaviors categorized into eight clinically103

validated labels that are collaboratively developed104

with bilingual SLPs.105

We benchmark the performance of four SOTA106

LLMs: GPT-4 (Achiam et al., 2023), Llama107

3 (Grattafiori et al., 2024), Qwen2 (Yang et al.,108

2024a), and DeepSeek-V3 (Liu et al., 2024) on109

this bilingual dataset using zero-shot and few-shot110

prompting techniques. Our analysis reveals that111

while some models (GPT-4 and DeepSeek-V3)112

achieve commendable accuracy, all models are113

consistently outperformed by expert human an-114

notators, particularly when faced with Mandarin-115

English utterances. An in-depth error analysis fur-116

ther elucidates critical challenges posed by cul-117

tural nuances, contextual complexities, and intri-118

cate clinical procedures, which highlight substan-119

tial space for future exploration in multilingual120

and culturally sensitive NLP methodologies.121

To our knowledge, this study introduces the122

first publicly available bilingual Mandarin-English 123

dataset specifically to encode parental behaviors in 124

bilingual language assessment contexts. Our find- 125

ings provide a rigorous benchmark and an ecolog- 126

ically valid challenge for NLP research in clinical 127

scenarios, emphasizing the urgent need to enhance 128

the multilingual and domain-specific capabilities 129

of LLMs. By advancing in this direction, NLP 130

technologies hold the potential to significantly al- 131

leviate clinician workload, enhance the accuracy 132

and efficiency of clinical assessments, and ulti- 133

mately improve patient outcomes. 134

2 Related Work 135

2.1 Multilingual LLMs for Real-World Tasks 136

Recent studies have explored LLMs’ capabilities 137

in real-world scenarios that require domain exper- 138

tise, such as education (Chen et al., 2023; Nay- 139

eem and Rafiei, 2024; Valentini et al., 2023; Gh- 140

anizadeh and Dousti, 2025) and health care (Ri- 141

ina et al., 2024; Labrak et al., 2024). LLMs 142

like GPT-4 (OpenAI, 2023), Llama (Touvron 143

et al., 2023a,b), Qwen2 (Yang et al., 2024b), and 144

DeepSeek (Bi et al., 2024; Peng et al., 2025; 145

Neha and Bhati) have been trained on multilingual 146

data and demonstrated impressive performance, in 147

tasks like question answering and logical reason- 148

ing (Wei et al., 2021; Sanh et al., 2021; Chung 149

et al., 2022), although performances may dif- 150

fer due to language features (e.g., morphosyntax) 151

(Hlavnova and Ruder, 2023; Weissweiler et al., 152

2023) or use of in-context learning (ICL) (Brown 153

et al., 2020; Zhang et al., 2022; Rubin et al., 2022; 154

Li et al., 2023) or multimodal prompting (Yang 155

et al., 2024c). Prior NLP research has focused 156

on various domain-specific tasks, such as assess- 157

ment (Wang et al., 2020; Gorman et al., 2015; 158

Laverghetta Jr and Licato, 2023), behavioral anal- 159
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ysis (Van Aken et al., 2021; Sun et al., 2024; Cao160

et al., 2019; Yang et al., 2023), and narrative tasks161

(Prud’hommeaux and Roark, 2015; Chen et al.,162

2023).163

2.2 Annotating Clinical Assessment Data164

Computational researchers have attempted to an-165

notate clinical data (Leeson et al., 2019) using166

a variety of speech processing techniques (Pérez-167

Rosas et al., 2021; Narayanan and Georgiou, 2013)168

and NLP approaches such as topic modeling, mul-169

timodal models (Tavabi et al., 2020; Leeson et al.,170

2019). Differing from other clinical annotation171

tasks, assessment tasks may directly impact the172

diagnostic accuracy of patient care, the annota-173

tion accuracy requires psychometric standards to174

ensure assessment validity and reliability (Abbasi175

et al., 2021; Wang et al., 2020; Gorman et al.,176

2015; Laverghetta Jr and Licato, 2023). Apply-177

ing NLP techniques to bilingual telehealth datasets178

remained limited due to difficulties in accessing179

patient data and the high cost of human anno-180

tations (Chen et al., 2022). Therefore, to im-181

prove clinician workflow and accuracy, novel ap-182

proaches need to be developed with clinically in-183

formed guidelines to support clinicians.184

2.3 Behavioral Coding in Clinical NLP185

Behavioral coding is a common data analysis186

methodology in social science (Wang et al., 2022;187

Black et al., 2013) and has been widely adopted188

in health and clinical research (Tavabi et al., 2020;189

Cao et al., 2019; Sun et al., 2024; Mayer et al.,190

2024; Pellemans et al., 2024). Prior work have191

utilized computational behavioral recognition for192

coding video and audio data from parent-child in-193

teractions (Lønfeldt et al., 2023). However, con-194

ducting a child language assessment requires more195

fine-grained coding for linguistic features in addi-196

tion to assessment behaviors (Wang et al., 2020;197

Gorman et al., 2015), and bilingual data may in-198

troduce additional complexity for analysis due to199

issues such as code-switching (Du et al., 2020).200

3 Bilingual Dataset201

We collaborated with bilingual (Mandarin-202

English) speech language pathologists (SLP)203

to collect and annotate a text-based dataset of204

bilingual child language assessment sessions. The205

dataset comprises 59 parent-child dyads using the206

Mandarin-English Receptive Language Screener207

(MERLS) tool. The dataset consists of 16 in- 208

person sessions and 43 telehealth sessions, where 209

the telehealth data was collected through Zoom 210

recordings during COVID-19. An illustration of 211

the clinical workflow, our dataset collection, and 212

model development process is shown in Figure 1. 213

MERLS is a multi-modal web-based plat- 214

form designed for assessing language comprehen- 215

sion skills for Mandarin-English-speaking chil- 216

dren (Sheng et al., 2021; Du et al., 2020). The 217

assessment consists of a Mandarin module with 218

44 test items and an English module with 36 test 219

items. For each test item, MERLS plays audio 220

instructions in one language and asks bilingual 221

children to select a picture on the interface that 222

matches the instruction (see Figure 2). Parents are 223

expected to supervise and provide technical sup- 224

port to children during assessments. 225

3.1 Data Annotation Process 226

Raw session video recordings were transcribed for 227

speaker utterances verbatim and documented for 228

parents’ verbal and non-verbal behaviors by two 229

research assistants. Next, two bilingual SLPs in- 230

dependently annotate parental behaviors using an 231

established video analysis codebook (Du et al., 232

2020) developed via Clinical Discourse Analy- 233

sis (Damico, 1985) to ensure the classification 234

of behaviors was informed based on the existing 235

clinical framework of family-centered assessment 236

practices (Crais et al., 2006). Disagreement be- 237

tween annotators was resolved via member check- 238

ing method through discussions and codebook re- 239

finement until consensus (Birt et al., 2016). Inter- 240

observer agreement reached 97% (in-person split) 241

and 86.1% (remote split) as shown in Table 3. 242

Parental behavior classification conducted by 243

SLPs is an eight-class classification task, with 244

each behavior assigned one correct label. Table 1 245

presents the two primary classes and four corre- 246

sponding sub-categories. “Interference” behav- 247

iors represent when parents negatively impacted 248

the assessment including “Repeating Questions 249

(RQ)”, “Answering Questions (AQ)”, “Analyzing 250

Items (AI)”, and “Judging of Correctness (JC)”; 251

“Support” behaviors represent incidents when par- 252

ents positively facilitated the assessment including 253

“Encouragement (E)”, “Technical Support (TS)”, 254

“Broadcasting (B)”, and “Miscellaneous (M)”. For 255

NLP models, each input includes the current test 256

item, a description of the child’s actions, and the 257

parent’s behavior. 258
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Top-Level
Category

Sub-Level
Category Definition

Interfere

Repeating
Questions (RQ)

Repeating the <Voiceover> audio before and/or during the process of a child selecting the picture on
the web.

Answering
Questions (AQ) Using verbal or gestural cues to suggest or select a correct answer for the child.

Analyzing
Items (AI)

Elaborating on the critical linguistic components by labeling objects and actions, making emphasis via
prosodic cues, or breaking down complex sentences from <Voiceover>.

Judging of
Correctness (JC) Verbally evaluating the child’s response as correct or incorrect.

Support

Encouragement
(E)

Showing verbal and/physical affirmation for the child to continue, saying good job/excellent to rein-
force the child’s selection, expressing empathy (e.g., it’s okay) on struggled items.

Technical
Support (TS)

Offering verbal (labeled as “Technical Support Verbal”) and/or physical assistance (labeled as “Techni-
cal Support Physical”) to the child related to interacting with the website and the computer.

Broadcasting (B) After the child makes a selection, describing the selection via a word, a phrase, or a sentence.
Miscellaneous

(M)
Initiating and/or responding to events that redirected a child’s attention, sharing personal opinions about
test procedures and stimuli, or other verbal and nonverbal behaviors that were out of the child’s view.

Table 1: The classification categories and corresponding definitions of parent behaviors based on established clini-
cal guidelines. Two high-level categories (“interfere” and “support”) consist of four individual sub-categories.

In-Person (n=16) Virtual (n=43)

English Mandarin All English Mandarin All

RQ 41 101 142 8 30 38
AQ 0 12 12 0 0 0
AI 18 68 86 3 3 6
JC 20 33 53 1 12 13

E 39 68 107 50 83 133
TS 14 78 92 164 206 370
B 14 42 56 4 10 14
M 12 18 30 77 75 152

Interference 79 214 293 12 45 57
Support 79 206 285 295 374 669

Table 2: MERLS dataset (in-person n=16 and virtual
n=43) statistics. The top row shows the label distribu-
tion across different datasets and test languages.

3.2 Dataset Description & Statistics259

The dataset is structured to include the follow-260

ing components: (1) Time stamps: Precise time261

stamps for each assessment item and correspond-262

ing parent-child behavior; (2) GUI descriptions:263

Textual descriptions of the graphical user interface264

(GUI) elements displayed on the MERLS plat-265

form; (3) Audio transcriptions: Transcriptions of266

the audio recordings, with annotations that iden-267

tify different speakers in each voiceover; (4) Be-268

havior descriptions: Textual descriptions of par-269

ents’ verbal and non-verbal behaviors. An exam-270

ple of such data is illustrated in Figure 6.271

Table 2 presents overall statistics for the In-272

person and Virtual sessions. The two datasets ex-273

hibit imbalances in their label distributions: the274

Virtual split contains fewer interference behaviors275

and more technical support behaviors. It may be276

due to (1) an instructional video in the MERLS277

system aimed to reduce interference behaviors, or278

(2) the use of the MERLS system during telehealth 279

assessment awhich increased the need for techni- 280

cal support activities conducted by parents. 281

4 Behavior Classification with LLMs 282

Our experiments focus on zero-shot (ZS) and 283

few-shot (FS) in-context learning (ICL) prompt- 284

ing strategies for LLMs to investigate whether 285

LLMs can reliably classify parental behaviors dur- 286

ing child language assessments. 287

Prompts. Our zero-shot prompt in Figure 3 pro- 288

vides instructions, explains the input format, and 289

defines each of the eight labels. From the test ex- 290

ample itself, the model is shown (1) the text of the 291

current question, (2) a description of the child’s 292

behavior, and (3) the description of the parent’s 293

behavior. The few-shot prompt is similar but in- 294

cludes one demonstrative example (by a clinical 295

expert to ensure validity) under each label defini- 296

tion. Figures 4 and 5 in the Appendix show the 297

few-shot prompts, split over multiple pages. Both 298

prompts include (1) Voiceover, the text of the cur- 299

rent question; (2) Child behavior, a description 300

of the child’s behavior, and (3) Parent behavior, 301

the utterance and/or a description of the action per- 302

formed by the parent. 303

Models. To evaluate NLP performance on our 304

tasks, we experiment with four LLMs: the open- 305

weight models Llama-3-8B-Instruct, DeepSeek- 306

V3, and Qwen2-7B, and the closed-source 307

model GPT-4 (Turbo-2024-04-09). While Llama- 308

3 is primarily English-based, its pre-training 309

data includes data from 30 other languages.1 310

1https://ai.meta.com/blog/meta-llama-3/
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In-Person (n=16) Virtual (n=43)

Micro F1 / Macro F1 (%) on: English Mandarin Overall English Mandarin Overall

Llama3 ZS 48.7/37.4 43.6/33.7 45.0/34.6 29.6/21.9 31.5/20.8 30.7/21.0
Llama3 FS 45.6/31.8 39.8/26.2 41.3/27.6 22.1/9.3 23.6/10.1 23.0/9.9
GPT-4 ZS 65.8/58.5 60.5/55.7 61.9/57.2 45.3/22.3 52.7/38.2 49.6/33.8
GPT-4 FS 66.5/61.1 55.0/49.1 58.1/52.4 50.2/28.8 53.9/38.2 52.3/36.2
DeepSeek-V3 ZS 61.7/53.5 58.5/51.2 59.4/52.4 47.6/23.6 53.2/38.9 50.8/34.3
DeepSeek-V3 FS 64.6/54.9 63.5/56.2 63.8/56.3 52.4/25.2 53.7/36.2 53.2/33.3
Qwen2 ZS 31.4/19.6 28.3/19.6 29.2/20.0 38.8/13.9 40.7/20.3 39.9/17.8
Qwen2 FS 20.1/15.2 25.6/21.5 24.1/19.7 41.6/17.0 42.1/24.2 41.9/22.1

Human Experts 96.84 96.43 97.0 86.93 81.82 86.1

Table 3: Micro/Macro F1 results on assessment language for In-Person and Virtual dataset. ZS = zero-shot, FS =
few-shot. The best-performing values for each metric are highlighted.

In-Person (n=16) Virtual (n=43)

Macro F1 on: Interference Support Interference Support

Llama3 ZS 75.2 70.5 18.0 76.4
Llama3 FS 73.5 64.6 20.3 69.3
GPT-4 FS 87.6 86.7 37.4 90.1
DeepSeek-V3 ZS 78.0 81.4 20.4 86.1
DeepSeek-V3 FS 85.0 85.9 29.2 90.6
Qwen2 ZS 54.7 66.0 25.5 87.0
Qwen2 FS 56.3 57.4 28.2 84.7

Table 4: Macro F1 on the binary classification version
("Interference" vs. "Support" behaviors) of In-Person
and Virtual dataset. ZS = zero-shot, FS = few-shot.

Qwen2 (Yang et al., 2024b) achieved strong bench-311

marks across approximately 30 languages. GPT-312

4 has also demonstrated strong performance on313

Chinese language understanding benchmarks (Xu314

et al., 2023; Zhu et al., 2024). Deepseek-V3 is op-315

timized for computational efficiency and excels in316

complex linguistic and reasoning tasks with mini-317

mal supervised data (Liu et al., 2024).318

Evaluation metrics. To accurately evaluate par-319

ent behaviors across different test items in Man-320

darin and English, we compute three metrics:321

(1) Macro F1 score (MACRO): prediction perfor-322

mance addressing the effects of dataset imbalance;323

(2) Micro F1 score (MICRO): precision and re-324

call computed over all prediction instances; (3)325

Item-level Accuracy (ITEMACC): the proportion326

of items with at least one behavior where all be-327

haviors are predicted correctly. ITEMACC is calcu-328

lated as the number of items with at least one be-329

havior that is predicted entirely correctly, divided330

by the total number of items that contained at least331

one behavior in each item.332

5 Experimental Results333

5.1 Main Results334

Table 3 presents the micro- and macro-F1 scores335

for each model in the assessment items of English336

and Mandarin in both the in-person and virtual set- 337

tings. Overall, GPT-4 and DeepSeek-V3 consis- 338

tently outperform Llama3 and Qwen2 across all 339

settings. Their stronger performance is in line with 340

established scaling laws in large language mod- 341

els (LLMs), rather than indicating domain-specific 342

adaptation (Wei et al., 2021) 343

The consistent gap between macro and micro F1 344

across settings reflects the severe class imbalance 345

in our dataset. Since macro F1 gives equal weight 346

to each class, even infrequent behaviors such as 347

Analyzing Items, which appears only three times 348

in the Virtual dataset (Table 2), can significantly 349

impact the overall score. In the following inter- 350

pretations, we emphasize macro F1 because it pro- 351

vides a more rigorous and fair evaluation across 352

all behavior categories, especially in imbalanced 353

datasets where some behaviors are rare but clini- 354

cally meaningful. 355

On the In-Person dataset, GPT-4 achieves the 356

highest macro F1 score on English assessment 357

items (61.1%), while DeepSeek-V3 leads in Man- 358

darin (56.3%). The strong Mandarin performance 359

of DeepSeek-V3 likely reflects its exposure to 360

high-quality Chinese-language sources (Guo et al., 361

2024). Llama3 shows moderate performance in 362

both languages, consistently lagging behind GPT- 363

4 and DeepSeek-V3 but outperforming Qwen2, 364

which remains the weakest model, especially in 365

English, even with few-shot support. 366

On the Virtual dataset, all models perform 367

worse than in the In-Person setting. GPT-4 and 368

DeepSeek-V3 remain the top performers, while 369

Llama3 shows moderate performance, and Qwen2 370

ranks lowest. Interestingly, this performance 371

drop occurs despite a higher number of annotated 372

parental behaviors in Virtual sessions. This sug- 373

gests that the challenge lies not in annotation spar- 374
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sity but in the increased variability and complex-375

ity of behaviors exhibited during virtual interac-376

tions, which may be harder for models to learn and377

classify accurately. These findings highlight the378

unique difficulty of modeling parental behaviors379

in remote formats, where behavior patterns may380

be different from those in in-person settings.381

In both in-person and virtual settings, model382

performance varied across clinical contexts, and383

the paired-setting analysis (Table 9), based on384

few-shot results, provides clearer insight into how385

these setting differences influence classification.386

GPT-4 exhibited the most pronounced drop, with387

macro F1 scores decreasing from 53.4% in the in-388

person setting to 27.7% in the virtual setting, par-389

ticularly struggling with English in the virtual con-390

text. DeepSeek-V3, while still achieving the high-391

est overall scores, also showed a substantial de-392

cline from 56.3% to 28.1%, indicating that it too393

was affected by setting-related challenges. Qwen2394

was the only model to improve in the Virtual set-395

ting, rising from 19.7% to 22.6%, with its best per-396

formance observed in virtual Mandarin sessions397

(25.9%). In contrast, Llama3 performed poorly398

across all conditions, with macro F1 scores falling399

from 27.6% in-person to just 8.8% in virtual ses-400

sions, and without a consistent language-specific401

trend. These findings emphasize that the clini-402

cal setting (in-person or virtual) has a substantial403

impact on model performance, and that the abil-404

ity to generalize across settings varies widely by405

model, language-specific pretraining, and robust-406

ness to behavioral variability.407

5.2 Effects of Parent Language408

Table 6 presents micro and macro F1 scores bro-409

ken down by the language used to describe par-410

ent behaviors in the transcriptsEnglish, Mandarin,411

or a mix of both. In our dataset, non-verbal par-412

ent behaviors are consistently described in English.413

Code-mixing occurs when parents code-switch414

during speech or when Mandarin utterances are415

paired with English descriptions of non-verbal ac-416

tions. Across most models, macro F1 scores417

are highest on English or Mixed-language tran-418

scripts and lowest on Mandarin-only transcripts,419

especially in the Virtual setting. GPT-4 demon-420

strates the most consistent performance across lan-421

guages, with balanced macro F1 scores for English422

and Mandarin transcriptions in both settings (e.g.,423

51.3% vs. 46.7% in-person; 35.4% vs. 34.7% vir-424

tual). It achieves the best result in all models on425

Mandarin-only data in the Virtual setting. 426

In contrast, DeepSeek-V3 performs best on 427

English and Mixed-language transcripts, but its 428

macro F1 on Virtual Mandarin (29.9%) is lower 429

than GPT-4s. Qwen2 shows a relatively small 430

performance gap between English and Mandarin, 431

although its overall accuracy remains low, with 432

its highest macro F1 score (27.1%) occurring on 433

Mixed-language Virtual transcripts. Llama3 per- 434

forms poorly across all conditions, with its lowest 435

macro F1 on Virtual Mandarin transcripts (6.9%). 436

These results demonstrate that transcription lan- 437

guage significantly influences model performance, 438

with Mandarin-only transcripts, particularly in Vir- 439

tual sessions, posing the greatest challenge. 440

Interestingly, while DeepSeek-V3 outperforms 441

GPT-4 in overall Mandarin session performance 442

(Table 9), GPT-4 surpasses DeepSeek when classi- 443

fying Mandarin-only behavior transcriptions (Ta- 444

ble 6), especially in the Virtual setting (34.7% 445

vs. 29.9%). This discrepancy highlights the dis- 446

tinction between session language (i.e., whether 447

the child was tested in Mandarin) and the tran- 448

scription language (i.e., whether the parents be- 449

havior was described using Mandarin). DeepSeek- 450

V3 may be more effective at capturing contex- 451

tual patterns in full Mandarin-language sessions, 452

whereas GPT-4 appears better at parsing Mandarin 453

within isolated transcription entries. These find- 454

ings underscore the importance of distinguishing 455

between session language and transcription lan- 456

guage when evaluating multilingual performance 457

in LLM-based behavioral classification. 458

5.3 Binary Classification Results 459

Table 4 presents macro F1 scores for the binary 460

classification task distinguishing Interference and 461

Support behaviors across In-Person and Virtual 462

sessions. This analysis enables a clearer under- 463

standing of how LLMs perform when behavior cat- 464

egories are simplified, reducing the impact of class 465

imbalance present in the 8-way classification task. 466

Across all models, performance is substantially 467

higher in the In-Person setting than in the Virtual 468

setting for both behavior types. GPT-4 achieves 469

the highest overall performance, with macro F1 470

scores of 87.6% for Interference and 86.7% for 471

Support in the In-Person setting. While its per- 472

formance drops in the Virtual setting, it still main- 473

tains relatively strong accuracy, especially on Sup- 474

port behaviors (90.1%). DeepSeek-V3 closely fol- 475

lows, with similar In-Person scores (85.0% and 476
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In-Person English In-Person Mandarin

Label pair Annotator 1 Acc Annotator 2 Acc Overall Label pair Annotator 1 Acc Annotator 2 Acc Overall

RQ-AI 100.0 75.0 75.0 RQ-AI 60.0 70.0 60.0
AI-RQ 0.0 100.0 0.0 AI-RQ 69.0 100.0 69.0
JC-E 71.4 71.4 57.1 E-RQ 22.2 0.0 0.0

E-M 40.0 16.6 16.6
TS-B 100.0 100.0 100.0

Virtual English Virtual Mandarin

Label pair Annotator 1 Acc Annotator 2 Acc Overall Label pair Annotator 1 Acc Annotator 2 Acc Overall

TS-M 82.2 53.3 53.3 TS-M 85.7 90.2 74.5
M-E 75 92.3 68.8 M-E 68.8 61.5 61.5

Table 5: Clinician annotation accuracy based on the misclassified pairs from Figure 14. A-B denotes that A
is the true clinician-annotated label, while B represents the GPT prediction. The overall accuracy is calculated
as the number of correctly classified behaviors for both clinicians divided by the total number of misclassified
behavior pairs. These low values (highlighted in the table) suggest that these misclassified pairs are also somewhat
challenging for clinicians to classify accurately.

85.9%) and slightly lower Virtual performance on477

Interference (29.2%) but the highest score on Sup-478

port (90.6%). Llama3 and Qwen2 perform con-479

siderably worse on Interference behaviors in Vir-480

tual settings, with macro F1 scores below 30%.481

However, their performance on Support behaviors482

remains relatively strong in Virtual contexts (e.g.,483

84.7% for Qwen2 FS and 76.4% for Llama3 ZS).484

This suggests that Support behaviors are more con-485

sistently recognized across models, whereas Inter-486

ference behaviors are more difficult to detect, es-487

pecially in Virtual sessions where contextual cues488

may be limited or harder to interpret.489

These findings reinforce that LLM performance490

degrades in virtual environments, particularly for491

subtle or ambiguous behavioral categories like In-492

terference. However, simplifying the task to bi-493

nary classification improves overall accuracy and494

highlights meaningful variation across model ar-495

chitectures and prompting strategies.496

5.4 Error Analysis with Human Annotators497

While our primary evaluation focused on macro498

and micro F1 scores (Tables 3 and 4), we con-499

ducted a detailed error analysis using item-level500

accuracy to identify challenging behavior pairs, fo-501

cusing on one of the top-performing models: GPT-502

4 ZS for the In-Person dataset, and GPT-4 FS for503

the Virtual dataset. The confusion matrices in the504

Appendix Figures 14 identified the misclassified505

pairs. To examine these errors, we selected the506

most frequently misclassified pairs for each behav-507

ioral category within each dataset (Table 5). These508

misclassified data were selected based on two cri-509

teria: 1) the number of instances in the class is no510

less than the average of that dataset, and 2) the pre- 511

diction accuracy for that class is below 80%. Two 512

novel clinical expert annotators were trained using 513

the same clinical protocol in Table 3 for error anal- 514

ysis. Novice human annotators were not utilized 515

due to the specialized training required for behav- 516

ioral coding, without such training, they have vari- 517

ability and reliability issues. Two annotators inde- 518

pendently selected which option they believe is the 519

correct answer without knowing which class was 520

machine or human annotation. By comparing their 521

responses to the true labels, we identified challeng- 522

ing pairs the clinical experts also struggled to per- 523

form classification. 524

Errors in In-Person Dataset. Several com- 525

monly misclassified pairs by GPT-4 can be iden- 526

tified in the top rows from Table 5. Overall, the 527

LLM struggles to distinguish "Repeating Ques- 528

tions (RQ)" from "Analyzing Items" in both En- 529

glish and Mandarin tests. Notably, this distinc- 530

tion is also challenging for clinicians, as the AI- 531

RQ category for the In-Person dataset (English) 532

shows 0.0% accuracy, with significant disagree- 533

ment among experts. Figure 6 illustrates a sample 534

parent-child interaction transcript for this disagree- 535

ment between the best-performing model (GPT4- 536

ZS) and two human annotators. 537

A key insight from our analysis is that LLM er- 538

rors reveal potential linguistic ambiguities in the 539

clinical definition of parent behaviors. GPT-4 mis- 540

labels “Analyzing Items (AI)" as “Repeating Ques- 541

tions (RQ)" when parents repeat only key compo- 542

nents of a question (e.g., "wash the cat") for their 543

children across both in-person and virtual datasets. 544
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This is likely because GPT-4 lacks the specific545

details to differentiate by repeating how much546

of the partial question is considered "Analyzing547

Items." The errors also appeared in code-mix ut-548

terances and could be due to inadequate transla-549

tion from word-level lexicon to sentence-level ut-550

terances. Through the disagreements between hu-551

man annotators and predictions from LLMs, we552

gain a deeper insights onimproving both the devel-553

opment of a clinical annotation codebook (Leeson554

et al., 2019) as well as the prompting strategies for555

LLMs (Lin et al., 2022; Ranaldi and Pucci, 2023;556

Lønfeldt et al., 2023).557

Errors in the Virtual Dataset. In the virtual558

dataset, the common misclassifications are demon-559

strated in the bottom rows from Table 5. We560

found the challenging pairs for clinicians to clas-561

sify are “TS-M” (“Technical Support" vs. “Miscel-562

laneous") for Virtual English and “M-E” (“Miscel-563

laneous" vs. “Encouragement") for Virtual dataset564

in Mandarin. Figure 7 in the appendix illustrates565

a sample transcript, showing disagreement across566

two human annotators and the best-performing567

model (GPT-4 FS). GPT-4 appears to overgeneral-568

ize utterances that do not contain words related to569

“website” or “computer” as “Technical Support"570

behaviors. This is indeed due to behavioral defi-571

nition ambiguities originated from the clinician’s572

codebook which informed the prompting. After573

two annotators conducted the member-checking574

procedure (Birt et al., 2016) to discuss inconsis-575

tent annotations, they identified additional utter-576

ances (e.g., parents monitoring children’s needs577

for breaks or snacks) as a new potential category of578

support behavior in the virtual dataset. This error579

analysis process highlights the models limitations580

in analyzing novel information, suggesting that fu-581

ture use of more aligned behavioral coding defini-582

tions to inform prompting for LLMs to accurately583

identify existing categories accurately and recog-584

nize novel patterns to enhance behavioral coding585

process. In a deeper error analysis, we conducted586

an ablation study to assess the impact of various587

components of GPT-4’s performance, see results588

in Appendix B.589

6 Conclusion590

This paper introduces a bilingual dataset for classi-591

fying parental behaviors during English-Mandarin592

child language assessments. This study highlights593

the potential of LLMs to support bilingual lan-594

guage assessment in clinical and school settings. 595

By identifying supportive and interfering parental 596

behaviors, automated classification can inform im- 597

provements in family-centered assessment prac- 598

tices with enhanced clinical validity. Additionally, 599

LLMs may help alleviate the shortage of bilingual 600

SLPs by supporting screening processes, expand- 601

ing access to linguistically appropriate evaluations, 602

and reducing the risk of over-diagnosing language 603

disorders in emergent bilingual children. 604

While current SOTA LLMs show moderate ac- 605

curacy, they struggle with Mandarin data, a chal- 606

lenge also faced by human annotators, particu- 607

larly with virtual data. These difficulties point 608

to potential ambiguities in behavioral definitions, 609

especially in cases involving code-switching and 610

nuanced parental language. This highlights the 611

need to refine the clinical annotation codebook, 612

which may improve consistency across both hu- 613

man and automated coding efforts. This dataset 614

promotes further NLP research for multilingual 615

clinical tasks, advancing the analysis of using mul- 616

timodal behavioral coding (Yang et al., 2024c) 617

of bilingual datasets (Hlavnova and Ruder, 2023; 618

Weissweiler et al., 2023) during child language as- 619

sessment in in-person and telehealth contexts. 620

7 Future Work 621

Our bilingual dataset also contained prosodic in- 622

formation (e.g., parents emphasize words when an- 623

alyzing items with different stress patterns) which 624

has been shown to introduce additional complexity 625

in clinical NLP (Black et al., 2013), especially in 626

the bilingual context (Pattichis et al., 2023). Man- 627

ual transcription by clinicians introduces potential 628

for error and inconsistency. To reduce such errors, 629

future work should continue exploring available 630

LLMs to achieve better performance or integration 631

of multimodal speech (OpenAI Whisper, Llama- 632

Omni, Qwen2-Audio) that can automate audio-to- 633

text transcription for additional technical novelty 634

in this research (Tavabi et al., 2020). By aligning 635

our methodology with clinical annotation guide- 636

lines and error analysis, future work may include 637

collaborating with clinicians to refine annotation 638

guidelines and additional error analysis, and align- 639

ing model outputs with assessment protocols, and 640

piloting LLM-supported language assessments in 641

clinical settings for bilingual children. 642
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8 Limitations643

Our study is constrained by the imbalance between644

the in-person and virtual datasets, as well as a rel-645

atively small sample size with (1,304 parent be-646

havior annotations from 59 sessions), which fur-647

ther limited underrepresented classification cate-648

gories (e.g., broadcasting). Such a small sample649

size further affect generalizability and classifica-650

tion reliability; additionally, the imbalance in label651

distribution across the eight categories contributes652

to this limitation, affecting overall model perfor-653

mance. For instance, smaller subcategories like654

"Broadcasting" make up less than 1% compared655

to larger categories such as "Technical Support"656

impacting overall model evaluation. Despite the657

small sample size, our clinically informed annota-658

tion guideline could be extended to the ongoing659

data collection with our clinical partners; it can660

also inform clinical research in other bilingual pop-661

ulations, such as Spanish-English and Vietnamese-662

English speaking children and parents (Dam and663

Pham, 2023; Pratt et al., 2022).664

Similar to other closed-source models, our best-665

performing model GPT-4 poses challenges for666

replication. One challenge is the semantic align-667

ment at the word and utterance level and how668

this impacts behavioral classification, especially in669

bilingual datasets (Cao et al., 2019; Huzaifah et al.,670

2024). Although our behavioral classifications in-671

cluded categories such as "Encouragement," due672

to the scope of this paper, we did not explore the673

use of sentiment analysis (Zhang et al., 2023a) on674

specific linguistic features in the transcripts to im-675

prove accuracy for individual subcategories.676

Additionally, error analysis revealed challenges677

in classifying behaviors related to the "Miscella-678

neous" category for the best performing model679

GPT-4 and human annotators. Due to the scope680

of this paper, we did not conduct additional abla-681

tion studies to evaluate more specifically defined682

behavioral categories. Since this is a bilingual683

dataset from a novel clinical pilot study, ongoing684

collaborations between NLP researchers and clini-685

cians may continue to improve the behavioral cod-686

ing protocol as well as the performance of LLMs.687

Furthermore, the lack of improvement in model688

performance with ICL suggests that the primary689

bottleneck in this classification task may not arise690

from challenges in semantic understanding of the691

text, but rather from capturing the deeper, underly-692

ing intent embedded in parental language.693

9 Ethical Considerations 694

Data collection and analysis. Our dataset was 695

collected and processed under university human 696

subject research approval and data sharing agree- 697

ments. The de-identified text transcripts from 698

the clinical video analysis being used for model 699

evaluation contain no sensitive information about 700

parent-child pairs. 701

Bias mitigation. When comparing the 16 virtual 702

and 16 in-person parent-child pairs, we consid- 703

ered the effects of childrens age and parents educa- 704

tion level, which can influence language abilities 705

and parental behavior during assessments. A de- 706

tailed parent-child demographic table for the 16 In- 707

person and Virtual pairs are provided in Table 11. 708

Privacy and trust. Privacy issues are paramount 709

when annotating parent behaviors and utterances. 710

Annotators anonymized sensitive information in 711

the transcripts (e.g., using boys name). This is 712

crucial when applying LLMs to clinical data to 713

protect patient privacy. Implementing LLMs in 714

evaluating clinical data could lead to biases that 715

affect clinical decision-making. Clinicians may 716

rely on models without fully understanding their 717

limitations. We also evaluated GPT-4S misclassi- 718

fications alongside two human annotators to com- 719

pare decision-making and address biases, which is 720

essential for building trust and explainable AI in 721

clinical settings. 722
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A Appendix A1126

A.1 User Interface of MERLS1127

Figure 2 illustrates the interaction of a sample test1128

item in the English subtest. When children inter-1129

act with MERLS, they first hear an audio record-1130

ing (e.g., "The chicken is hugged by the pen-1131

guin.") and then select the corresponding picture1132

that matches the audio to demonstrate their under-1133

standing of the sentence in English. Parents may1134

or may not demonstrate a behavior depending on1135

their observation of the item and how children re-1136

spond to the item.1137

Figure 2: MERLS English test item “The chicken is
hugged by the penguin.”

A.2 Results of item level accuracy1138

Here we also provide the accuracy in item1139

level. Table 7 shows the ITEMACC for the en-1140

tire In-Person dataset (n=16) and the entire Vir-1141

tual dataset (n=43) partitioned upon question lan-1142

guages, whereas Table 8 shows the ITEMACC for1143

the entire In-person dataset (n=16) and the sub-1144

set of the Virtual dataset (n=16) that is matched1145

in terms of child age and parent education level.1146

B Appendix B: Ablation Study 1147

B.1 Removal of role play description in 1148

prompting 1149

This experiment tests whether understanding the 1150

role and scenario is necessary, or if simple instruc- 1151

tions based on ‘annotation of parental behavior’ 1152

suffice, by removing the ‘role play’ description 1153

and retaining only the basic instructions to evalu- 1154

ate both datasets. We tested GPT-4’s performance 1155

by using a prompt based on our original zero-shot 1156

test in Figure 3, but without the role description 1157

(e.g., "Assume you are a video analyst classifying 1158

transcribed text conversation...") (see prompt in 1159

Figure 12). The corresponding results are summa- 1160

rized in Table 10. The maximum variation in ac- 1161

curacy was approximately 3%, and the maximum 1162

variation in F1 score was about 4%. Therefore, we 1163

conclude that the ‘role play’ descriptor does not 1164

significantly impact the overall prediction results. 1165

B.2 Chain of Thoughts Experiment 1166

To further evaluate the factors contributing to per- 1167

formance variance, we then conducted a Chain 1168

of Thoughts (CoT) experiment with GPT-4 to as- 1169

sess the best model performance for in-person data 1170

(using zero-shot prompts) and virtual data (using 1171

few-shot prompts) after retaining "role play" sce- 1172

nario. We then conducted an error analysis across 1173

all categories to compare GPT-4’s reasoning with 1174

that of human expert annotators. We designed the 1175

prompts following a similar two-step procedure 1176

as outlined in (Kojima et al., 2022). In the first 1177

prompt, we described the classification task as in 1178

the original paper, with the addition of a trigger 1179

sentence: Lets think step by step. This encour- 1180

ages GPT-4 to generate a step-by-step reasoning 1181

process as output (see Figure 8, 9 and 10 for the 1182

first prompt input in the Appendix). In the second 1183

prompt (see Figure 11 in the Appendix), we com- 1184

bined the original task description with GPT-4’s 1185

analysis from the first step and include an answer 1186

extraction instruction, such as: Therefore, among 1187

all the categories, please respond with the cate- 1188

gory name only. After running the experiment 1189

with prompts that include CoT, we then analyzed 1190

the initial responses in greater depth by examin- 1191

ing the step-by-step reasoning provided. Here we 1192

provide one example where GPT-4 makes a false 1193

prediction as demonstrated in Figure 13. In this 1194

example, GPT-4 falsely predicts the parent behav- 1195

ior to be "Repeat Questions", however the human 1196
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expert annotates "Technical Support" because the1197

parent guides the child to make a selection and re-1198

quest a system repetition independently. GPT-4 in-1199

correctly interpreted the parent behavior verbatim1200

as "Repeat Questions" because the utterance itself1201

seems to request repetition; in reality, the parent1202

did not repeat any of the test items and did not in-1203

terfere with the child. This difference in interpreta-1204

tion provides evidence that GPT models lack spe-1205

cific knowledge of this clinical context, and adding1206

more examples (e.g., few-shot) may not necessar-1207

ily help model performance.1208
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In-Person (n=16) Virtual (n=43)

Micro F1 / Macro F1 (%) on: English Mandarin Mixed English Mandarin Mixed

# Examples 233 167 178 226 389 111

Llama3 ZS 39.9/31.2 42.5/22.0 53.9/39.6 44.8/27.5 21.1/18.1 36.0/16.5
Llama3 FS 35.6/25.7 40.1/20.8 50.0/33.1 32.7/12.1 14.7/6.91 32.4/14.6
GPT-4 ZS 54.2/47.1 49.1/45.9 59.0/52.1 55.3/35.1 41.9/30.8 55.0/32.5
GPT-4 FS 58.8/51.3 56.9/46.7 57.9/52.4 56.2/35.4 43.7/34.7 47.7/29.7
DeepSeek-V3 ZS 59.2/49.4 58.7/45.7 59.0/50.6 65.9/40.0 42.4/30.7 49.5/30.1
DeepSeek-V3 FS 63.9/52.9 61.1/45.5 65.7/56.6 66.4/39.9 46.3/29.9 50.5/27.1
Qwen2 ZS 34.5/18.6 30.2/17.0 20.4/16.6 41.0/15.2 39.7/18.8 39.6/12.9
Qwen2 FS 27.4/17.9 23.8/18.0 20.6/16.6 44.5/21.9 37.3/19.7 53.0/27.1

Table 6: Micro/Macro F1 results broken down by the language in the transcript of the parent’s behavior (either
English, Mandarin, or a mix of both languages). ZS = zero-shot, FS = few-shot. The best-performing values for
each metric are highlighted.

In-Person (n=16) Virtual (n=43)

ITEMACC(%) on: English Mandarin All English Mandarin All

Llama3 ZS 39.8 28.0 31.7 26.7 24.3 25.3
Llama3 FS 34.5 27.6 29.8 20.3 19.8 20.0
GPT-4 ZS 61.9 49.2 53.2 36.9 45.3 41.6
GPT-4 FS 61.1 40.8 47.1 43.3 46.5 45.1
DeepSeek-V3 ZS 54.2 44.5 47.5 42.8 43.6 43.3
DeepSeek-V3 FS 57.5 50.9 53.0 45.5 44.9 45.1
Qwen2 ZS 20.4 16.0 17.4 29.4 27.2 28.1
Qwen2 FS 11.5 15.6 14.3 28.9 28.0 28.4

Table 7: Main results for item level accuracy. ZS = zero-shot, FS = few-shot. The best-performing values for each
metric are highlighted.

In-Person (n=16) Virtual (n=16)

ITEMACC(%) on: English Mandarin All English Mandarin All

Llama3 ZS 39.8 28.0 31.7 23.2 23.7 23.4
Llama3 FS 34.5 27.6 29.8 15.9 12.9 14.3
GPT-4 ZS 61.9 49.2 53.2 34.1 37.6 36.0
GPT-4 FS 61.1 40.8 47.1 40.2 40.9 40.6
DeepSeek-V3 ZS 54.2 44.5 47.5 34.1 39.8 37.1
DeepSeek-V3 FS 57.5 50.9 53.0 39.0 38.7 38.9
Qwen2 ZS 20.4 16.0 17.4 28.0 20.4 24.0
Qwen2 FS 11.5 15.6 14.3 28.0 23.7 25.7

Table 8: Results with the entire In-person dataset and the subset of the Virtual dataset consisting of 16 patients who
are matched with the 16 In-person patients in terms of child age and parent education level in item accuracy. The
data layout follows the same procedure described in Table 7.

In-Person (n=16) Virtual (n=16)

Micro F1 / Macro F1 (%) on: English Mandarin Overall English Mandarin Overall

Llama3 ZS 48.7/37.4 43.6/33.7 45.0/34.6 30.4/21.7 33.7/16.6 32.1/18.7
Llama3 FS 45.6/31.8 39.8/26.2 41.3/27.6 21.4/8.7 19.8/8.5 20.5/8.8
GPT-4 ZS 68.4/61.6 50.0/43.8 55.0/50.9 44.7/19.8 44.2/26.4 44.4/24.3
GPT-4 FS 63.3/58.6 56.0/51.1 58.0/53.4 43.4/19.0 47.7/31.4 45.6/27.7
DeepSeek-V3 ZS 61.7/53.5 58.5/51.2 59.4/52.4 44.0/19.5 51.7/34.5 48.0/28.9
DeepSeek-V3 FS 64.6/54.9 63.5/56.2 63.8/56.3 50.9/21.1 49.4/30.7 50.2/28.1
Qwen ZS 31.4/19.6 28.3/19.6 29.2/20.0 41.2/15.9 36.2/19.0 38.6/17.3
Qwen FS 20.1/15.2 25.6/21.5 24.1/19.7 45.7/16.8 38.6/25.9 42.0/22.6

Table 9: Results with the entire In-Person dataset and the subset of the Virtual dataset consisting of 16 patients
who are matched with the 16 In-Person patients in terms of child age and parent education level. The data layout
follows the same procedure described in Table 3.
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Assume you are video analyst classifying transcribed text conversation shown in <Parent Behavior>
from parents, who are supervising their bilingual children to answer language comprehension
tests in English and Mandarin. A <Voiceover> is the system output sound which reads the picture
on the website that the child has to choose. A <Child Behavior> is the children's behavior. You
need to classify <Parent Behavior> as described in <task>.

Please respond the category name only.

<Task>
Based on <Parent Behavior>, please determine which type of behavior it is: 'Repeat Questions', '

Answer Questions', 'Analyze Items', 'Judging', 'Encouragement', 'Technical Support', '
Broadcasting', 'Miscellaneous'. Definition for each category is shown in <Definitions>

<Definitions>
- Repeat Questions: Repeating the <Voiceover> audio before and/or during the process of a child

selecting the picture on the web.
- Answer Questions: Using verbal or gestural cues to suggest or select a correct answer for the child

.
- Analyze Items: Elaborating on the critical linguistic components by labeling objects and actions,

making emphasis via prosodic cues, or breaking down complex sentences from <Voiceover>.
- Judging of Correctness: Verbally evaluating the child's response as "correct" or "incorrect".

- Encouragement: Showing verbal and/physical affirmation for the child to continue, saying "good job/
excellent" to reinforce the child's selection, expressing empathy (e.g., "it's okay") on
struggled items.

- Technical Support: Offering verbal and/or physical assistance to the child related to interacting
with the website and the computer.

- Broadcasting: After the child makes a selection, describing the selection via a word, a phrase, or
a sentence.

- Miscellaneous: Initiating and/or responding to events that redirected a child's attention, sharing
personal opinions about test procedures and stimuli, or other verbal and nonverbal behaviors
that were out of the child's view.

Figure 3: The full zero-shot prompt used in our experiments.

In-Person (n=16) Virtual (n=43)

BEHAVACC(%)/F1(%) on: English Mandarin Overall English Mandarin Overall

GPT-4 ZS 67.1/62.1 59.8/56.3 61.8/58.3 41.7/22.8 46.3/34.3 44.4/31.5

Table 10: Prediction results without role play description: BEHAVACC/F1 on assessment language for In-Person
and Virtual dataset.

Child ID (In Person) Age (Year; Month) Gender Parent Education Child ID (Virtual) Age Gender Parent Education

P1 3;8 F Master V1 4;0 M Master
P2 3;8 M Master V2 4;1 F Master
P3 4;1 F PhD V3 4;2 M Master
P4 5;5 F Master V4 5;5 F Master
P5 5;9 M Master V5 5;6 M PhD
P6 5;11 F Master V6 5;9 F Master
P7 6;1 M PhD V7 5;9 F PhD
P8 6;1 M Master V8 5;10 F Master
P9 6;3 M PhD V9 5;11 F PhD
P10 6;4 F Master V10 6;3 F PhD
P11 6;6 M PhD V11 6;5 M Bachelor
P12 6;7 M PhD V12 6;11 M High School
P13 6;7 M PhD V13 7;0 M Bachelor
P14 7;9 M Vocational School V14 7;0 F Bachelor School
P15 8;2 M Bachelor V15 8;2 M Vocational
P16 8;6 M PhD V16 8;2 F PhD

Table 11: Demographic information of gender, age, and parent education for in-person (P1–P16) and virtual study
participants (V1–V16). These two groups of children were matched with the comparable level of parent education
(except P12 with a parental education of PhD degree, and V12 with a parental education for high school). Childrens
ages were also matched with no more than 9 months differences to ensure they are comparable in age for similar
language abilities.
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Assume you are video analyst classifying transcribed text conversation shown in <Parent Behavior>
from parents, who are supervising their bilingual children to answer language comprehension
tests in English and Mandarin. A <Voiceover> is the system output sound which reads the picture
on the website that the child has to choose. A <Child Behavior> is the children's behavior. You
need to classify <Parent Behavior> as described in <task>.

Please respond the category name only.

<Task>
Based on <Parent Behavior>, please determine which type of behavior it is: 'Repeat Questions', '

Answer Questions', 'Analyze Items', 'Judging', 'Encouragement', 'Technical Support', '
Broadcasting', 'Miscellaneous'.

Definition for each category is shown in <Definitions>

<Definitions>
- Repeat Questions: Repeating the <Voiceover> audio before and/or during the process of a child

selecting the picture on the web. For example,

<Voiceover>
"the black cat is drinking water"

<Parent Behavior>
"the black cat is drinking water"

<Classification>
Repeat Questions

- Answer Questions: Using verbal or gestural cues to suggest or select a correct answer for the child
. For example,

<Voiceover>
"What is the cat drinking?"

<Parent Behavior>
"Drinking water."

<Classification>
Answer Questions

- Analyze Items: Elaborating on the critical linguistic components by labeling objects and actions,
making emphasis via prosodic cues, or breaking down complex sentences from <Voiceover>. For
example,

<Voiceover>
"the black cat is drinking water"

<Parent Behavior>
"This is the one with a black cat."

<Classification>
Analyze Items

Figure 4: The few-shot prompt used in our experiments, part 1 of 2.
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- Judging of Correctness: Verbally evaluating the child's response as "correct" or "incorrect". For
example,

<Voiceover>

<Parent Behavior>
"This is not right."

<Classification>
Judging of Correctness

- Encouragement: Showing verbal and/physical affirmation for the child to continue, saying "good job/
excellent" to reinforce the child's selection, expressing empathy (e.g., "it's okay") on
struggled items. For example,

<Voiceover>

<Parent Behavior>
"it's fine you are trying your best."

<Classification>
Encouragement

- Technical Support: Offering verbal and/or physical assistance to the child related to interacting
with the website and the computer. For example,

<Voiceover>

<Parent Behavior>
"Select the picture to continue."

<Classification>
Technical Support

- Broadcasting: After the child makes a selection, describing the selection via a word, a phrase, or
a sentence. For example,

<Voiceover>

<Parent Behavior>
"I selected the picture."

<Classification>
Broadcasting

- Miscellaneous: Initiating and/or responding to events that redirected a child's attention, sharing
personal opinions about test procedures and stimuli, or other verbal and nonverbal behaviors
that were out of the child's view. For example,

<Voiceover>
<Parent Behavior>
"My child needs to use the bathroom."

<Classification>
Miscellaneous

Figure 5: The few-shot prompt used in our experiments, part 2 of 2.
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Figure 6: Sample annotation 1 from the In-person dataset (English item). N/A is used for transcript content that
did not have a behavioral coding.

Figure 7: Sample annotation 2 from the Virtual dataset (English item). N/A is used for transcript content that did
not have a behavioral coding.

Assume you are a video analyst classifying transcribed text conversation shown in <Parent Behavior>
from parents, who are supervising their bilingual children to answer language comprehension
tests in English and Mandarin. A <Voiceover> is the system output sound which reads the picture
on the website that the child has to choose. A <Child Behavior> is the children's behavior. You
need to classify <Parent Behavior> as described in <task>. Let's think stey by step.

<Task>
Based on <Parent Behavior>, please determine which type of behavior it is: 'Repeat Questions', '

Answer Questions', 'Analyze Items', 'Judging', 'Encouragement', 'Technical Support', '
Broadcasting', 'Miscellaneous'. Definition for each category is shown in <Definitions>.

<Definitions>
- Repeat Questions: Repeating the <Voiceover> audio before and/or during the process of a child

selecting the picture on the web.
- Answer Questions: Using verbal or gestural cues to suggest or select a correct answer for the child

.
- Analyze Items: Elaborating on the critical linguistic components by labeling objects and actions,

making emphasis via prosodic cues, or breaking down complex sentences from <Voiceover>.
- Judging of Correctness: Verbally evaluating the child's response as correct or incorrect.
- Encouragement: Showing verbal and/physical affirmation for the child to continue, saying good job/

excellent to reinforce the child's selection, expressing empathy (e.g., it'sokay) on struggled
items.

- Technical Support: Offering verbal and/or physical assistance to the child related to interacting
with the website and the computer.

- Broadcasting: After the child makes a selection, describing the selection via a word, a phrase, or
a sentence.

- Miscellaneous: Initiating and/or responding to events that redirected a child's attention, sharing
personal opinions about test procedures and stimuli, or other verbal and nonverbal behaviors
that were out of the child's view.

Figure 8: The first zero-shot prompt used in Chain of Thoughts experiment.
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Assume you are video analyst classifying transcribed text conversation shown in <Parent Behavior>
from parents, who are supervising their bilingual children to answer language comprehension
tests in English and Mandarin. A <Voiceover> is the system output sound which reads the picture
on the website that the child has to choose. A <Child Behavior> is the children's behavior. You
need to classify <Parent Behavior> as described in <task>. Let's think step by step.

<Task>
Based on <Parent Behavior>, please determine which type of behavior it is: 'Repeat Questions', '

Answer Questions', 'Analyze Items', 'Judging', 'Encouragement', 'Technical Support', '
Broadcasting', 'Miscellaneous'.

Definition for each category is shown in <Definitions>

<Definitions>
- Repeat Questions: Repeating the <Voiceover> audio before and/or during the process of a child

selecting the picture on the web. For example,

<Voiceover>
"the black cat is drinking water"

<Parent Behavior>
"the black cat is drinking water"

<Classification>
Repeat Questions

- Answer Questions: Using verbal or gestural cues to suggest or select a correct answer for the child
. For example,

<Voiceover>
"What is the cat drinking?"

<Parent Behavior>
"Drinking water."

<Classification>
Answer Questions

- Analyze Items: Elaborating on the critical linguistic components by labeling objects and actions,
making emphasis via prosodic cues, or breaking down complex sentences from <Voiceover>. For
example,

<Voiceover>
"the black cat is drinking water"

<Parent Behavior>
"This is the one with a black cat."

<Classification>
Analyze Items

Figure 9: The first few-shot prompt used in Chain of Thoughts experiment, part 1 of 2.
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- Judging of Correctness: Verbally evaluating the child's response as "correct" or "incorrect". For
example,

<Voiceover>

<Parent Behavior>
"This is not right."

<Classification>
Judging of Correctness

- Encouragement: Showing verbal and/physical affirmation for the child to continue, saying "good job/
excellent" to reinforce the child's selection, expressing empathy (e.g., "it's okay") on
struggled items. For example,

<Voiceover>

<Parent Behavior>
"it's fine you are trying your best."

<Classification>
Encouragement

- Technical Support: Offering verbal and/or physical assistance to the child related to interacting
with the website and the computer. For example,

<Voiceover>

<Parent Behavior>
"Select the picture to continue."

<Classification>
Technical Support

- Broadcasting: After the child makes a selection, describing the selection via a word, a phrase, or
a sentence. For example,

<Voiceover>

<Parent Behavior>
"I selected the picture."

<Classification>
Broadcasting

- Miscellaneous: Initiating and/or responding to events that redirected a child's attention, sharing
personal opinions about test procedures and stimuli, or other verbal and nonverbal behaviors
that were out of the child's view. For example,

<Voiceover>
<Parent Behavior>
"My child needs to use the bathroom."

<Classification>
Miscellaneous

Figure 10: The first few-shot prompt used in Chain of Thoughts experiment, part 2 of 2.
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Therefore, among all the categories, please respond the category name only.

Figure 11: The second prompt used in Chain of Thoughts experiment for both zero-shot and few-shot.

This is a text transcript consisting of <Parent Behavior> from bilingual parents who are supervising
their bilingual children to answer language assessment questions in English and Mandarin. A <
Voiceover> is the system output sound which reads the picture for the accurate answer the child
has to choose. A <Child Behavior> is the children's behavior. Please classify <Parent Behavior>
as described in <Task> and respond to the category name only.

<Task>
Based on <Parent Behavior>, please determine which type of behavior it is: 'Repeat Questions', '

Answer Questions', 'Analyze Items', 'Judging', 'Encouragement', 'Technical Support', '
Broadcasting', 'Miscellaneous'. Definition for each category is shown in <Definitions>.

<Definitions>
- Repeat Questions: Repeating the <Voiceover> audio before and/or during the process of a child

selecting the picture on the web.
- Answer Questions: Using verbal or gestural cues to suggest or select a correct answer for the child

.
- Analyze Items: Elaborating on the critical linguistic components by labeling objects and actions,

making emphasis via prosodic cues, or breaking down complex sentences from <Voiceover>.
- Judging of Correctness: Verbally evaluating the child's response as correct or incorrect.
- Encouragement: Showing verbal and/physical affirmation for the child to continue, saying good job/

excellent to reinforce the child's selection, expressing empathy (e.g., it's okay) on struggling
items.

- Technical Support: Offering verbal and/or physical assistance to the child related to interacting
with the website and the computer.

- Broadcasting: After the child makes a selection, describing the selection via a word, a phrase, or
a sentence.

- Miscellaneous: Initiating and/or responding to events that redirected a child's attention, sharing
personal opinions about test procedures and stimuli, or other verbal and nonverbal behaviors
that were out of the child's view.

Figure 12: The full zero-shot prompt used in non role play test.

Parent behavior: <in response to child> "" <speaking towards the screen> "

GPT-4 with CoT response:
"let's analyze the provided <parent behavior> step by step in order to classify it:

1. the first part of the <parent behavior> is: ""<in response to child> ''"". this is in response to
the child's action of moving the parent's hand to the screen. the parent's response, """" or ""
you click it yourself"", seems to encourage the child to perform the action by themselves
instead of relying on the parent. this can be classified under 'encouragement', as it encourages
independence in the child.

2. the second part of the <parent behavior> is: ""<speaking towards the screen> ''"", which
translates to ""can you say that again, please?"" directed towards the screen. this part
indicates that the parent is requesting the system to repeat the <voiceover> audio. this action
fits the 'repeat questions' category, as it involves asking for the question or statement from <
voiceover> to be repeated. given the two different actions, if we consider the more prominent
behavior from the parent's actions, the emphasis appears to be on encouraging the child to
engage with the task independently. however, the explicit category from the definitions provided
that matches an exact behavior is 'repeat questions', due to the direct request made to the

system. <classification> repeat questions"

Figure 13: The first zero-shot prompt used in Chain of Thoughts experiment.
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English Mandarin Overall

GPT-4 ZS: In-Person dataset.

English Mandarin Overall

GPT-4 FS: Virtual dataset.

Figure 14: Normalized confusion matrices (in percentages) for GPT-4 ZS (In-Person) and GPT-4 FS (Virtual)
datasets. Each row is normalized to sum to 100% within each matrix, representing the percentage distribution of
predictions across classes.
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