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ABSTRACT

Noise Contrastive Estimation (NCE) is a popular approach for learning probability
density functions parameterized up to a constant of proportionality. The main idea
is to design a classification problem for distinguishing training data from samples
from an easy-to-sample noise distribution q, in a manner that avoids having to
calculate a partition function. It is well-known that the choice of q can severely
impact the computational and statistical efficiency of NCE. In practice, a common
choice for q is a Gaussian which matches the mean and covariance of the data.
In this paper, we show that such a choice can result in an exponentially bad (in
the ambient dimension) conditioning of the Hessian of the loss, even for very
simple data distributions. As a consequence, both the statistical and algorithmic
complexity for such a choice of q will be problematic in practice, suggesting that
more complex and tailored noise distributions are essential to the success of NCE.

1 INTRODUCTION

Noise contrastive estimation (NCE), introduced in (Gutmann & Hyvärinen, 2010; 2012), is one of
several popular approaches for learning probability density functions parameterized up to a constant
of proportionality, i.e. p(x) ∝ exp(Eθ(x)), for some parametric family {Eθ}θ. A recent incarnation
of this paradigm is, for example, energy-based models (EBMs), which have achieved near-state-of-
the-art results on many image generation tasks (Du & Mordatch, 2019; Song & Ermon, 2019). The
main idea in NCE is to set up a self-supervised learning (SSL) task, in which we train a classifier to
distinguish between samples from the data distribution P∗ and a known, easy-to-sample distribution
Q, often called the “noise” or “contrast” distribution. It can be shown that for a large choice of losses
for the classification problem, the optimal classifier model is a (simple) function of the density ratio
p∗/q, so an estimate for p∗ can be extracted from a good classifier. Moreover, this strategy can be
implemented while avoiding calculation of the partition function, which is necessary when using
maximum likelihood to learn p∗.

The noise distribution q is the most significant “hyperparameter” in NCE training, with both strong
empirical (Rhodes et al., 2020) and theoretical (Liu et al., 2021) evidence that a poor choice of q
can result in poor algorithmic behavior. (Chehab et al., 2022) show that even the optimal q for finite
number of samples can have an unexpected form (e.g., it is not equal to the true data distribution
p∗). Since q needs to be a distribution that one can efficiently draw samples from, as well as write an
expression for the probability density function, the choices are somewhat limited.

A particularly common way to pick q is as a Gaussian that matches the mean and covariance of the
input data (Gutmann & Hyvärinen, 2012; Rhodes et al., 2020). Our main contribution in this paper
is to formally show that such a choice can result in an objective that is statistically poorly behaved,
even for relatively simple data distributions. We show that even if p∗ is a product distribution and a
member of a very simple exponential family, the Hessian of the NCE loss, when using a Gaussian
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noise distribution q with matching mean and covariance has exponentially small (in the ambient
dimension) spectral norm. As a consequence, the optimization landscape around the optimum will
be exponentially flat, making gradient-based optimization challenging. As the main result of the
paper, we show the asymptotic sample efficiency of the NCE objective will be exponentially bad in
the ambient dimension.

2 OVERVIEW OF RESULTS

Let P∗ be a distribution in a parametric family {Pθ}θ∈Θ. We wish to estimate P∗ via Pθ for some
θ∗ ∈ Θ by solving a noise contrastive estimation task. To set up the task, we also need to choose a
noise distribution Q, with the constraint that we can draw samples from it efficiently, and we can
evaluate the probability density function efficiently. We will use pθ, p∗, q to denote the probability
density functions (pdfs) of Pθ, P∗, and Q. For a data distribution P∗ and noise distribution Q, the
NCE loss of a distribution Pθ is defined as follows:
Definition 1 (NCE Loss). The NCE loss of Pθ w.r.t. data distribution P∗ and noise Q is

L(Pθ) = −1

2
EP∗ log

pθ
pθ + q

− 1

2
EQ log

q

pθ + q
. (1)

Moreover, the empirical version of the NCE loss when given i.i.d. samples (x1, . . . , xn) ∼ Pn
∗ and

(y1, . . . , yn) ∼ Qn is given by

Ln(θ) =
1

n

n∑
i=1

−1

2
log

pθ(xi)

pθ(xi) + q(xi)
+

1

n

n∑
i=1

−1

2
log

q(yi)

pθ(yi) + q(yi)
. (2)

By a slight abuse of notation, we will use L(θ), L(pθ) and L(Pθ) interchangeably.

The NCE loss can be interpreted as the binary cross-entropy loss for the classification task of
distinguishing the data samples from the noise samples. To avoid calculating the partition function,
one considers it as an additional parameter, namely we consider an augmented vector of parameters
θ̃ = (θ, c) and let pθ̃(x) = exp(Eθ(x) − c). The crucial property of the NCE loss is that it has a
unique minimizer:
Lemma 2 (Gutmann & Hyvärinen 2012). The NCE objective in Definition 1 is uniquely minimized
at θ = θ∗ and c = log(

∫
x
exp(Eθ∗(x))dx) provided that the support of Q contains that of P∗.

We will be focusing on the Hessian of the loss L, as the crucial object governing both the algorithmic
and statistical difficulty of the resulting objective. We will show the following two main results:
Theorem 3 (Exponentially flat Hessian). For d > 0 large enough, there exists a distribution P∗ = Pθ∗
over Rd such that

• EP∗ [x] = 0 and EP∗ [xx
⊤] = Id.

• P∗ is a product distribution, namely p∗(x1, x2, . . . , xd) =
∏d

i=1 p
∗(xi).

• The NCE loss when using q = N (0, Id) as the noise distribution has the property that

∥∇2L(θ∗)∥2 ≤ exp (−Ω(d)) .

We remark the above example of a problematic distribution P ∗ is extremely simple. Namely, P ∗ is
a product distribution, with 0 mean and identity covariance. It actually is also the case that P ∗ is
log-concave—which is typically thought of as an “easy” class of distributions to learn due to the fact
that log-concave distributions are unimodal.

The fact that the Hessian is exponentially flat near the optimum means that gradient-descent based
optimization without additional tricks (e.g., gradient normalization, second order methods like
Newton’s method) will fail. (See, e.g., Theorem 4.1 and 4.2 in Liu et al. (2021).) For us, this will be
merely an intermediate result. We will address a more fundamental issue of the sample complexity of
NCE, which is independent of the optimization algorithm used. Namely, we will show that without a
large number of samples, the best minimizer of the empirical NCE might not be close to the target
distribution. Proving this will require the development of some technical machinery.

More precisely, we use the result above to show that the asymptotic statistical complexity, using the
above choice of P ∗, Q, is exponentially bad in the dimension. This substantially clarifies results in
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Gutmann & Hyvärinen (2012), who provide an expression for the asymptotic statistical complexity
in terms of P ∗, Q (Theorem 3, Gutmann & Hyvärinen (2012)), but from which it’s very difficult to
glean quantitatively how bad the dependence on dimension can be for a particular choice of P ∗, Q.
Unlike the landscape issues that (Liu et al., 2021) point out, the statistical issues are impossible to fix
with a better optimization algorithm: they are fundamental limitations of the NCE loss.
Theorem 4 (Asymptotic Statistical Complexity). Let d > 0 be sufficiently large and Q = N (0, Id).
Let θ̂n be the optimizer for the empirical NCE loss Ln(θ) with the data distribution P∗ given by
Theorem 3 above and noise distribution Q. Then, as n → ∞, the mean-squared error satisfies

E
[∥∥∥θ̂n − θ∗

∥∥∥2
2

]
=

exp(Ω(d))

n
.

3 EXPONENTIALLY FLAT HESSIAN: PROOF OF THEOREM 3

The proof of Theorem 3 consists of three ingredients. First, in Section 3.1, we will compute an
algebraically convenient upper bound for the spectral norm of the Hessian of the loss (eq. (1)). We
will restrict our attention to the case when {Pθ} belongs to an exponential family. The upper bound
will be in terms of the total variation distance TV(P∗, Q) and the Fisher information matrix of
the sufficient statistics at θ∗. Here, P∗ denotes the true data distribution and Q denotes the noise
distribution.

Then, in Section 3.2, we construct a distribution P ∗ for which the TV distance between P ∗ and Q
is large. We do this by “tensorizing” a univariate distribution. Namely, we construct a univariate
distribution with mean 0 and variance 1 that is at a constant TV distance from a standard univariate
Gaussian. Then, we use the fact that the Hellinger distance tensorizes, along with the relationship
between TV and Hellinger distance, to show that TV (P ∗, Q) ≥ 1 − δd for some constant δ < 1.
(See Wasserman (2020) for a detailed review of distance measures.) Section 3.3 bounds the Fisher
information matrix term, completing all the components required to establish Theorem 3.

3.1 BOUNDING THE HESSIAN IN TERMS OF TV DISTANCE

Suppose {Pθ} is an exponential family of distributions, that is pθ(x) = exp(θ⊤T (x)), where T (x)
is a known function. Then, a straightforward calculation (see e.g., Appendix A in Liu et al. (2021))
shows that the gradient and the Hessian of the NCE loss (eq. (1)) with respect to θ have the following
forms:

∇θpθ(x) = pθ(x) · T (x), (3)

∇θL(pθ) =
1

2

∫
x

q

pθ + q
(pθ − p∗)T (x)dx, (4)

∇2
θL(pθ) =

1

2

∫
x

(p∗ + q)pθq

(pθ + q)2
T (x)T (x)⊤dx. (5)

For θ = θ∗ and pθ = p∗, we have

∇2
θL(pθ∗) =

1

2

∫
x

p∗q

p∗ + q
T (x)T (x)⊤dx ⪯ 1

2

∫
x

min(p∗, q)T (x)T (x)
⊤dx (6)

The second line holds since p∗q
p∗+q = min(p∗, q)·max(p∗,q)

p∗+q ≤ min(p∗, q). Applying the matrix version

of the Cauchy-Schwarz inequality (Lemma 9, Appendix A) to eq. (6) with two parts min(p∗(x),q(x))√
p∗(x)

and T (x)T (x)⊤
√

p∗(x), we obtain

∥∇2
θL(P∗)∥2 ≤

∥∥∇2
θL(P∗)

∥∥
F
≤ 1

2

(∫
x

min(p∗, q)
2

p∗

) 1
2
(∫

x

∥∥T (x)T (x)⊤∥∥2
F
p∗(x)dx

) 1
2

≤ 1

2

(∫
x

min(p∗, q)dx

) 1
2
(∫

x

∥∥T (x)T (x)⊤∥∥2
F
p∗(x)dx

) 1
2

=⇒
∥∥∇2

θL(P∗)
∥∥
2
≤ 1

2

(
1− TV(P∗, Q)

) 1
2
(∫

x

∥∥T (x)T (x)⊤∥∥2
F
p∗(x)dx

) 1
2

. (7)
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We bound the two terms in the product above separately. The first term is small when P∗ and Q are
significantly different. The second term is an upper bound of the Frobenius norm of the Fisher matrix
at P∗. We will construct P∗ such that the first term dominates, giving us the upper bound required.

3.2 CONSTRUCTING THE HARD DISTRIBUTION P∗

The hard distribution P∗ over Rd will have the property that EP∗ [x] = 0, EP∗ [xx
⊤] = Id, but will

still have large TV distance from the standard Gaussian Q = N (0, Id). This distribution will simply
be a product distribution—the following lemma formalizes our main trick of tensorization to construct
a distribution having large TV distance with the Gaussian.
Lemma 5. Let d > 0 be given. Let Q = N (0, Id) be the standard Gaussian in Rd. Then, for some
δ < 1, there exists a log-concave distribution P (also over Rd) with mean 0 and covariance Id
satisfying TV(P,Q) ≥ 1− δd.

Proof. Let Q̂ denote the standard normal distribution over R. Let P̂ be any other distribution over
R with mean 0 and variance 1 that satisfies ρ(P̂ , Q̂) = δ < 1, where ρ(P̂ , Q̂) =

∫
x

√
p̂q̂ dx is the

Bhattacharya coefficient. Since ρ tensorizes (Wasserman, 2020), we have that ρ(P̂ d, Q̂d) = ρ(P̂ , Q̂)d

for any d > 1. We can then write the Hellinger distance between P,Q as

H2(P,Q) := 1−
∫
x

√
pq dx = 2(1− ρ(P̂ , Q̂)d). (8)

Further, we also know that
1

2
H2(P̂ d, Q̂d) ≤ TV(P̂ d, Q̂d) =⇒ 1− ρ(P̂ , Q̂)d ≤ TV(P̂ d, Q̂d) =⇒ 1− δd ≤ TV(P̂ d, Q̂d).

Setting P = P̂ d and noting that Q̂d = Q = N (0, Id), we have TV(P,Q) ≥ 1− δd. Finally, if the
chosen P̂ is a log-concave distribution, then so is P̂ d, since the product of log-concave distributions
is log-concave, which completes the proof.

We will now explicitly define the distribution P∗ that we will work with for rest of the paper.
Definition 6. Consider the exponential family

{
pθ(x) = exp

(
θ⊤T (x)

)}
θ∈Rd+1 given by the suffi-

cient statistics T (x) = (x4
1, . . . , x

4
d, 1). Let P∗ = P̂ d where P̂ is the distribution on R with density

function p̂ given by

p̂(x) ∝ exp

(
−x4

σ4

)
.

We will set the constant of proportionality C and σ appropriately to ensure that P̂ has mean 0 and
variance 1. Note that P∗ = Pθ∗ for θ∗ = −

(
1
σ4 , . . . ,

1
σ4 , logC

)
.

Since d2 log p̂
dx2 = − 12x2

σ4 ≤ 0, p̂ is log-concave. Further, symmetry of p̂ around the origin gives
E[P̂ ] = 0, and the choice of σ ensures that Var[P̂ ] = 1. The normalizing constant C satisfies

C =

∫ ∞

−∞
e−

x4

σ4 dx = 2

∫ ∞

0

e−
x4

σ4 dx.

Substituting t = x4

σ4 , dt = 4x3

σ4 dx = 4t3/4

σ dx gives

C =
σ

2

∫ ∞

0

t−3/4e−tdt =
σ

2
Γ

(
1

4

)
= 2σΓ

(
5

4

)
.

where Γ(z) is the gamma function defined as Γ(z)
∫∞
0

xz−1e−xdx. The variance is given by

Var
[
P̂
]
=

1

C

∫ ∞

−∞
x2e−

x4

σ4 dx =
2

C

∫ ∞

0

x2e−
x4

σ4 dx.

The same substitution as above gives

Var(P̂ ) =
1

2C

∫ ∞

0

t1/2t−3/4σ3e−tdt =
σ3

2C

∫ ∞

0

t−1/4e−tdt =
σ3

2C
Γ

(
3

4

)
=

σ2

4

Γ(3/4)

Γ(5/4)
.
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Thus, setting σ =
√

4Γ(5/4)
Γ(3/4) results in Var[P̂ ] = 1. Correspondingly, we have C = 4Γ(5/4)3/2√

Γ(3/4)
.

For this choice of P̂ , the Bhattacharya coefficient ρ(P̂ , Q̂) is given by:

ρ(P̂ , Q̂) =

∫ ∞

−∞

√
p̂(x)q̂(x)dx =

1√
C
√
2π

∫ ∞

−∞
exp

(
−x2

4
− x4

2σ4

)
dx ≈ 0.9905 ≤ 0.991 < 1.

Thus, in the proof of Lemma 5, we can use this choice of P̂ , and we have that for δ = 0.991 and
P∗ = P̂ d, TV(P∗, Q) ≥ 1− δd, as required.

3.3 BOUNDING THE FISHER INFORMATION MATRIX

In this subsection, we bound the second factor in eq. (7), which is an upper bound on the Frobenius
norm of the Fisher information matrix at θ∗.
Lemma 7. For some constant M > 0, we have∫

x

∥∥T (x)T (x)⊤∥∥2
F
p∗(x)dx ≤ d2M, (9)

Proof. Recall that T (x) = (x4
1, . . . , x

4
d, 1). Then,∥∥T (x)T (x)⊤∥∥2

F
=

∑
i

x16
i +

∑
i ̸=j

x8
ix

8
j + 2

∑
i

x4
i + 1. (10)

Therefore, by linearity of expectation, and using the fact that P∗ is a product distribution,∫
x

∥∥T (x)T (x)⊤∥∥2
F
p∗(x)dx = d · EP̂

[
x16

]
+ d(d− 1) ·

(
EP̂

[
x8

])2
+ 2d · EP̂

[
x4

]
+ 1 ≤ d2M,

for an appropriate choice of constant M . This constant exists since all the expectations above are
bounded owing to the fact that the exponential density p̂ dominates in the integrals.

3.4 PUTTING THINGS TOGETHER

For P∗ defined as above, and Q = N (0, Id), Lemma 5 ensures that 1 − TV(P∗, Q) ≤ δd, for
δ = 0.991. From Lemma 7, we have that∫

x

∥∥T (x)T (x)T∥∥2
F
p∗(x)dx ≤ d2M.

Substituting these bounds in eq. (7), we get that∥∥∇2
θL(P∗)

∥∥
2
≤ 1

2
δd/2d

√
M = exp(−Ω(d)).

By construction, p∗ is a product distribution with Ep∗ [x] = 0 and Ep∗

[
xx⊤] = Id, which completes

the proof of the theorem.

4 PROOF OF THEOREM 4

We will bound the error of the optimizer θ̂n of the empirical NCE loss (eq. (2)) using the bias-variance
decomposition of MSE. To do this, we will reason about the random variable

√
n(θ̂n − θ∗); let Σ be

its covariance matrix. Since θ̂n is an unbiased estimate of θ∗, the MSE decomposes as

E
[∥∥∥θ̂n − θ∗

∥∥∥2
2

]
=

1

n
Tr(Σ). (11)

The proof of Theorem 4 proceeds as follows. In Section 4.1, we show that the random variable√
n(θ̂n − θ∗) is asymptotically normal with mean 0 and covariance matrix Σ given by

Σ = ∇2
θL(θ∗)

−1Var
[√

n∇θL
n(θ∗)

]
∇2

θL(θ∗)
−1. (12)
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We prove that the Hessian ∇2
θL(θ∗) is invertible in Appendix C, so that the above expression is

well-defined. Since Σ ⪰ 0 (it is a covariance matrix), to get a lower bound on Tr(Σ), it suffices to get
a lower bound on the largest eigenvalue of Σ. Looking at the factors on the right hand side of eq. (12),
we note first that Theorem 3 ensures an exponential lower bound on all eigenvalues of ∇2

θL(θ∗)
−1.

The bulk of the proof towards lower bounding the largest eigenvalue of Σ consists of lower bounding
Var

[
v⊤ ·

√
n∇θL

n(θ∗)
]
), the directional variance of

√
n∇θL

n(θ∗) along a suitably chosen direction
v in terms of v⊤∇2

θL(θ∗)v. In Section 4.2 and Section 4.3, we use anti-concentration bounds to
prove such variance lower bounds.

4.1 GAUSSIAN LIMIT OF
√
n(θ̂n − θ∗)

To begin, we will show that
√
n(θ̂n − θ∗) behaves as a Gaussian random variable as n → ∞. Recall

that the empirical NCE loss is given by eq. (2):

Ln(θ) =
1

n

n∑
i=1

−1

2
ln

pθ(xi)

pθ(xi) + q(xi)
+

1

n

n∑
i=1

−1

2
ln

q(yi)

pθ(yi) + q(yi)
,

where xi ∼ P∗ and yi ∼ Q are i.i.d. Let θ̂n be the optimizer for Ln. Then, by the Taylor expansion
of ∇θL

n around θ∗, we have
√
n
(
θ̂n − θ∗

)
= −∇2

θL
n(θ∗)

−1 ·
√
n∇θL

n(θ∗)−
√
n ·O

(∥∥∥θ̂n − θ∗

∥∥∥2) (13)

by Gutmann & Hyvärinen (2012), who also show in their Theorem 2 that θ̂n is a consistent estimator

of θ∗; hence, as n → ∞,
∥∥∥θ̂n − θ∗

∥∥∥2 → 0. Gutmann & Hyvärinen (2012, Lemma 12) also assert1

that the Hessian of the empirical NCE loss (eq. (2)) at θ∗ converges in probability to the Hessian
of the true NCE loss (definition 1) at θ∗, i.e., ∇2

θL
n(θ∗)

−1 P−→ ∇2
θL(θ∗)

−1. On the other hand, by
the Central Limit Theorem,

√
n∇θL

n(θ∗) converges to a Gaussian with mean E[
√
n∇θL

n(θ∗)] =√
n∇θL(θ

∗) = 0, and covariance Var[
√
n∇θL

n(θ∗)]. With these considerations, we conclude that
the random variable

√
n(θ̂n−θ∗) in eq. (13) is asymptotically a Gaussian with mean 0 and covariance

Σ = ∇2
θL(θ∗)

−1Var[
√
n∇θL

n(θ∗)]∇2
θL(θ∗)

−1, as defined in eq. (12).

Next, we introduce some quantities which will be useful in the subsequent calculations. As we
already have a handle on the spectrum of ∇2

θL(θ∗) from Theorem 3, the main object of our focus
in eq. (12) is the term Var[

√
n∇θL

n(θ∗)]. In particular, since we are concerned with the directional
variance of Σ, we will reason about Var

[
v⊤ ·

√
n∇θL

n(θ∗)
]

for a fixed vector of ones, i.e., v = 1d+1.
This vector has the property that for all x, v⊤T (x) ≥ 1, as all non-constant coordinates of T are
non-negative, and the remaining coordinate is 1. Note that

∇θL
n(θ∗) = − 1

2n

n∑
i=1

q(xi)T (xi)

p∗(xi) + q(xi)
+

1

2n

n∑
i=1

p∗(yi)T (yi)

p∗(yi) + q(yi)

where xi ∼ P∗ and yi ∼ Q. Writing out the variance term explicitly, we have

Var
[
v⊤ ·

√
n∇θL

n(θ∗)
]
= n · 1

4n
Varx∼p∗

[
q(x) · v⊤T (x)
p∗(x) + q(x)

]
+ n · 1

4n
Vary∼q

[
p∗(y) · v⊤T (y)
p∗(y) + q(y)

]

(using linearity and independence)

=
1

4
Varx∼p∗

[
q(x) · v⊤T (x)
p∗(x) + q(x)

]
︸ ︷︷ ︸

A(x)

+
1

4
Vary∼q

[
p∗(y) · v⊤T (y)
p∗(y) + q(y)

]
︸ ︷︷ ︸

B(y)

. (14)

Define A(x) = q(x)·v⊤T (x)
p∗(x)+q(x) = R1(x)

1+R1(x)
v⊤T (x) where R1(x) =

q(x)
p∗(x)

and B(y) = p∗(y)·v⊤T (y)
p∗(y)+q(y) =

R2(y)
1+R2(y)

v⊤T (y) where R2(y) =
p∗(y)
q(y) . To show that Varx∼p∗ [A(x)] and Vary∼q[B(y)] are large, we

will need anti-concentration bounds on R1(x) and R2(y).
1Translating notation: Td = n, JTd(θ) = −2Ln(θ) and setting ν = 1 gives Iν = 2∇2L(θ∗) as in eq. (6).
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4.2 ANTI-CONCENTRATION OF R1(x), R2(y)

Next, we show that R1 and R2 satisfy (quantitative) anti-concentration. We show this by a relatively
straightforward application of the Berry-Esseen Theorem, and the proof is given in Appendix B.
Precisely, we show:
Lemma 8. Let d > 0 be sufficiently large. Let p = p̂d and q = q̂d be any product distributions, and

define R(x) = q(x)
p(x) . Suppose we have the following third moment bound: Ex∼p̂

[(
log q̂

p̂

)3
]
< ∞.

Then, for any ϵ, there exist constants α = α(p̂, q̂, ϵ), µ = µ(p̂, q̂, ϵ) < 0 such that

Px∼p

[
R(x) ≤ exp

(
µd− α

√
d
)]

≥ 1

2
− ϵ and Px∼p

[
R(x) ≥ exp

(
µd+ α

√
d
)]

≥ 1

2
− ϵ.

Instantiating Lemma 8 for the pair (p∗, q) gives us the anti-concentration result for R1, while
instantiating it for the reversed pair (q, p∗) gives us the anti-concentration result for R2. We can
verify that the third moment condition holds in both instantiations, since in both the cases, log(q̂/p̂)
is a polynomial. Crucially, we will also utilize the fact that the constant µ is negative (as it equals
−KL(p̂||q̂)). We are now ready to bound the variance of A(x) and B(y).

4.3 BOUNDING THE VARIANCE OF A(x), B(y)

Recall that A(x) = R1(x)·v⊤T (x)
1+R1(x)

and B(y) = R2(y)·v⊤T (y)
1+R2(y)

. Let µ, α be the constants given by

Lemma 8 for p∗, q, ϵ. Further, let L1 = exp
(
µd− α

√
d
)

and L2 = exp
(
µd+ α

√
d
)

. Since the
mapping x 7→ x

1+x is monotonically increasing in x,

Px∼p∗ [R1(x) ≤ L1] = Px∼p∗

[
R1(x)

1 +R1(x)
≤ L1

1 + L1

]
≥ 1

2
− ϵ (15)

Px∼p∗ [R1(x) ≥ L2] = Px∼p∗

[
R1(x)

1 +R1(x)
≥ L2

1 + L2

]
≥ 1

2
− ϵ. (16)

Let Tup be such that

Px∼p∗

[
∥T (x)∥ ≤ Tup

]
≥ 7

8
and Px∼q

[
∥T (x)∥ ≤ Tup

]
≥ 7

8
. (17)

In Appendix D, we show that some Tup = O(σ2
√
d) suffices for this to hold. Then, from eq. (15),

we have

Px∼p∗

[
R1(x)

1 +R1(x)
≤ L1

1 + L1

]
≥ 1

2
− ϵ

=⇒ Px∼p∗

[
R1(x) · v⊤T (x)

1 +R1(x)
≤ L1

√
d+ 1∥T (x)∥
1 + L1

]
≥ 1

2
− ϵ (Cauchy-Schwarz)

=⇒ Px∼p∗

[(
R1(x) · v⊤T (x)

1 +R1(x)
≤ L1

√
d+ 1∥T (x)∥
1 + Li1

)
∧
(
∥T (x)∥ ≤ Tup

)]
≥ 3

8
− ϵ

(union bound with eq. (17))

=⇒ Px∼p∗

[
R1(x)v

⊤T (x)

1 +R1(x)
≤

√
d+ 1L1Tup

1 + L1

]
≥ 3

8
− ϵ

=⇒ Px∼p∗

[
A(x) ≤

√
d+ 1L1Tup

1 + L1

]
≥ 1

4
,

for ϵ ≤ 1
8 . On the other hand, recall also that v satisfies v⊤T (x) ≥ 1 for all x. Therefore, we have

Px∼p∗

[
R1(x)

1 +R1(x)
≥ L2

1 + L2

]
≥ 1

2
− ϵ

=⇒ Px∼p∗

[
R1(x) · v⊤T (x)

1 +R1(x)
≥ L2

1 + L2

]
≥ 1

2
− ϵ =⇒ Px∼p∗

[
A(x) ≥ L2

1 + L2

]
≥ 1

4
.

7
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Now, consider the event A1 =
{
A(x) ∈

[
1
2Ex∼p∗ [A(x)], 3

2Ex∼p∗ [A(x)]
]}

. If this event were to

intersect both the events A2 =
{
A(x) ≤

√
d+1L1Tup

1+L1

}
and A3 =

{
A(x) ≥ L2

1+L2

}
, then we would

have
1

2
Ex∼p∗ [A(x)] ≤

√
d+ 1L1Tup

1 + L1
and

3

2
Ex∼p∗ [A(x)] ≥ L2

1 + L2

=⇒ L2

L1
· 1

Tup

√
d+ 1

· L1 + 1

L2 + 1
≤ 3.

We will show that this cannot be the case. Recall that µ < 0, which means that L2 = exp(µd +

α
√
d) < 1 for sufficiently large d. This means that for sufficiently large d we have:

exp(µd+ α
√
d) < 1

=⇒ exp(µd+ α
√
d)− 2 exp(µd− α

√
d) < 1

=⇒ 1 + exp(µd+ α
√
d) < 2 + 2 exp(µd− α

√
d)

=⇒ 1 + exp(µd− α
√
d)

1 + exp(µd+ α
√
d)

>
1

2

=⇒ L1 + 1

L2 + 1
>

1

2
.

Further, since L2

L1
= exp(2α

√
d) and Tup = O(σ2

√
d), we get that

L2

L1
· 1

Tup

√
d+ 1

· L1 + 1

L2 + 1
>

exp(2α
√
d)

O(σ2d)
· 1
2
> 3,

where the last inequality follows for large enough d since the numerator grows faster than the
denominator. Hence for large enough d, A1 cannot intersect both A2 and A3. If the event A1 is
disjoint from A2, then

Px∼p∗ [A1 ∪A2] = Px∼p∗ [A1] + Px∼p∗ [A2] ≤ 1

=⇒ Px∼p∗ [A1] ≤ 1− Px∼p∗ [A2]

=⇒ Px∼p∗

[
A(x) ∈

[
1

2
Ex∼p∗ [A(x)],

3

2
Ex∼p∗ [A(x)]

]]
≤ 3

4

=⇒ Px∼p∗

[
|A− Ep∗A| ≥ 1

2
Ep∗A

]
≥ 1

4
.

This finally lower-bounds the variance of A as

Varp∗ [A] = E
[
(A− Ep∗A)2

]
≥ 1

4
(Ep∗A)2 · P

[
(A− Ep∗A)2 ≥ 1

4
(Ep∗A)2

]
≥ 1

16
(Ep∗A)2.

and thus Ep∗(A
2)− (Ep∗A)2 = Varp∗ [A] ≥ 1

16 (Ep∗A)2, so that (Ep∗A)2 ≤ 16
17Ep∗(A

2).

Altogether, we get Varp∗ [A] ≥ 1
17Ep∗(A

2). An analogous argument in the case when A1 is disjoint
with A3 yields the same bound on the variance. Using an identical argument for R2 and B, we get
that for large enough d, Varq[B] ≥ 1

17Eq(B
2).

4.4 PUTTING THINGS TOGETHER

Putting together the lower bounds Varp∗ [A] ≥ 1
17Ep∗(A

2) and Varq[B] ≥ 1
17Eq(B

2) we showed in
the previous subsection, and recalling eq. (14), we get

Var
[
v⊤ ·

√
n∇θL

n(θ∗)
]
=

1

4
Varp∗ [A] +

1

4
Varp∗ [B] ≥ 1

68

(
Ep∗

[
A2

]
+ Eq

[
B2

])
=

1

68

(∫
x

(
q(x)2p∗(x) + q(x)p∗(x)

2

(p∗(x) + q(x))2

)
v⊤T (x)T (x)⊤v dx

)
=

1

68
v⊤ ·

∫
x

p∗(x)q(x)

p∗(x) + q(x)
T (x)T (x)⊤dx · v =

1

34
v⊤∇2

θL(θ∗)v

(from eq. (6)).
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Finally, since ∇2
θL(θ∗) is invertible as claimed earlier (Lemma 10, Appendix C), let w be such that

v = ∇2
θL(θ∗)

−1w. Then, recalling the expression for Σ in eq. (12), we can conclude that

w⊤Σw = v⊤Var
[√

n∇θL
n(θ∗)

]
v = Var

[
v⊤ ·

√
n∇θL

n(θ∗)
]

≥ 1

34
v⊤∇2

θL(θ∗)v =
1

34
w⊤∇2

θL(θ∗)
−1w, (18)

which gives us the desired bound on the MSE, namely

E
[∥∥∥θ̂n − θ∗

∥∥∥2
2

]
≥ 1

n
Tr(Σ) ≥ 1

n
sup
z

z⊤Σz

∥z∥2

≥ 1

n

w⊤Σw

∥w∥2
≥ 1

34n

w⊤∇2
θL(θ∗)

−1w

∥w∥2
≥ 1

34n
inf
z

z⊤∇2
θL(θ∗)

−1z

∥z∥2
≥ exp(Ω(d))

n
,

where the last inequality follows from Theorem 3 and the fact that λmax(∇2
θL(θ∗))

−1 =
λmin(∇2

θL(θ∗)
−1). This concludes the proof of Theorem 4.

5 SIMULATIONS

Figure 1: Log MSE versus
Dimension—Theorem 4 sug-
gests this plot should be linear,
as is observed.

We also verify our results with simulations. Precisely, we study
the MSE for the empirical NCE loss as a function of the ambient
dimension, and recover the dependence from Theorem 4. For di-
mension d ∈ {70, 72, . . . , 120}, we generate n = 500 samples from
the distribution P∗ we construct in the theorem. We generate an
equal number of samples from the noise distribution Q = N (0, Id),
and run gradient descent to minimize the empirical NCE loss to
obtain θ̂n. Since we explicitly know what θ∗ is, we can compute the
squared error ∥θ̂n − θ∗∥2. We run 100 trials of this, where we obtain
fresh samples each time from P∗ and Q, and average the squared
errors over the trials to obtain an estimate of the MSE.

Figure 1 shows the plot of logMSE versus dimension - we can see
that the graph is nearly linear. This corroborates the bound in Theorem 4, which tells us that as
n → ∞, the MSE scales exponentially with d. This behavior is robust even when the proportion of
noise samples to true data samples is changed to 70:30 (though our theory only addresses the 50:50
case). Finally, we note that optimizing the empirical NCE loss becomes numerically unstable with
increasing d (due to very large ratios in the loss), which is why we used comparatively moderate
values of d.

6 CONCLUSION

Despite significant interest in alternatives to maximum likelihood—for example NCE (considered
in this paper), score matching, etc.—there is little understanding of what there is to “sacrifice” with
these losses, either algorithmically or statistically. In this paper, we provided formal lower bounds on
the asymptotic sample complexity of NCE, when using a common choice for the noise distribution Q,
a Gaussian with matching mean and covariance. Thus, it is likely that even for moderately complex
distributions in practice, more involved techniques like Gao et al. (2020); Rhodes et al. (2020) will
have to be used, in which one learns a noise distribution Q simultaneously with the NCE minimization
or “anneals” the NCE objective. There is very little theoretical understanding of such techniques, and
this seems like a very fruitful direction for future work.
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A BOUNDING THE MATRIX INTEGRAL IN EQUATION 6

We prove a variant of the Cauchy-Schwarz inequality that gives us a handle on norms of matrix
integrals.
Lemma 9. Let f : Rd → R and A : Rd → Rn be integrable functions, with M =

∫
x
f(x)A(x)dx.

Then we have

∥M∥22 =

∥∥∥∥∫
x

f(x)A(x)ds

∥∥∥∥2
2

≤
(∫

x

|f(x)|2dx
)(∫

x

∥A(x)∥22dx
)
. (19)

Similarly, if A : Rd → Rn×n is a matrix valued function then

∥M∥2F =

∥∥∥∥∫
x

f(x)A(x)

∥∥∥∥2
F

≤
(∫

x

|f(x)|2dx
)(∫

x

∥A(x)∥2F dx
)
. (20)

Proof. The proof follows from the Cauchy-Schwarz inequality. Since we integrate component-wise,
for eq. (19) we have that

M2
i =

(∫
x

f(x)A(x)idx

)2

≤
(∫

x

f(x)2dx

)(∫
x

A(x)2i dx

)
.

Summing over i, we get the result. The matrix variant eq. (20) follows by looking at the matrix M as
a vector in Rn2

.

B PROOF OF LEMMA 8

We restate the lemma for convenience:
Lemma 8. Let d > 0 be sufficiently large. Let p = p̂d and q = q̂d be any product distributions, and

define R(x) = q(x)
p(x) . Suppose we have the following third moment bound: Ex∼p̂

[(
log q̂

p̂

)3
]
< ∞.

Then, for any ϵ, there exist constants α = α(p̂, q̂, ϵ), µ = µ(p̂, q̂, ϵ) < 0 such that

Px∼p

[
R(x) ≤ exp

(
µd− α

√
d
)]

≥ 1

2
− ϵ and Px∼p

[
R(x) ≥ exp

(
µd+ α

√
d
)]

≥ 1

2
− ϵ.

Proof. We will analyze the behaviour of R(x) using the Berry-Esseen theorem. Given that p∗ = p̂d

and q = q̂d are product distributions, let r(x) be the random variable defined by r(x) = q̂(x)
p̂(x) , x ∼ p̂.

Let yi(x) = log r(x) for 1 ≤ i ≤ d be d independent copies of the random variable r(x). Let
E[yi] = µr, E

[
∥yi − µr∥2

]
= σ2

r and E
[
∥yi − µr∥3

]
= γr, all of which are well defined by the

hypothesis of the lemma. Let Y =
∑d

i=1 yi, and Z be the standard Gaussian in R. Then, by the
Berry-Esseen Theorem (Durrett, 2019, Theorem 3.4.17),

P
[
Y − µrd

σr

√
d

≤ −c

]
≥ P[Z ≤ −c]− CBE · γr

σ3
r

√
d

,

where CBE < 1 (van Beek, 1972) is an absolute constant. We can now choose c = c(ϵ) such that
P[Z ≤ c] ≥ 1−ϵ

2 . Further, we can choose d large enough so that CBE·γ
σ3

√
d
≤ ϵ

2 . Then for µ = µr and
α = cσr, we have

Px∼p

[
R(x) ≤ exp

(
µd− α

√
d
)]

≥ 1

2
− ϵ.

Since Z is symmetric around 0, Berry-Esseen gives us the other inequality for the same choice of µ
and α,

P
[
Y − µrd

σr

√
d

≥ c

]
≥ P[Z ≥ c]− CBE · γr

σ3
r

√
d

≥ 1

2
− ϵ.

Note that the constants µ and α are independent of d. Further, note that µ = µr = −KL(p̂||q̂) <
0.

11



Published as a conference paper at ICLR 2023

C INVERTIBILITY OF THE HESSIAN

We prove that the Hessian of NCE loss for the exponential family given by T (x) = (x4
1, . . . , x

4
d, 1) is

invertible. In particular, we have the following lemma:

Lemma 10. Let Q = N (0, Id) be the standard Gaussian in Rd. Let P̂ be the log concave distribution
defined in definition 6. Let P = P̂ d. Let q and p denote the density functions of Q and P respectively.
Observe that P is in the exponential family given by T (x) = (x4

1, . . . , x
4
d, 1), and equals Pθ∗ for

some θ∗. Then the hessian of the NCE loss with respect to distribution P and noise Q given by

H = ∇2
θL(θ∗) =

1

2

∫
x

p∗q

p∗ + q
T (x)T (x)⊤

is invertible.

Proof. For any subset A ⊆ Rd, define

HA =
1

2

∫
x∈A

p∗q

p∗ + q
T (x)T (x)⊤.

Observe that the density functions p∗ and q of P∗ and Q respectively are strictly positive over all of
Rd. Therefore, for any subset A ⊆ Rd and any v ∈ Rd+1, we have

v⊤Hv ≥ 1

2

∫
x∈A

p∗q

p∗ + q
v⊤T (x)T (x)⊤v = v⊤HAv.

Given a vector v ∈ Rd+1, we will pick A such that
∣∣T (x)⊤v∣∣ > 0 for all x ∈ A. Note that the

set B = {e1 + ed+1, . . . , ed + ed+1, ed+1} is a basis. Therefore, if b⊤v = 0 for all b ∈ B, then
v = 0. Hence, there exists some x ∈ {e1, . . . , ed} such that

∣∣T (x)⊤v∣∣ > 0. Since x 7→ T (x)⊤v is a
continuous function, we can find an open set A around x such that∣∣T (y)⊤v∣∣ > 0, ∀y ∈ A.

It follows that

v⊤HAv =
1

2

∫
x∈A

p∗q

p∗ + q
v⊤T (x)T (x)⊤v =

1

2

∫
x∈A

p∗q

p∗ + q

∣∣T (x)⊤v∣∣2 > 0.

Let B = Rd \ A. Since v⊤HAv > 0 and v⊤HBv ≥ 0, we have that v⊤Hv > 0. Since this holds
for any arbitrary non-zero vector v, the matrix H must be full rank. Since H is an integral of PSD
matrices, it is a full rank PSD matrix and hence invertible.

D TAIL BOUNDS FOR EQUATION 17

We prove that some Tup = O(σ2
√
d) suffices to obtain the bounds in eq. (17). Concretely, we prove

tail bounds for ∥T (x)∥ using tail bounds for P∗ and Q. We will use Lemma 1 from Laurent &
Massart (2000) which proves a bound for χ2 distributions:
Lemma (Lemma 1, Laurent & Massart (2000)). If X is a χ2 random variable with d degrees of
freedom, then for any positive t,

P
[
X − d ≥ 2

√
td+ 2t

]
≤ exp(−t).

Then, for x ∼ Q, ∥x∥2 is a χ2 random variable with d degrees of freedom. Observe that for t, d ≥ 4,
we have d+ 2t+ 2

√
td ≤ 2td. In particular, we have the weaker bound

Px∼Q

[
∥x∥2 ≥ 2dt2

]
≤ exp

(
−t2

)
,

implying that

Px∼Q

[
∥x∥ ≥ t

]
≤ exp

(
− t2

2d

)
.

12
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Further, if ∥x∥ ≥ σ2
√
d, q(x) ≥ p∗(x), implying that for t ≥ σ2

√
d

Px∼P∗

[
∥x∥ ≥ t

]
≤ exp

(
− t2

2d

)
.

In particular, for any δ such that log(1/δ) ≥ σ4, we have

Px∼Q

[
∥x∥ ≥

√
2d log(1/δ)

]
≤ δ and Px∼P∗

[
∥x∥ ≥

√
2d log(1/δ)

]
≤ δ. (21)
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