
SoftManiSim: A Fast Simulation Framework for
Multi-Segment Continuum Manipulators Tailored for

Robot Learning

Mohammadreza Kasaei
School of Informatics

University of Edinburgh, UK
m.kasaei@ed.ac.uk

Hamidreza Kasaei
Department of Artificial Intelligence, Bernoulli Institute

University of Groningen, The Netherlands
hamidreza.kasaei@rug.nl

Mohsen Khadem
School of Informatics

University of Edinburgh, UK
mohsen.khadem@ed.ac.uk

Abstract: This paper introduces SoftManiSim, a novel simulation framework
for multi-segment continuum manipulators. Existing continuum robot simulators
often rely on simplifying assumptions, such as constant curvature bending or ig-
noring contact forces, to meet real-time simulation and training demands. To
bridge this gap, we propose a robust and rapid mathematical model for continuum
robots at the core of SoftManiSim, ensuring precise and adaptable simulations.
The framework can integrate with various rigid-body robots, increasing its utility
across different robotic platforms. SoftManiSim supports parallel operations for
simultaneous simulations of multiple robots and generates synthetic data essen-
tial for training deep reinforcement learning models. This capability enhances
the development and optimization of control strategies in dynamic environments.
Extensive simulations validate the framework’s effectiveness, demonstrating its ca-
pabilities in handling complex robotic interactions and tasks. We also present real
robot validation to showcase the simulator’s practical applicability and accuracy
in real-world settings. To our knowledge, SoftManiSim is the first open-source
real-time simulator capable of modeling continuum robot behavior under dynamic
point/distributed loading. It enables rapid deployment in reinforcement learning
and machine learning applications. This simulation framework can be downloaded
from https://github.com/MohammadKasaei/SoftManiSim.

Keywords: Simulation Framework, Soft Robotics, Mathematical Modeling.

1 Introduction

Figure 1: Various simulation scenarios using the SoftManiSim framework and Pybullet demonstrate
the versatility of multi-segment continuum robots integrated with different robotic systems. These
scenarios highlight the framework’s capability to model complex interactions, precise manipulations,
and integration with various robotic systems, leveraging advanced mathematical formulations.

Continuum robots, distinguished by their jointless, flexible structures, are pivotal in applications
requiring high maneuverability and precision. These robots excel in navigating confined spaces,

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://github.com/MohammadKasaei/SoftManiSim

Table 1: Overview of existing simulation frameworks and their capabilities.
Framework Modeling

approach
Physics model

complexity URDF Rigid
robots

Continuum
robots

Continuum robot
shape information

Adaptive
shape resolutions

Support shape
extensibility

Rigid-soft
hybrid robots

Open
source

PyBullet/Bullet [17] rigid-body physics low ✓ ✓ × × × × × ✓
Gazebo [19] rigid-body physics low ✓ ✓ × × × × × ✓
MuJoCo [20] rigid-body physics low ✓ ✓ × × × × × ×
Webots [26] rigid-body physics low × ✓ × × × × × ✓
Huang et al. [23] Cosserat rods medium-high × × ✓ ✓ ✓ × × ×
Elastica [21] Cosserat rods medium-high × × ✓ ✓ ✓ × × ✓
ChainQueen [27] Particle-grid hybrid high × × ✓ × × × × ✓
SOFA [22] FEM high × ✓ ✓ ✓ ✓ ✓ ✓ ✓
PyBullet + SoMo [18] rigid-body physics low ✓ ✓ ✓ × × × ✓ ✓

SoftManiSim rigid-body physics +
Cosserat low ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

making them suitable for intricate tasks in various settings, particularly in search and rescue op-
erations, exploration, and surgical domains [1]. Several methodologies have been proposed to
control such robots, falling into two broad categories: model-based [2, 3, 4, 5] and data-driven
approaches [6, 7, 8, 9, 10, 11, 12]. A detailed review of model-based approaches for soft robots
is presented in [13]. In recent years, data-driven methods, particularly those leveraging deep rein-
forcement learning (DRL), have become increasingly popular for controlling soft continuum robots.
These techniques excel in managing the robots’ complex, nonlinear behaviors and high degrees of
freedom, which are challenging to address with traditional control strategies.

DRL approaches rely on large datasets to effectively predict and adapt to a robot’s dynamic inter-
actions and deformations in real-time [14, 15, 16]. This capability is crucial for precision-critical
applications, such as minimally invasive surgery. Accurate simulation plays a key role in generating
the extensive data needed for training DRL models. Thus, the ability to produce detailed and realistic
simulation data is essential for leveraging the full potential of DRL. Existing simulators like [17, 18]
often represent these robots as a series of discrete, spring-connected links — a method that doesn’t
fully capture their continuous nature. This simplification leads to significant gaps between how the
robots perform in simulations versus real life, reducing their effectiveness in tasks where precision is
critical. Recent popular simulation frameworks such as PyBullet [17], Gazebo [19], and MuJoCo [20]
are primarily designed for rigid-body dynamics, offering limited support for the nuanced modeling
of continuum robots. While more specialized frameworks like Elastica [21], SOFA [22], and Huang
et al. [23] address some of these challenges using advanced models like Cosserat rods [24], they
often come with increased computational complexity and reduced accessibility.

In this paper, we present SoftManiSim, a novel framework that integrates advanced continuum robot
modeling with the robust PyBullet simulator. SoftManiSim combines the simplicity of rigid-body
physics with the detailed modeling of Cosserat rods, providing a comprehensive toolset for simulating
both continuum and rigid-continuum robots. The Cosserat rod theory is commonly used to model
continuum and soft robots [25]. This approach, though accurate, involves solving complex boundary
value problems (BVPs), which can be computationally intensive. To address this, we propose a novel
solver that rapidly estimates the Cosserat rod equations under dynamic loading without solving the
BVP. The solver uses a temporal observer to estimate the robot’s initial curvature, transforming the
BVP into a parallelizable initial value problem (IVP), thus improving computational efficiency.

Figure 2: Overview of the frame-
work.

The simulator benefits from this solver to offer adaptive shape
resolutions, shape extensibility, and leverages PyBullet’s pow-
erful physics engine for enhanced simulation capabilities. This
integration ensures a balance between accuracy and computa-
tional efficiency, making SoftManiSim an ideal platform for de-
veloping and optimizing hybrid robotic systems. An overview
of existing simulation frameworks and their capabilities is pre-
sented in Table 1, illustrating the advantages and versatility of
SoftManiSim in addressing the limitations of current methods.
Figure 1 demonstrates various simulation scenarios using Soft-
ManiSim framework, highlighting its versatility and capability
to model complex interactions and precise manipulations.

This paper is structured as follows: Section 2 explains the core
methodologies employed in the development of SoftManiSim, including the mathematical models

2

and simulation integration. In Section 3, we detail the approaches for real-time control and policy
optimization using our simulation framework. To showcase the efficacy of our simulation and control
strategies, a series of simulations are conducted in Section 4, and the results are discussed. Section 5
presents a detailed validation process using real hardware to demonstrate the efficacy of our sim-to-
real methodology and the robustness of the control policies developed in simulated environments.
Finally, Section 6 concludes the paper with a discussion of the findings, limitations, and potential
future work.

2 SoftManiSim

This section presents SoftManiSim — a general framework for simulating multi-segment contin-
uum robots. We begin with the mathematical modeling of a single segment which is the core
of the proposed framework, extend this to a multi-segment representation, and finally discuss the
integration of this model within the PyBullet physics engine to enhance simulation capabilities
and interactive functionalities. The overall architecture of this framework is depicted in Figure 2.

Figure 3: Schematic of a contin-
uum robot with two pull wires un-
der point load F and external dis-
tributed load f . The robot is com-
posed of two pull wires running in
parallel and constrained with re-
spect to each other using spacers.
Spacers are fixed to an elastic tube
commonly called the main back-
bone. TDCR curvature can be con-
trolled by pulling the pull wires.

2.1 Entire Body Shape Modeling

Here, we first use the Cosserat rod equations [24] and follow
the approach outlined in [28] to model a continuum robot as a
flexible rod. We discuss challenges in solving these equations
in real-time and propose a novel solution for rapid estimation
of robot shape under dynamic loading. Figure. 3 shows a con-
tinuum robot modelled as a rod defined as a curve in space,
r(𝑠) : [0, ℓ] → R3 and its orientation, R(𝑠) : [0, ℓ] → SO(3)
as functions of the rod arclength 𝑠 ∈ [0, ℓ], we can derive the
constitutive equations for calculating the instantaneous curva-
ture of the rod u(𝑠) and the overall shape of the rod [29, 28]:

r
′ (𝑠) = R(𝑠)e3, (1a)

R
′ (𝑠) = R(𝑠) [u(𝑠, 𝑡)]× , (1b)

u
′ (𝑠) = − 𝐾−1

[
[u(𝑠)]×𝐾

(
u(𝑠) − u∗)+

[e3]×R𝑇 (𝑠) (F(𝑡) +
∫ 𝑠

0
f (𝑡, 𝜎)d𝜎)

]
,

(1c)

ℓ
′
𝑖 (𝑠, 𝑡) = ∥e3 + [u(𝑠)]×d𝑖 ∥, 𝑖 = 1, · · · , 𝑛, (1d)

where ′ denotes a derivative with respect to arc length 𝑠, the [.]× operator is the isomorphism
between a vector in R3 and its skew-symmetric cross product matrix, e3 = [0, 0, 1]𝑇 is the unit
vector aligned with the z-axis of the global coordinate frame, u∗ denotes the pre-curvature of the rod
in its reference configuration, K = diag(𝐸𝐼, 𝐸 𝐼, 𝐺𝐽) is the stiffness matrix for the rod, 𝐸 is the rod’s
Young’s modulus, 𝐼 is the second moment of inertia, 𝐺 is the shear modulus, 𝐽 is the polar moment
of inertia, and F(𝑡) and f (𝑠, 𝑡) denote the external load at the rod’s tip, 𝑛 is number pull wires.

The model accepts pull wires length as input via boundary conditions. It can be solved using the
following boundary conditions:

r(0) = [0 0 0]𝑇 , R(0) = I3×3, (2a)
𝑢𝑧 (0) = 0, ℓ𝑖 (0, 𝑡) = 0, ℓ𝑖 (ℓ, 𝑡) = 𝐿𝑖 (𝑡), 𝑖 = 1, · · · , 𝑛. (2b)

where 𝐿𝑖 (𝑡) is the desired length of 𝑖th pull wire at time 𝑡. The model outlined in (1) and (2) form a
boundary value problem.

3

(a) (b)

Figure 4: (a) A comparison between the solutions of BVP solvers and the proposed solver for the
robot trajectory without external force under the constant curvature assumption. (b) A comparison
of computational efficacy between various BVP solvers and the proposed solver.

To solve the equations, it is assumed that at a given time, time-dependent variables (pull wire length
and forces) are constant, and the equations are solved in the spatial domain (with respect to 𝑠) using
an ordinary differential equation solver such as Runge–Kutta methods. Next, shooting methods can
be used to solve the boundary value problem. A shooting method consists of using a nonlinear
root-finding algorithm to iteratively converge on values for u(0, 𝑡), in order to satisfy the correct
boundary condition for pull wire lengths 𝐿𝑖 (𝑡) in (2). Next, the time-dependent variables are updated
and the equations are solved again in the spatial domain. Of note, under the assumption of constant
curvature bending and no external loading, which is prevalent in the literature [25], curvatures can
be analytically estimated from pull-wire lengths to avoid solving the BVP and estimate robot shape
in real-time. However, this assumption significantly limits the application of the model.

Our main goal here is to design a solver that will estimate the initial curvature of the robot u(0, 𝑡)
based on pull wire lengths 𝐿𝑖 (𝑡) in real-time to form an IVP system of differential equations and avoid
the need to solve the BVP iteratively. The solver modifies boundary conditions into the following
initial conditions:

r(0) = [0 0 0]𝑇 , R(0) = I3×3, 𝑢𝑧 (0) = 0, ℓ𝑖 (0, 𝑡) = 0, (3a)

𝐽 (0, 𝑡) = I3×3, 𝐷 (0, 𝑡) = 03×3×3, Γ(0, 𝑡) = I3×𝑛, u(0, 𝑡) = −
∫ 𝑡

0
PΓ𝑇 (ℓ, 𝑡)V𝜖 (𝑡) d𝑡. (3b)

The new variables introduced in (3b) are

Γ(𝑠, 𝑡) :=
𝜕l(𝑠, 𝑡)
𝜕u(0, 𝑡) , 𝐷 (𝑠, 𝑡) :=

𝜕𝑅(𝑠)
𝜕u(0, 𝑡) , 𝐽 (𝑠, 𝑡) :=

𝜕u(𝑠)
𝜕u(0, 𝑡) , (4)

and 𝑃(𝑡) is the solution of the differential Riccati equation

− ¤𝑃(𝑡) = −𝑃(𝑡)Γ𝑇 (ℓ, 𝑡)VΓ(ℓ, 𝑡)𝑃(𝑡) +𝑄,
𝑃(𝑡 𝑓) = 𝑃0,

(5)

𝑄, V, and 𝑃0 are all symmetric positive definite matrices. Details of derivation of (3b) are discussed
in Appendix A. The model combined with the initial conditions can now be solved as an IVP. To find
the shape of the robot, first the equations in (1) are solved with respect to 𝑠 given the initial values
in (3). Then, time dependant variables including 𝑢(0, 𝑡) and solver’s optimal gain 𝑃 are updated
through (3b) and (5), respectively. At the first time step, the initial curvature 𝑢(0, 𝑡) of the robot is
assumed to be zero. For a multi-segment continuum robot, each segment is defined with its own
centroids and transformations. By concatenating these transformations and curvature vectors, we
model the entire robot’s configuration.

Simulations were conducted to evaluate the proposed solver by comparing its predictions with solu-
tions obtained using four different shooting methods: the Interior Point method (IP), the Levenberg-
Marquardt method (L-M), and Sequential Quadratic Programming (SQP). These methods, using
different root-finding algorithms, are standard BVP solvers. Additionally, we compared the solver’s

4

performance with a model assuming constant curvature, commonly used in the literature. The robot
was simulated to follow 500 randomly selected points in the workspace, with root-finding algorithms
optimized to a tolerance of 10−3, and the initial curvature estimate at each sample time used as
the starting guess for subsequent steps. Simulation parameters matched those of the actual robot
described in Appendix C. In simulations, to model the robot’s behavior in the presence of contact,
we applied a distributed force of f = [1, 1, 1] N/m to the robot body and a 3D random force with
a magnitude of 0 to 2 N on the robot tip at random angles between −𝜋 and 𝜋. Comprehensive
evaluation of the proposed solver is presented in Appendix B.

Figure 4(a) compares the robot tip position using different solvers with the robot tip position in the
absence of force. It is evident that the constant curvature assumption (i.e., neglecting external forces)
results in significant errors. Additionally, the proposed solver produces a smoother estimation of the
robot tip position compared to other BVP solvers. Figure 4(b) compares the computational efficacy
of the solvers. All BVP solvers were set to a tolerance below 1×10−4 m. As shown, our solver offers
the smallest sampling time (15 ms) with the least standard deviation (3 ms). Furthermore, to compare
the accuracy of all solvers in terms of satisfying boundary values, we compared the estimated cost.
The results showed that our solver provides the best accuracy on par with the L-M method, with the
overall boundary value error estimation below 5× 10−4 m. Considering that the best BVP solver, the
L-M method, runs at 153± 106 ms, we can conclude that our solver is approximately 10 times faster
than the most accurate solver. More details are provided in Appendix B.

2.2 PyBullet Integration

We integrate this model into PyBullet [17], to leverage its potential in creating interactable environ-
ments and rendering realistic camera images. This integration is crucial for tasks requiring interaction
with environments and visual data processing like visual reinforcement learning, enabling the simu-
lation of visual feedback mechanisms essential for real-world applications like navigation and object
manipulation. Additionally, PyBullet’s comprehensive suite of tools supports functionalities such
as collision detection and real-time environmental adjustments. This fusion not only enhances the
accuracy and visual appeal of the simulations but also expands the functional scope of the robot
model, making it a powerful platform for detailed monitoring and adaptation in complex scenarios.

2.3 Interface and Custom Gym Environment

1 env = SoftManiSim (number_of_segment =5)
2 shape_wor ld_f rame , s h ap e_ r obo t _ f r ame =

env . move_ robo t_o r i (a c t i o n s , base_pos
, b a s e _ o r i n)

The SoftManiSim class is developed to fa-
cilitate the simulation of soft robots using
Pybullet physics engine. This class serves
as a comprehensive interface that initial-
izes and manages various aspects of the
simulation environment, ensuring a seamless and flexible setup process. To enhance policy learning
for continuum robots, we have developed a set of custom Gym environments within our SoftManiSim
framework, specifically designed to address the dynamic and complex behaviors inherent to these
robots. Each environment is defined as a Markov Decision Process (MDP), represented by the tuple
(𝑠𝑡 , 𝑎𝑡 , 𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡), 𝑟 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)), where 𝑠𝑡 and 𝑎𝑡 denote the state and action at time 𝑡, respec-
tively. The environments are enriched with soft manipulators, rigid obstacles, dynamically moving
objects, and other robotic systems, providing a robust and varied context for effective training. Ad-
ditionally, the gym environments use parallel execution of multiple instances to maximize training
efficiency. Detailed information about the interface, its parameters, and more information about the
custom Gyms are provided in Appendix D.

3 Model-Based Control and Policy Learning

In this section, we explore model-based control techniques and policy learning methods for a multi-
segment continuum robot equipped with a dynamically adjustable base.

5

Figure 5: Trajectory tracking results: the robot is tasked with following various paths in both 2D and
3D spaces. The red and black lines indicate the actual and desired paths, respectively.

Model-Based Control : Here, we elaborate on the design of a kinematic controller tailored for
a multi-segment continuum robot with a dynamically adjustable base. The system’s kinematics
integrate both segment articulations and base mobility, requiring a comprehensive Jacobian matrix
that correlates the robot’s end-effector velocity to its configuration space velocities, inclusive of the
additional base movements. Utilizing the entire body shape model presented in the previous section,
the Jacobian matrix J, which encapsulates the kinematic dependencies, is assumed to accommodate
the multi-segment and base mobility features:

¤x = J¤q, (6)
where x = r(ℓ, 𝑡) ∈ R3 represents the Cartesian coordinates of the robot’s end-effector, and q ∈ R𝑛∗𝑚
represents the control input vector that includes the length of 𝑛 cables for 𝑚 segments and the
transnational movements of the robot base. The columns of the Jacobian can be estimated using
finite difference as

J𝑖 =
x𝑇

(
q + △𝑞𝑖

2 𝛿𝑖
)
− x𝑇

(
q − △𝑞𝑖

2 𝛿𝑖
)

△𝑞𝑖
, (7)

where 𝛿𝑖 represents each unit vector of the canonical basis in input space, and Δ𝑞𝑖 denotes small
perturbations applied to the 𝑖-th input to facilitate the numerical Jacobian approximation. The
Jacobian matrix supports the development of a robust control strategy, enabling precise manipulation
and path-following behaviors.

One can develop a trajectory tracking controller leveraging the pseudo-inverse of the Jacobian matrix,
J+, to guide the robot’s end-effector, x(𝑡), along a desired trajectory, ¤x𝑑 (𝑡). Utilizing a proportional
control law, we aim to minimize the positional error ẽ = x𝑑 − x, by adjusting the control inputs
based on the error dynamics, ¤u = J+ [¤x𝑑 + Kẽ], where K is a symmetric positive definite matrix
acting as the proportional gain, encompassing both constant and variable components. This control
strategy is formulated to effectively zero out the trajectory error, enhancing the robot’s accuracy in
following the specified path. In the next section, a set of simulations will be conducted to assess the
performance of the controller.

Policy learning: This method enables the agent to learn from interacting with the environment
continuously, aiming to maximize the expected future return 𝑅𝑡 = E[∑∞

𝑖=𝑡 𝛾
𝑖−𝑡𝑟𝑖+1] with 𝛾 as the

discount factor. The optimal policy 𝜋∗ is sought, which maximizes the expected return for all
states and actions, guided by the Bellman equation. In the next section, we will outline the training
scenarios and the policy optimization using customized gym environments based on SoftManiSim,
ensuring that the agents can effectively learn and adapt to complex robotic tasks.

4 Simulation

Here, a series of simulation scenarios will be designed to evaluate the effectiveness of the proposed
framework exploring the diverse strategies for controlling soft and continuum robots.

• Trajectory Tracking: The robot follows various trajectories in 2D and 3D spaces, including: i) a
square on the X-Y plane (0.4 meters sides); ii) a figure-eight curve defined by 𝑥 = 0.2 sin

(
2𝑡 𝜋
10

)
and 𝑦 = 0.2 sin

(
𝑡 𝜋
10
)

for 𝑡 from 0 to 20 seconds; iii) a circle in the X-Y plane (0.2 meters radius);
iv) a helical trajectory along the Z-axis (0.2 meters radius, 0.1 meters pitch); v) a square-helical
trajectory along the Z-axis (0.2 meters sides, 0.02 meters pitch).

6

Figure 6: These snapshots illustrate the teleoperation task involving box exploration. In this task,
the operator maneuvers the robot through the box and inspects its contents. The operator’s camera
views are shown in the top right of each image.

Figure 7: Performance of a Five-Segment Continuum Robot in a 3D Environment. The first three
images show the robot reaching a target (red sphere), while the last three depict obstacle avoidance
around a yellow bar, highlighting skills developed through reinforcement learning.

• Box Exploration: Designed to showcase inspection in confined spaces, a UR5 robot with a two-
segment extendable continuum robot (each segment extending up to 0.03 m) is tele-operated via
keyboard inputs. The robot navigates through a confined entry into a box, using a camera to inspect
the interior. The continuum segments’ flexibility and extendability allow thorough inspection,
demonstrating precise maneuvers in tight spaces.

• Reaching Target: A five-segment continuum robot learns to reach a target in two difficulty levels:
i) without obstacles; ii) with a bar obstacle to avoid. The learning objective is to develop a policy
optimizing the path, minimizing distance to the target while avoiding obstacles.

• Non-Prehensile Object Manipulation: A three-segment continuum robot, acting as a neck to a
quadruped robot (Unitree A1), pushes a cube towards a target. The robot controls its movements
using sinusoidal functions, 𝑎 · sin(𝜔𝑡), where 𝑎 and 𝜔 are the amplitude and frequency. This setup
ensures smooth and precise control, facilitating effective pushing actions.

4.1 Results and Discussions

Our evaluation of trajectory tracking for diverse shapes, including square, circle, figure-eight, and
helical paths, demonstrates high precision with low mean squared error (MSE). The average MSE for
the square, figure-eight, and circle trajectories were 351×10−6𝑚2, 409×10−6𝑚2, and 195×10−6𝑚2,
respectively, indicating exceptional accuracy in 2D space. The 3D trajectories, such as the helical
and square-helical paths, maintained an MSE of 153 × 10−6𝑚2 and 268 × 10−6𝑚2, respectively,
highlighting the robot’s capability to execute complex movements. Figure 5 shows representative
results (details in Appendix E).

In the box exploration task, initial challenges in maneuvering the continuum robot inside the box
were addressed by allowing the operator to disable the movement of rigid body parts, enhancing
maneuverability. This adjustment significantly improved the precision and efficiency of internal
inspections. In ten tests, the operator successfully completed the task each time, demonstrating the
reliability of the control enhancements. Figure 6 illustrates the operational stages and outcomes.

Training a five-segment continuum robot using the Soft Actor-Critic (SAC) algorithm [30] to reach
targets with varying difficulty levels showed effective learning and adaptability. The robot suc-
cessfully reached targets and avoided obstacles, demonstrating proficiency in complex scenarios
(Figure 17). Additionally, in non-prehensile object manipulation tasks, the robot effectively pushed
a cube towards a target, showcasing its ability to adjust its trajectory and handle the object efficiently
(Figure 8). Further results and details are provided in Appendix F.

7

Figure 8: Sequential snapshots showing a quadruped with a three-segment continuum neck, manip-
ulating a cube towards a target (red dot).

The snapshots in Figure 8 highlight a test result where the robot demonstrates its learned skills in
non-prehensile object manipulation using SAC. The robot’s strategy, driven by a reward function that
values both making contact with the object and minimizing the distance to the target, showcases its
ability to push the object toward the goal. As the robot progresses through the sequence, it effectively
adjusts its trajectory and handling of the cube, leading to a successful alignment with the target in
the final snapshot. Further details are provided in Appendix G. A video showing all the results is
available online at https://youtu.be/IYqYS4ZQx6k.

5 Real Robot Validation

Figure 9: Digital twin and real robot
setup.

In this section, we explore the potential of SoftManiSim
for simulating the behavior of a continuum robot and val-
idating this through real-robot experiments. The scenario
involves trajectory-tracking tasks, where the simulated and
real robots are programmed to track a set of trajectories.
First, we collect data from the real robot, validate the
model, and fine-tune the model’s parameters, thereby re-
ducing the sim-to-real gap. Then, we train a control policy in our simulation framework that can be
applied to the real robot. Figure 9 shows the flexible soft manipulator used in this experiment and its
digital version simulated using SoftManiSim.

Table 2: Trajectory tracking results

RMSE (mm)
𝑥 𝑦̃ 𝑧

Triangle 2.87 3.14 3.08
Square 3.08 3.89 3.82
Circle 1.38 1.88 2.19

After training a control policy and deploying it on the robot,
we analyzed the RMSE values summarized in Table 7. These
promising results demonstrate the accuracy of our method and
validate the effectiveness of the SoftManiSim simulation in
closely mirroring real-world dynamics. Detailed information
about the robot, experiment setup, experiment details, and
more results are provided in Appendix H.

6 Conclusion and Limitations

In this paper, we introduced SoftManiSim, an innovative simulation framework for multi-segment
continuum manipulators. By integrating advanced continuum robot modeling with PyBullet simula-
tor, SoftManiSim offers a comprehensive toolset that bridges the gap between simplified assumptions
and the realistic modeling of continuum robots. The framework’s ability to support parallel operations
and generate synthetic data is crucial for training deep reinforcement learning models, enhancing the
development and optimization of control strategies in dynamic environments. Extensive simulations
and real robot validations demonstrated the framework’s effectiveness, showcasing its capability to
handle complex robotic interactions and tasks with high accuracy and computational efficiency.

Despite its advantages, SoftManiSim has several limitations. First, while the proposed solver sig-
nificantly improves computational efficiency, it may still face challenges in scenarios with extremely
high dynamic complexity or when dealing with highly non-linear behaviors not captured by the
current model. Additionally, the integration with PyBullet, while robust, might not fully leverage
the detailed physics of more specialized soft robot simulation frameworks, potentially limiting the
accuracy in some specific cases. Lastly, while our framework supports integration with various
rigid-body robots, it may require further optimization and tuning to handle a broader range of hybrid
robotic systems seamlessly.

8

https://youtu.be/IYqYS4ZQx6k

7 Acknowledgement

This work is supported by the Medical Research Council [MR/T023252/1].

References
[1] C. Lee, M. Kim, Y. J. Kim, N. Hong, S. Ryu, H. J. Kim, and S. Kim. Soft robot review.

International Journal of Control, Automation and Systems, 15(1):3–15, Feb 2017.

[2] C. Della Santina and D. Rus. Control oriented modeling of soft robots: the polynomial curvature
case. IEEE Robotics and Automation Letters, 5(2):290–298, 2019.

[3] R. K. Katzschmann, M. Thieffry, O. Goury, A. Kruszewski, T.-M. Guerra, C. Duriez, and
D. Rus. Dynamically closed-loop controlled soft robotic arm using a reduced order finite
element model with state observer. In 2019 2nd IEEE international conference on soft robotics
(RoboSoft), pages 717–724. IEEE, 2019.

[4] C. Della Santina, R. K. Katzschmann, A. Biechi, and D. Rus. Dynamic control of soft robots
interacting with the environment. In 2018 IEEE International Conference on Soft Robotics
(RoboSoft), pages 46–53. IEEE, 2018.

[5] C. Della Santina, R. K. Katzschmann, A. Bicchi, and D. Rus. Model-based dynamic feedback
control of a planar soft robot: trajectory tracking and interaction with the environment. The
International Journal of Robotics Research, 39(4):490–513, 2020.

[6] M. Kasaei, K. K. Babarahmati, Z. Li, and M. Khadem. Data-efficient non-parametric modelling
and control of an extensible soft manipulator. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pages 2641–2647. IEEE, 2023.

[7] M. Kasaei, K. K. Babarahmati, Z. Li, and M. Khadem. A data-efficient neural ode framework
for optimal control of soft manipulators. In The Conference on Robot Learning 2023, pages
1–14. PMLR, 2023.

[8] B. Thamo, F. Alambeigi, K. Dhaliwal, and M. Khadem. A hybrid dual jacobian approach
for autonomous control of concentric tube robots in unknown constrained environments. In
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
2809–2815, 2021. doi:10.1109/IROS51168.2021.9636085.

[9] J. M. Bern, Y. Schnider, P. Banzet, N. Kumar, and S. Coros. Soft robot control with a learned
differentiable model. In 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft),
pages 417–423. IEEE, 2020.

[10] T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi. Learning dynamic models for open loop
predictive control of soft robotic manipulators. Bioinspiration & biomimetics, 12(6):066003,
2017.

[11] D. Bruder, C. D. Remy, and R. Vasudevan. Nonlinear system identification of soft robot
dynamics using koopman operator theory. In 2019 International Conference on Robotics and
Automation (ICRA), pages 6244–6250. IEEE, 2019.

[12] G. Mengaldo, F. Renda, S. L. Brunton, M. Bächer, M. Calisti, C. Duriez, G. S. Chirikjian, and
C. Laschi. A concise guide to modelling the physics of embodied intelligence in soft robotics.
Nature Reviews Physics, 4(9):595–610, Sept. 2022.

[13] C. Armanini, C. Messer, A. T. Mathew, F. Boyer, C. Duriez, and F. Renda. Soft robots modeling:
a literature unwinding, 2021.

[14] T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi. Model-based reinforcement learning for
closed-loop dynamic control of soft robotic manipulators. IEEE Transactions on Robotics, 35
(1):124–134, 2018.

9

http://dx.doi.org/10.1109/IROS51168.2021.9636085

[15] T. George Thuruthel, F. Renda, and F. Iida. First-order dynamic modeling and control of soft
robots. Frontiers in Robotics and AI, 7:95, 2020.

[16] G. Fang, Y. Tian, Z.-X. Yang, J. M. Geraedts, and C. C. Wang. Efficient jacobian-based inverse
kinematics with sim-to-real transfer of soft robots by learning. IEEE/ASME Transactions on
Mechatronics, 2022.

[17] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. http://pybullet.org, 2016–2020.

[18] M. A. Graule, C. B. Teeple, T. P. McCarthy, G. R. Kim, R. C. S. Louis, and R. J. Wood. Somo:
Fast and accurate simulations of continuum robots in complex environments. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 3934–3941. IEEE,
2021.

[19] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-
robot simulator. In 2004 IEEE/RSJ international conference on intelligent robots and systems
(IROS)(IEEE Cat. No. 04CH37566), volume 3, pages 2149–2154. Ieee, 2004.

[20] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE,
2012.

[21] M. Gazzola, L. Dudte, A. McCormick, and L. Mahadevan. Forward and inverse problems in
the mechanics of soft filaments. Royal Society open science, 5(6):171628, 2018.

[22] F. Faure, C. Duriez, H. Delingette, J. Allard, B. Gilles, S. Marchesseau, H. Talbot, H. Courte-
cuisse, G. Bousquet, I. Peterlik, et al. Sofa: A multi-model framework for interactive physical
simulation. Soft tissue biomechanical modeling for computer assisted surgery, pages 283–321,
2012.

[23] W. Huang, X. Huang, C. Majidi, and M. K. Jawed. Dynamic simulation of articulated soft
robots. Nature communications, 11(1):2233, 2020.

[24] S. Antman. Nonlinear Problems of Elasticity; 2nd ed. Springer, Dordrecht, 2005. doi:
10.1007/0-387-27649-1. URL https://cds.cern.ch/record/1250280.

[25] P. Rao, Q. Peyron, S. Lilge, and J. Burgner-Kahrs. How to model tendon-driven continuum
robots and benchmark modelling performance. Frontiers in Robotics and AI, 7, Feb. 2021. ISSN
2296-9144. doi:10.3389/frobt.2020.630245. URL http://dx.doi.org/10.3389/frobt.
2020.630245.

[26] O. Michel. Cyberbotics ltd. webots™: professional mobile robot simulation. International
Journal of Advanced Robotic Systems, 1(1):5, 2004.

[27] Y. Hu, J. Liu, A. Spielberg, J. B. Tenenbaum, W. T. Freeman, J. Wu, D. Rus, and W. Ma-
tusik. Chainqueen: A real-time differentiable physical simulator for soft robotics. In 2019
International conference on robotics and automation (ICRA), pages 6265–6271. IEEE, 2019.

[28] Z. Mitros, B. Thamo, C. Bergeles, L. da Cruz, K. Dhaliwal, and M. Khadem. Design and
modelling of a continuum robot for distal lung sampling in mechanically ventilated patients in
critical care. Frontiers in Robotics and AI, 8, 2021.

[29] D. C. Rucker and R. J. Webster III. Statics and dynamics of continuum robots with general
tendon routing and external loading. IEEE Trans. on Robotics, 27(6):1033–1044, 2011.

[30] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

10

http://pybullet.org
http://dx.doi.org/10.1007/0-387-27649-1
http://dx.doi.org/10.1007/0-387-27649-1
https://cds.cern.ch/record/1250280
http://dx.doi.org/10.3389/frobt.2020.630245
http://dx.doi.org/10.3389/frobt.2020.630245
http://dx.doi.org/10.3389/frobt.2020.630245

[31] F. Callier and J. Willems. Criterion for the convergence of the solution of the riccati differential
equation. IEEE Transactions on Automatic Control, 26(6):1232–1242, 1981.

[32] J. Till and D. C. Rucker. Elastic stability of cosserat rods and parallel continuum robots. IEEE
Trans. Robotics, 33(3):718–733, 2017.

[33] D. C. Rucker, B. A. Jones, and R. J. Webster. A geometrically exact model for externally loaded
concentric-tube continuum robots. IEEE Trans. Robotics, 26(5):769–780, 2010.

[34] F. Renda, M. Cianchetti, H. Abidi, J. Dias, and L. Seneviratne. Screw-Based Modeling of Soft
Manipulators With Tendon and Fluidic Actuation. Journal of Mechanisms and Robotics, 9(4),
05 2017.

[35] L. F. Shampine. Some practical runge-kutta formulas. Mathematics of Computation, 46:
135–150, 1986. URL https://api.semanticscholar.org/CorpusID:26665726.

[36] L. F. Shampine and M. K. Gordon. Computer solution of ordinary differential equations
: the initial value problem. W.H. Freeman, San Francisco, 1975. ISBN 0716704617;
9780716704614.

[37] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Springer Berlin
Heidelberg, 1991. ISBN 9783662099476. doi:10.1007/978-3-662-09947-6. URL http:
//dx.doi.org/10.1007/978-3-662-09947-6.

[38] R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point algorithm for large-scale nonlinear
programming. SIAM Journal on Optimization, 9(4):877–900, Jan. 1999. ISSN 1095-7189. doi:
10.1137/s1052623497325107. URL http://dx.doi.org/10.1137/S1052623497325107.

[39] T. F. Coleman and Y. Li. A reflective newton method for minimizing a quadratic function
subject to bounds on some of the variables. SIAM Journal on Optimization, 6(4):1040–1058,
Nov. 1996. ISSN 1095-7189. doi:10.1137/s1052623494240456. URL http://dx.doi.org/
10.1137/S1052623494240456.

[40] M. J. D. Powell. A fast algorithm for nonlinearly constrained optimization calculations, page
144–157. Springer Berlin Heidelberg, 1978. ISBN 9783540359722. doi:10.1007/bfb0067703.
URL http://dx.doi.org/10.1007/BFb0067703.

[41] S. Garrido-Jurado, R. M. noz Salinas, F. Madrid-Cuevas, and M. Marín-Jiménez. Auto-
matic generation and detection of highly reliable fiducial markers under occlusion. Pattern
Recognition, 47(6):2280 – 2292, 2014. ISSN 0031-3203. doi:http://dx.doi.org/10.1016/
j.patcog.2014.01.005. URL http://www.sciencedirect.com/science/article/pii/
S0031320314000235.

[42] S. Garrido-Jurado, R. M. noz Salinas, F. Madrid-Cuevas, and R. Medina-Carnicer. Generation
of fiducial marker dictionaries using mixed integer linear programming. Pattern Recognition,
51:481 – 491, 2016. ISSN 0031-3203. doi:http://dx.doi.org/10.1016/j.patcog.2015.09.023.
URL http://www.sciencedirect.com/science/article/pii/S0031320315003544.

[43] F. Renda, F. Boyer, J. Dias, and L. Seneviratne. Discrete cosserat approach for multisection
soft manipulator dynamics. IEEE Transactions on Robotics, 34(6):1518–1533, 2018. doi:
10.1109/TRO.2018.2868815.

[44] SOFA Framework. System resolution - linear solver, 2024. URL https://sofa-framework.
github.io/doc/simulation-principles/system-resolution/linear-solver/.
Accessed: 2024-08-13.

11

https://api.semanticscholar.org/CorpusID:26665726
http://dx.doi.org/10.1007/978-3-662-09947-6
http://dx.doi.org/10.1007/978-3-662-09947-6
http://dx.doi.org/10.1007/978-3-662-09947-6
http://dx.doi.org/10.1137/s1052623497325107
http://dx.doi.org/10.1137/s1052623497325107
http://dx.doi.org/10.1137/S1052623497325107
http://dx.doi.org/10.1137/s1052623494240456
http://dx.doi.org/10.1137/S1052623494240456
http://dx.doi.org/10.1137/S1052623494240456
http://dx.doi.org/10.1007/bfb0067703
http://dx.doi.org/10.1007/BFb0067703
http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2014.01.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2014.01.005
http://www.sciencedirect.com/science/article/pii/S0031320314000235
http://www.sciencedirect.com/science/article/pii/S0031320314000235
http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2015.09.023
http://www.sciencedirect.com/science/article/pii/S0031320315003544
http://dx.doi.org/10.1109/TRO.2018.2868815
http://dx.doi.org/10.1109/TRO.2018.2868815
https://sofa-framework.github.io/doc/simulation-principles/system-resolution/linear-solver/
https://sofa-framework.github.io/doc/simulation-principles/system-resolution/linear-solver/

Appendix A Real-time and Parallelizable Solver for Continuum Robots

To address the challenges in solving the continuum robot model, we design a nonlinear observer that
rapidly estimates the rod’s initial curvature u(𝑠, 𝑡) without explicitly solving the BVP. This observer
transforms the BVP into an initial value problem (IVP) solvable with common ODE solvers. All the
parameters and variables used in this section are defined in Table. 3.

To this end, we assume we have an initial estimation for the robot’s curvature at 𝑠 = 0 given by ũ(0, 𝑡).
Using this value and the first four initial conditions given in (2), we can solve (1). However, as ũ(0, 𝑡)
is not accurate, the predicted robot shape and consequently pull wires’ length are inaccurate. The
error in the estimation of the pull wires’ length is

e(𝑡) = l̃(ℓ, 𝑡) − 𝐿𝑖 (𝑡), (8)

where l = [ℓ1, · · · , ℓ𝑖]𝑇 is the vector containing the pull wires’ lengths, and .̃ denotes inaccurate
estimations due to inaccurate initial curvature.

To design the observer, let us first define an auxiliary variable Γ:

Γ(𝑠, 𝑡) :=
𝜕l(𝑠, 𝑡)
𝜕u(0, 𝑡) , (9)

where 𝑢(0, 𝑡) is a 3 × 1 vector consisting of the initial curvature and the initial twist curvatures of
the robot, and Γ is a 𝑖 × 3 matrix, where 𝑖 is the number of pull wires. Now, we can take the time
derivative of the error given in (8) and obtain:

¤e(𝑡) = Γ(ℓ, 𝑡) ¤𝑢(0, 𝑡) − ¤𝐿𝑖 (𝑡) (10)

Symbol Description
r(𝑠) Center line of the robot as a function of arc length 𝑠
R(𝑠) Orientation of the robot as a function of length 𝑠
ℓ Overall length of the rod

u(𝑠) Instantaneous curvature of the rod
e3 Unit vector equal to [0, 0, 1]𝑇
u∗ Pre-curvature of the rod in its reference configuration
K Stiffness matrix equal to diag(𝐸𝐼, 𝐸 𝐼, 𝐺𝐽)
𝐸 Young’s modulus of the rod
𝐼 Second moment of inertia
𝐺 Shear modulus
𝐽 Polar moment of inertia

F(𝑡) External load at the rod’s tip
f (𝑠, 𝑡) External distributed force

d𝑖 Distance between the pull wire and the rod, see Figure. 3
𝛿 Distance from the robot’s centroid to the tubes
𝛽𝑖 Relative angular position of each pull wire, see Figure. 3

ℓ𝑖 (𝑠, 𝑡) Total arc length of each pull wire
𝐿𝑖 (𝑡) Desired length of the 𝑖th pull wire at time 𝑡

ũ(0, 𝑡) Initial estimation of the robot’s curvature at 𝑠 = 0
e(𝑡) Error in estimation of pull wires’ length

Γ(𝑠, 𝑡) Auxiliary variable for partial derivatives
V Symmetric positive definite matrix used in the Riccati

equation
𝑃(𝑡) Solution of the differential Riccati equation
𝑄 Symmetric positive definite matrix
[·]× Skew-symmetric cross product matrix operator
𝜖 Levi-Civita symbol in three dimensions

𝐷 (𝑠, 𝑡) Partial derivative of R(𝑠) with respect to u(0, 𝑡)
𝐽 (𝑠, 𝑡) Partial derivative of u(𝑠) with respect to u(0, 𝑡)
⊗𝑛,𝑚 Tensor product operator with contract along 𝑛 and 𝑚

Table 3: Nomenclature of Variables

12

Equation (10) is a first-order linear system of equations and can be optimised using the Riccati
equations [31] to estimate the initial curvature 𝑢(0, 𝑡) that minimises the prediction error of the
observer e(𝑡) over time. The optimal solution is given as

𝑢(0, 𝑡) = −
∫ 𝑡

0
𝑃Γ𝑇 (ℓ, 𝑡)V𝜖 (𝑡)d𝑡, (11)

where 𝑃(𝑡) is the solution of the differential Riccati equation

− ¤𝑃(𝑡) = −𝑃(𝑡)Γ𝑇 (ℓ, 𝑡)VΓ(ℓ, 𝑡)𝑃(𝑡) +𝑄,
𝑃(𝑡 𝑓) = 𝑃0,

(12)

𝑄, V, and 𝑃0 are all symmetric positive definite matrices. At each time step, e(𝑡) and Γ(ℓ, 𝑡) are
updated, then 𝑢(0, 𝑡) is determined by solving (11) and (12).

So far, we have shown that given the value of Γ, one can design an observer to estimate the initial
curvature of the robot and update the robot shape accordingly without the need to solve the robot
model iteratively. Now, to find Γ we transform the model given in (1) into an observable form. We
define some additional partial derivatives, namely, 𝐽 and 𝐷 as:

𝐷 (𝑠, 𝑡) :=
𝜕𝑅(𝑠)
𝜕u(0, 𝑡) , 𝐽 (𝑠, 𝑡) :=

𝜕u(𝑠)
𝜕u(0, 𝑡) , (13a)

We then take a partial derivative of the robot’s model in (1) with respect to 𝑢(0, 𝑡), starting by (1d).
We get:

Γ(𝑠, 𝑡) =
(e3 + [u(𝑠)]×d𝑖)𝑇
∥e3 + [u(𝑠)]×d𝑖 ∥

[𝑑𝑖]× 𝐽 (𝑠, 𝑡) (14)

In deriving the above equation, we used the following identities:

𝑑

𝑑x
(∥𝑔(x)∥) = 𝑔(x)𝑇

∥𝑔(x)∥ · 𝑑𝑔(x)
𝑑x

(15a)

𝜕 ([a]×b)
𝜕c

= −[b]×
𝜕a
𝜕c

+ [a]×
𝜕b
𝜕c
. (15b)

Equation (14) gives Γ as a function 𝐽, now to estimate 𝐽 we take partial derivative of (1b) and (1c)
with respect to u(0, 𝑡):

𝐷′ = ([𝑢]𝑇× ⊗2,2 𝐷)𝑇 + 𝑅 ⊗2,2 (𝜖 ⊗2,1 𝐽), (16a)

𝐽′ = 𝐾−1
[
[𝐾 (u − u∗)]× 𝐽 − [u]×𝐾𝐽−

[e3]×𝐷𝑇 ⊗2,1 (F(𝑡) +
∫ 𝑠

0
f (𝑡, 𝜎)d𝜎)

] (16b)

where 𝜖 is the Levi-Civita symbol in three dimensions defined as

𝜖𝑖 𝑗𝑘 =


+1 if (𝑖, 𝑗 , 𝑘) is an even permutation of (1, 2, 3),
−1 if (𝑖, 𝑗 , 𝑘) is an odd permutation of (1, 2, 3),
0 if any two indices are equal.

(17)

In (16), we removed the (𝑠, 𝑡) notation for simplicity and in the process of deriving (16), we used the
chain rule of differentiation, and the following definitions.

Definition 1 Given a vector 𝑥 : R𝑙 and a differentiable matrix 𝑀 (𝑥) : R𝑙 −→ R𝑚×𝑛, let 𝑁 (𝑥) ∈
R𝑚×𝑛×𝑙 be a partial derivative of 𝑀 (𝑥) w.r.t 𝑥. Then

𝑁𝑖 𝑗𝑘 (𝑥) =
𝜕𝑀𝑖 𝑗 (𝑥)
𝜕𝑥𝑘

. (18)

13

Definition 2 Let 𝐹 (𝑥) : R𝑙 −→ R𝑚×𝑛 and 𝐺 (𝑥) : R𝑙 −→ R𝑛×𝑜 be differentiable matrices. Then
𝜕 (𝐹 (𝑥)𝐺 (𝑥))

𝜕𝑥
=
(
𝐺𝑇 (𝑥) ⊗2,2

𝜕𝐹 (𝑥)
𝜕𝑥

)𝑇
+
(
𝐹 (𝑥) ⊗2,2

𝜕𝐺 (𝑥)
𝜕𝑥

)𝑇
,

(19)

where the transpose operation 𝑇 for a 3 dimensional tensor is defined by 𝐹𝑇
𝑖 𝑗𝑘

= 𝐹𝑗𝑖𝑘 . Operator
⊗𝑛,𝑚 indicates a product of two tensors with 𝑛 and 𝑚 denoting which dimensions to contract in each
tensor, respectively. For instance, 𝐻 = 𝐹 ⊗2,2 𝐺 is defined as

𝐻𝑖 𝑗𝑘 =

𝑛∑︁
𝑙=1

𝐹𝑖𝑙 𝑗 · 𝐺𝑖𝑙𝑘 , (20)

Equations (16), (14), and (1) form the generalised model of the robot and can be solved together with
the following initial conditions:

r(0) = [0 0 0]𝑇 , R(0) = I3×3, (21a)
𝑢𝑧 (0) = 0, ℓ𝑖 (0, 𝑡) = 0, ℓ𝑖 (ℓ, 𝑡) = 𝐿𝑖 (𝑡), 𝑖 = 1, · · · , 𝑛. (21b)

The initial conditions for the system are:

r(0) = [0 0 0]𝑇 , R(0) = I3×3, (22a)
𝑢𝑧 (0) = 0, ℓ𝑖 (0, 𝑡) = 0, (22b)
𝐽 (0, 𝑡) = I3×3, (22c)
𝐷 (0, 𝑡) = 03×3×3, (22d)
Γ(0, 𝑡) = I3×𝑛, (22e)

u(0, 𝑡) = −
∫ 𝑡

0
PΓ𝑇 (ℓ, 𝑡)V𝜖 (𝑡) d𝑡. (22f)

The model combined with the initial conditions can now be solved as an IVP.

To find the shape of the robot, first the equations in (16), (14), and (1) are solved with respect to 𝑠
given the initial values in (22). Then, time dependant variables including 𝑢(0, 𝑡) and observer gain
𝑃 are updated through (22f) and (12), respectively. At the first time step, the initial curvature 𝑢(0, 𝑡)
of the robot is assumed to be zero.

Appendix B Comprehensive Evaluation of the Proposed Solver

Here, we have performed a comprehensive evaluation of the proposed solver within the SoftManiSim
framework, benchmarking it against widely used solvers in the field.

As illustrated in Figure 10, traditional techniques solve a variation of the Cosserat Rod model as a
boundary value problem (BVP) [32, 33, 34]. This involves a forward pass using ordinary differential
equation solvers, such as the Euler Method or Runge–Kutta methods, to estimate the robot’s arc
parameters. Subsequently, a BVP solver iterates on the solution using an optimization algorithm to
find the correct initial condition that satisfies the boundary condition at the robot’s end, as indicated
by the red arrow. Our novel approach enhances this model by solving the equations as an initial value
problem, where the optimal initial curvature is estimated using a bespoke observer. This observer
estimates the temporal evolution of boundary values based on the spatial evolution of the robot’s arc
parameters, as detailed in the paper. This significantly improves the computational efficiency of the
solver by eliminating the iterative loop required in BVP solvers. Notably, both methods can solve the
problem as an initial value problem in the absence of external forces. However, complexities arise
in the presence of contact or forces such as non-constant bending curvature, which are commonly
neglected in the literature but essential to bridge the sim-to-real gap in soft robot simulators. This

14

Figure 10: The schematic compares the traditional continuum robot modeling with the proposed
solver. Classic techniques either assume the rod bend under constant curvature without any external
force/contact or solve a variation of the Cosserat Rod model as a boundary value problem (BVP)
to estimate robot tip position defined as x(𝑡) = r(ℓ(𝑡)) in task space. This involves a forward pass
which uses ordinary differential equation solvers such as Euler Method or Runge–Kutta methods to
estimate robot arc parameters. Later a BVP solver that uses an optimisation algorithm iterates on the
solution to find the right initial condition that satisfies the boundary condition at the robot end. This
process is shown with a red arrow. The new approach augments this model to solve the equations
as an initial value problem, estimating the optimal initial curvature using a bespoke observer. This
significantly improves the computational efficacy of the solver as it includes only a forward pass and
avoids the iterative loop used in a BVP solver.

negates one of the most important benefits of soft robots, i.e, capability to interact with environment
safely.

To evaluate our method systematically, we first assessed the ODE solver and then the BVP solver. To
select the optimal ODE solver, we conducted an experiment by moving a simulated robot (a replica
of an exact experimental setup detailed in the paper) across 500 randomly selected points within its
workspace. These points and the robot’s workspace are shown in Figure 11(a). In the first scenario,
to isolate the ODE solver’s performance, we assumed no external forces acting on the robot.

We tested state-of-the-art solvers implemented in Python, including the explicit Runge-Kutta (4,5)
formula [35], explicit Runge-Kutta (2,3) formula [35], Adams Bashforth Moulton Method [36],
and second-order Rosenbrock method [37]. The results show that all non-stiff methods performed
similarly, with the Runge-Kutta (2,3) method achieving the fastest sampling time (8.1 ms) and the
least standard deviation (1.5 ms). Therefore, we selected it as our main ODE solver for the remainder
of the simulations.

Next, we compared our method, which involves only a forward pass, with several existing BVP
solvers. All BVP solvers aim to estimate the initial value of the robot curvature, u(0), to minimize
the error in the cable lengths, given as an end boundary condition defined by:

costBVP = ∥ l̃(ℓ, 𝑡) − L(𝑡)∥, (23)
where ∥.∥ denotes the L2 norm, L(𝑡) = [𝐿1, · · · , 𝐿𝑖]𝑇 is the vector of the actual lengths of the pull
wires for 𝑖 wires, l = [ℓ1, · · · , ℓ𝑖]𝑇 is the vector of the pull wires’ lengths estimated by the model,
and .̃ indicates inaccuracies due to an incorrect initial curvature.

15

(a) (b)

Figure 11: (a) The robot’s workspace and 500 randomly selected points. (b) A comparison of the
computational efficacy of various ODE solvers across 500 points.

We selected three well-known optimizers to solve the BVP: the Interior Point (IP) method [38],
the Levenberg-Marquardt (L-M) method [39], and the Sequential Quadratic Programming (SQP)
method [40]. These methods represent the core solvers utilized in many existing papers and simulators
[32, 33, 34] and provide a robust baseline for comparative analysis. To ensure a fair comparison, we
focused on the performance of the solvers using their standard Python implementations in the SciPy
library.

Our benchmarks focused on both computational time and accuracy in estimating the correct boundary
value cost function defined in (23). To model the robot’s behavior in the presence of contact, we
applied a distributed force of f = [1, 1, 1] N/m to the robot body and a 3D random force with a
magnitude of 0 to 2 N on the robot tip at random angles between −𝜋 and 𝜋. We selected 2 N as
the maximum force as forces beyond this value would result in more than 30% strain permanently
damaging the robot. The magnitude of the forces for each tested point is shown at the bottom of
Figure 12(c). Figure 12(a) compares the robot tip position using different solvers with the robot tip
position in the absence of force. It is evident that the constant curvature assumption (i.e., neglecting
external forces) results in significant errors. Additionally, the proposed solver produces a smoother
estimation of the robot tip position compared to other BVP solvers. Figure 12(b) compares the
computational efficacy of the solvers. All BVP solvers were set to a tolerance below 1 × 10−4 m.
As shown, our solver offers the smallest sampling time (15 ms) with the least standard deviation (3
ms). Furthermore, to compare the accuracy of all solvers in terms of satisfying boundary values,
we compared the estimated cost in (23) for each method in Figure 12(c). As can be seen, our
solver provides the best accuracy on par with the L-M method, with the overall boundary value
error estimation below 5 × 10−4 m. Considering that the best BVP solver, the L-M method, runs
at 153 ± 106 ms, we can conclude that our solver is approximately 10 times faster than the most
accurate solver.

These results demonstrate that our proposed solver not only enhances computational efficiency but
also improves the accuracy of simulations compared to existing state-of-the-art methods, thereby
setting a new benchmark in the field of continuum robot simulation.

Appendix C Robot Prototype

Figure 13 depicts the robot used in our experiments, consisting of a flexible backbone stabilized
by spacers. At the gripper end, four cables are fixed and pass through the spacers, providing the
flexible backbone of the robot. The spacers have enough clearance to follow the curvature of the
main backbone. The cables are running in parallel and constrained with respect to each other using

16

(a) (b)

(c)

Figure 12: (a) A comparison between the solutions of BVP solvers and the proposed solver for the
robot trajectory without external force under the constant curvature assumption. (b) A comparison
of computational efficacy between various BVP solvers and the proposed solver. (c) The estimated
boundary value error for each method at each of the 5000 tested points in the robot workspace and
the magnitude of the force on the robot at each point.

17

spacers. The backbone curvature can be manipulated by pulling and pushing the cables. The robot is
powered by four brushless DC motors from Maxon Motors, each equipped with a quadratic encoder.
The motors are controlled by PID position controller modules (EPOS4 Compact 50/5 CAN), which
receive feedback from the encoders and interface with a PC via the CAN protocol for setting and
retrieving control parameters. A Logitech RGB camera is mounted on the robot’s base and for
precise location tracking of the robot’s tip, an ArUco marker [41, 42] is attached to it, which serves
as a critical component in the feedback loop of the control system.

Figure 13: Prototype of our cable-driven continuum robot: The main backbone curvature can be
manipulated by pulling and pushing the cables which are controlled by four brushless DC motors,
each equipped with a quadratic encoder and position controllers.

Physical parameters of the robot used in the simulations are given in Table 4. In the model verification
experiment, the robot’s initial length (ℓ(0)), its second moment of inertia, and polar moment of inertia
were measured manually. Later, the robot’s tip position calculated from the mathematical model of
the robot was compared with the camera measurements at 10 points across the robot’s workspace. A
least squares algorithm was used to fit model predictions to experimental data to find values of the
robot’s stiffness and shear modulus. All these parameters are reported in Table 4.

Table 4: Physical parameters of the robot.
ℓ(0) [m] 𝐼 [m4] 𝐽 [m4] 𝐸 [kPa] 𝐺 [kPa]

0.07 7.363×10−9 1.4726×10−8 300 70

Throughout this work, for all training scenarios, we used the same network architecture and almost
the same hyperparameters as described in Table 6.

Appendix D Custom Gym Environments

Using SoftManiSim framework, we have developed ten different customized gym environments
specifically tailored for continuum robots. Illustrated in Figure 14, these environments are crafted
to challenge the robots with a variety of scenarios, each designed to mimic different aspects of
real-world applications and the complex physical interactions that continuum robots may face. For
detailed examples of how these environments can be applied, please refer to examples\gyms.

This development is particularly beneficial for the robotics community as it provides a rich set of
tools for testing and refining robotic control policies. By offering a variety of standardized yet
challenging scenarios, these environments enable researchers and developers to benchmark and
enhance the performance of their robotic systems under controlled but varied conditions. Moreover,

18

Figure 14: Ten different customized gym environment; To enhance policy learning for continuum
robots, we have developed a set of custom Gym environments within our SoftManiSim frameworks
that can be used as a baseline.

Figure 15: Trajectory tracking results: the robot is tasked with following various paths in both 2D
and 3D spaces. The red and black lines indicate the actual and desired paths, respectively.

sharing these resources fosters a collaborative atmosphere within the community, promoting shared
learning and accelerating innovation in robotic design and functionality. The availability of these
environments ensures that both new and experienced researchers can explore the nuances of robot-
environment interaction, thus contributing significantly to the field of continuum robotics.

Appendix E Detailed Results of Trajectory Tracking

In this task, a UR5 robot integrated with a two-segment extendable and bendable continuum robot,
each segment capable of extending up to 0.03 m, is utilized. The simulated robot was programmed
to follow various complex trajectories in both 2D and 3D spaces, designed to test its precision and
control capabilities. These trajectories included a square in the X-Y plane with 0.4 meters sides, a
figure-eight curve described by specific sinusoidal equations for 𝑥 and 𝑦 coordinates over a 20-second
period, a circular path with a 0.2-meter radius, a helical trajectory with a 0.2-meter radius and a 0.1-
meter pitch, and a square-helical path combining square and helical movements. The effectiveness of
the robot’s path following was quantitatively assessed by calculating the Mean Squared Errors (MSE)
in the X, Y, and Z coordinates for each trajectory. The results, summarized in the provided Table 5 and
shown in Figure 15, indicate varied performance across different trajectories. The helical trajectory
showed the most precise control, with the lowest average MSE of 0.000153, suggesting that the robot
manages consistent vertical movements well. The circular trajectory also exhibited low error rates,
emphasizing the robot’s ability to maintain steady curvilinear motion. In contrast, the figure-eight
and square trajectories had higher MSEs, particularly in the horizontal plane, indicating challenges in
managing more complex path changes and corner navigation. The square-helical trajectory achieved
a moderate average MSE, highlighting a blend of challenges in maintaining precision in both linear
and vertical displacements. These insights can guide further refinements in control algorithms,
particularly focusing on improving accuracy in trajectories involving abrupt direction changes and
complex geometric patterns.

19

Table 5: Mean Squared Errors (MSE) for Different Trajectories.
Trajectory MSE X MSE Y MSE Z Average MSE

Square 0.000592 0.000398 0.000062 0.000351
Circle 0.000214 0.000341 0.000030 0.000195

Eight Figure 0.000930 0.000223 0.000075 0.000409
Helix 0.000190 0.000256 0.000014 0.000153

Moving Square 0.000431 0.000333 0.000041 0.000268

Appendix F Detailed Information About Reaching Target Task

In the reaching scenario, each episode begins with initializing the environment by ran-
domly placing a target within the robot’s working area (depicted by green cubes in Fig-
ure 17 and Figuire 18), effectively setting a new goal for each session. The length of each
episode is set to one, meaning that upon each reset, the robot receives only one observa-
tion — the position of the random target — and must immediately decide on an action.

Figure 16: Reward progressions
during training.

This setup compels the robot to rapidly adapt and optimize its
policy to minimize the positional error in a single step. The
SAC algorithm continuously updates this policy based on the
rewards and penalties received, which assess how closely the
robot’s end-effector reaches the target while remaining within
operational bounds. This stringent single-step episode struc-
ture accelerates the learning process, demanding high effi-
ciency and accuracy from the robot’s decision-making strate-
gies.

Appendix F.1 Reward Function

The reward function for the soft manipulator robot is designed
to finely control the robot’s behavior in a three-dimensional workspace, across two scenarios: reach-
ing a target and reaching while avoiding an obstacle. The function is defined as:

reward = penalty + 𝑒−50×(distance2) ,

where distance is the Euclidean distance between the robot’s end-effector and the target position.
The penalty component is tailored to ensure that the robot operates within its designated bounds and
adapts to additional task complexities when an obstacle is present.

For the basic reaching task, the penalty is applied as follows:

penalty =

{
−0.5 if 𝑧 > 0.28 or 𝑧 < 0.07
0 otherwise ,

this penalty discourages the robot from moving beyond predefined vertical boundaries, effectively
reducing the reward when the robot operates outside safe operational zones, thereby enforcing
adherence to safe and efficient paths.

In the reaching task with obstacle avoidance, an additional penalty is introduced:

obstacle penalty =

{
−1.0 if the robot contacts the obstacle
0 otherwise ,

this ensures that the robot not only aims to reach the target but also learns to navigate around obstacles,
further complicating the learning process by penalizing contact with obstacles. Such a mechanism
promotes the development of more complex navigation strategies and enhances the robot’s ability to
handle real-world environments where obstacles are common.

The use of the exponential decay function, 𝑒−50×(distance2) , is critical in both scenarios. It creates a
strong incentive for the robot to minimize distance to the target, as rewards diminish rapidly with

20

Table 6: Network architecture and hyperparameters
Component Details

Actor Network
MLP with 2 hidden layers

Each layer: 256 units, ReLU activation
Output layer: Action size, tanh activation

Critic Network
MLP with 2 hidden layers (Twin Critics)
Each layer: 256 units, ReLU activation

Output: Single value (Q-value), no activation
Learning Rate 0.0003

Batch Size 64
Discount Factor (𝛾) 0.99
Replay Buffer Size 50000
Number of epoch 2 × 106

Figure 17: Performance of a five-segment continuum robot in a 3D environment. The robot learned
how to reach a target (red sphere), highlighting skills developed through reinforcement learning.

increased distance. This sharp gradient is crucial for reinforcing precise and controlled movements
of the end-effector towards the target, thereby playing a pivotal role in the learning algorithm by
enhancing the speed and accuracy of the robot’s operational capabilities in varied task environments.

Figure 16 shows the progression of mean rewards received during the training of two policies over
2 million steps. This plot illustrates the learning progression for two teacher scenarios: one where
the robot solely focuses on reaching a target ("Reacher"), and another where it must reach the target
while also avoiding an obstacle ("Reacher with Obstacle"). In both cases, the rewards trend upward,
indicating successful learning and adaptation to their respective tasks. However, the introduction
of an obstacle in the second scenario introduces a complexity that slightly delays convergence
compared to the first scenario. This is reflected in the different trajectories of the reward curves, with
the "Reacher with Obstacle" scenario showing a slightly more gradual ascent and later stabilization.
The final plateau at a high reward value in both scenarios suggests that the robot effectively learned
to reach the target under both sets of conditions, optimizing its path and strategy to maximize the
received reward, thereby demonstrating the capability of the reinforcement learning model to adapt
to increased task complexity.

In the evaluation of the performance over 100 trials, the mean Euclidean distance between the end-
effector and the target was found to be 0.0109 meters with a standard deviation of 0.00471 meters
in the scenario without obstacles. This demonstrates a high degree of accuracy and consistency in
reaching the target. In contrast, when obstacles were introduced, the average distance increased to

21

Figure 18: Performance of a five-segment continuum robot in a 3D environment: Demonstrating
advanced reaching Skills through reinforcement learning. This robot learned to reach a target (red
sphere) while skillfully avoiding a yellow bar obstacle, showcasing its refined abilities acquired from
reinforcement learning techniques.

0.0167 meters, and the standard deviation widened to 0.00864 meters. This increase in both the
mean and variability indicates a noticeable impact of obstacle presence on the robot’s ability to reach
the target precisely, reflecting the added complexity and navigational challenges introduced by the
obstacles.

Appendix G Detailed Results of Non-Prehensile Object Manipulation

In this simulation, a continuum robot integrated onto a Unitree A1 quadruped is tasked with non-
prehensile object manipulation, specifically pushing a cube towards a target. During the initialization
phase in each run (test/train), the environment is set up which positions the target at a randomly
determined location with the x-coordinate between 0.55 to 0.7 meters and the y-coordinate between
-0.1 to 0.1 meters, ensuring variability and challenge in starting positions for each trial. The reward
function is articulated as follows:

reward = 𝑒−300×(distance_obj2) + 0.5 × (touch)
where distance_obj is the Euclidean distance to the target, and touch is a binary indicator that adds a
bonus if the robot’s tip makes contact with the cube, thus encouraging effective interaction with the
object.

After training using SAC algorithm, the results demonstrate high precision in the robot’s performance.
The average absolute errors for 50 trials in reaching the target’s x and y coordinates are approximately
0.048 and 0.046, respectively, and the average distance from the target is 0.092 meters. These results
highlight the effectiveness of the control strategy in enabling the robot to adapt and accurately
manipulate objects towards varying target positions. Figure 19 shows sequential snapshots showing
a quadruped with a three-segment continuum neck, manipulating a cube towards a target. A video
showing the results is available online at https://youtu.be/IYqYS4ZQx6k).

Appendix H Real Robot Experiments

Appendix H.1 Training Dataset

We aim to generate a dataset to validate and to fine-tune our mathematical model. A series of
demonstrations was performed by an operator, who adjusted the lengths of various cables to enable

22

https://youtu.be/IYqYS4ZQx6k

Figure 19: Sequential snapshots showing a quadruped with a three-segment continuum neck, ma-
nipulating a cube towards a target (red sphere).

Figure 20: Trajectory tracking results in SoftManiSim: The simulated robot is set to follow a set of
predefined trajectories.

the robot’s tip to move in multiple directions. Data capturing involved recording both the robot
inputs, ut ∈ R3, and the Cartesian coordinates of the robot tip, xt ∈ R3, at a frequency of 15 Hz,
forming the training dataset D = {xk

t , uk
t }𝑁𝑘=1, 𝑁 = 100000. The camera and marker were used to

track the robot’s position. We employed the collected dataset, comparing the model’s outputs with
the corresponding targets from the dataset to verify and refine our mathematical model parameters.
Subsequently, the mismatches were utilized to train a shallow neural network, designed to address
and compensate for any mismatches in the model.

Appendix H.2 Control Policy Learning

After verifying and refining the mathematical model using the dataset, the next step involves designing
a control policy capable of effectively managing the dynamics of the continuum robot. The control
policy aims to map observed robot states to actions that drive the robot towards a desired state.

We used our customized gym environment for the robot and SAC algorithm to train a control policy.
Each episode begins with a random reset of target positions simulating different starting scenarios
and enhancing the robustness of the learning process. The reward function is designed to encourage
the agent to minimize the distance between the robot’s current end-effector position and the desired
position. The reward at each step is calculated as:

reward = 𝑒−500×(distance2)

This exponential decay ensures that rewards are higher when the robot’s end-effector is closer to the
target, providing a strong gradient for learning. After each interaction, the transitions (state, action,
reward, next state) are stored in a replay buffer. The SAC algorithm samples batches from this buffer
to update the policy and value networks. The learning process involves adjusting the networks to
predict more accurate value estimates and to propose actions that maximize these estimates plus the
entropy term.

Post-training, the learned policy is validated both in simulated scenarios and real-world tests to ensure
its effectiveness. In these simulations and also the real robot experiments, the robot is programmed
to follow designated trajectories in two-dimensional space, including: i) an equilateral triangle on
the XY plane, with each side being 0.04 meters long; ii) a square trajectory on the X-Y plane with
each side extending 0.025 meters; iii) a circular trajectory in the XY plane with a radius of 0.02
meters.

23

Figure 21: Representative snapshots of the robot while performing the trajectory tracking task (please
watch the video at https://youtu.be/IYqYS4ZQx6k).

Figure 20 shows the simulation results, as demonstrated, the robot successfully tracked the trajecto-
ries. The robot achieved precision with Mean Absolute Errors (MAE) in the x, y, and z directions as
follows:

• for the equilateral triangle: 1.77, 1.63, 2.02 mm.
• for the square trajectory: 2.27, 2.03, 2.92 mm.
• for the circular trajectory: 2.54, 1.97, 1.81 mm.

These values demonstrate the robot’s accuracy in tracking the designated trajectories, providing a
detailed quantitative assessment of the learned policy’s effectiveness in both simulated and real-world
environments.

Appendix H.3 Experiments Results

Table 7: Trajectory tracking results

RMSE (mm)
𝑥 𝑦̃ 𝑧

Triangle 2.87 3.14 3.08
Square 3.08 3.89 3.82
Circle 1.38 1.88 2.19

Table 7 presents the Root Mean Square Error (RMSE)
measurements in millimeters for trajectory tracking on
a real robot, encapsulating its precision across three
different geometric paths: triangle, square, and circle.
here are the results of trajectory tracking on the real
robot:

For the triangular trajectory, the robot exhibited an
RMSE of 2.87 mm, 3.14 mm, and 3.08 mm in the 𝑥, 𝑦, and 𝑧 directions respectively, indicating
a consistent level of precision across all three axes. The square trajectory showed slightly higher
errors, with RMSE values of 3.08 mm in 𝑥, 3.89 mm in 𝑦, and 3.82 mm in 𝑧, reflecting the additional
challenges this shape may pose in maintaining accuracy. Notably, the circular trajectory demonstrated
the best tracking performance with the lowest RMSE values — 1.38 mm in 𝑥, 1.88 mm in 𝑦, and 2.19
mm in 𝑧 — highlighting the robot’s enhanced capability to handle continuous, curvilinear paths with
higher precision. Figure 21 shows a set of representative snapshots of the robot while performing
this task. A video showing the results is available online at https://youtu.be/IYqYS4ZQx6k).

Appendix I Python Interface

The SoftManiSim class is designed to facilitate the simulation of soft robots using Pybullet physics
engine. This class serves as a comprehensive interface that initializes and manages various aspects
of the simulation environment, ensuring a seamless and flexible setup process. The construc-
tor of the SoftManiSim class takes several parameters, including an optional bullet instance,
number of segments (_number_of_segment), color configurations for the robot’s body and head
(body_color) and (head_color), the radius of the body spheres (body_sphere_radius), the
number of spheres composing the robot’s body (number_of_sphere), the number of segments in
the robot (number_of_segment), and a boolean to toggle the graphical user interface (GUI). If no
bullet instance is provided, the constructor initializes a new Pybullet instance. The create_robot
method is invoked at the end of the constructor to assemble the robot based on the provided pa-
rameters, ensuring that all necessary components are correctly instantiated and configured. This

24

https://youtu.be/IYqYS4ZQx6k
https://youtu.be/IYqYS4ZQx6k

methodical and thorough initialization process makes the SoftManiSim class a powerful tool for
researchers and developers, offering a high degree of control and customization over the soft robot
simulation, ultimately contributing to more efficient and accurate experimental setups in the field of
soft robotics.

Appendix I.1 API Documentation

Below is the API documentation for the SoftManiSim class, detailing essential methods, their
arguments and functionalities:

Table 8: API Descriptions of SoftManiSim
Method Argument Description
__init__ bullet Optional physics engine instance, defaults to None, ini-

tializes PyBullet if not provided.
body_color RGBA color for the robot’s body.
head_color RGBA color for the robot’s head.
body_sphere_radius Radius of spheres used to build the robot’s body.
number_of_sphere Number of spheres constructing the robot’s body.
number_of_segment Number of segments in the robot’s body.
gui Boolean to toggle graphical interface, defaults to True.

create_robot - No arguments, sets up the robot’s physical structure within
the simulation. This function is invoked at the end of the
constructor.

move_robot_ori action Array of actions defining movement commands for robot
segments.

base_pos The base position of the robot in the simulation space.
base_orin The base orientation of the robot, specified as Euler an-

gles.
camera_marker Boolean to display camera markers, defaults to True.

calc_tip_pos action Array of actions affecting the tip’s position and orienta-
tion.

base_pos The base position from which the tip’s calculations start.
base_orin Base orientation affecting the tip’s calculation.

capture_image removeBackground Boolean to decide whether to remove background from
the image, defaults to False.

in_hand_camera_capture_image - No arguments, captures image from the robot’s in-hand
camera.

is_robot_in_contact obj_id Object ID to check for contact with the robot.
is_gripper_in_contact obj_id Object ID to check for contact with the robot’s gripper.
suction_grasp enable Boolean to enable or disable the suction grasp mechanism.
set_grasp_width grasp_width_percent Percentage of maximum grasp width to set for the gripper.
add_a_cube pos Position to place the cube in the simulation.

ori Orientation of the cube, given as a quaternion.
size Dimensions of the cube.
mass Mass of the cube.
color RGBA color of the cube.
textureUniqueId Optional texture ID for the cube’s surface.

wait sec Duration in seconds to delay the simulation.

Appendix J Comparison with SOFA

SOFA is a general-purpose solver that uses Finite Element Method (FEM), which fundamentally
differs from the direct solution of continuum mechanics equations provided by our fast model. We
performed simulations to highlight these differences. We implemented our robot in SOFA in two
different versions: a tendon-driven robot with multiple pull/push wires and a simple rod without
pull/push wires. The second model is an exact replica of the Cosserat rod plugin for FEM-based
Cosserat rod simulation in SOFA [43].

For both models, all physical parameters, including Young’s modulus, shear modulus, and physical
dimensions, were set equal to the model identified in the paper. The stiffness matrix for both models
was 𝐾 = diag[𝐸𝐼, 𝐸 𝐼, 𝐺𝐽] = diag[0.0022, 0.0022, 0.001]. In the simulation, we applied a point
load varying from 0 to 0.7 N along the 𝑦-axis of the rod in its global frame. A load of 0.7 N was
found to be the maximum allowable force, as forces higher than this caused a bend of more than 60◦

25

Figure 22: A comparison between the proposed solver embedded in SOFA shown in purple and
SOFA’s native Cosserat rod plugin.

around the 𝑥-axis at the rod’s tip. This bend causes the projection of the force on the rod’s neutral
axis to exceed the critical buckling load, leading to instability in the rod.

The critical buckling load 𝑃𝑐𝑟 for a rod with one end fixed and the other end free can be approximated
by Euler’s formula:

𝑃𝑐𝑟 =
𝜋2𝐸𝐼

(𝐾𝐿)2 , (24)

where 𝐸 is the Young’s modulus of the material, 𝐼 is the second moment of area (area moment of
inertia), 𝐿 is the length of the rod, and 𝐾 is the effective length factor. For a fixed-free end condition,
𝐾 = 2.

Given the defined rod parameters, the critical buckling load for the rod with a fixed-free end condition
is approximately 0.542 N. This can occur when the tip bending angle approaches 50 degrees with a
force of 0.7 N along the global 𝑦-axis (leads to 0.7N × sin(50) = 0.5 N along robot neutral axis). It
should be noted that Euler’s formula is an approximation; however, our results also confirm that the
maximum allowable force before singularity is 0.7 N.

Results of the simulation are shown in Figure 22. As can be seen, our solver embedded in SOFA
is capable of solving the equations up to the singularity with computational consistency. However,
SOFA’s results are highly dependent on selected meshes and time steps. We were able to perform

26

Figure 23: Multi-segment continuum robots simulated using SOFA based on our proposed solver.

simulations on SOFA’s Cosserat plugin up to 0.6 N, beyond which it becomes unstable as evident
in Figure 22. Additionally, the results’ convergence is highly dependent on the number of meshes
and sampling times. Table 9 summarises the simulation results, comparing number of samples
and overall time required to solve the equations for both methods. Our solver consistently solves
the equations at maximum of 9 time steps for all force values including forces close to singularity.
SOFA’s computational efficiency is variable and depends on meshes and force magnitudes. Finally,
the simulation revealed another minor issue with general FEM-based libraries like SOFA. In our
model, we have direct access to all the robot’s arc parameters (e.g., curvature and pose at any
arclength), allowing seamless use of these parameters during modeling to define constraints or apply
forces. For instance, we can easily apply a force that is always tangent to the robot tip by measuring
its orientation. However, implementing such forces in SOFA proved to be quite complex, requiring
the use of constraints and specific solvers, which we struggled to get to converge.

This simulation highlights the differences between our solver and SOFA:

1. Computational Cost: FEM can be computationally expensive, especially for large-scale
problems, high-resolution meshes, or highly nonlinear problems such as continuum robots
under time-varying forces. This makes real-time applications difficult and resource-
intensive, which is highlighted in their manual as well [44]. The computational performance
of SOFA, which is an FEM-based solver, is not comparable with ours.

2. Complex Setup and Implementation: FEM requires careful meshing, which can be com-
plex and time-consuming. Poor mesh quality can lead to inaccurate results or convergence
issues.

3. Numerical Stability and Convergence: FEM can suffer from convergence issues, espe-
cially in highly nonlinear problems involving large bending or complex boundary conditions
(e.g., under forces), requiring careful tuning of numerical methods and parameters.

4. Generalization: FEM is highly versatile and general, but this can be a drawback for
methods like ours that directly solve Cosserat rod equations. However, to provide these
benefits, we have implemented our solver in SOFA and made the code available online, so it
can be used in more general settings, specifically in contact with other soft objects modeled
in SOFA.

Table 9: A comparison between proposed solver embedded in SOFA and SOFA’s Cosserat rod
plugin.

Force [N] SOFA SoftManiSim
Avg. step Avg. time [s] Avg. step Avg. time [s]

0.20 5 0.05 8 0.08
0.40 7 0.07 8 0.08
0.50 12 0.12 8 0.08
0.60 24 0.24 9 0.08
0.70 × × 9 0.09

27

As discussed, the proposed solver for the robot is imported into the SOFA simulator. Creating a
robot under dynamic loads with SOFA is very cumbersome and requires defining various rods in
tandem with specific constraints. However, ours is seamless as the solver can handle any type of
rods in any configuration. Figure 23 shows a set of snapshots of SOFA simulating multi-segment
continuum robots based on our solver.

28

	Introduction
	SoftManiSim
	Entire Body Shape Modeling
	PyBullet Integration
	Interface and Custom Gym Environment

	Model-Based Control and Policy Learning
	Simulation
	Results and Discussions

	Real Robot Validation
	Conclusion and Limitations
	Acknowledgement
	Real-time and Parallelizable Solver for Continuum Robots
	Comprehensive Evaluation of the Proposed Solver
	Robot Prototype
	Custom Gym Environments
	Detailed Results of Trajectory Tracking
	Detailed Information About Reaching Target Task
	Reward Function

	Detailed Results of Non-Prehensile Object Manipulation
	Real Robot Experiments
	Training Dataset
	Control Policy Learning
	Experiments Results

	Python Interface
	API Documentation

	Comparison with SOFA

