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UniLP: Unified Topology-aware Generative Framework for Link
Prediction in Knowledge Graph

Anonymous Author(s)∗

ABSTRACT
Link prediction (LP) in knowledge graph (KG) is a crucial task
that has received increasing attention recently. Due to the het-
erogeneous structures of KGs, various application scenarios, and
demand-specific downstream objectives, there exist multiple sub-
tasks in LP. Most studies only focus on designing a dedicated archi-
tecture for a specific subtask, which results in various complicated
LP models. The isolated architectures and chaotic situations make
it significant to construct a unified model that can handle multi-
ple LP subtasks simultaneously. However, unifying all subtasks in
LP presents numerous challenges, including unified input forms,
task-specific context modeling, and topological information encod-
ing. To address these challenges, we propose a topology-aware
generative framework, namely UniLP, which utilizes a generative
pre-trained language model to accomplish different LP subtasks
universally. Specifically, we introduce a context demonstration
template to convert task-specific context into a unified generative
formulation. Based on the unified formulation, to address the lim-
itation of transformer architecture that may overlook important
structural signals in KGs, we design novel topology-aware soft
prompts to deeply couple topology and text information in a con-
textualized manner. Extensive experiment results demonstrate that
our framework achieves substantial performance gain and provides
a real unified end-to-end solution for the whole LP subtasks. We
also perform comprehensive ablation studies to support in-depth
analysis of each component in UniLP. The code is available at
https://anonymous.4open.science/r/UniLP/.
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1 INTRODUCTION
Human-curated knowledge graphs (KGs) provide critical supportive
information to various semantic web technologies, but these graphs
are usually incomplete, urging auto-completion of them. Therefore,
link prediction (LP) in KGs aims to infer missing or future facts,
which has received extensive attention in recent years. Due to the
variety of KG structures and different downstream task objectives,
LP derives a plethora of subtasks, including static link prediction
[1, 51], inductive link prediction [24, 36], few-shot link prediction
[6, 54], and temporal link prediction [15, 17].
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Figure 1: (a) Various LP subtasks: heterogeneous context
structures and isolatedmodel architectures. (b) Our topology-
aware unified LP: universally modeling via generative PLMs
with prompt learning.

Currently, most LP approaches are task-specialized, which leads
to dedicated architectures, isolated models, and specialized knowl-
edge sources for different LP subtasks. And the corresponding mod-
eling advances make the progress of each subtask seemingly unique
and incompatible. Fig 1 (a) presents illustrations of all subtasks with
specific examples. Different types of KG, such as static KG or tem-
poral KG, lead to highly specialized encoders [17, 47]. Moreover, to
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adapt to more realistic and challenging downstream task objectives,
e.g., few-shot setting and inductive setting, the additional training
scheme (e.g., meta-learning) is applied in some subtasks [7, 26].
Therefore, instead of solving common challenges in LP research,
improvements in LP have been prone to design a new architecture
carefully and trained with the corresponding dataset for a specific
subtask. The isolated architectures and chaotic situations make it
significant to construct a unified model that can handle multiple
LP subtasks simultaneously without relying on the sub-models or
changing the model architecture.

Recently, with powerful knowledge sharing and semantic gener-
alization capabilities of pre-trained language models (PLMs), many
natural language processing (NLP) tasks (e.g., name entity recog-
nition [22], aspect-based sentiment analysis [12, 50]) have been
modeled into a unified framework. A straightforward idea is to
unify the LP task by transforming all subtasks into text-to-text for-
mats and then generate target text via large-scale generative PLMs
[28]. Some methods [4, 44] instantiate this idea by utilizing entity
description texts and yield encouraging results. In this way, on the
one hand, the flexibility of text makes it possible to model multiple
subtasks universally, and on the other hand, the autoregressive
decoding in generative PLMs can significantly improve inference
efficiency compared to conventional LP approaches scoring all enti-
ties. Despite their success, these methods suffer from their inherent
problems, which limit their potential and performance in universal
modeling. Firstly, they rely heavily on the quality of entity descrip-
tion texts but fail to model the contextual knowledge (e.g., entity
local structure, temporal snapshots) uniformly in KGs. Secondly,
the structure topological information, a crucial aspect of KGs, is
inevitably lost when simply linearizing KGs into text form.

The issues above prompt us to rethink the unification of LP tasks.
Fundamentally, the unified modeling all subtasks of LP presents
three primary challenges: (i) Input Format. The input formats of
each subtask vary. For example, in Figure 1 (a), the input query is a
simple triple format in static and inductive settings, while it takes
on a quadruple form in the temporal setting. In contrast, in the few-
shot setting, there is a set of support edges associated with query
relation in addition to the query triple. Unifying the input format
of all subtasks is the first challenge. (ii) Context Modeling. Differ-
ent subtasks aim for diverse context modeling. Some subtasks use
entity local context (e.g., static LP, few-shot LP), while others use
transferable entity-independent relational context (e.g., inductive
LP). The formats and representations for different contexts differ,
and each context expresses information in its unique way. For exam-
ple, entity-related context uses a local subgraph, relational context
uses an enclosing subgraph, and temporal context uses a series
of subgraph snapshots. Representing diverse contexts over graphs
with a unified representation is the second challenge. (iii) Topolog-
ical Encoding. Employing the transformer architecture [40] often
overwhelmingly focuses on the textual information and overlooks
structural knowledge, which is a loss to the text encoder because
network signals are often strong indicators of text semantics. Al-
though some methods [41, 42] adopt Siamese-style PLM encoder
to learn structure and text information, they are task-specialized
and employ encoder-only architecture. Therefore, the third chal-
lenge is how to deeply couple topology and text information in a
contextualized way.

In response to the challenges of universal LP, we propose UniLP,
a unified topology-aware generative framework that can univer-
sally address all the LP subtasks. First, we transform all subtasks
into a generative paradigm with an encoder-decoder T5 [28], which
could handle the obstacles on the input and KG types without any
model architecture changes. Then, to model heterogeneous graph
context structures, we design a context demonstration template
that can effectively encode different context structures into a uni-
form representation so that various subtasks can be universally
modeled in the same text-to-text generation framework. Finally,
we design a topology-aware soft prompt to simultaneously model
the deep interactions between topology and text information and
establish the correspondence between KG elements and the prompt
vectors. Unlike previous methods [19] that prepend soft prompts
to the inputs of PLMs, we treat prompt and input text as different
elements by interpolating the soft prompts into inputs. Such de-
sign effectively avoids over-fitting towards textual information and
fuses the topological and textual information. To demonstrate the
effectiveness of our proposed framework, we conduct extensive
experiments on several challenging benchmarks of all LP subtasks.
Comparison results show that our proposed UniLP outperforms
most state-of-the-art (SOTA) models in every subtask.

In summary, our main contributions are as follows:

• We propose a novel prompt-based approach to link pre-
diction, UniLP, which unifies all subtasks under a single
generative framework. By introducing a context demonstra-
tion template that encodes various context structures into a
uniform representation, UniLP achieves a unified solution
without the need for dedicated architectures or extensive
changes in the model structure.

• We innovatively propose topology-aware soft prompts to
deeply couple topology and text information in a contex-
tualized manner, addressing the limitation of transformer
architecture that may overlook important structural signals
in KGs.

• We conduct extensive experiments on all subtasks, and the
experimental results show that our framework consistently
improves over the baselines. To the best of our knowledge,
it is the first work to evaluate a model on all LP subtasks.

2 RELATEDWORK
Structure Learning for Link Prediction. Recent advancements in
various subfields of LP mainly explore structure knowledge in KGs
through spatial measurement or latent matching. Specifically, spa-
tial measurement models intensively use translation-based scoring
functions to measure the distance between two entities. TransE [1]
defines each relation as a translation from the subject to the object.
RotatE [34] further extends TransE to model symmetry relation
patterns. Semantic matching methods, such as ComplEx [38] and
DistMult [51], calculate the semantic similarity of representation.
Moreover, due to the natural graph structure of KGs, some graph
neural networks (GNN) based methods [31, 39] achieve promising
results. Following static LP methods, TTtransE [15] and HyTE [9]
encode time in the entity-relation dimensional spaces with time
embeddings and temporal hyperplanes. Similarly, MetaR [6] and
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GMatching [45] exploit meta-learning to address the issue of long-
tail relations in KGs. GraIL [36] and COMPILE [24] extracts the
enclosing subgraph and use double radius labeling to address the
challenges in the inductive setting. Despite their success, separate
solutions for standalone subtasks hinder the development of LP
research, and it may be costly to deploy a variety of specialized
models in practice.
PLM-based Methods for Link Prediction. Pre-trained language
models, including BERT [11], GPT [3], and T5 [28], have shown
effectiveness in capturing general language representations and
have led to a learning paradigm shift in NLP. Inspired by this, KG-
BERT [53], StAR [41], and SimKGC [42] convert LP into a sequence
classification problem with the binary cross-entropy object. In the
temporal LP subtask, PPT [48] utilizes the PLMs to capture the
implicit temporal correlations among relations in KGs. However,
these encoder-only methods costly scoring of all possible triples
in inference and suffer from unstable negative sampling. Instead
of calculating scores from embeddings, KGT5 [30] and KG-S2S [4]
explore the sequence-to-sequence (Seq2Seq) PLM models to gen-
erate target entity text on LP tasks directly. GenKGC [44] further
proposes an entity-aware hierarchical decoding strategy for fast in-
ference. Compared with existing Seq2Seq-based LP approaches, the
most significant difference is that previous approaches rely heavily
on text information and ignore the structure topology information
of KGs. We aim to deeply couple the topology and text information
in a contextualized way. Besides, we focus on training a versatile
model that handles all subtasks in LP without changing the model
structure.
Prompt Learning. To fill the gap between the objective of PLMs
and the downstream fine-tuning objective, prompt learning is pro-
posed to leverage the implicit knowledge stored in PLMs by adding
additional hints [3]. For example, Shin et al. [33] extend this par-
adigm and propose hard prompts described via natural language
templates to improve the generalization ability of the model. To
relax the constraint that templates are natural language tokens,
Lester et al. [19] and Liu et al. [21] introduce additional trainable
parameters as soft prompts achieve comparative performance on
various NLP tasks, where each soft prompt corresponds to a learn-
able embedding. In this work, we utilize a discrete text prompt
template to model the appropriate context for each LP subtask
in a unified formulation. Then, we propose topology-aware soft
prompts to inject graph topological signals into the PLMs encoding
process.

3 METHODOLOGY
3.1 Link Prediction Task Unification
In this paper, we aim to solve static, inductive, few-shot, and tem-
poral LP in a unified framework. For a detailed description of each
task, refer to Appendix A.1. Without loss of generally, a KG is de-
fined as G = (V,R, E,M), where V,R, E, and M represent the
sets of entities, relations, edges and meta information, respectively.
Each edge 𝑒 ∈ E is a quadruple (𝑚, 𝑠, 𝑟, 𝑜) ∈ M × V × R × V
which connects head entity 𝑠 and target entity 𝑜 with relation type
𝑟 , associated with meta information𝑚. The meta information𝑚
denotes different forms of contents in different link prediction set-
tings, which could be null, i.e., M = ∅ in the static and inductive

settings, 𝐾−shot support edges of a relation for few-shot setting,
or timestamp in temporal setting. To effectively perform link pre-
diction across diverse settings using a unified model architecture,
we formulate the four link prediction tasks as a Seq2Seq problem,
i.e., directly generating target entities for the given query. Formally,
given a query 𝑞 = (𝑚, 𝑠, 𝑟, ?) or 𝑞 = (𝑚, ?, 𝑟 , 𝑜), when combined with
a text prompt, scoring the target entity in different link prediction
subtasks can be uniformly formulated as a Seq2Seq problem,

𝑠𝑐𝑜𝑟𝑒 (𝑣 𝑗 |𝑞) = 𝑝 (𝑌 |𝑞) =
𝑚∏
𝑖=1

𝑝 (𝑦𝑖 |𝑌<𝑖 , 𝑞), (1)

where 𝑣 𝑗 ∈ V is the target entity,𝑌<𝑖 represents the prefix of target
entity sequence 𝑌 up to position 𝑖 − 1, and 𝑝 (𝑦𝑖 |𝑌<𝑖 , 𝑞) represents
the probability of generating token 𝑦𝑖 given 𝑌<𝑖 and 𝑞.

3.2 Overview of the approach
Based on the above task formulation, we develop a novel unified
framework to serve a variety of link prediction subtasks. To im-
plement such a unified approach, we need to address two major
challenges: (i) how to verbalize the KG context and query across di-
verse task settings into a single generative form (Section 3.3), and (ii)
how to properly inject topological information in KGs into the text
encoding process in a contextualized way (Section 3.4). Additionally,
we introduce the training and inference process (Section 3.5). The
overall architecture of our proposed model is illustrated in Figure 2.

3.3 Context Demonstration Template
In this section, we focus on (i) modeling appropriate context C𝑞 for
a given query 𝑞, (ii) converting {C𝑞, 𝑞} into a unified prompt 𝜃𝑞 .
Prior works [39] have demonstrated the immense value of incor-
porating structure information when conducting link prediction.
Nevertheless, the limited input length of PLMs restricts their abil-
ity to process the entire KG. Instead, we note that the relevant
neighboring contexts around the query entity can serve useful sig-
nals to guide the generation process. For this purpose, given the
query quadruple 𝑞 = (𝑚, 𝑠, 𝑟, ?), we propose two context modeling
templates by constructing 𝑛 demonstrations:

• Entity-centered Demonstrations.We sample demonstra-
tions with the guidance of query entity 𝑠 , which consists of
one-hop neighbors related to the query entity 𝑠 from the
training set. With a minor change, in the temporal link pre-
diction setting, we sample historical facts related to entity 𝑠
based on time intervals and filter facts in current timestamp
𝑚, i.e., only retain facts from snapshots prior to timestamp
𝑚 for history context modeling. This ensures the contex-
tual demonstrations come from the relevant historical time
periods rather than the current state.

• Relation-centeredDemonstrations.Different from entity-
centered demonstrations focusing on local context, this tem-
plate involves sampling facts that contain the same relation
𝑟 . These demonstrations provide a global semantic perspec-
tive that facilitates the identification and characterization
of relation 𝑟 . It is worth noting that in the few-shot set-
ting, we only adopt entity-centered demonstrations since
the support edges of 𝑟 are already provided. Similarly, we

3
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[SEP] … 
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Figure 2: Overview of UniLP: a novel approach for unified link prediction modeling. This shows an example of the temporal LP
subtask for the query <Catherine Ashton, Make a visit, ?, 2014-11-09> from ICEWS14 [13]. We show two strategies to model
the context of entity Catherine Ashton as demonstrations. In the training stage, we randomly mask input tokens to avoid
over-fitting. In the inference stage, we adopt a constrained beam search algorithm to obtain top-𝐾 valid entity mentions (𝐾 is
the beam size) as final answers.

only retain facts prior to timestamp𝑚 for history modeling
under temporal LP.

Given the 𝑛 context demonstrations C𝑞 = {𝑐1, 𝑐2, · · · , 𝑐𝑛} and
query 𝑞, we construct a prompt using a pre-defined template 𝜃 ,
enabling unified formulation. Specifically, we verbalize each fact
𝑐𝑖 = (𝑚𝑐𝑖 , 𝑠𝑐𝑖 , 𝑟𝑐𝑖 , 𝑜𝑐𝑖 ) in C𝑞 as ⟨𝑚𝑐𝑖 |N (𝑠𝑐𝑖 ) |N (𝑟𝑐𝑖 ) |N (𝑜𝑐𝑖 )⟩ (e.g.,
<2014-11-02 | Mohammad Javad Zarif | Make a visit | Iraq>) where
N(·) is the lexical form of entity and relation. The query 𝑞 is then
represented as𝑚 |N (𝑠) |N (𝑟 ) |<Mask> where <Mask> is the placing
sentinel token of T5 pre-training, concatenated to the end of the
context. We convert the template into a textual prompt 𝜃𝑞 by means
of linearization [27]. More details are provided in Appendix A.6.
Formally, for context demonstrations C𝑞 and a query 𝑞, we obtain
the input sequence as:

𝑋𝑞 = [⟨𝐵𝑂𝑆⟩; 𝑐1, 𝑐2, · · · , 𝑐𝑛 ; ⟨𝑆𝐸𝑃⟩;N(𝑞)], (2)

where [; ] denotes the sequence concatenation operation, ⟨𝐵𝑂𝑆⟩
and ⟨𝑆𝐸𝑃⟩ are separate markers in the applied PLMs. Moreover,
we sample up to 20 demonstrations uniformly limited by the in-
put length of PLMs. And we adopt Seq2Seq dropout by randomly
masking 𝑝% of the input tokens in 𝑋𝑞 to address the over-fitting
issue.

3.4 Topology-aware soft prompt
Linearizing a knowledge graph into text form inevitably results in
the loss of structural information. While our proposed demonstra-
tion strategies have captured the local context around the query,
this approach is somewhat limited, as they only model instance-
level information but lack semantic-level information. To further

bridge the substantial gap between the link prediction task and the
generative task, we propose topology-aware soft prompts to inject
graph topological signals into the PLMs encoding process. The key
idea is to introduce additional trainable prompt vectors for entities
and relations, which capture global topological patterns in KGs and
allow frequent interaction with the textual information in PLMs.

Specifically, given the query 𝑞 = (𝑚, 𝑠, 𝑟, ?) and corresponding
text prompt input𝑋𝑞 , letH

(𝑙 )
𝑞 ∈ R𝑑×𝑛 denote PLMs encoder output

representations for all text tokens in 𝑋𝑞 after the 𝑙-th model layer
(𝑙 ≥ 1). As shown in Figure 3, We introduce four trainable prompt
vectors p(𝑙 )𝑠1 , p

(𝑙 )
𝑠2 , p

(𝑙 )
𝑟1 , and p(𝑙 )𝑟2 ∈ R𝑑 , which are interpolated into

the text token sequence hidden states as follows:

H̃(𝑙 )
𝑞 = [H(𝑙 )

<𝑠 ; p
(𝑙 )
𝑠1 ; h(𝑙 )𝑠 ; p(𝑙 )𝑠2 ; p(𝑙 )𝑟1 ; h(𝑙 )𝑟 ; p(𝑙 )𝑟2 ;H(𝑙 )

>𝑟 ], (3)

where h(𝑙 )𝑠 and h(𝑙 )𝑟 denote the 𝑙-th layer hidden states for the en-
tity and relation tokens, H(𝑙 )

<𝑠 and H(𝑙 )
>𝑟 denote splits of H(𝑙 )

𝑞 before
entity and after relation, respectively. In this way, the distinct soft
prompt vectors enable the decoupling of element-specific knowl-
edge from the general textual knowledge in PLMs. Furthermore, to
let soft prompt token representations carry structural signals, we
propose a novel soft prompt representation method. Unlike previ-
ous methods [43] that train additional GNNs to encode structure
information and directly integrate them into PLMs, our approach
transforms the KG into a relational perspective, where each entity
is characterized by its surrounding relations. Let ER ∈ R | R |×𝑑

denote the embeddings of relations in KG. Considering the distinct
directions of relations characterize different semantics, we use a
learnable relation-domain embedding matrix E𝑑𝑜𝑚R ∈ R | R |×𝑑 and
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Figure 3: The illustration of the topology-aware soft prompts
initialization.

a relation-range embedding matrix E𝑟𝑎𝑛R ∈ R | R |×𝑑 to represent
relational semantics of two directions. Formally, given the query
𝑞, we adopt the relation embedding to represent relation prompt
representations, i.e., p𝑟1 , p𝑟2 = ER (𝑟 ). The entity prompt represen-
tations are obtained by aggregating the surrounding relations of
the query entity:

p𝑠1 , p𝑠2 =

∑
𝑟 ∈O(𝑠 ) E𝑑𝑜𝑚R (𝑟 ) +∑

𝑟 ∈I(𝑠 ) E𝑟𝑎𝑛R (𝑟 )
|O(𝑠) | + |I(𝑠) | , (4)

where I(𝑠) = {𝑟 |∃𝑥, (𝑥, 𝑟, 𝑠) ∈ E} denotes the ingoing relation
set for entity 𝑠 , O(𝑠) = {𝑟 |∃𝑥, (𝑠, 𝑟, 𝑥) ∈ E} denotes the outgoing
relation set for entity 𝑠 . Figure 3 shows a visual illustration of the
soft prompts initialization process. The resulting input embeddings
H̃(𝑙 )
𝑞 carry inherent topology awareness, enabling the model to

discern and leverage the underlying graph structure.

3.5 Training and inference
In our approach, link prediction is treated as an autoregressive text
generation task, and our proposed UniLP is built on a transformer-
based Seq2Seq model, T5. Intuitively, there is no need for nega-
tive sampling, and we train UniLP with a standard Seq2Seq objec-
tive, i.e., maximizing the likelihood of the target entity sequences
with teacher forcing. Specifically, given a KG corpus G, for each
fact (𝑚, 𝑠, 𝑟, 𝑜) in G, we verbalize the query (𝑚, 𝑠, 𝑟, ?) or (𝑚, ?, 𝑟 , 𝑜)
across diverse task settings into a unified text prompt to obtain
the input sequence 𝑋𝑖 according to section 3.3. The corresponding
output sequence 𝑌𝑖 are the text mentions of 𝑜 or 𝑠 , respectively.
More detailed input-output pairs refer to the Appendix A.6. In this
way, the parameters 𝜙 of the model are optimized in an end-to-end
manner by the cross entropy loss, i.e.,

L = 𝑎𝑟𝑔max
𝜙

| G |∑︁
𝑖=1

log𝑝 (𝑌𝑖 |𝑋𝑖 ;𝜙) . (5)

In the inference phase, UniLP directly generates the text of tar-
get entity predictions rather than scoring and ranking all possible
entities like traditional methods, which can be computationally ex-
pensive as the entity set |E | can be very large. However, the flexible
auto-regressive generation may result in generating irrelevant con-
tent instead of expected entities. Moreover, the decoding strategies
in PLMs strictly select the sequence with the highest conditional
probability and are not suitable for link prediction because there

could be multiple valid entities. Therefore, we adopt a Constrained
Beam Search strategy [35] to force the model to generate valid
entities, i.e., entities in the entity set V . Specifically, we define
our constraint in terms of a prefix tree 𝑇 , where each leaf node
corresponds to an entity inV , and a path from the root node to a
leaf node represents all tokens that constitute a complete mention
of the entity. At each step of model generation, the children of
current node 𝑡 ∈ 𝑇 represent all succeeding tokens allowed to be
generated after the prefix corresponding to the 𝑡 . By using such a
prefix-constrained beam search decoding strategy, we obtain top-𝐾
entities in the E without having to score all entities in the KG, where
𝐾 is the beam size. We assign −∞ for all entities not generated in
the decoding stage when calculating the ranking metrics.

4 EXPERIMENTS
In this section, we evaluate UniLP on different LP tasks and settings.
We conduct extensive experiments to show the effectiveness of our
method by answering the following research questions: RQ1 How
does UniLP perform compared to strong baselines across various
LP subtasks? RQ2 How do different key modules in our UniLP
framework contribute to the overall performance? RQ3 How does
the context length influence the performance of UniLP? And is
UniLP sensitive to context demonstration ordering? RQ4 How do
different decoding strategies influence performance?

4.1 Experimental setup
We conduct experiments on 9 LP benchmarks across 4 represen-
tative LP subtasks, including static LP, inductive LP, few-shot LP,
and temporal LP. The used datasets include (i) static LP benchmarks:
FB15k-237 [37], WN18RR [10], and Wikidata5M [43]; (ii) inductive
LP benchmarks: various inductive versions derived from original
WN18RR and FB15k-237 by [36]; (iii) few-shot LP benchmarks: NELL-
One [45] and few-shot version derived from original FB15k-237 by
[23]; and (iv) temporal LP benchmarks: ICEW14 [13] and ICEWS05-
15 [13]. Please refer to the Appendix A.2 for more details on dataset
descriptions and statistics. In all our main experiments, we use the
T5 base as the backbone of our UniLP. The impact of different T5 pa-
rameter sizes is reported in the Appendix A.5. The implementation
details and optimal hyperparameters refer to the Appendix A.4.

Baselines. To verify the effectiveness of the UniLP framework,
we first implement two variants of the model: UniLP(ent) and
UniLP(rel), adopting the entity-centered demonstrations and the
relation-centered demonstrations to model the context information,
respectively. Then, we compare against a variety of state-of-the-art
baseline methods on LP tasks (Refer to Appendix A.3). The per-
formance of our model is reported on the standard link prediction
metrics: Mean Reciprocal Rank (MRR) and Hits@1,3,10. It is worth
noting that we have not fine-tuned a basic T5-base model separately
as our baseline because KG-S2S is a model that fine-tuning T5-base
adaptation to link prediction task using text information, which
can be considered as an enhanced version of fine-tuned T5-base.

4.2 Performance Comparison with SOTA (RQ1)
Static LP.We compare our results with various graph-based and
PLM-based methods on the static LP settings. Experimental results
are summarized in Table 1. We can observe that (i) UniLP with two
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Table 1: Experiment results of different baseline methods on the static LP datasets. WN18RR and FB15k-237 results are taken
from [4]. Wikidata5M results are taken from [30]. The best results are in bold, and the second best results are underlined.

Methods WN18RR FB15k-237 Wikidata5M

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE [1] .243 .043 .441 .532 .279 .198 .376 .441 .253 .170 .311 .392
DistMult [51] .444 .412 .470 .504 .281 .199 .301 .446 253 .209 .278 .334
ComplEx [38] .449 .409 .469 .530 .278 .194 .297 .450 .308 .255 - .398
ConvE [10] .456 .419 .470 .531 .312 .225 341 .497 - - - -
RotatE [34] .476 .428 .492 .571 .338 .241 .375 .533 .290 .234 .322 .390

CompGCN [39] .479 .443 .494 .546 .355 .264 .390 .535 - - - -

KG-BERT [53] .216 .041 .302 .524 - - - .420 - - - -
MTL-KGC [16] .331 .203 .383 .597 .267 .172 .298 .458 - - - -

StAR [41] .401 .243 .491 .709 .296 .205 .322 482 - - - -
MLMLM [8] .502 .439 .542 .611 - - - - .223 .201 .232 .264
KEPLER [43] - - - - - - - - .210 .173 .224 .277

GenKGC [44] - .287 .403 .535 - .192 .355 .439 - - - -
KGT5 [30] .508 .487 - .544 .276 .210 - .414 .300 .267 .318 .365
KG-S2S [4] .574 .531 .595 .661 .336 .257 .373 .498 - - - -

UniLP(ent) .588 .540 .612 .684 .344 .265 .378 508 .373 .331 .376 .416
UniLP(rel) .579 .536 .604 .664 .331 .253 .366 .496 .366 .327 .359 .418

Table 2: Hits@10 metric values of link prediction for KGs
in the inductive setting. Results of baselines are taken from
[20].

Methods WN18RR FB15k-237

v1 v2 v3 v4 v1 v2 v3 v4

NeuralLP [52] .744 .689 .462 .671 .529 .589 .529 .559
DRUM [29] .744 .689 .462 .671 .529 .587 .529 .559
RuleN [25] .809 .782 .534 .716 .498 .778 .877 .856

GraIL [36] .825 .787 .584 .734 .642 .818 .828 .893
CoMPILE [24] .836 .798 .607 .755 .676 .830 .847 .874
TACT [5] .840 .816 .680 .766 .658 .836 .852 .887
SNRI [49] .872 .831 .673 .833 .718 .865 .896 .894

ConGLR [20] .856 .929 .704 .929 .683 .860 .886 .893

UniLP(ent) .973 .976 .888 .969 .744 .916 .937 .940
UniLP(rel) .957 .955 .871 .943 .714 .880 .916 .922

different demonstration templates, i.e., UniLP(ent) and UniLP(rel),
consistently outperforms baselines, indicating that both two con-
text demonstration templates in UniLP are capable of capturing
context information of query triples and employ them for inference.
(ii) For previous SOTAmodels, the structure-based methods achieve
better results compared to part of fully fine-tuned PLMs-based ap-
proaches, which demonstrates the topological information of the
KG is important when performing link prediction tasks. Moreover,
compared to the remaining datasets, structure-based methods per-
form better on FB15k-237, which can be attributed to semantically
meaningless Cartesian Product Relations in FB15k-237. (iii) For
the PLMs-based methods, generative methods outperform encoder-
only-based methods by a large margin. This indicates decoding
generation is more effective than leveraging score functions to rank,

which suffers from unstable negative sampling. (iv) UniLP outper-
forms KG-S2S, showing that injecting the network signals into
the PLMs is effective. That is, by introducing context demonstra-
tions and topology-aware soft prompts, UniLP effectively couples
topological and textual information in a contextualized way.

Inductive LP. Table 2 reports the experimental results in the in-
ductive setting. We find that both variants of UniLP obtain the best
results compared with existing baselines. In particular, UniLP(ent)
exceeds the SOTA method by a large margin on all inductive ver-
sions of WN18RR (Avg. .952 vs. .855) and FB15k-237 (Avg. .884
vs. .843). This is consistent with our expectation because PLMs
store a large amount of knowledge that enables inherent inductive
reasoning ability, and UniLP can effectively harness and unleash
the ability of PLMs.

Few-shot LP. For a fair comparison, we conduct evaluation
under a zero-shot setting like previous PLMs-based methods while
the remaining baselines are under a 5-shot setting. Table 3 reports
the experimental results on the NELL-one and FB15k-237 datasets.
From the results, we can observe that: (i) Even under the zero-
shot setting, the PLMs-based methods still outperform most of the
previous graph approaches using meta-learning, suggesting that
the knowledge acquired by the language model in the pre-training
phase enables the model to more robust in low-resource scenarios.
(ii) Compared with two representative PLMs-based methods, UniLP
obtains a better performance, comparable to the SOTA method that
specializes in few-shot settings. That is, UniLP can better utilize
PLMs to enable knowledge transfer from the pre-training phase to
the unseen ones.

Temporal LP. Finally, we verify the ability of UniLP in tem-
poral setting on ICEWS14 and ICEWS05-15 datasets. The results
in Table 4 suggest that (i) The improved results of two variants of
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Table 3: Experimental results on the few-shot settings. † de-
notes the model exploits the PLMs and is evaluated in the
zero-shot setting. Results of baseline are obtained from [23].

Methods NELL-One FB15k-237

MRR H1 H5 H10 MRR H1 H5 H10

TransE [1] .168 .082 .186 .345 .307 .198 .419 .537
TransH [2] .279 .162 .317 .434 .284 .181 .397 .503

DistMult [51] .214 .140 .246 .319 .237 .164 .287 .378
ComplEx [38] .239 .176 .253 .364 .238 .169 .281 .370
GMatching [45] .176 .113 .233 .294 .304 .221 .410 .456

MetaR [6] .261 .168 .350 .437 .403 .279 .551 .647
FSRL [54] .153 .073 .212 .319 .365 271 .456 .553
FAAN [32] .284 .194 .373 .451 .425 .340 .459 .518
GANA [26] .344 .246 .437 .517 .458 .349 .575 .656

StAR† [41] .260 .170 350 .450 - - - -
KG-S2S† [4] .310 .220 .410 .490 - - - -

UniLP(ent) † .337 .238 .430 .503 .456 .346 .581 .654

Methods ICEWS14 ICEWS05-15

MRR H1 H3 H10 MRR H1 H3 H10

TTranse [18] .255 .074 - .601 .271 .084 - .616
HyTE [9] .297 .108 .416 .655 .316 .116 .445 .681
ATiSE [46] .550 .436 .629 .750 .519 .378 .606 .794

DE-SimplE [14] .526 .418 .592 .725 .513 .392 .578 .748
Tero [47] .562 .468 .621 .732 .586 .469 .668 .795

TComplEx [17] .560 .470 .610 .730 .580 .490 .640 .760
TNTComplEx [17] .560 .460 .610 .740 .600 .500 .650 .780
T+TransE [15] .553 .437 .627 .765 - - - -
T+SimplE [15] .539 .439 .594 .730 - - - -

KG-S2S [4] .595 .516 .642 .737 - - - -

UniLP(ent) .626 .548 .671 .772 .631 .550 .682 .789
UniLP(rel) .614 .537 .663 .748 .616 .541 .664 .752

Table 4: Experimental results on the temporal setting. The
results of baseline are obtained from [15].

UniLP compared to baselines demonstrate that both local context
and global semantics are beneficial for temporal forecasting. (ii)
Compared to KG-S2S, UniLP(ent) improves the MRR by 3.1% and
Hits@10 3.5% on ICEWS14, which demonstrates the effectiveness
of the UniLP for historical context modeling. (iii) Compared to the
static LP setting, UniLP obtains more significant improvements.
The reason is that temporal datasets focus on specific domains and
the temporal dependencies that manifest as structured context can
be effectively captured by UniLP.

Overall, by comparing across various task settings and datasets,
UniLP consistently and significantly outperforms most specialized
methods, which demonstrates the effectiveness and feasibility of
UniLP for universally modeling all subtasks in LP. For two different
demonstration strategies, UniLP(ent) consistently performs better
than UniLP(rel) across various datasets and settings. The potential
reason is that, limited by the input length constraint of the lan-
guage model, the explicit local structure is more beneficial for link
prediction compared to implicit global relation semantics. In the
following ablation and further analysis experiments, we adopt the

best performing format UniLP(ent) as our backbone, and UniLP
refers to Uni(ent) when not otherwise specified.

4.3 Ablation Study (RQ2)
In this section, we present ablation studies to support our design.
To better understand the contribution of each component in UniLP,
We conduct a series of ablation experiments in static and temporal
settings, respectively. KG-S2S serves as an ablated variant with only
Seq2Seq dropout. The results and meanings of various variants are
presented in Table 5. The results reveal that nearly all forms of infor-
mation are essential because their absence has a detrimental effect
on performance. Specifically, we argue that context demonstrations
have captured the structure information surrounding the query
entity, contributing to link prediction. This can be demonstrated
by comparing experimental results between KGS2S and CM + SD,
as well as TSP + SD and UniLP. Similarly, by comparing the results
between CM + SD and UniLP, as well as TSP + SD and KG-S2S,
we also verify that the topology-aware soft prompts can alleviate
the structural losses when linearizing the KG structures into text
form. Moreover, removing Seq2Seq dropout leads to performance
drops, which also validates its necessity and can alleviate potential
over-fitting risk.

CM TSP SD WN18RR ICEWS14

MRR Hits@1 MRR Hits@1

Baseline " - - .582 .537 .621 .544
- " - .580 .531 .616 .539
" - " .584 .538 .622 .545
- " " .581 .531 .617 .539
" " - .588 .539 .624 .546

KG-S2S - - " .575 522 .595 .516

UniLP " " " .588 .540 .626 .548

Table 5: Ablation for the UniLP in static and temporal set-
tings. CM denotes context modeling. TSP denotes topology-
aware soft prompts. SD denotes Seq2Seq dropout.

4.4 Analysis on Context Demonstration (RQ3)
Quantities of Context Demonstrations. To evaluate the impact
of the demonstration amounts provided in the input, we conduct
a set of experiments using varying demonstration quantities. Our
results, as shown in Figure 4, generally indicate a consistent im-
provement in performance as the context length increases. This
demonstrates that the model performs better as sufficient local
structural information is presented. When the context length is rel-
atively short, the model performance fluctuates, which is attributed
to the possible introduction of noisy contexts. This observation
complies with the nature of graph-based methods that models are
susceptible to the sparse issue.

Order of Context Demonstrations. We randomly and uni-
formly sample neighbors as demonstrations in all subtask settings
except in the temporal setting, where we order the sampled demon-
strations by time. To explore whether UniLP is sensitive to the order
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Figure 4: Performances on varying demonstration quantities.
FBv1 denotes the FB15k-237 v1 dataset.

of demonstrations, we shuffle the demonstrations to see how the
UniLP is affected by the corruption of sequential information. As
shown in Figure 5, we find that UniLP is order-insensitive except
in the temporal setting. In the temporal setting, the corruption
of time order can lead to a deterioration in performance. This ob-
servation demonstrates that UniLP has the capability to model
temporal dependencies and comprehend the sequential order of
demonstrations.
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Figure 5: Performance with and without shuffling.

4.5 Analysis on Decoding Strategy (RQ4)
Decoding Strategy. The results of link prediction have several
answers, which motivate us to look into the beam search rather
than relying on decoding sequences strictly with the highest condi-
tional probability. We investigate the impact of different decoding
strategies in Figure 6 (c). By comparing random sampling search,
diverse beam search, beam search, and constrained beam search
(UniLP adopts), we find that constrained beam search and standard
beam search are always better than the other two. Besides, the con-
strained beam search further improves the performance of UniLP
compared to standard beam search. The reason is that constrained
beam search can reduce the search space when decoding by using
prefix constraints.

Influence of Beam Size. We also explore the impact of beam
size in entity generation on performance. From Figure 6 (a), we
observe that the MRR performance of UniLP improves as the beam
size increases. The reason is that in the decoding process, beam
size determines the number of generations for each query, and a
smaller beam size implies a smaller search space. With the smaller
beam size, it is hard to generate diverse valid entities for queries.
Moreover, we find that the model performance changes slightly

1 0 2 0 3 0 4 0 5 0 6 00 . 3 0
0 . 3 5
0 . 4 0
0 . 4 5
0 . 5 0
0 . 5 5
0 . 6 0
0 . 6 5

Hit
S@

10

( a )  d i f f e r e n t  b e a m  s i z e s

 W N 1 8 R R
 F B v 1
 N E L L - O n e
 I C E W S 1 4

W N 1 8 R R F B v 1 N E L L - O n e I C E W S 1 40 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7

MR
R

( b )  P e r f o r m a n c e  a f t e r  R e - r a n k

 O r i g i n a l
 R e r a n k

W N 1 8 R R F B v 1 N E L L - O n e I C E W S 1 40 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8

MR
R

( c )  D i f f e r e n t  D e c o d i n g  S t r a t e g i e s

 R S
 D B S
 B S
 C B S

Figure 6: Analysis on decoding strategy.

when beam size 𝑏 ≥ 40. Since the inference time goes linearly with
the beam size, we finally choose beam size 40 in our experiments.

Generation Results Re-ranking. After generating entity can-
didates with beam search, we find that although UniLP occasionally
does not generate ground truth entity with the highest probability,
the ground truth entity is always within candidates. To verify this
observation, We utilize the most common structure-based method
TransE to re-rank the entity candidates. The result is reported in
the Figure 6 (b). We find that after re-ranking the entity candi-
dates, UniLP consistently obtains improvements on various task
settings, which demonstrates the generation quality of UniLP, and
it can inspire future work to devise dedicated knowledge calibration
methods to further improve the model performance.

5 CONCLUSION
In this paper, we propose a novel prompt-based approach for link
prediction, UniLP, which unifies all subtasks under a single Seq2Seq
generative framework. To alleviate the information loss caused by
conversion of structure to text, we introduce demonstration tem-
plates and topology-aware soft prompts to couple topology and
text information in a contextualized manner. Our extensive exper-
iments have demonstrated that UniLP outperforms competitive
baseline models in various settings. Additionally, we provide an
in-depth analysis of the contribution of each component in UniLP.
Our work represents a step forward in the unified modeling of link
prediction subtasks, and we hope it will inspire future research
in this direction. In the future, we plan to extend UniLP to other
knowledge-intensive tasks, such as generative recommendation,
and information retrieve.
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A APPENDIX
A.1 Subtask Description
The link prediction tasks across various knowledge graph (KG)
structures exhibit significant diversity, rendering model architec-
tures incompatible across these multiple tasks without careful adap-
tation. These tasks can be categorized into four distinct settings
based on the KG structure and downstream task objectives:

• Static Link Prediction aims to infer missing entities in static
KGs where all entites and relations are observed during
training. This is the most common and traditional setting.

• Inductive Link Prediction is closer to real-life scenarios, al-
lowing unseen entities during testing. Models in this setting
should be designed to focus on entity-independent infor-
mation in KGs to make up for the gap between testing and
training [20].

• Temporal Link Prediction predicts a temporally conditioned
missing entity in the future given a query quadruple and
previous KG snapshots.

• Few-shot Link Prediction aims to mitigate the long-tail issue
in KGs, predicting facts of a relation with few associated
samples.

A.2 Datasets Statistics
For static LP, we adopt commonly used WN18RR [10], FB15k-237
[37], and Wikidata5M [30]. And we use temporal LP datasets re-
leases from [13] and few-shot LP datasets from [23]. Detailed statis-
tics of all these datasets are shown in Table 6. For inductive LP, we
show dataset statistic in Table7, and due to the space limitation, we
abbreviate the name for each dataset. We follow the original split
in our experiments.

Dataset |V| |R| |𝑇𝑟𝑎𝑖𝑛 | |𝑉𝑎𝑙𝑖𝑑 | |𝑇𝑒𝑠𝑡 |
Static LP

WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466
Wikidata5M 4,594,485 822 20,614,279 5,163 5,133

Few-shot LP

NELL-One 68,545 358 51 5 11
FB15k-237 14,541 231 75 11 33

Temporal LP

ICEWS14 6,869 230 72,826 8,941 8,963
ICEWS05-15 68,544 358 189,635 1,004 2,158

Table 6: Statistics of the static, few-shot, and temporal
datasets.

A.3 Baselines
For static LP, we adopt three types of baselines: (i) graph structure-
based methods, including TransE [1], DistMult [51], ComplEx [38],
ConvE [10], RotatE [34] and CompGCN [39]. (ii) PLMs-based meth-
ods (encoder-only), including KG-BERT [53], StAR [41], MLMLM

Source KG Target KG

|R | |V| |G| |R| |V| |G| |𝑇𝑒𝑠𝑡 |
W1 9 2,746 6,678 8 922 1,618 188
W2 10 6,954 18,968 10 2,757 4,011 441
W3 11 12,078 32,150 11 5,084 6,327 605
W4 9 3,861 9,842 9 7,084 12,334 1,429

F1 180 1,594 5,226 142 1,093 1,993 205
F2 200 2,608 12,085 172 1,660 4,145 478
F3 215 3,668 22,394 183 2,501 7,406 865
F4 219 4,707 33,916 200 3,501 11,714 1,424

Table 7: Statistics of various inductive versions of WN18RR
(W) and FB15k-237 (F).

[8], and KEPLER [43]. (iii) Generative PLMs-based methods, includ-
ing GenKGC [44], KGT5 [30], and KG-S2S [4]. For the few-shot
LP, we adopt baselines derived from [23] and [6] respectively, in-
cluding meta-learning based methods and PLMs-based methods.
For the inductive LP, we also use two types of baselines, including
rule-based baselines and structure-based baselines derived from
[36]. For temporal LP, we compare the baselines from [15].

A.4 Implementation Details
We adopt T5 default settings in our experiments during model
training. In terms of hyperparameters, we set the maximum number
of epochs as 30-100, depending on the dataset size. we select the
batch size from {32, 64, 128}, learning rate from {5𝑒 − 3, 1𝑒 − 3, 5𝑒 −
4, 1𝑒 − 4}, Seq2Seq dropout rate from {0.0, 0.1, 0.2, 0.3, 0.4}. And we
use early stopping and model selection on the valid set. The optimal
model hyperparameters for each dataset andmore details are shown
in Table 8. For model evaluation, our model generates the raw text,
and we apply regular expressions to remove the special tokens and
descriptive spans, leaving only the entity name strings as the final
model predictions. We follow the filtered setting proposed in [1] for
fair comparison. For each triple in test set, we rank all entities for
the query under the object prediction setting and subject prediction
setting, and report final mean results. Model is selected by MRR
value on valid set.

batch size learning rate dropout eval length

WN18RR 64 1e-3 0.1 30
FB15k-237 32 1e-3 0.3 30
NELL-One 128 1e-5 0.0 30
ICEWS14 32 5e-4 0.1 30

ICEWS05-15 32 5e-4 0.1 30
Table 8: Optimal hyperparameters. Same settings as static LP
are adopt under inductive and few-shot versions of FB15k-
237 and WN18RR.

A.5 Impact of PLMs scalability
We evaluate the performance of our models under different PLMs
scalabilities. We report the results in Table 9. We compare the UniLP
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with T5-base and T5-small under static LP. From the results, we
find that our performance increases with the model size, conforms
to the expected trend of better performance with larger models.

Model Size WN18RR FB15k-237

MRR H1 H3 H10 MRR H1 H3 H10

UniLP(base) 220M .588 .540 .612 .684 .344 .265 .378 .508
UniLP(small) 60M .550 .501 .583 .643 .300 .236 .329 .433

Table 9: Comparison of model performance under different
PLMs scalability.

A.6 Demonstration Template
Query: <Catherine Ashton, Make a visit, ?, 2014-11-09>
Demonstrations: <Catherine Ashton, Express intent to meet or ne-
gotiate, Mohammad Javad Zarif, 2014-11-04>, «Catherine Ashton,
Consult, John Kerry, 2014-11-05>, ..., <Catherine Ashton, Make state-
ment, Iran, 2014-11-06>, ...
Input: <extra-id-0> Given entity-related context: 2014-11-04 | Express
intent to meet or negotiate | Mohammad Javad Zarif [SEP] 2014-11-05
| Consult | John Kerry [SEP] ..., 2014-11-06 | Make statement | Iran
[SEP], answer 2014-11-09 | Catherine Asthon | Make a visit | <Mask>
<extra-id-1>
Output: <extra-id-0> Oman <extra-id-1>
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