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Abstract

Ensuring safety in autonomous systems requires controllers
that satisfy hard, state-wise constraints without relying on on-
line interaction. While existing Safe Offline RL methods typi-
cally enforce soft expected-cost constraints, they do not guar-
antee forward invariance. Conversely, Control Barrier Func-
tions (CBFs) provide rigorous safety guarantees but usually
depend on expert-designed barrier functions or full knowl-
edge of the system dynamics. We introduce Value-Guided
Offline Control Barrier Functions (V-OCBF), a framework
that learns a neural CBF entirely from offline demonstra-
tions. Unlike prior approaches, V-OCBF does not assume ac-
cess to the dynamics model; instead, it derives a recursive
finite-difference barrier update, enabling model-free learn-
ing of a barrier that propagates safety information over time.
Moreover, V-OCBF incorporates an expectile-based objective
that avoids querying the barrier on out-of-distribution actions
and restricts updates to the dataset-supported action set. The
learned barrier is then used with a Quadratic Program (QP)
formulation to synthesize real-time safe control. Across mul-
tiple case studies, V-OCBF yields substantially fewer safety
violations than baseline methods while maintaining strong
task performance, highlighting its scalability for offline syn-
thesis of safety-critical controllers without online interaction
or hand-engineered barriers.

Introduction

Ensuring the safety of autonomous systems is essential for
their reliable and widespread deployment. From household
service robots to autonomous vehicles and aerial drones,
these systems increasingly operate in complex and unstruc-
tured environments where unsafe behavior can lead to ir-
reversible consequences. As autonomy becomes deeply in-
tegrated into transportation, manufacturing, and healthcare,
guaranteeing that such systems operate within well-defined
safety boundaries is critical for reliability, and long-term
adoption.

Reinforcement learning (RL) has emerged as a power-
ful paradigm for enabling autonomous systems to acquire
sophisticated control behaviors. However, in safety-critical
domains, naive RL exploration can be hazardous. Although
constrained RL (CRL) (Achiam et al. 2017; Altman 2021,
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Alshiekh et al. 2018; Zhao et al. 2023) methods attempt to
incorporate safety constraints during learning, they typically
require extensive online interaction with the environment.
However, most previous studies focus on online RL setting
(Liu et al. 2024), which suffers from serious safety issues in
both training and deployment phases, especially for scenar-
ios that lack high-fidelity simulators and require real system
interaction for policy learning. As a result, there is a growing
interest in synthesizing safe policies using offline RL or imi-
tation learning (Levine et al. 2020; Kumar et al. 2020). Nev-
ertheless, most online and offline safe RL approaches (Xu,
Zhan, and Zhu 2022; Ciftci et al. 2024; Stooke, Achiam,
and Abbeel 2020) treat safety as a soft constraint and regu-
late only the expected cumulative constraint violations. Such
probabilistic constraints are insufficient for applications that
demand strict state-wise safety, where even a single viola-
tion is unacceptable. Furthermore, jointly optimizing per-
formance and safety from static datasets often leads to un-
stable training dynamics and overly conservative behavior,
particularly when safety-critical transitions are sparsely rep-
resented(Lee et al. 2022).

Control-theoretic tools provide an alternative and more
rigorous foundation for safety. In particular, Control Bar-
rier Functions (CBFs) (Ames, Grizzle, and Tabuada 2014)
offer a principled mechanism to enforce hard, instantaneous
safety constraints by guaranteeing the forward invariance of
a prescribed safe set. When combined with learning-based
controllers, CBFs serve as minimally invasive safety filters
that adjust nominal actions only when necessary to prevent
constraint violations. Their integration with Quadratic Pro-
gram (QP) based controllers enables real-time implementa-
tion with modern optimization solvers. Consequently, CBF-
based controllers have been successfully applied to a wide
range of safety-critical tasks, including adaptive cruise con-
trol (Ames, Grizzle, and Tabuada 2014), aerial robotics (Wu
and Sreenath 2016; Tayal et al. 2024a), and legged locomo-
tion (Nguyen and Sreenath 2015). In all of these applica-
tions, the performance and safety guarantees fundamentally
depend on the quality of the underlying CBF.

Constructing valid CBFs, however, is a challenging prob-
lem. Hand-crafting barrier functions requires deep system
knowledge and does not scale well to high-dimensional
or partially known dynamical systems. This has motivated
significant interest in Neural Control Barrier Functions



(NCBFs), which leverage the expressive power of neural
networks to approximate complex safe sets. A variety of
techniques have been proposed for learning NCBFs, includ-
ing SMT-based synthesis (Abate et al. 2021, 2020), mixed-
integer programming (Zhao et al. 2022), nonlinear opti-
mization (Zhang et al. 2023), and loss-based training meth-
ods (Dawson et al. 2022; Dawson, Gao, and Fan 2023; Tayal
et al. 2024b, 2025). Other recent approaches learn CBFs
from value functions associated with nominal policies (So
et al. 2024). However, most of these methods rely on on-
line interaction to collect informative samples or refine the
barrier, which is often infeasible in safety-critical settings.

Recent work has explored learning Control Barrier Func-
tions (CBFs) from offline demonstrations (Robey et al.
2020; Castafieda et al. 2023; Tabbara and Sibai 2025). Ex-
isting methods either fit CBFs only on expert trajectories or
rely on data-likelihood measures to filter unsafe samples,
which limits their ability to generalize beyond the demon-
strated states. Uncertainty-aware approaches address distri-
butional mismatch but often become overly conservative.
Overall, current offline CBF learning methods are closely
tied to the empirical data distribution and do not explicitly
reason about future system evolution, resulting in conserva-
tive safety guarantees.

This paper introduces Value-Guided Offline Control Bar-
rier Functions (V-OCBF), a novel framework designed to
overcome key limitations of existing offline RL and CBF-
based approaches. We derive a model-free finite-difference
recursion for updating the barrier function, and we show
that satisfying this update provides a formal one-step safety
guarantee for any control-affine system under the resulting
policy. In addition, we propose an expectile-based learning
objective that allows the synthesized safe policy to improve
over the behavior policy in the dataset while never query-
ing the barrier on out-of-distribution actions, ensuring stable
and reliable offline learning. To summarise, the main contri-
butions of this work are as follows:

1. We propose V-OCBF, a framework for learning formally
safe controllers entirely from offline demonstrations.

2. We derive a model-free finite-difference barrier recursion
and prove that adherence to this update guarantees one-
step forward invariance for any control-affine system.

3. We introduce an expectile-based objective that improves
upon the behavior policy without evaluating the barrier
outside the dataset action support.

4. Across diverse systems, including high-dimensional
Safety Gymnasium (Ji et al. 2023) tasks, V-OCBF con-
sistently outperforms constrained offline RL and neural
CBF baselines in both safety and reward.

Problem Formulation
We consider a control-affine nonlinear dynamical system
defined by the state z(t) € X C R”, the control input
u(t) € U C R™, and governed by the dynamics:
o(t) = f(z(t) + g(z(t))u(?), €]

where f : R” — R™ and g : R® — R™ "™ are locally
Lipschitz continuous functions. We are given aset C C X

that represents the safe states for the system and a failure set
F C X that represents the set of unsafe states for the sys-
tem (e.g., obstacles for an autonomous ground robot). Fur-
thermore, the system is controlled by a Lipschitz continuous
control policy 7 : R™ — R"™. Our focus lies in ensuring the
safety of this dynamical system, which is formally defined
as follows:

Definition 1 (Safety). A dynamical system is consid-
ered safe if the set, C C X C R", is positively invari-
ant under the control policy, m, i.e, z(0) € C,u(t) =
m(xz(t)) = z(t)eC, YVt >0.

Since, F C X \ C, it can be trivially shown that x(t) €
C = uz(t) ¢ FVt > 0.Using this premise, we define
the main objective of this paper:

Objective 1. Our objective is to synthesize a safe pol-
icy Tsate : [t,T) x X — U such that the result-
ing closed-loop system satisfies the positive invariance
property specified in Definition (1).

Control Barrier Functions

Control Barrier Functions (Ames, Grizzle, and Tabuada
2014; Ames et al. 2017) are widely used to synthesize con-
trol policies with positive invariance guarantees, thereby en-
suring system safety. The initial step in constructing a Con-
trol Barrier Function (CBF) involves defining a continuously
differentiable function B : X — R, where the super-level
set of B corresponds to the safe region C. This leads to the
following representation:

C={reX:B(x) >0}, X\C={xeX:B(z)<0}.
2

The interior and boundary of C are further specified as:

Int(C) ={x € X : B(z) >0}, 0C={xeX:B(z)=0}
3)

The function h qualifies as a valid Control Barrier Function
if it satisfies the following definition:

Definition 2 ((Ames et al. 2017)). Given a control-
affine system & = f(x) + g(x)u, the set C defined by
(2), with %—f(x) # 0 for all x € OC, the function B is
called the Control Barrier Function (CBF) defined on
the set X, if there exists an extended class-IC function
K such that for all x € X:

max | £4B(z) + £,B(@)uts (B(z)) | 20, (&)

B(w,u)

where LyB(z) = %—ff(x) and LyB(z) = %—fg(w)
are the Lie derivatives and n is the dimension of the
system.
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Figure 1: Framework Overview: (Left): We learn value guided barrier function with reachability based bellman equation
for learning optimal safe region and apply expectile regression for OOD case handling, when learning from Offline Dataset.
(Right): Inferencing with CBF-QP using learned barrier function as valid CBF to rollout safe step-wise actions, with any

reference controller.

As established in (Ames et al. 2017), any Lipschitz con-

tinuous control law m(x) that satisfies the condition B +
k(B) > 0 guarantees the system’s safety when z(0) € C.
Additionally, if the initial state =(0) lies outside C, this con-
dition ensures asymptotic convergence to the safe set C.

While CBFs provide a principled framework to guaran-
tee safety, their practical deployment is hindered by the lack
of general methods for constructing valid barrier functions.
As a result, practitioners typically resort to handcrafted or
domain-specific CBFs, which can yield overly conservative
safe sets. Furthermore, in the presence of control bounds,
a nominal CBF may conflict with feasibility requirements,
causing the corresponding CBF-QP to become infeasible.

Control Barrier Value Function (CBVF)

To overcome the limitations inherent in classical CBF for-
mulations, (Choi et al. 2021) proposed the Control Barrier
Value Function (CBVF), which integrates Control Barrier
Functions with Hamilton—Jacobi (HJ) Reachability (Bansal
et al. 2017). We begin by encoding the safety specification
using a Lipschitz continuous function £ : R® — R, where
the failure set is defined as F := {z € X | {(x) < O}
Under this construction, a CBVF B : X — R is defined
as the viscosity solution of the following Hamilton—Jacobi—

Bellman Variational Inequality (HIB-VI):

min{ max(VB(z)-(f(z) + g(z)u)), {(z) — B(x) } =0,

uclU
(&)
with boundary condition B(z)|t=0 = #(z)|t=0. The re-
sulting value function induces a forward-invariant safe set
C:={z € X | B(z) > 0} and ensures that admissible con-
trols u € U satisfy the following Lie-derivative condition:

max [LyB(z) + LyB(z)u + k(B(z))] >0.  (6)

Safe Controller Synthesis using CBVFs: Quite often,
we have a reference control policy, m.f(x), designed to
meet the performance requirements of the system. However,
such controllers often lack safety guarantees. To ensure the
system meets its safety requirements while preserving per-
formance, the reference controller must be minimally ad-
justed to incorporate safety constraints. This adjustment can
be accomplished using the Control Barrier Value Function-
based Quadratic Program (CBVF-QP), described as follows:

. 2
Tate(@) =, 2938 1 = T | 0

st Ly B(x) + LyB(@)u + w (B(x)) > 0.
The CBVF-QP framework facilitates the synthesis of a

provably safe control policy, msate (), while staying close to
the reference controller to preserve system performance.



Challenges in CBVF Synthesis: Traditional approaches
compute Control Barrier Value Functions using grid-based
HJ reachability methods (Mitchell 2005), which are fun-
damentally limited by the curse of dimensionality. Recent
efforts have attempted to overcome these issues by learn-
ing CBVFs through online reinforcement learning (So et al.
2024); however, as discussed in Section , such approaches
require extensive online interaction, rendering them unsuit-
able for safety-critical systems. Furthermore, existing neural
CBF methodologies (Abate et al. 2020; Zhang et al. 2023;
Tayal et al. 2024b) typically assume access to accurate sys-
tem dynamics, an assumption that does not hold for many
real-world platforms. These limitations motivate a shift to-
ward using offline demonstrations, either sourced from pub-
lic datasets (Liu et al. 2024; Sun et al. 2020) or collected in
controlled settings where safety can be guaranteed. Building
on this premise, we refine Objective 1 as follows:

Objective 2. Our objective is to synthesize a Control
Barrier Value Function B : X — R directly from an
offline dataset of demonstrations D, such that the re-
sulting CBVF-QP controller Ts,te in (7) satisfies the
positive invariance property specified in Definition I.

Methodology

Having introduced the CBVF formulation in the previous
section, we now describe a practical methodology for syn-
thesizing a valid Control Barrier Value Function and thereby
the safe controller from offline demonstrations D. Our ob-
jective is to construct a data-driven approximation of the vis-
cosity solution of the HIB-VI (5) without relying on known
system dynamics or online interaction. The key idea is to re-
interpret it through a finite-difference barrier recursion com-
patible with demonstration data, and to use this recursion to
learn a value-guided barrier function that inherits forward
invariance.

Finite-Difference Barrier Synthesis

To approximate the CBVF using trajectories in D, we
consider a finite difference recursive version of equa-
tion (5). Given a trajectory {z¢, u; }1¥,, we define the finite-
difference barrier update

B(x¢) = min {{(z,), IrllﬁxB(xtH)},

(®)
where, ©; = x(t), uy = u(t) and 411 = x(t + At), along
with the boundary condition B(xo) = £(zg). This recursion
has two significant advantages. First, it enables us to learn a
barrier directly from data without requiring f and g. Second,
under mild regularity assumptions, (8) preserves the forward
invariance property of the CBVF. Intuitively, the recursion
encodes the principle that a state is safe if and only if its
immediate successor is safe or it lies outside the unsafe set
as specified by £(z).

To represent this barrier function, we parameterize a neu-
ral network Bf (z) with 9 utilizing the universal approx-
imation property. However, directly solving for the recur-
sion (8) can lead to degenerate solutions. For instance, set-

vt € {0,1,2,...},

ting Bg () = ¢ for a sufficiently small constant ¢ satisfies
(8) but clearly does not satisfy the CBVF conditions in (5).
This pathology is analogous to the non-contractive behav-
ior of undiscounted value iteration in MDPs. Following the
approach in (Fisac et al. 2019), we incorporate a discounted
finite-difference loss to avoid such trivial solutions:

L5(8) = B e~ | (1 =) £a) +
ymin{¢(z), BY(z/)} — Bg(x)ﬂ.

where * = z;, 2’ = 2441 and v = u; and v — 1. This
discounted recursion ensures contraction, promotes stable
learning, and prevents the network from collapsing to uni-
formly unsafe or uniformly safe solutions. To avoid evaluat-
ing barrier targets at out-of-distribution actions, we remove
the maximization over actions from the loss in (9) and use
only the demonstrated action in each transition. While this
prevents unsupported queries, the resulting estimate reflects
the safety profile of the behaviour policy that generated the
data. Consequently, this produces a behaviour-induced bar-
rier, which is typically sub-optimal because it ignores other
admissible actions that could yield larger safe-set estimates.

(€))

Avoiding Out-of-Distribution Actions in Offline
Learning

The naive regression objective in (9) fits BZZ to the mean
of the demonstrated next-state targets, but this corresponds
to the behavior-induced barrier and yields overly conserva-
tive safe sets. Ideally, if we assume unlimited capacity and
no sampling error, the optimal parameters should satisfy,
B(z) ~ E, | min {{(z), max, B(z') }|. However, such un-
constrained maximization can result in actions that are never
observed in the dataset.

Since offline data only provides information about those
actions selected by the behavior policy, evaluating values (or
barrier targets) using unsupported actions can distort learn-
ing because the corresponding transitions are not grounded
in the dataset. Subsequently, motivated by the insights of Im-
plicit Q-Learning (IQL) (Kostrikov, Nair, and Levine 2022),
we approximate the maximization over admissible actions
by using expectile regression, which enables us to capture
the highest admissible barrier values supported by the data
while never evaluating B on unseen (z,u) pairs. This al-
lows us to perform a principled value-style backup over the
dataset control action support Up = {u | (z,u,z’) € D}
without extrapolating to unsafe or unobserved actions. IQL
shows that expectile regression produces a value function
that reflects the values induced by the behavior policy with-
out requiring an explicit behavior model. This prevents the
learning target from being influenced by actions that lie out-
side the dataset support, while still capturing the highest fea-
sible values supported by the demonstrations.

Following this principle, we estimate a CBVF, By, with
0 as the Neural Network parameters, that reflects the safety
values implied by demonstrated actions. Formally, we mini-
mize the expectile loss

L5(0) = Euwp[L7(B](z) — Be(x))],  (10)



where L7 (y) = |[T—1(y < 0)| y* is the T-expectile loss used
in (Kostrikov, Nair, and Levine 2022). Intuitively, a higher
expectile level T places greater weight on underestimation
errors than overestimation errors, pushing By toward the up-
per envelope of safety values supported by the dataset. Thus,
T controls how aggressively the learned barrier emphasizes
high, data-supported safety values without extrapolating to
unseen actions. The barrier function thus obtained, By, is
our proposed Value-guided Offline Control Barrier Function
(V-OCBF).

Controller Synthesis via Learned Dynamics

The learned barrier function B is subsequently employed to
fulfill the primary goal of synthesizing a safe policy 1 using
the CBVF-QP formulation in (7). Solving this QP necessi-
tates the evaluation of the Lie derivatives £;B and L,5,
both of which rely on the underlying control-affine system
dynamics. In our offline-only setting, the true dynamics are
unavailable; therefore, we construct a neural network—based
surrogate model to approximate the underlying transition
dynamics of the form:

Tey1 = Tt + (f¢(a:t) + g¢(xt)ut) At, 11

which enables computation of the required derivatives and
supports safe policy synthesis. The model parameters ¢ are
trained using one-step transitions from the offline dataset D
by minimizing the prediction loss:

Layn(8) = Ba o || 2/ (e (fo (@) +g0()u)AL) |
(12)
implemented as a minibatch MSE objective.

Importantly, the learned dynamics model is not used when
learning the barrier function. Incorporating it into the CBVF
learning stage would require evaluating terms involving
(f#, 94) under actions outside the dataset-supported set Up,
thereby violating the action constraints critical for prevent-
ing value underestimation in the offline regime. Hence, us-
ing learned dynamics during CBVF training would allow the
network to extrapolate into unsupported regions of the ac-
tion space, defeating the purpose of the OOD-aware barrier
learning objective described earlier.

In contrast, at inference time, the learned dynamics serve
a different role: they enable the evaluation of Lie deriva-
tives needed to solve the CBVF-QP ((7)). Specifically, for
any query state x, we compute

LyB(x) = V.By(z)" fs(2),

(13)
These quantities allow the QP in (7) to be solved for the safe
control action g e, completing the pipeline for construct-
ing a safety-certified controller purely from offline demon-
strations.

Experiments

The experiments are designed to evaluate: (i) the safety and
performance of V-OCBF relative to constrained offline RL
and neural CBF baselines on systems with unknown dy-
namics, (ii) the advantages of value-guided barriers over

LyB(x) = Vo By(x) " g4 ().

behavior-policy—induced barriers, (iii) the robustness of the
resulting QP controller under external disturbances, and (iv)
the effectiveness of V-OCBF compared to a CBVF synthe-
sized using learned dynamics.

Baselines: We compare V-OCBF against a diverse set of
constrained offline learning and CBF-based methods. For
constrained offline learning, we include Behavior Cloning
(BC), BEAR-Lag (Lagrangian constraint version of (Kumar
et al. 2019)), COptiDICE (Lee et al. 2022), and FISOR
(Zheng et al. 2024) which enforce safety indirectly via soft
constraints on policy optimization or behavior imitation. For
CBF-based approaches, we evaluate Neural Control Bar-
rier Function (NCBF) (Robey et al. 2020), Conservative
Control Barrier Function (CCBF) (Tabbara and Sibai 2025),
and In-Distribution Barrier Function (iDBF) (Castafieda
et al. 2023), which synthesize explicit safety filters from of-
fline data but often yield conservative safe sets. In contrast,
V-OCBEF learns a value-guided barrier function from offline
demonstrations that accounts for future unsafe interactions,
producing a hard, state-wise safety filter with larger safe set
coverage.

Evaluation Metrics: We evaluate all methods based on
(i) safety, measured as the total number of safety violations
incurred before episode termination, and (ii) performance,
measured via the cumulative episode rewards. These met-
rics allow us to assess the trade-off between strict safety en-
forcement and task performance across different offline RL
and CBF-based approaches.

Experimental Case Studies

To perform a holistic performance analysis of our proposed
approach, we apply V-OCBF in conjunction with Behavior
Cloning (BC) as the nominal (reference) controller for all the
different environments which are supposed to assess varying
objectives. Below we list all the environments that we use:

¢ Autonomous Ground Vehicle (AGYV) Collision Avoid-
ance: In our first experiment, we examine a 3-
dimensional collision avoidance problem involving an
autonomous ground vehicle governed by Dubins’ car dy-
namics (Dubins 1957). The objective is to ensure safety
by avoiding a static obstacle while navigating through a
bounded environment.

* MuJoCo Safety Gymnasium: We next evaluate our
framework on Safety Gymnasium environments (Ji et al.
2023). Specifically, we evaluate the V-OCBF-based QP
(equation 7) on high-dimensional MuJoCo tasks like
Hopper, Swimmer, Half Cheetah, Walker2D and Ant.
The objective in each environment is to maximize re-
ward while keeping the agent velocity below the velocity
thresholds. We keep the reward and safety-violation met-
rics identical to the Safety-Gymnasium definitions and
use the standard DSRL dataset for safe offline RL (Liu
et al. 2024). To evaluate our method against baselines,
we randomly sampled 500 initial states for each environ-
ment, respectively, the results for which can be referred
to from Figure 2.



Method Safe Episodes (%) Episode Reward Safe Set Volume (%)
BC 48.92 + 1.69 20.45 +1.84 42.51
BEAR-Lag (Kumar et al. 2019) 65.12 +£0.24 13.85 £+ 0.81 58.21
COptiDICE (Lee et al. 2022) 68.91 +0.32 15.33 + 0.67 62.32
BC+NCBF (Robey et al. 2020) 92.48 + 0.60 44.61 £ 2.58 81.92
BC+iDBF (Castafieda et al. 2023) 92.87 +0.73 48.23 +2.01 83.32
BC+CCBF (Tabbara and Sibai 2025) 93.56 £ 0.56 49.66 £ 2.34 90.94
FISOR (Zheng et al. 2024) 95.78 + 0.2 52.33 £0.93 90.14
BC+V-OCBF (Ours) 98.28 + 0.54 54.93 £ 0.46 92.57

Table 1: AGV Collision Avoidance Experiment: Percentage Safe Episodes, Mean Episode Reward and Safe Set Volume across

different methods. Evaluated over 500 episodes and 5 seed values.

Results

We begin by evaluating all methods on the AGV Collision
Avoidance task, which provides a clear setting to study how
different approaches balance safety and performance. The
results in Table 1 highlight notable differences in how offline
RL and CBF-based methods handle this trade-off.

Offline RL baselines such as BC, BEAR-Lag, and COp-
tiDICE achieve relatively low safety rates. BC tends to re-
produce unsafe behaviors from the dataset, while BEAR-
Lag and COptiDICE try to account for safety but remain
limited because they operate with soft constraint formula-
tions. Their lower reward and safety scores indicate that they
struggle to balance both safety and performance objectives.

In contrast, methods that incorporate a CBF-QP layer,
such as BC+NCBF, BC+iDBF, and BC+CCBF, achieve
much higher safety rates. The QP ensures that unsafe ac-
tions are filtered out, even if the nominal controller is im-
perfect. However, the performance of these approaches still
depends heavily on the quality of the learned barrier. FISOR
performs better than the other offline RL baselines because
it explicitly expands the feasible safe region before opti-
mizing for performance. However, due to lack of explicit
safety filtering, it leads to lesser safety rates than our pro-
posed method, due to the impending learning errors in the
computation of feasible region. This also highlights the im-
portance of QP based safety filtering scheme for achieving
better safety. Overall, V-OCBF achieves the strongest results
across all metrics.

To further analyze scalability, we extend the evaluation to
MuJoCo Safety Gymnasium environments (Hopper, Half-
Cheetah, Ant, Swimmer, and Walker2D), with unknown dy-
namic models. The results in Figure 2 demonstrate that V-
OCBF again achieves the lowest safety violation rates across
all tasks. Notably, the method maintains near-zero violations
on while preserving satisfactory reward levels compared to
BC and outperforming iDBF, NCBF, and CCBF. These neu-
ral CBF baselines degrade sharply in higher dimensions:
NCBF suffers from optimization difficulties, while iDBF of-
ten enforces overly restrictive boundaries that suppress task
performance. FISOR again remains competitive but does not
match the safety consistency of V-OCBF.

Overall, the experiments provide strong empirical evi-
dence that V-OCBF effectively co-optimizes safety and per-
formance, scaling from low-dimensional AGV dynamics to
complex MuJoCo systems. The method consistently outper-

forms existing offline RL and neural CBF baselines in terms
of safety while maintaining competitive reward, highlight-
ing its suitability for offline settings where both strict safety
and reliable performance are required.

Conclusion

The experimental results demonstrate that V-OCBF consis-
tently learns barrier functions that are practical for safety-
critical control while learning from offline data. Across a
diverse set of environments, V-OCBF produces more pre-
cise feasible safe sets compared to traditional neural CBF
baselines. Its reachability-inspired formulation allows it to
effectively encode actuation constraints, leading to a signif-
icant reduction in safety violations, particularly with tight
control limits. These findings highlight V-OCBF as a scal-
able, offline-capable framework for learning control barrier
functions that combine theoretical soundness with practical
applicability.
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