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Abstract
Geometry is a ubiquitous language of computer
graphics, design, and engineering. However, the
lack of large shape datasets limits the applica-
tion of state-of-the-art supervised learning meth-
ods and motivates the exploration of alternative
learning strategies. To this end, we introduce
geometry-informed neural networks (GINNs) to
train shape generative models without any data.
GINNs combine (i) learning under constraints, (ii)
neural fields as a suitable representation, and (iii)
generating diverse solutions to under-determined
problems. We apply GINNs to several two and
three-dimensional problems of increasing levels
of complexity. Our results demonstrate the fea-
sibility of training shape generative models in a
data-free setting. This new paradigm opens sev-
eral exciting research directions, expanding the
application of generative models into domains
where data is sparse.

1. Introduction
Geometry is a widely studied branch of mathematics, serv-
ing as a fundamental tool in various disciplines, including
computer graphics, design, engineering, and physics. While
in these fields, usually large datasets do not exist, impor-
tant problems are often equipped with formal descriptions,
such as objectives and constraints, opening the pathway for
theory-informed learning.

Related attempts in theory-informed learning and neural
optimization, most notably PINN (Raissi et al., 2019), have
demonstrated that it is possible to train machine learning
models using objectives and constraints alone, without re-
lying on any data. However, an important difference is that
problems in geometry are often under-determined and admit
multiple solutions as exemplified by the variety of everyday

and engineering objects.

In this work, we introduce geometry-informed neural net-
works (GINNs), formulated to produce shapes that con-
form to specified design constraints. By leveraging neural
fields (Xie et al., 2022), GINNs offer detailed, smooth, and
topologically flexible representations as closed level-sets,
while being compact to store. Furthermore, to respect the
inherent solution multiplicity we make GINNs generative
using conditional neural fields. To address model collapse,
we encourage diversity with an explicit loss. The overall
concept and some experimental results on several different
problems are showcased in Figure 1.

Practically, we first extend theory-informed learning with
the generative aspect necessitated by under-determined prob-
lem settings. With this, we formalize the GINN paradigm,
transforming a formal optimization problem into a tractable
learning problem. Technical details cover enforcing and dif-
ferentiating through constraints – especially connectedness
–, facilitating diversity, impact of different architectures,
defining metrics and problem scenarios, and scalibility to-
wards 3D use cases.

2. Foundations
Theory-informed learning uses scientific knowledge to
remove physically inconsistent solutions and reducing the
variance of a model (Karpatne et al., 2017). Such knowledge
can be included in the model via equations, logic rules, or
human feedback (Dash et al., 2022; Muralidhar et al., 2018;
Von Rueden et al., 2021). More formally, one searches
for a solution f minimizing the objective O(f) s.t. f ∈ K,
where K defines the feasible set in which the constraints are
satisfied.

Neural fields (NFs) are NNs (typically multilayer-
perceptrons (MLPs)) representing a function f : x 7→ y that
maps a spatial and/or temporal coordinate x to a quantity y.
Compared to discrete representations, NFs are significantly
more memory-efficient while providing higher fidelity, as
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Figure 1: The GINN learning paradigm applied to four different geometry-constrained problems introduced in Section 4.2.
A given set of constraints on the shape Ω defines the set of feasible shapes K. A GINN is a neural network trained to find
feasible shapes, which are unique in the top two rows. However, as often in geometry, the problems in the bottom two rows
have multiple solutions. To produce diverse solutions S ⊂ K we maximise a diversity measure δ defined over the set of
shapes S. Using only constraints and diversity, the GINN paradigm for shape generative modeling is entirely data-free.
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Figure 2: Generative GINNs lie at the intersection of neural
fields, generative modeling, and theory-informed learning.

well as continuity and analytic differentiability (Xie et al.,
2022). They have seen widespread success in various do-
mains (Park et al., 2019; Mescheder et al., 2019; Mildenhall
et al., 2021; Karras et al., 2021).
Implicit neural shapes (INSs) represent geometries through
scalar neural fields. INSs also enjoy topological flexibility
supporting shape reconstruction and generation. Several

techniques exist to regularize and modify the inductive bias
of prominent models (see Appendix D.2).

Deep generative modeling (Kingma & Welling, 2013;
Goodfellow et al., 2014; Rezende & Mohamed, 2015; Tom-
czak, 2021) plays a central role in advancing deep learning
and has enabled breakthroughs in various fields from natu-
ral language processing (Brown et al., 2020) to computer
vision (Ho et al., 2020). Most related to our work are condi-
tional NFs (see prior paragraph) and their applicability to
deep generative design. Conditional neural fields encode
multiple signals simultaneously by conditioning the NF on
a latent variable z: f(x) = F (x; z) where F is a base
network, e.g. by concatenation (Park et al., 2019), hypernet-
works (Ha et al., 2017), modulation (Mehta et al., 2021), or
attention (Rebain et al., 2022).
Generative design refers to computational design methods,
which can automatically conduct design exploration under
constraints that are defined by designers (Jang et al., 2022).
In contrast to generative modeling, its goal is not to mimic
existing data, but to generate novel designs (Regenwetter
et al., 2022; Shin et al., 2023).
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3. Method
Consider an element f in some space F . In this work,
we focus on f being a function representing a geometry
or a PDE solution. Let the set of constraints1 C(f) =
[ci(f)] be satisfied in the feasible set K = {f ∈ F|C(f) =
0}. Selecting the constraints C of a geometric nature lays
the foundation for a geometry-informed neural network or
GINN, which outputs a solution that satisfies the constraints:
f ∈ K.

3.1. Geometry-informed neural networks (GINNs)

Representation of a solution. While the GINN
paradigm easily extends to other representations, we let
a neural network f : X 7→ R,X ⊂ Rn approximate
a signed-distance function . The sign of f implicitly
defines the shape Ω = {x ∈ X |f(x) ≤ 0} and its boundary
∂Ω = {x ∈ X |f(x) = 0}, whereas the absolute value
|f(x)| shall approximate the distance of the point x to the
closest boundary.

Constraints on a solution. The condition f ∈ K is ef-
fectively a hard constraint. We relax each constraint ci into
a differentiable loss li : F 7→ [0,∞) which describes the
constraint violation. With the weights λi > 0, the total
constrain violation of f is L(f) =

∑
i λili(f). This re-

laxes the constraint satisfaction problem f ∈ K into the
unconstrained optimization problem minf L(f). The con-
straints used in our experiments are collected in Table 1 and
more are discussed in Table 5. By representing the set Ω
through the function f , the geometric constraints on Ω (Tab.
1, col. 2) can be translated into functional constraints and
differentiable losses on f (Tab. 1, col. 3 and col. 4).

Connectedness refers to an object Ω consisting of a single
connected component. It is a ubiquitous feature enabling the
propagation of mechanical forces, signals, energy, and other
resources. Consequentially, enforcing connectedness is an
important constraint for enabling GINNs. In Appendix C.3
we give more details on how we implement a connectedness
loss on our INSs.

3.2. Generative GINNs

Representation of the solution set. The generator
G(z) = f maps a latent variable z ∈ Z to a solution f .
The solution set is hence the image of the latent set under
the generator: S = ImG(Z). Furthermore, the generator
transforms the input probability distribution pZ over Z to an
output probability distribution p over S. In practice, the gen-
erator is a modulated base network producing a conditional

1For ease of notation, we transform inequality constraints to
equality constraints.

Figure 3: Our connectedness loss builds upon the surface
network, in which integral paths (black) connect critical
points. The key intuition behind our loss is that connected
components (sub-level sets with boundaries in red) start at
minima (purple) and connect via saddle points (turquoise).
By penalizing values at specific saddle points, an update
(right, blue) can connect components.

neural field: f(x) = F (x; z).

Constraints on the solution set. By adopting a probabilis-
tic view, we extend the constraint violation to its expected
value. This relaxes the relation S ⊆ K into minS L(S):∫

S

p(f)L(f) df = E
z∼pZ

[L(G(z))] = L(S) . (1)

Diversity of the solution set. The last missing piece to
training a generative GINN is making S a diverse collection
of solutions. In the typical supervised generative modeling
setting, the diversity of the generator is inherited from the
diversity of the training dataset. The violation of this is
studied under phenomena like mode collapse in GANs (Che
et al., 2017). Exploration beyond the training data has been
attempted by adding an explicit diversity loss, such as en-
tropy (Noé et al., 2019), Coulomb repulsion (Unterthiner
et al., 2018), determinantal point processes (Chen & Ahmed,
2020; Heyrani Nobari et al., 2021), pixel difference, and
structural dissimilarity (Jang et al., 2022). We observe that
simple generative GINN models are prone to mode-collapse,
which we mitigate by adding a diversity loss. In essence,
the diversity aggregates the pairwise dissimilarities of the
elements of the set. As a shape dissimilarity, we use a modi-
fied function distance which can be related to the chamfer
discrepancy (see Appendix E).

To summarize, training a generative GINN corresponds
to an unconstrained optimization problem minS L(S)−
λδδ(S), where λδ > 0 controls the potential trade-off be-
tween constraint violation L(S) and diversity δ(S) on the
set S = ImG(Z) of generated geometries.

3.3. Relation to PINNs

It has been observed that the fitting of INSs is related to
PINN, e.g., via the eikonal equation (Gropp et al., 2020)
or the Poisson problem (Sellán & Jacobson, 2023). We
also observe empirically that many best practices for PINNs
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Set constraint c(Ω) Function constraint c(f) Loss l(f)

Design region Ω ⊂ E f(x) > 0 ∀x /∈ E
∫
X\E [min(0, f(x))]2 dx

Interface ∂Ω ⊃ I f(x) = 0 ∀x ∈ I
∫
I [f(x)]2 dx

Prescribed normal n(x) = n̄(x) ∀x ∈ I ∇f(x)
||∇f(x)|| = n̄(x) ∀x ∈ I

∫
I

[
∇f(x)

||∇f(x)|| − n̄(x)
]2

dx

Mean curvature κH(x) = 0 ∀x ∈ ∂Ω div
(

∇f(x)
||∇f(x)||

)
= 0 ∀x ∈ ∂Ω

∫
∂Ω

[
div

(
∇f(x)

||∇f(x)||

)]2
dx

Connectedness See Figure 3 and Appendix C.3

Table 1: Geometric constraints used in our experiments. The shape Ω and its boundary ∂Ω are represented implicitly by
the (sub-)level set of the function f . If given, the shape must be contained within the design region E ⊆ X and attach to
the interface I ⊂ E with a potentially prescribed normal n̄(x). n denotes the outward-facing normal and κH is the mean
curvature, both of which can be computed from f in a closed form. More constraints are discussed in Table 5.

softplus-MLP SIREN, ω1
0 = 1 SIREN, ω1

0 = 2

w/o diversity

w/ diversity

Figure 4: A superposition of 16 solutions found by different generative GINNs trained with and without a diversity loss.
For the softplus-MLP, a diversity loss is needed to avoid mode-collapse. SIREN exhibits induced diversity, but adding the
diversity loss further increases the diversity.

(Wang et al., 2023) transfer to GINNs. However the main
differences are (1) PINNs primarily use differential, integral
or fractional operators (2) GINNs typically require more loss
terms than PINNs and (3) geometric problems are usually
underdetermined. However, we find that the generative
GINN paradigm can be transferred to under-determined
physics systems as we demonstrate in Section 4.3.

4. Experiments
We experimentally demonstrate key aspects of GINNs (more
details see Appendix A and B). To the best of our knowl-
edge, data-free constraint-driven shape generative modeling
is an unexplored field with no established baseline methods,
problems, and metrics. In Appendix B.1, we define met-
rics for each constraint. We use these to compare different
models and perform ablation studies in Appendices B.3 and
B.2.

4.1. GINNs

Plateau’s problem to demonstrate GINNs on a well-
posed problem. Plateau’s problem is to find the surface
S with the minimal area given a prescribed boundary Γ (a

closed curve in X ⊂ R3). We train a GINN to find a shape
under these constraints (for more details see Appendix A).
Qualitatively, the result agrees with the known solution (see
Figure 1).

Parabolic mirror to demonstrate a different geometric
representation. Although we mainly focus on INSs, the
GINN framework extends to other representations, such as
explicit, parametric, or discrete shapes. Here, the GINN
learns the height function of a mirror where all the reflected
rays shall intersect in a single point (see Figure 1 and Ap-
pendix A).

4.2. Generative GINNs

Obstacle to introduce diversity and connectedness. We
seek to find shapes that connect two interfaces in a rect-
angular domain and a round obstacle between them. The
third row in Figure 1 depicts this set-up and three exemplary
solutions, obtained with a generative GINN strategy since
this problem admits infinitely many solutions.
In Table 3 and Figure 4 we perform and illustrate an abla-
tion study. First, we observe that a conditioned MLP with
a softplus activation (Dugas et al., 2000) trained without a
diversity loss shows mode-collapse (Table 3, col. 2), while
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Figure 5: A generative PINN producing Turing patterns that
morph during latent space interpolation. This is a result
of searching for diverse solutions to an under-determined
Gray-Scott system.

adding the diversity loss mitigates it (Table 3, col. 3). Al-
ternatively, we observe that mode-collapse is also alleviated
by switching to a model with a higher spectral bias (Tancik
et al., 2020), such as a SIREN (Table 3, cols. 5, 7).

Jet engine bracket to demonstrate GINNs on a realistic
3D engineering design problem. The jet engine bracket
is a challenging design problem. Here, we focus only on
the geometric constraints: the shape must fit in a provided
design space E and attach to five cylindrical interfaces I
(Figure 1, row 4). In addition, we posit connectedness as
a trivial requirement for structural integrity. The resulting
shapes in Figure 1 demonstrate that the generative GINN
can produce different shapes that closely satisfy the con-
straints (Table 4, col. 7). In the Appendix B.3, we provide
further ablation studies for applied losses (e.g. diversity,
connectedness and smoothness). Interestingly if we apply a
smoothness loss on a SIREN network, also latent interpola-
tion is improved (see Figure 10).

4.3. Generative PINNs

In physics, problems are often well-defined and have a
unique solution. However, cases exist where the initial
conditions are irrelevant and a non-particular PDE solution
is sufficient, such as in chaotic systems or animations.
We demonstrate an analogous concept of generative PINNs
on a reaction-diffusion system (first introduced by Turing
(1952) to explain how patterns in nature, such as stripes,
can form as a result of a simple physical process). Specifi-
cally we train a generative PINN to the Gray-Scott model
(Pearson, 1993) visualized in Figure 5, further described
in Appendix A. To the best of our knowledge, this is the
first PINN that produces 2D Turing patterns in a data-free
setting.

5. Conclusion
We have introduced geometry-informed neural networks
demonstrating generative modeling driven solely by geomet-
ric constraints and diversity. After formulating the learning
problem, we considered several constraints to define mul-
tiple problems of toy and realistic complexity. We solve
these problems with GINNs demonstrating their viability

and providing first insight into some of their key aspects.

Limitations and future work. Generative GINNs com-
bine several known and novel components, each of which
warrants an in-depth study of theoretical and practical as-
pects. It is worth exploring several alternatives to the shape
dissimilarity and their aggregation into a diversity loss, ar-
chitectures, and conditioning mechanism, as well as connect-
edness, whose current implementation is the computational
bottleneck. An observed limitation of GINN training is the
sensitivity to hyperparameters (see Appendix A.4) including
the balancing of many losses, motivating the use of more
advanced optimization techniques. In addition to scaling up
the training, we believe tackling these aspects can help trans-
fer the success of machine learning to practical applications
in design synthesis and related tasks.
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A. Implementation and experimental details
We report additional details on the experiments and their
implementation. We run all the experiments on a single GPU
(one of NVIDIA RTX2080Ti, RTX3090, A40, or P40). The
maximum GPU memory requirements are ca. 11GB for the
jet engine bracket, ca. 7GB for the obstacle problem and
less than a GB for the rest.

A.1. Neural network architectures

For the toy problems (parabolic mirror and Plateau’s prob-
lem), we use very simple MLPs which we describe directly
in the corresponding sections. In our main experiments,
(obstacle and jet engine bracket), we use two more complex
different MLP architectures described below.

Softplus-MLP. The neural network model f should be at
least twice differentiable with respect to the inputs x, as
necessitated by the computation of surface normals and cur-
vatures. Since the second derivatives of an ReLU MLP is
zero everywhere, we use the softplus activation function as
a simple baseline. In addition, we add residual connections
(Dugas et al., 2000) to mitigate the vanishing gradient prob-
lem and facilitate learning. We denote this architecture with
"softplus-MLP".

SIREN. In some of our problem settings, early experiments
indicated that the softplus-MLP cannot satisfy the given con-
straints. We therefore employ a SIREN network (Sitzmann
et al., 2020) using the implementation of Dalmia (2020). As
recommended, we tune ω1

0 , which controls the weight of
the first layer at initialization and is largely responsible for
the spectral properties of a SIREN model. As described by
the authors, we find that important characteristics, such as
expressivity and the latent space structure of a generative
model, are highly sensitive to ω1

0 . For more detailed results,
we refer to Section B.

A.2. Plateau’s problem

Problem definition. Plateau’s problem is to find the sur-
face S with the minimal area given a prescribed boundary Γ
(a closed curve in X ⊂ R3). A minimal surface is known
to have zero mean curvature κH everywhere. Minimal sur-
faces have boundaries and may contain intersections and
branch points (Douglas, 1931) which cannot be represented
implicitly. For simplicity, we select a suitable problem
instance, noting that more appropriate geometric representa-
tions exist (Wang & Chern, 2021; Palmer et al., 2022). For
an implicit surface, the mean curvature can be computed
from the gradient and the Hessian matrix (Goldman, 2005).
Altogether, we represent the surface as S = ∂Ω ∩ X and
the two constraints are: Γ ⊂ S and κH(x) = 0 ∀x ∈ S.

Model. The model is an MLP with [3, 256, 256, 256, 1]

neurons per layer and the tanh activation. We train with
Adam (default parameters) for 10000 epochs with a learn-
ing rate of 10−3 taking around three minutes. The three
losses (interface, mean curvature, and eikonal) are weighted
equally but mean curvature loss is introduced only after
1000 epochs. To facilitate a higher level of detail, the corner
points of the prescribed interface are weighted higher.

A.3. Parabolic mirror

Problem definition. For the parabolic mirror, the GINN
learns the height function f : [−1, 1] 7→ R of a mirror with
the interface constraint f(0) = 0 and that all the reflected
rays should intersect at the single point (0, 1). The result
in Figure 1 approximates the known solution: a parabolic
mirror. This is a very basic example of caustics, an inverse
problem in optics, which we hope inspires future work on
analogous vision-informed neural networks leveraging the
recent developments in neural rendering techniques.

Model. The model is an MLP with [2, 40, 40, 1] neurons
per layer and the tanh activation. We train with Adam
(default parameters) for 3000 epochs with a learning rate of
10−3 taking around ten seconds.

A.4. Obstacle

Problem definition. Consider the domain X = [−1, 1]×
[−0.5, 0.5] and the design region that is a smaller rect-
angular domain with a circular obstacle in the middle:
E = ([−0.9, 0.9]× [−0.4, 0.4]) \ {x2

1 + x2
2 ≤ 0.12}. There

is an interface consisting of two vertical line segments
I = {(±0.9, x2)| − 0.4 ≤ x2 ≤ 0.4} with the prescribed
outward facing normals n̄(±0.9,−0.4 ≤ x2 ≤ 0.4) =
(±1, 0).

Conditioning the model. For training the conditional
models, we approximate the one-dimensional latent set Z =
[−1, 1] with N = 16 fixed equally spaced samples. This
enables the reuse of some calculations across epochs and
results in a well-structured latent space, illustrated through
latent space interpolation in Figure 4.

Hyperparameter tuning. The obstacle experiment serves
as a proof of concept for including and balancing several
losses, in particular the connectedness loss. The models are
a softplus-MLP and a SIREN network with ω1

0 ∈ {1, 2}. We
train with Adam (default settings) and the hyperparameters
in Table 2. Leveraging the similarity to PINNs, we follow
many practical suggestions discussed in Wang et al. (2023).
We find that a good strategy for loss balancing is to start
with the local losses (i.e. they are only applied in a subset
of the domain X , mainly interface, envelope, normal losses)
and then incorporate global losses (eikonal, connectedness,
smoothness losses). In general, we observe that the λs of
the global loss should be kept lower than those of the local
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losses in order not to destroy the local shape structure. By
adding one loss at a time, we binary-search an appropriate
weight while preserving the overall balance. After having
found some reasonably good hyperparameters for the λs,
we recommend tuning ω1

0 as it is crucial to control the
smoothness of the shape. After having tuned ω1

0 , the λs
may be tuned for further improvements.

Computational cost. The total training time is around
an hour for the GINN (single shape) and 5 hours for the
generative GINN (trained on 16 shapes). The bulk of the
computation time (often more than 90%) is taken by the
connectedness loss. To alleviate this, we recompute the
critical points every 10 epochs and use the previous points
as a warm start. While this works well for the softplus-
MLP, it does not work reliably for SIREN networks since
the behavior of their critical points is more spurious. This
presents an avenue for future improvement.

A.5. Jet engine bracket

Problem definition. The problem specification draws in-
spiration from an engineering design competition hosted
by General Electric and GrabCAD (Kiis et al., 2013). The
challenge was to design the lightest possible lifting bracket
for a jet engine subject to both physical and geometrical con-
straints. Here, we focus only on the geometric constraints:
the shape must fit in a provided design space E and attach to
five cylindrical interfaces I (Figure 1, row 4). In addition,
we posit connectedness as a trivial requirement for structural
integrity.

Hyperparameters. The jet engine bracket (JEB) is our
most complex experiment. In contrast to the obstacle exper-
iment, we only SIREN worked. In addition, we increase the
sampling density around the interfaces. We train with Adam
(default settings) and the hyperparameters summarized in
Table 2. The total training time is around 17 hours for the
GINN (single shape) and 26 hours for the generative GINN
(trained on 4 shapes).

Conditioning the model. In the generative GINN setting,
we condition SIREN using input concatenation which can
be interpreted as using different biases at the first layer. As
we refer in the main text, we leave more sophisticated condi-
tioning techniques for future work. We use N = 4 different
fixed latent codes spaced equally in Z = [−0.1, 0.1].

Tuning ω1
0 . We tune ω1

0 and find that 8.0 leads to satisfying
shapes, while the values 6.5 (see Figure 8(b) and Table 4,
col. 3) and 10.0 produced shapes that were too smooth or
wavy, respectively.

Spatial resolution. The curse of dimensionality implies
that with higher dimensions, exponentially (in the number
of dimensions) more points are needed to cover the space
equidistantly. Therefore, in 3D, substantially more points

(and consequently memory and compute) are needed than
in 2D. In our experiments, we observe that a low spatial
resolution around the interfaces prevents the model from
learning high-frequency details, likely due to a stochastic
gradient. Increased spatial resolution results in a better
learning signal and the model picks up the details easier.
For memory and compute, we increase the resolution much
more around the interfaces and less so elsewhere.

A.6. Reaction-diffusion

Problem definition. Having developed a generative GINN
that is capable of producing diverse solutions to an under-
determined problem, we ask if this idea generalizes to other
areas. In physics, problems are often well-defined and have
a unique solution. However, cases exist where the initial
conditions are irrelevant and a non-particular PDE solution
is sufficient, such as in chaotic systems or animations.
We conclude the experimental section by demonstrating
an analogous concept of generative PINNs on a reaction-
diffusion system. A prominent model of such a system is
the Gray-Scott model (Pearson, 1993), which produces a
variety of patterns by changing just two parameters – the
feed-rate α and the kill-rate β – in the following PDE:

∂u

∂t
= Du∆u− uv2 + α(1− u)

∂v

∂t
= Dv∆v + uv2 − (α+ β)v

(2)

This PDE describes the concentration u, v of two substances
U, V undergoing the chemical reaction U +2V → 3V . The
rate of this reaction is described by uv2, while the rate
of adding U and removing V is controlled by the parame-
ters α and β. Crucially, both substances undergo diffusion
(controlled by the coefficients Du, Dv) which produces an
instability leading to rich patterns around the bifurcation
line α = 4(α+ β)2.
Computationally, these patterns are typically obtained by
evolving a given initial condition u(x, t = 0) = u0(x),
v(x, t = 0) = v0(x) on some domain with periodic bound-
ary conditions. A variety of numerical solvers can be ap-
plied, but previous PINN attempts fail without data (Gi-
ampaolo et al., 2022). To demonstrate a generative PINN on
a problem that admits multiple solutions, we omit the initial
condition and instead consider stationary solutions, which
are known to exist for some parameters α, β (McGough &
Riley, 2004). We use the corresponding stationary PDE
(∂u/∂t = ∂v/∂t = 0) to formulate the residual losses:

Lu =

∫
D
(Du∆u− uv2 + α(1− u))2 dx

Lv =

∫
D
(Dv∆v + uv2 − (α+ β)v)2 dx

(3)

To avoid trivial (i.e. uniform) solutions, we encourage
non-zero gradient with a loss term −max(1,

∫
D(∇u(x))2+
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Hyperparameter Obstacle (2D) JEB (3D)

Architecture Residual-MLP SIREN SIREN

Layers [3, 4× 512, 1] [3, 4× 64, 1] [4, 5× 256, 1]

Activation softplus sine sine

ω0 of first layer for SIREN n/a [1.0, 2.0] 8.0

Learning rate 0.001 0.001 0.001

Learning rate schedule 0.5t/1000 0.5t/1000

Iterations 3000 3000 5000

λinterface 1 1 1

λenvelope 1 1 10−1

λobstacle 10−1 1 n/a

λnormal 10−2 10−2 10−6

λeikonal 10−5 10−5 10−9

λconnectedness 10−5 10−2 10−2

λdiversity 10−5 to 10−4 10−2 10−5 to 10−3

λsmoothness n/a n/a 10−8 to 10−7

Table 2: Hyperparameters for the generative 2D obstacle and 3D jet engine bracket experiments. The input is a 2D or 3D
point concatenated with a 1D latent vector. For both experiments, the initial learning rate is halved every 1000 iterations. In
the layers description e.g. 512x4 means that there were 4 layers of 512 width. Interestingly, the SIREN network overall had
fewer parameters, while fitting a more complex shape.

(∇v(x))2 dx). Similar to the 3D geometry experiment, we
find that architecture and initialization are critical. Using
the diffusion coefficients Dv = 1.2×10−5, Du = 2Dv and
the feed and kill-rates α = 0.028, β = 0.057, the generative
PINN produces diverse and smoothly changing pattern of
worms, illustrated in Figure 5. To the best of our knowledge,
this is the first PINN that produces 2D Turing patterns in a
data-free setting.

Model. We use two identical SIREN networks for each of
the fields u and v. They have two hidden layers of widths
256 and 128. We enforce periodic boundary conditions on
the unit domain X = [0, 1]2 through the encoding xi 7→
(sin 2πxi, cos 2πxi) for i = 1, 2. With this encoding, we
use ω0 = 3.0 to initialize SIREN. We also find that the same
shaped Fourier-feature network (Tancik et al., 2020) with
an appropriate initialization of σ = 3 works equally well.

Training. We compute the gradients and the Laplacian
using finite differences on a 64×64 grid, which is randomly
translated in each epoch. Automatic differentiation produces
the same results for an appropriate initialization scheme, but
finite differences are an order of magnitude faster. The
trained fields u, v can be sampled at an arbitrarily high
resolution without displaying any artifacts.
We use the loss weights λresidual = 1, λgradient = 10−4, and
λδ = 10−7. The generative PINNs are trained with Adam
for 20000 epochs with a 10−3 learning rate taking a few

minutes.

B. Evaluation
B.1. Metrics

We introduce several metrics for each individual constraint
independently. Let vol(P ) =

∫
P
dP be the generalized

volume of P . We will use the chamfer discrepancy (Nguyen
et al., 2021) to compute the dissimilarity between two shapes
P and Q. For better interpretability, we take the square root
of the common definition of chamfer discrepancy

CD1(P,Q) =

√
1

|Q|
∑
x∈Q

min
y∈P

||x− y||22 (4)

and, similary, for the two-sided chamfer discrepancy

CD2(P,Q) =
√
CD1(P,Q)2 + CD1(Q,P )2 (5)

Reusing the notation from the paper, let E be the design
region, δE the boundary of the design region, I the interface
consisting of nI connected components, X the domain, Ω
the shape and δΩ its boundary.

Shape in design region. We introduce two metrics to quan-
tify how well a shape fits the design region. Intuitively for
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3D, the first metric quantifies how much volume is outside
the design region E compared to the overall volume that is
available. The second metric compares how much surface
area intersects the boundary of the design region.

• vol(Ω\E)
vol(X\E) : The d-volume (i.e. volume for d = 3 or area
for d = 2) outside the design region, divided by the
total d-volume outside the design region.

• vol(Ω∩δE)
vol(δE) : The (d−1)-volume (i.e. the surface area for

d = 3 or length of contours for d = 2) of the shape in-
tersected with the design region boundary, normalized
by the total (d− 1)-volume of the design region.

Fit to the interface. To measure the goodness of fit to
the interface, we use the one-sided chamfer distance of the
boundary of the shape to the interface, as we do not care
if some parts of the shape boundary are far away from the
interface, as long as there are some parts of the shape which
are close to the interface. A good fit is indicated by a 0
value.

• CD1(Ω, I): The average minimal distance from sam-
pled points of the interface to the shape boundary.

Connectedness. For the connectedness, we care whether
the shape and whether the interfaces are connected. Since
it is possible that the shape connects though paths that are
outside the design region, we also introduce a metric that
excludes such parts. The function DC(Ω) denotes all con-
nected components of a shape Ω except the largest. We
define the metrics as follows:

• b0(Ω): The zeroth Betti number represents the number
of connected components of the shape. The target in
our work is always 1.

• b0(Ω ∩ E): The zeroth Betti number of the shape re-
stricted to the design region.

• vol(DC(Ω))
vol(E) : To measure the d-volume (i.e. volume for

d = 3 and area for d = 2) of disconnected compo-
nents, we compute their volume and normalize it by
the volume of the design region.

• vol(DC(Ω∩E))
vol(E) : Measures the d-volume of disconnected

components inside the design region.

• CI(Ω,I)
nI

computes the share of connected interfaces. If
an interface is an ϵ-distance from a connected compo-
nent of a shape, we consider it connected to the shape.
This metric then represents the maximum number of
connected interfaces of any connected component, di-
vided by the total number of interface components. By
default, we set ϵ = 0.01 when then domain bounds are
comparable to the unit cube.

Diversity. We define the diversity δmean on a finite set of
shapes S = {Ωi, i ∈ [N ]} as follows:

δmean(S) =

 1

N

∑
i∈[N ]

 1

N − 1

∑
j ̸=i∈[N ]

CD2(Ωi,Ωj)

 1
2


2

.

(6)

Smoothness. There are many choices of smoothness mea-
sures in multiple dimensions. In this paper, we use a Monte
Carlo estimate of the surface strain (Goldman, 2005) (also
mentioned in Table 1). To make the metric more robust to
large outliers (e.g. tiny disconnected components have very
large curvature and surface strain), we clip the surface strain
of a sampled point xi, i ∈ [N ] with a value κmax = 1000.

Estrain(Ω) =
1

N

∑
i∈[N ]

min
[

div2
(
∇ f(xi)

|f(x)|

)
, κmax

]
(7)

B.2. Obstacle

We perform quantitative evaluations of different configu-
rations of hyperparameters on the obstacle problem. The
results can be found in Table 3. In the following, we sum-
marize the main findings.

SIREN is more expressive than softplus-MLPs. While
both types of models (SIRENs and softplus-MLPs) are able
to solve the task, a big difference is visible in the diversity.
A SIREN without explicit diversity loss beats the softplus-
MLP by an order of magnitude. This suggests that SIREN
has an inductive bias that promotes diversity.

Explicit diversity loss promotes higher diversity. Using
an explicit diversity loss improves the diversity δmean across
all experiments (cf. column 3 vs. 2, 5 vs. 4 and 7 vs. 6).
An ablation of the diversity loss for softplus-MLP results in
mode collapse as shown in Figure 4.

Interpolation degrades with higher spectral bias. An
important property of a generative model is a structured la-
tent space, which is key to sample similar outputs, perform
interpolation, exploration, and generalize. We explore the in-
terpolation property on the different models. As the models
are trained on 16 equidistant fixed latents, the interpolation
is performed on the 15 corresponding mid-points. In Fig-
ure 6, we compare a softplus-MLP (a) and SIREN with
ω1
0 = 1.0 (b) and ω1

0 = 2.0 (c). Generally, we observe that
the interpolation quality degrades from the softplus-MLP to
SIREN with ω1

0 = 1.0 to a SIREN with ω1
0 = 2.0.

12



Geometry-informed Neural Networks

(a)

(b)

(c)

Figure 6: Interpolations of (a) softplus-MLP, (b) a SIREN with ω1
0 = 1.0, and (c) a SIREN with ω1

0 = 2.0. The gray shapes
are generated with the latent mid-point of the shapes marked with the red and blue dots. The interpolation degrades with
higher ω1

0 , e.g., in row 3, col. 3 in (c), the interpolated shape is disconnected while both neighboring shapes are connected.
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softplus-MLP SIREN

Figures 4, 6(a) 4 4, 6(b) 4 1, 4, 6(c) 4

Model

ω1
0 - - 1 1 2 2

Loss

λdiv 0 0 0

Metrics for a single shape Ω

Connectedness

↓ b0(Ω) 1.13 1.00 1.12 1.00 1.06 1.00

↓ b0(Ω ∩ E) 1.13 1.00 1.06 1.00 1.00 1.00

↓ vol(DC(Ω))
vol(E) 0.018 0.0 6.4e−3 0.0 1.0e−5 0.0

↓ vol(DC(Ω∩E))
vol(E) 0.025 0.0 8.9e−3 0.0 0.0 0.0

↑ CI(Ω,I)
nI

1.80 2.00 1.91 2.00 2.00 2.00

Interface

↓ CD1(Ω, I) 3.0e−3 3.8e−5 2.3e−3 2.3e− 3 1.6e−3 2.2e−3

Design region

↓ vol(Ω∩δE)
vol(δE) 0.037 0.095 0.13 0.13 0.11 0.045

↓ vol(Ω\E)
vol(X\E) 3.7e−3 3.8e−3 9.4e−3 0.010 5.9e−3 3.7e−3

Metrics for shapes S = {Ωi}

Diversity

↑ δmean 0.12 0.0076 0.1 0.067 0.14 0.073

Table 3: Metrics for different models trained on the obstacle problem. Some cells are left empty for better visual
interpretability. In this case the default hyperparameter of Table 2 was taken. All models were generative GINNs, trained on
16 shapes. The metrics for a single shape were averaged across all 16 shapes.

B.3. Jet engine bracket

We show the results of some model variants and ablations
trained in Table 4. The default setups (as reported in Table
2) correspond to the columns 2 and 7.

Smoothness regularization Figure 7 shows several shapes
produced by a SIREN model. While these closely satisfy
the constraints (Table 4, col. 5), they exhibit undulations
(high surface waviness) due to the high-frequency bias of the
model. We find that controlling the initialization can coun-
teract this, but also interferes with the constraint satisfaction
(Figure 8(b), col. 3). Instead, this can be controlled with
an additional smoothness regularization term. Many possi-
ble fairing energies exist, each leading to different surface
qualities (Westgaard & Nowacki, 2001), but we penalize the
surface strain:

∫
∂Ω\I κ2

1(x) + κ2
2(x) dx, where κ1 and κ2

are the principal curvatures. The resulting shapes in Figure 1

demonstrate that the generative GINN can produce different
shapes that closely satisfy the constraints (Table 4, col. 7).
The smoothness regularization also helps structure the latent
space aiding interpolation, i.e. generalization (Figure 10).

Sensitivity to ω1
0 . Column 3 and Figure 8(b) indicates

that the interface fit CD1(Ω, I) is worse by several orders
of magnitude compared to the baseline setting. This is
explained by the lower ω1

0 leading to a smoother shape
which in turn leads to a worse fit of the interfaces. As also
observed previously, SIREN is highly sensitive to the ω1

0

parameter.

Connectedness loss is crucial for connected shapes. Col-
umn 4 and Figure 8(a) ablate the connectedness loss. Quali-
tatively, this leads to a spurious shape. Quantitatively, the
zeroth Betti number b0(Ω) (similary, b0(Ω ∩ E)) is very
high, i.e., there are many disconnected components. Fur-
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GINN Generative GINN

Figure 8(b) 8(a) 7 9 1

Model

num_shapes 1 1 1 1 1 4 4 4

ω1
0 8 6.5 8 8 8 8 8 8

Losses

λconnectedness 0

λsmoothness 0

λnormal 0

λdiv 0

λeikonal 0

Metrics for Ω

Connectedness

↓ b0(Ω) 4 1 33 5 10 4.00 8.75 4.75

↓ b0(Ω ∩ E) 1 1 27 3 3 2.50 2.00 2.00

↓ vol(DC(Ω))
vol(E) 3.5e−7 0 1.2e−2 2.5e−5 1.2e−5 4.7e−5 2.4e−5 9.0e−6

↓ vol(DC(Ω∩E))
vol(E) 0 0 3.2e−2 6.4e−5 2.9e−5 1.0e−4 4.5e−5 2.0e−5

↑ CI(Ω,I)
nI

1.00 1.00 0.17 1.00 1.00 1.00 1.00 1.00

Interface

↓ CD1(Ω, I) 6.6e−4 1.1e−2 9.2e−4 9.6e−4 7.8e−4 1.9e−3 1.3e−3 1.1e−3

Design region

↓ vol(Ω∩δE)
vol(δE) 7.4e−5 3.1e−3 1.3e−4 7.8e−5 1.5e−4 2.0e−4 1.2e−4 9.2e−5

↓ vol(Ω\E)
vol(X\E) 3.3e−5 4.6e−3 6.5e−5 5.8e−5 6.5e−5 2.3e−4 1.7e−4 1.1e−4

Smoothness

↓ Estrain(Ω) 182.7 248.5 636.7 401.8 181.0 211.9 245.2 237.5

Metrics for S

Diversity

↑ δmean(S) 0.061 0.034 0.033

Table 4: Metrics for the jet engine bracket problem. All models used the SIREN architecture. The default settings are in the
second (for GINN) and sixth column (for generative GINN). For generative GINNs, the metrics for a single shape were
computed by taking the mean of the 4 generated shapes. Note that for the GINN experiments the diversity metric is omitted
as it is only well-defined on a set of shapes S = {Ωi}.
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Figure 7: Generative GINN trained without the smoothness
loss, contrasting the smoother shapes in Figure 1. These
shapes satisfy the constraints well but display high surface
undulation (waviness) due to SIREN’s bias toward high-
frequencies.

thermore, the share of connected interfaces CI(Ω,I)
nI

is only
0.17. Since for this problem there are 6 interfaces to con-
nect, a value of 0.17 implies that none of the interfaces are
connected, indicating the importance of the connectedness
loss.

Normal loss facilitates learning at the interfaces. Col-
umn 6 and Figure 9 ablate the normal loss. This leads to
similar interface metrics, but the connectedness metrics are
worse, implying that there might be small disconnected
components at the interface.

Explicit diversity loss and eikonal loss improve diversity.
Comparing Table 4, col. 7 to col. 8 shows that not using the
diversity loss halves the diversity δmean(S). Interestingly,
also not using the eikonal loss reduces the diversity. We
hypothesize, that the reason is that for training we compute
a diversity loss on neural fields, sampled at points close to
the individual boundaries. In contrast, the diversity metric
(defined in section B.1) is computed using shapes at the zero
level set of those fields with the chamfer-discrepancy as a
pseudo-distance measure. Using the eikonal loss, leads to
enforcing a more regular neural field, which in turn makes
the diversity on neural fields more suitable.

Interpolation improves with smoothing. Figure 10
shows interpolations of models trained with and without
the smoothness loss. The bottom row indicates that the con-
ditional SIREN models do not form a strong latent space
structure, and therefore does not allow for meaningful in-
terpolation. Surprisingly, the application of the smoothness
loss (top row) mitigates this. Understanding the precise
mechanism behind this is left for future work.

C. Connectedness
We provide additional details on our approach to the con-
nectedness loss. We start with a brief overview and then
detail the two major steps.

(a) (b)

Figure 8: Ablation of (a) connectedness, (b) initialization
scheme. (a) A shape generated by a GINN using SIREN
trained without the connectedness loss. The shape fits the
design space and interfaces well, but it consists of many
spurious disconnected components failing to connect the
prescribed boundaries. (b) A shape generated by a GINN
using SIREN with a poor initialization of ω0 = 6.5 for the
first layer. The shape is too smooth and does not fit the
interfaces well.

(a) (b)

Figure 9: Ablation of the normal loss at the interfaces. The
close-up in (b) shows the upper interfaces where there are
small disconnected components.

Figure 10: Latent space interpolation for models trained
with and without smoothness regularization. For each row,
the left and right shapes correspond to two out of four fixed
latent codes used during training. The middle shapes are
generated by linearly interpolating these two latent codes.
Without the smoothness loss, SIREN leads to wavy shapes
with poor latent space structure. In contrast, the smooth-
ness loss helps structure the latent space and leads to more
desirable results during the interpolation.
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C.1. High-level overview.

In the context of machine learning, connectedness con-
straints have been multiply applied in segmentation (Wang
et al., 2020; Clough et al., 2022; Hu et al., 2019), surface re-
construction (Brüel-Gabrielsson et al., 2020), and 3D shape
generation with voxels (Nadimpalli et al., 2023), point-
clouds (Gabrielsson et al., 2020) and INSs (Mezghanni et al.,
2021).
Despite connectedness and other topological properties be-
ing discrete-valued, persistent homology (PH) has been
the main tool allowing the formulation of a differentiable
loss. In brief, it identifies topological features (like con-
nected components or holes) and quantifies their persis-
tence, matching the birth and death of each feature to a pair
of points, whose values can then be adjusted to achieve the
desired topological properties. However, all previous works
compute PH from a cell complex, meaning the continuous
function, such as the INS, if first discretized into a real-
valued cubical complex.
We implement an alternative approach, in which we lo-
cate the birth and death pairs from the continuous function
through Morse theory. We illustrate the key idea in Figure 3,
and refer to the Appendix C.3 for more detail. We apply our
loss in several experiments, leaving a detailed comparison
to the discretization approach to a future study.

Morse theory relates the topology of a manifold to the criti-
cal points of functions defined on that manifold. In essence,
the topology of a sub-level set Ω(t) = {x ∈ D|f(x) ≤ t}
changes only when t passes through a critical value of f .
Rooted in Morse theory is the surface network, which is a
graph with vertices as critical points and edges as integral
paths (see Figure 3). This and related graphs compactly
represent topological information and find many applica-
tions in computer vision, graphics, and geometry (Biasotti
et al., 2008a; Rana, 2004). However, existing algorithms
construct them on discrete representations. First, we extend
the construction of a surface network to INSs by leveraging
automatic differentiation. This is detailed in Appendix C.2
and illustrated in Figure 11. Second, we construct a differen-
tiable connectedness loss by relaxing the inherently discrete
constraint. The key insight is that connected components of
Ω are born at minima, destroyed at maxima, and connected
via saddle points. Using an augmented edge-weighted graph
built from the surface network, we first identify and then
connect disconnected components by penalizing the value
of f at certain saddle points, detailed in Appendix C.3. Our
connectedness loss is summarized in Algorithm 1.

C.2. Surface network

We start by briefly introducing the necessary background
from differential topology and Morse theory and refer to
Biasotti et al. (2008a;b); Rana (2004) for a more thorough

introduction.

Morse theory. Let M be a smooth compact n-dimensional
manifold without a boundary, and f : M 7→ R a twice con-
tinuously differentiable function defined on it. Let Hf (p)
denote the Hessian matrix of f at p ∈ M . A critical point
p ∈ M is non-degenerate if Hf (p) non-singular. For a
non-degenerate critical point p, the number of negative
eigenvalues of the Hessian is called the index of p. f is
called a Morse function if all the critical points of f are
non-degenerate. f is sometimes called a simple Morse func-
tion if all the critical points p have different values f(p).
(Simple) Morse functions are dense in continuous functions.
Under mild assumptions most NNs are Morse functions
(Kurochkin, 2021).

Surface networks are a type of graph used in Morse theory
to capture topological properties of a sub-level set. They
originated in geospatial applications to study elevation maps
f : X ⊂ R2 7→ R on bounded 2D domains. More precisely,
a surface network is a graph whose vertices are the critical
points of f connected by edges which represent integral
paths. An integral path γ : R 7→ M is everywhere tangent
to the gradient vector field: ∂γ/∂s = ∇f(γ(s)) for all
s ∈ R. Both ends of an integral path lims7→±∞ γ(s) are
at critical points of f . There exist classical algorithms to
find surface networks on grids, meshes, or other discrete
representations (Rana, 2004; Biasotti et al., 2008b).
We extend the construction of the surface network to an INS
represented by a NN f leveraging automatic differentiation
in the following steps (illustrated in Figure 11).

1. Find critical points. Initialize a large number of points
X ⊂ X , e.g. by random or adaptive sampling. Mini-
mize the norm of their gradients using gradient descent:
minX

∑
x∈X ||∇f(x)||22. After reaching a stopping

criterion, remove points outside of the domain and
non-converged candidate points whose gradient norm
exceeds some threshold. Cluster the remaining candi-
date points. We use DBSCAN (Ester et al., 1996).

2. Characterize critical points by computing the eigen-
values of their Hessian matrices Hf (x). Minima have
only positive eigenvalues, maxima only negative eigen-
values, and saddle points have at least one positive and
one negative eigenvalue.

3. Find integral paths. From each saddle point, start
2 dimX integral paths, each tangent to a Hessian ma-
trix eigenvector with a positive/negative eigenvalue.
Follow the positive/negative gradient until reaching a
local maximum/minimum or leaving the domain.

4. Construct surface network as a graph G = (V,E),
where the set of vertices V consists of the critical points
from step 1 and the set of edges E from step 3.
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Figure 11: The four steps of constructing the surface net-
work from left to right. (1) Find the critical points by doing
gradient descent to the minimum of the gradient norm of the
input points. (2) Characterize critical points via analyzing
the eigenvalues of the points’ Hessians. (3) Connect the
saddle points to the adjacent critical points via gradient as-
cent/descent. (4) Construct the surface network graph with
edges corresponding to the ascents/descents from the saddle
points.

C.3. Connectedness loss

In Morse theory components of the sub-level set appear at
minima, disappear at maxima, and connect through saddle
points. Morse theory only assumes that the function is
Morse, but on (approximate) SDFs, saddle points can be
associated with the medial axis.

Signed distance function (SDF) f : X 7→ R of a shape
Ω gives the (signed) distance from the query point x to the
closest boundary point:

f(x) =

{
d(x, ∂Ω) if x ∈ Ωc (if x is outside the shape),

−d(x, ∂Ω) if x ∈ Ω (if x is inside the shape).
(8)

A point x ∈ X belongs to the medial axis if its closest
boundary point is not unique. The gradient of an SDF obeys
the eikonal equation ||∇f(x)|| = 1 everywhere except on
the medial axis where the gradient is not defined. Figure 12
depicts an SDF for a shape with two connected components.
In INS, the SDF is approximated by a NN with parameters
θ: fθ ≈ f .

Intuition. Figure 12 shows an exact SDF with two con-

Figure 12: A signed distance function that describes a shape
(in red) with two connected components (an ellipse on the
right and a wavy pentagon on the left). The contour colors
in- and outside the shape increase according to the eikonal
equation ||∇f(x)|| = 1 and are described by the gray level
sets and the right colorbar. The left colorbar describes the
SDF values at the medial axis which is a line of disconti-
nuity, since at each point of the medial axis, the distance to
both components is equal. The black line marks the shortest
distance between the two connected components. This line
crosses the medial axis at the medial axis point with mini-
mum elevation. The point of intersection is exactly half of
the distance between the two components.

nected components (CCs) (in red) and serves as an entry
point to presenting the connectedness loss in more detail.
The shortest line (in black) between the two CCs intersects
the medial axis at x′. At this intersection, both directions
along the shortest line are descent directions and the re-
striction of f to the medial axis has a local minimum (i.e.,
has two ascent directions). Nonetheless, this point x′ is
not a proper saddle point, since the gradient ∇f(x′) is not
well-defined. However, we can expect the approximate SDF
fθ ∈ C2 to have a saddle at x′. To connect two CCs along
the shortest path, we can consider the medial axis, i.e. the
saddle points of the approximate SDF. Therefore, we build
a connectedness loss by penalizing the value of f at the
saddle points in a certain way.

Multiple saddle points between two connected compo-
nents. In general, there is no reason to expect there is
a unique saddle point between two CCs so any or all of
the multiple saddle points can be used to connect the CCs.
Many approaches are generalized by a penalty weight pi
for each saddle point xi. E.g., one simple solution is to
pick the saddle point on the shortest path between the CCs
amounting to a unit penalty vector p. Another solution is
to penalize all saddle points between the two CCs equally.
We pick the penalty p to be inversely proportional to the
distance d between two shape boundaries, i.e. p ∼ 1

d . This
implies that the shorter the distance between two CCs via a
saddle point, the higher its penalty and the more incentive
for the shape to connect there.
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Shortest paths using distance weighted edges. We con-
struct the surface network of fθ as explained in Section C.2.
We modify this graph by weighting the edges with the dis-
tances between the nodes. We weigh the edges that connect
nodes of the same CC with 0. In total, the weighted graph
Gw allows us to find the shortest paths between pairs of
CCs using graph traversal.

Robustness. Thus far we assumed that (i) fθ is a close
approximation of the true SDF f and (ii) that we find the
exact surface network of fθ. However, in practice, these
assumptions rarely hold, so we introduce two modifications
to aid the robustness.

Robustness to SDF approximation. The assumption
that fθ is a close approximation of the true SDF is easily
violated during the initial stages of training or when the
shape undergoes certain topological changes. For a true
SDF, the shortest path between two CCs crosses the medial
axis only once, so one would expect two CCs to connect via
a single saddle point. For an approximate SDF, the shortest
path might contain multiple saddle points. However, this
simply corresponds to multiple hops in the graph Gw which
does not pose additional challenges. We choose to penalize
only those saddle points that are adjacent to the shape so
that the shape grows outward. Alternatively, one could
penalize all the saddle points on the entire shortest path.
While this can cause new components to emerge in-between
the shapes, this and other options are viable choices that can
be investigated further.

Robustness to surface network approximation. So far,
we also assume that we extract the exact surface network
of fθ (independent of whether it is an exact or approximate
SDF). However, due to numerical limitations, it may not
contain all critical points or the correct integral paths. This
can cause not being able to identify a path between CCs.
In the extreme case, the erroneously constructed surface
network might be entirely empty, in which case there is no
remedy. To improve the robustness against milder cases,
we augment Gw with edges between all pairs of critical
points that are outside of the shape. The edge weights are
set to the Euclidean distances between the points, resulting
in the augmented weighted graph Ga. This improves the
likelihood that there always exists at least one path between
any two CCs.

Algorithm. Once we have computed the penalty weights,
we normalize them for stability and compute the loss.
Putting it all together we arrive at Algorithm 1.

Limitations. As mentioned in Section 5 and Appendix
A.4, our current approach is computationally costly due to
building the surface network and traversing the augmented
graph in every epoch. While we manage to update and reuse
these structures in some cases, doing this reliably requires

Algorithm 1 Connectedness loss
Input: augmented weighted surface network Ga con-
structed from fθ
Output: connectedness loss lconnectedness

1: for each node k do
2: initialize penalty pk = 0
3: if k is adjacent to a component cl then
4: for each pair of connected components {ci, cj}

do
5: compute dij as the length of the shortest path in

Ga connecting any node in ci and any node in
cj via node k

6: add to penalty of k according to the distance
pk = pk + 1

dij+ϵ

7: end for
8: end if
9: end for

10: for each node k do
11: normalize the penalty pk = pk∑

l pl

12: end for
13: compute the loss lconnectedness =

∑
k pkf(xk)

further investigation. Furthermore, the requisite robustness
of the practical implementation has led to deviations from
the theoretical foundations. Overall, there is a compelling
motivation for future research to address both theoretical
and practical aspects, alongside exploring incremental ad-
justments or entirely novel methodologies.

D. Geometric constraints and regularization of
neural fields

D.1. Geometric constraints

In Table 5, we provide a non-exhaustive list of more con-
straints relevant to GINNs.

D.2. Regularization of Neural fields

Regularization methods have been proposed to counter the
ill-posedness in geometry problems. These include leverag-
ing ground-truth normals (Atzmon & Lipman, 2021) and
curvatures (Novello et al., 2022), minimal surface property
(Atzmon & Lipman, 2021), and off-surface penalization
(Sitzmann et al., 2020). A central effort is to achieve the
distance field property of the scalar field for which many reg-
ularization terms have been proposed: eikonal loss (Gropp
et al., 2020) and divergence loss (Ben-Shabat et al., 2022)
among others (Yang et al., 2023; Ma et al., 2023; Marschner
et al., 2023).

Inductive bias. In addition to explicit loss terms, the archi-
tecture, initialization, and optimizer can also limit or bias
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Constraint Comment

Volume Non-trivial to compute and differentiate for level-set function (easier for density).

Area Non-trivial to compute, but easy to differentiate.

Minimal feature size Non-trivial to compute, relevant to topology optimization and additive manufac-
turing.

Symmetry Typical constraint in engineering design, suitable for encoding.

Tangential Compute from normals, typical constraint in engineering design.

Parallel Compute from normals, typical constraint in engineering design.

Planarity Compute from normals, typical constraint in engineering design.

Angles Compute from normals, relevant to additive manufacturing.

Curvatures Types of curvatures, curvature variations, and derived energies.

Betti numbers Topological constraint (number of d-dimensional holes), surface network might
help.

Euler characteristic Topological constraint, surface network might help.

Table 5: A non-exhaustive list of geometric and topological constraints relevant to GINNs but not considered in this work.

the learned shapes. For example, typical INS are limited to
watertight surfaces without boundaries or self-intersections
(Chibane et al., 2020; Palmer et al., 2022). ReLU networks
are limited to piece-wise linear surfaces and typically bi-
ased toward low frequencies (Tancik et al., 2020), while
fourier-feature encoding (Tancik et al., 2020) and sinusoidal
activations can change the bias toward higher frequencies
(Sitzmann et al., 2020).

E. Diversity
Concavity. We elaborate on the aforementioned concavity
of the diversity aggregation measure with respect to the
distances. We demonstrate this in a basic experiment in
Figure 13, where we consider the feasible set K as part of an
annulus. For illustration purposes, the solution is a point in a
2D vector space f ∈ X ⊂ R2. Consequentially, the solution
set consists of N such points: S = {fi ∈ X , i = 1, . . . , N}.
Using the usual Euclidean distance d2(fi, fj), we optimize
the diversity of S within the feasible set K using minimal
aggregation measure

δmin(S) =

(∑
i

(
min
j ̸=i

d2(fi, fj)

)p
)1/p

, (9)

as well as the total aggregation measure

δsum(S) =

∑
i

∑
j

d2(fi, fj)

p1/p

. (10)

Using different exponents p ∈ {1/2, 1, 2} illustrates how
δmin covers the domain uniformly for 0 ≤ p ≤ 1, while
clusters form for p > 1. The total aggregation measure

Figure 13: A visual comparison of different diversity losses
in a simple 2D example (F = R2 and the feasible set K is
the partial annulus). Each point f ∈ F represents a can-
didate solution. The points are optimized to maximize the
diversity within the feasible set. The top row shows the min-
imal aggregation δmin as defined in Equation 9. The bottom
row shows the total aggregation δsum as defined in Equation
10. Each column uses a different exponent p ∈ {0.5, 1, 2}.
For 0 ≤ p ≤ 1 the minimal aggregation diversity δmin is
concave meaning it favors increasing smaller distances over
larger distances. This leads to a uniform coverage of the
feasible set. In contrast, the δmin is convex for p ≥ 1 as
indicated by the formed clusters for p = 2. Meanwhile, δsum
pushes the points to the boundary of the feasible set for all
p.
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always pushes the samples to the extremes of the domain.
Notice that in contrast to these point-samples, the distance
measure for shape must be a shape-distance or a measure
of dissimilarity. In practice for our shapes, we use a Monte-
Carlo estimate of the chamfer discrepancy.

E.1. Overview

Adding an explicit diversity loss not only helps to avoid
mode collapse, it also increases the sample diversity even
for models that do not suffer from mode-collapse.
Many scientific disciplines require to measure the diversities
of sets which has resulted in a range of definitions of diver-
sity (Parreño et al., 2021; Enflo, 2022; Leinster & Cobbold,
2012). Most start from a distance d : F2 7→ [0,∞), which
can be transformed into the related dissimilarity. Diversity
δ : 2F 7→ [0,∞) is then the collective dissimilarity of a
set (Enflo, 2022), aggregated in some way. In the follow-
ing, we describe these two aspects: the distance d and the
aggregation into the diversity δ.

Aggregation. Adopting terminology from Enflo (2022),
we use the minimal aggregation measure:

δ(S) =

(∑
i

(
min
j ̸=i

d(fi, fj)

)1/2
)2

. (11)

This choice is motivated by the concavity property, which
promotes uniform coverage of the available space, as de-
picted in Figure 13. Section 4.2 demonstrates that adding
this to the training objective suffices to counteract mode-
collapse. Note, that Equation 11 is well-defined only for
finite sets (in practice, a batch) and we leave the consider-
ation of diversity on infinite sets, especially with manifold
structure, to future research.

Distance. A simple choice for measuring the distance be-
tween two functions is the L2 function distance d2(fi, fj) =√∫

X (fi(x)− fj(x))2 dx. However, recall that we ulti-
mately want to measure the distance between the shapes,
not their implicit function representations. For example,
consider a disk and remove its central point. While we
would not expect their shape distance to be significant, the
L2 distance of their SDFs is. This is because local changes
in the geometry can cause global changes in the SDF. For
this reason, we modify the distance (derivation in Appendix
E) to only consider the integral on the shape boundaries
∂Ωi, ∂Ωj which partially alleviates the globality issue:

d(fi, fj) =

√∫
∂Ωi

fj(x)2 dx+

∫
∂Ωj

fi(x)2 dx . (12)

If fj is an SDF then
∫
∂Ωi

fj(x)
2 dx =∫

∂Ωi
minx′∈∂Ωj ||x − x′||22 dx (analogously for fi)

and d is closely related to the chamfer discrepancy (Nguyen

et al., 2021). We note that d is not a metric distance on
functions, but recall that we care about the geometries
they represent. Using appropriate boundary samples, one
may also directly compute a geometric distance, e.g., any
point cloud distance (Nguyen et al., 2021). However, the
propagation of the gradients from the geometric boundary
to the function requires the consideration of boundary
sensitivity (Berzins et al., 2023), which we leave for future
work.

Distance. We detail the derivation of our geometric dis-
tance. We can partition X into four parts (one, both or nei-
ther of the shape boundaries): ∂Ωi \∂Ωj , ∂Ωj \∂Ωi, ∂Ωi∩
∂Ωj ,X \ (∂Ωi ∪ ∂Ωj). Correspondingly, the integral of
the L2 distance can also be split into four terms. Using
f(x) = 0 ∀x ∈ ∂Ω we obtain

d22(fi, fj) =

∫
X
(fi(x)− fj(x))

2 dx

=

∫
∂Ωi\∂Ωj

(0− fj(x))
2 dx

+

∫
∂Ωj\∂Ωi

(fi(x)− 0)2 dx

+

∫
∂Ωi∩∂Ωj

(0− 0)2 dx

+

∫
X\(∂Ωi∪∂Ωj)

(fi(x)− fj(x))
2 dx

=

∫
∂Ωi\∂Ωj

fj(x)
2 dx

+

∫
∂Ωj\∂Ωi

fi(x)
2 dx+∫

X\(∂Ωi∪∂Ωj)

(fi(x)− fj(x))
2 dx

=

∫
∂Ωi

fj(x)
2 dx+

∫
∂Ωj

fi(x)
2 dx+∫

X\(∂Ωi∪∂Ωj)

(fi(x)− fj(x))
2 dx

(13)
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