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ABSTRACT

Object counting is a challenging task with broad applications in security surveil-
lance, traffic management, and disease diagnosis. Existing methods face three ma-
jor challenges: achieving superior performance, maintaining high generalizabil-
ity, and minimizing annotation costs. We introduce TFCounter, a novel training-
free, segmentation-based, class-agnostic object counter supporting both few-shot
and zero-shot counting. This approach employs an iterative counting frame-
work with a dual prompt system for broader recall and features a background-
enhanced similarity module to improve accuracy by incorporating background
context. To demonstrate cross-domain generalizability, we collected a new dataset
named BIKE-1000, consisting of 1000 images of shared bicycles from Meituan.
Extensive experiments on FSC-147, CARPK, and BIKE-1000 datasets show
that TFCounter outperforms existing leading training-free methods and delivers
competitive results compared to trained counterparts. Our code is available at
https://github.com/tfcounter/TFCounter

1 INTRODUCTION

Object counting, the task of estimating the number of specific objects within an image, plays a
crucial role in various domains, including crowd countingLiu et al. (2023a); Liang et al. (2023);
Abousamra et al. (2021); Yang et al. (2022); Wang et al. (2020); Zhang et al. (2016); Peng et al.
(2018); Lian et al. (2019); Sindagi et al. (2019); Zhang et al. (2015) for urban planning and security,
vehicle countingHsieh et al. (2017); Mundhenk et al. (2016) for traffic management, and cell count-
ingTyagi et al. (2023); Wang (2023); Arteta et al. (2016); Xie et al. (2018) in medical applications.

Traditional object-counting approaches are class-specific, counting objects belonging to predefined
categories such as humans, cars, or cells. Typically grounded in CNN architectures, these methods
require extensively annotated datasets. While exhibiting remarkable accuracy in dealing with trained
categories, these methods fail to maintain their performance when counting novel classes during
testing. To address this limitation, recent researchesRanjan & Nguyen (2022); Shi et al. (2022);
Yang et al. (2021); Ranjan et al. (2021); ukić et al. (2023); Lu et al. (2019); Huang et al. (2024);
Kang et al. (2024); Pelhan et al. (2024) have shifted towards class-agnostic object counting. They
usually extract features from chosen exemplars and the query image to create a similarity map,
which generates a density map to infer object count. This methodology , exemplified in ukić et al.
(2023), allows for dynamic adaptation to arbitrary object classes, significantly broadening the scope
and utility of object counting in computer vision.

Recent progress in class-agnostic object counting have been primarily channeled through three main
axes: the training-based versus training-free axis, the density-based versus detection/segmentation-
based axis, and the few-shot versus zero-shot axis (also referred to as the visual exemplar versus text
exemplar axis). The former typically offers greater versatility and universality, while the latter tends
to be more accurate. Current research, based on these developmental directions, aims to achieve
comprehensive counting results that strike a balance between universality and precision. (i) Most
of the current approaches are training-based and relies on density maps, as exemplified by Ranjan
et al. (2021); Shi et al. (2022); Yang et al. (2021); You et al. (2023); ukić et al. (2023) . These
methods treat the counting problem as a simple regression task, focusing more on the count values
rather than precisely matching target objects, thereby reducing task difficulty. Meanwhile, end-to-
end training methods often yield better precision. However, a downside is their dependence on
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Figure 1: Integrating task-specific frameworks with generalizable components from large-scale
foundation models can achieve training-free class-agnostic object counting by detailed structural
design.

densely annotated counting datasets, including object points during training and bounding boxes
during testing. (ii) Simultaneously, certain zero-shot modelsKang et al. (2023); Xu et al. (2023);
Amini-Naieni et al. (2023); Jiang et al. (2023) utilize text prompts to identify object categories
or count repeating classes in images, thus circumventing the requirement for box annotations in the
testing phase. (iii) Some modelsNguyen et al. (2022); Huang et al. (2024); Shi et al. (2023) prioritize
downstream versatility, not only counting the number of target objects but also generating masks or
detection boxes for the targets, which provides better interpretability. However, they often lose
some precision, especially when dealing with images containing dense object clusters and frequent
occlusions. (iv) Additionally, the rapid advancement in large-scale foundation modelsKirillov et al.
(2023); Liu et al. (2023b); Oquab et al. (2023); Radford et al. (2021); Carion et al. (2020), renowned
for exceptional zero-shot generalization capabilities and flexibility in secondary development, has
boosted interest in training-free approaches. Leveraging these foundation models, some methodsShi
et al. (2023); Liu et al. (2023b) can perform training-free object counting by directly processing the
output results or innovative structural designs, as shown in 1. Nevertheless, these methods often
trade-off between high performance and broad generalizability.

In this work, focusing on greater practicality, we introduce TFCounter, as shown in Figure 2, a
novel training-free, segmentation-based, class-agnostic object counter that supports both few-shot
and zero-shot counting. This approach performs a multi-round counting strategy that utilizes poste-
rior knowledge to broaden the recall scope. Subsequently, it introduces an innovative background-
enhanced similarity module incorporating background context to augment accuracy. Moreover, it
uses two types of points prompts, grid points prompts and residual points prompts, with the latter
specifically designed to capture small objects that are often missed. This dual prompt system ensures
comprehensive object detection across various sizes. Finally, to validate the effectiveness and gen-
eralizability of TFCounter, we introduce an exclusive dataset named BIKE-1000, comprising 1000
images of shared bicycles from Meituan. Experimental results show that TFCounter outperforms
existing state-of-the-art training-free models on two standard counting benchmarks, and displays
competitive performance when compared with training-based models. In short, our contributions
can be summarized as follows:

• We introduce TFCounter, a novel training-free, segmentation-based, class-agnostic object
counter which counts objects by integrating detailed structural designs with the superior
advantages of large-scale foundational models.

• We propose a background-enhanced similarity module for improved precision and an iter-
ative counting framework with a dual prompt system for broader recall.

• We present a novel exclusive dataset named BIKE-1000 for object counting, which vali-
dates the superior performance of TFCounter.
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2 RELATED WORKS

Zero-shot and training-free object counting. Minimizing labor annotations was a focal point in
the task of class-agnostic object counting. Existing methods frequently depended on annotations
such as points and boxes during training and testing. To improve flexibility, several approaches
aimed to eliminate bounding boxes during testing for zero-shot counting. Among these, EF-
CACRanjan & Nguyen (2022) counted all repeating objects through the region proposal network,
while ZSCXu et al. (2023), CounTXAmini-Naieni et al. (2023), CLIP-CountJiang et al. (2023),
VLCounterKang et al. (2023) and PseCoHuang et al. (2024) accepted an arbitrary object class de-
scription to predict the object number. Concurrently, other methods were designed for training-free
object counting, capitalizing on the robustness and generalizability inherent in large-scale founda-
tional models. SAMKirillov et al. (2023) could perform zero-shot segmentation and subsequently
estimated the number of objects by tallying all the generated masks. Based on it, SAM-FreeShi
et al. (2023) combined three distinct types of class-specific priors to improve efficiency and accu-
racy. GroundingDINOLiu et al. (2023b) excelled in open-set detection, counting objects by aggre-
gating detected bounding boxes. Nevertheless, zero-shot models often necessitated extensive point
annotations during the training phase. Training-free methods typically struggled in complex scenes
or exhibited constraints in their ability to generalize across multiple object categories.

Improving the quality of similarity maps. Most of class-agnostic object counting methods strived
to generate high-quality similarity maps between visual features of input and example images to
guide the object counting. FamNet+Ranjan et al. (2021) introduced a novel adaptation strategy
for few-shot regression counting, adapting the model to new visual categories at test time with a
few exemplars. BMNetShi et al. (2022) and its extension, BMNet+Shi et al. (2022), focused on
a similarity-aware framework with a learnable bilinear similarity metric. CFOCNet+Yang et al.
(2021) used a two-stream Resnet for different scales similarity calculation and aggregation. SAFE-
CountYou et al. (2023) proposed a learning block with a similarity comparison module and a fea-
ture enhancement module, while LOCAukić et al. (2023) developed an object prototype extraction
module for low-shot counting problems. However, these methods often overlooked background
considerations in favor of foreground focus.

3 THE PROPOSED APPROACH

3.1 PROBLEM FORMULATION AND FRAMEWORK

In this paper, we study the challenging problem of how to enhance counting accuracy and the capa-
bility for cross-dataset generalization while adhering to the constraint of remaining training-free.

As illustrated in Figure 2, let I ∈ RH×W×3 be the input image, and let BE = {bi}i=1:k be a set of
k exemplar bounding boxes denoting object exemplars. TFCounter is required to report the masks
MO = {mi}i=1:NO

of all segmented target objects along with their count.

Specifically, we introduce a novel framework named TFCounter, designed for generalized object
counting and segmentation. Initially, TFCounter generates an image embedding and a mask list,
followed by the production of foreground and background similarity maps via the background-
enhanced similarity module. Subsequently, the prompt-aware counting module generates two types
of point prompts, which are then fed into the mask decoder to generate a set of masks. An iterative
counting mechanism is employed to enhance recall. Both modules are built upon the image embed-
ding and the three key components from SAM. We detail their designs in the following sections.

3.2 BACKGROUND-ENHANCED SIMILARITY MODULE

We denote fθimage , fθprompt , and fψmask to represent the image encoder, prompt encoder, and mask
decoder from SAM, respectively. Initially, we use these components to generate k foreground masks
MF = {mi}i=1:k and the image embedding f I ∈ Rh×w×d.(

MF , f I
)
= fψmask

(
fθimage(I), fθprompt(B

E)
)

(1)

The features of the object exemplars are extracted from f I by performing element-wise multiplica-
tion between the foreground masks and the image feature, denoted as fb = f I ⊙ MF , where ⊙

3
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Figure 2: Overview of our TFCounter. TFCounter is a segmentation-based model designed for
training-free, class-agnostic object counting. It employs an iterative counting mechanism and links
two key modules: background-enhanced similarity computation, and prompt-aware object counting.

signifies the Hadamard product. The foreground similarity maps SimF =
{
simF

i

}
i=1:k

between
the image feature f I and the exemplar feature fb are computed using the cosine similarity metric.

All of the foreground similarity maps are then summed and Otsu’s binarization approach Otsu et al.
(1975) is applied to the result, creating a binary similarity map that serves as the background mask
MB . Using the same method described above, we can obtain the background feature and the back-
ground similarity maps SimB .

Subsequently, we assign weights to and fuse all foreground and background similarity maps. This
fusion enhances the distinction between foreground and background regions for more accurate seg-
mentation. We then apply Otsu’s binarization technique once more, generating a binary composite
similarity map that serves as the label map denoted as S.

S = T
(
µ+ λ× SimB

)
(2)

where T denotes Otsu’s binarization, µ represents the average of SimF , and λ is a hyperparameter.

3.3 PROMPT-AWARE COUNTING MODULE

Given the label map generated in Section 3.2, the objective of this section is to provide two types of
point prompts to generate the target masks.

Initially, we utilize regular n × n grid point prompts, where points where the label map is 1 are
classified as positive points, and the remaining are marked as negative points, denoted as PG. These
points are divided into batches and input into the prompt encoder and mask decoder. All the gener-
ated masks are then stored in the mask stacks MO.

fψmask

(
f I, fθprompt(P

G)
)
⇒ MO (3)

Subsequently, we compare the mask stacks with the label map, labelling unmasked foreground areas
where the label map is 1 as positive points, which serve as residual point prompts denoted as PR.
The same process, as described above, is applied, primarily targeting small objects that may be
missed by the grid point prompts.

fψmask

(
f I, fθprompt(P

R)
)
⇒ MO (4)

Finally, the minimum bounding boxes generated from the mask stacks are compared with those from
the prompt stacks to determine the iterative counting, which is initiated upon the detection of new
bounding boxes, and continues until a predetermined iteration limit is reached.

4
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Figure 3: Few annotated images from BIKE-1000. Dot and box annotations are indicated in red and
green, respectively.

Figure 4: Number of images in several
ranges of object count.

Table 1: Comparison with popular object
counting datasets: ”v” for vertical perspec-
tive, ”o” for oblique; ”b” for bounding box
annotations, and ”p” for point.

Dataset CARPK FSC147 BIKE-1000

Year 2017 2021 2024

Images 1448 6135 1000

Categories 1 147 1

Instances 43 56 13

Perspective v v.o o

Annotation b.p b.p b.p

3.4 DISCUSS

Based on SAM, SAM-Free integrates three types of priors to achieve training-free, segmentation-
based, class-agnostic object counting. However, because it generates the masks only from grid points
and the similarity map relies solely on input exemplars, SAM-Free performs poorly in counting
small objects and is prone to misidentifying the background.

TFCounter draws inspiration from SAM-Free and adheres to a similar framework. To address these
issues, we utilize background context to enhance the discriminative potency of the similarity map.
Additionally, we employ an iterative counting framework with a dual prompt system to achieve
broader recall. Detailed qualitative and quantitative comparisons are provided in Section 5.2.

4 BIKE-1000 DATASET

This paper utilizes exclusive data from Meituan, one of China’s leading shared bicycle enterprises.
In the bike-sharing and ebike-sharing industry, accurate bicycle counting is a central requirement
across multiple application scenarios, including orderly operations management, inventory audits,
and street silt removal. To support these scenarios and advance the research and development of
more precise and efficient counting technologies, we have established a novel object counting dataset
named BIKE-1000. This dataset provides a large collection of bicycle images accompanied by their
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count annotations, which aids in improving bicycle management, enhancing operational efficiency,
and ultimately optimizing the user experience.

The BIKE-1000 dataset encompasses a collection of 1000 images, each featuring distinctly visible
shared bicycles situated within various scenes. These images were primarily captured by opera-
tors. A significant portion of the dataset is characterized by photographs taken from an oblique
perspective, which presents the bicycles with considerable variations in shape, appearance, and size,
as well as instances of partial occlusion. Such attributes pose typical challenges in the domain of
object counting in computer vision. The annotation protocol for the BIKE-1000 dataset adheres to
the methodology used in FSC147 Ranjan et al. (2021), comprising (1) point annotation, where each
countable bicycle seat is marked, and (2) bounding box annotation, with three instances per image
demarcated as examples. The dataset includes high-resolution imagery with bicycles ranging from
3 to 70 per image, averaging 13 objects. Note that shared bicycles consist of numerous compo-
nents, such as frames, handlebars, wheels, seats, etc., whose appearance can vary significantly when
viewed from different angles. Manually counting over 70 bicycle seats in a single image proved
difficult, especially in images with oblique perspective. Therefore, we have limited our image se-
lection to those with fewer than 70 bicycle seats for the BIKE-1000 dataset. The visualizations are
displayed in Figure 3, while the statistical data and comparisons with object count benchmarks are
shown in Figure 4 and Table 1.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset. We evaluate TFCounter on two general object counting datasets, FSC147 and CARPK,
and further study its generalizability on the proposed BIKE-1000. FSC147 contains 6135 images
spanning 147 object categories, with a test subset of 1190 images from 29 categories. CARPK
includes 1448 images documenting around 90,000 cars from a drone’s perspective, with 459 im-
ages dedicated to testing. The BIKE-1000 dataset, with its complete set of 1000 images, serves to
estimate model’s performance in a novel domain.

Evaluation metrics. We report the Mean Absolute Error (MAE), Root Mean Square Error (RMSE),
Normalized Relative Error (NAE), and Squared Relative Error (SRE) metrics. These metrics are de-

fined as follows: MAE = 1
n

∑n
i=1 |yi−ŷi|, RMSE =

√
1
n

∑n
i=1(yi − ŷi)2, NAE = 1

n

∑n
i=1

|yi−ŷi|
yi

and SRE =
√

1
n

∑n
i=1

(yi−ŷi)2
yi

, where n denotes the number of test images, and yi and ŷi represent
the actual and predicted object counts, respectively.

Implementation details. In the weighted fusion process of foreground and background similarity
maps, we adjust λ to 0.5 for FSC147 and to 0.7 for CARPK and BIKE-1000. Moreover, to prevent
small objects from being omitted by excessive background fusion, λ is set to 0 when the foreground
regions are more than 50%.

5.2 STATE-OF-THE-ART COMPARISON

We compare our model to competitive baselines: (1) CFOCNetYang et al. (2021), (2) FamNetRanjan
et al. (2021), (3) BMNet+Shi et al. (2022), (4) CounTRLiu et al. (2022), (5) LOCAukić et al. (2023),
(6) CACViTWang et al. (2024), (7) COUNTGDAmini-Naieni et al. (2024), (8) DAVEPelhan et al.
(2024), (9) Counting-DETRNguyen et al. (2022), (10) PseCoHuang et al. (2024), (11) SAM-FreeShi
et al. (2023), (12) ZSCXu et al. (2023), (13) CLIP-CountJiang et al. (2023), (14) VLCounterKang
et al. (2024), (15) CounTXAmini-Naieni et al. (2023), (16) SAMKirillov et al. (2023), (17) Ground-
ingDINOLiu et al. (2023b).

Results on Few-shot/One-shot Object Counting. In the few-shot counting scenario, each im-
age provides three bounding box annotations of exemplar objects, which are used to count the
target objects in the image. Table 2 offers quantitative comparisons with recent state-of-the-art
methods, including detection/segmentation-based versus density-based approaches, and training-
based versus training-free approaches. Our TFCounter exhibits significant advancements over ex-
isting training-free methodologies, irrespective of the utilization of point prompts or bounding box

6
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Table 2: Few-shot object counting on FSC147 and CARPK. The best performance in each group is
highlighted in bold.

Methods Venue Prompt Output FSC147 CARPK
MAE RMSE MAE RMSE

Training-based
CFOCNet WACV’21 box density 22.10 112.71 - -
FamNet CVPR’21 box density 22.08 99.54 28.84 44.47
BMNet+ CVPR’22 box density 14.62 91.83 10.44 13.77
CounTR BMVC’22 box density 11.95 91.23 - -
LOCA ICCV’23 box density 10.79 56.97 9.97 12.51
CACViT AAAI’24 box density 9.13 48.96 8.30 11.18
COUNTGD ArXiv’24 box density 8.31 91.05 - -
DAVE CVPR’24 box density&detection 8.66 32.36 - -
Counting-DETR ECCV’22 box detection 16.79 123.56 - -
PseCo CVPR’24 box detection 13.05 112.86 - -
Training-free
SAM-Free WACV’24 point segmention 20.10 132.83 11.01 14.34
TFcounter Ours point segmention 18.58 131.99 8.94 11.56
SAM-Free WACV’24 box segmention 19.95 132.16 10.97 14.24
TFcounter Ours box segmention 18.41 130.50 9.71 12.44

Table 3: One-shot/zero-shot object counting on the FSC147.

Scheme Methods Venue Prompt Output FSC147
MAE RMSE

One-shot

Training-based
CounTR BMVC’22 box density 12.06 90.01
LOCA ICCV’23 box density 12.53 75.32
DAVE CVPR’24 box density&detection 11.29 66.36
CACViT AAAI’24 box density 8.62 29.92
Training-free
SAM-Free WACV’24 point segmention 21.83 136.77
TFcounter Ours point segmention 19.86 135.54
SAM-Free WACV’24 box segmention 21.60 136.36
TFcounter Ours box segmention 19.88 135.09

Zero-shot

Training-based
ZSC CVPR’23 text density 22.09 115.17
CLIP-Count ACM MM’23 text density 17.78 106.62
VLCounter AAAI’24 text density 17.05 106.16
CounTX BMVC’23 text density 15.88 106.29
DAVE CVPR’24 text density&detection 14.90 103.42
COUNTGD arXiv’24 text density 12.98 98.35
PseCo CVPR’24 text detection 16.58 129.77
Training-free
SAM ICCV’23 None mask 42.48 137.50
GroundingDINO arXiv’23 text segmention 62.47 160.09
SAM-Free WACV’24 text segmention 29.16 137.05
TFcounter Ours text segmention 26.13 135.51

prompts. Furthermore, it attains comparable MAE and RMSE metrics to the state-of-the-art training-
based detection-based methods. Similarly, in the one-shot object counting scenario, each image pro-
vides a single bounding box annotation of exemplar objects. The results, shown in Table 3, indicate
that TFCounter significantly outperforms existing training-free methods.

Results on Zero-shot Object Counting. In the zero-shot counting scenario, each image provides
a text description of the counting category. Following SAM-Free, we employ CLIP-SurgeryLi et al.
(2023) to calculate the initial similarity between the image and text representations. This similarity

7
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Figure 5: Qualitative comparison on FSC147, CARPK, and BIKE-1000.

is subsequently used to select exemplar objects through region selection and box creation. The
results are shown in Table 3. Note that the zero-shot mode of SAM-Free shows differences in
replication performance compared to the original paper. The results in this paper are from replicated
experiments. The performance of TFCounter is obtained under the same settings.

Results on Training-free Object Counting. We compared the performance of training-free meth-
ods TFCounter and SAM-Free across three datasets. SAM-Free is currently the state-of-the-art
method in the training-free, class-agnostic object counting field. The comparison results are shown
in Table 4. MAE and RMSE indicate the average error per image across the dataset and are more
sensitive to high-density images. NAE and SRE indicate the relative error per image and are more
sensitive to inter-class variance. Due to the squared amplification effect, RMSE and SRE emphasize
a few extreme errors. The results show that TFCounter outperforms SAM-Free in all metrics across
the three datasets, with a significant improvement in NAE. Notably, on the BIKE-1000 dataset, both
TFCounter and SAM-Free have lower MAE and RMSE compared to FSC147 and CARPK, likely
due to the lower object density. However, NAE is higher due to greater average inter-class variance
- caused by variations in object scale, pose, and overlap. SRE, on the other hand, is lower because
the counting difficulty is more balanced, resulting in fewer extreme errors.

Visualization. Figure 5 illustrates the qualitative distinctions among several training-free models.
GroundingDINO performs commendably well in counting low-density objects but struggles with
high-density object counting and significant intra-class variations. In contrast, SAM-Free surpasses
GroundingDINO in high-density scenarios but tends to produce false positives, misidentifying non-
target items that resemble target objects in shape or color. For instance, in the BIKE-1000 test
images, SAM-Free frequently mistakes bike locks and wheels. Furthermore, SAM-Free often frag-
ments a single object into multiple parts, as shown in example 2⃝ in FSC147. Our TFCounter

8
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Table 4: Training-free object counting on three datasets, while * denotes points prompts.

Methods FSC147 CARPK BIKE-1000
MAE RMSE NAE SRE MAE RMSE NAE SRE MAE RMSE NAE SRE

SAM-Free* 20.10 132.83 0.30 3.87 11.01 14.34 0.51 3.89 7.65 10.26 0.73 2.86
TFcounter* 18.58 131.99 0.28 3.85 8.94 11.56 0.41 3.18 6.69 10.07 0.54 2.30
SAM-Free 19.95 132.16 0.29 3.80 10.97 14.24 0.48 3.70 7.43 10.07 0.68 2.66
TFcounter 18.41 130.50 0.28 3.84 9.71 12.44 0.47 3.67 6.58 10.00 0.50 2.18

Table 5: Ablation study on each component of TFCounter. The optimal and suboptimal results are
represented in red and blue, respectively.

FSC147 BIKE-1000No. Background
Similarity

Multi-round
Counting

Residual Points
Prompts MAE RMSE NAE SRE MAE RMSE NAE SRE

M0 ◦ ◦ ◦ 19.95 132.16 0.29 3.80 7.43 10.07 0.68 2.66
M1 • ◦ ◦ 20.85 132.38 0.24 3.68 10.55 14.60 0.66 3.05
M2 ◦ • ◦ 20.62 132.04 0.33 4.23 9.16 11.80 0.93 3.61
M3 ◦ ◦ • 21.41 131.94 0.39 4.50 22.32 25.74 2.36 8.06
M4 • • ◦ 20.46 131.79 0.26 3.75 10.36 14.43 0.65 3.01
M5 • ◦ • 18.50 130.92 0.25 3.73 6.48 10.40 0.44 2.08
M6 ◦ • • 23.22 132.25 0.47 5.06 30.16 35.31 3.17 11.35
M7 • • • 18.41 130.50 0.28 3.84 6.58 10.00 0.50 2.18

Figure 6: Influence of hyperparameter λ in the weighted fusion of similarity maps.

notably addresses these limitations. By focusing solely on quantity rather than localization, metrics
like MAE and NAE may not fully capture the improvements made by TFCounter. However, these
enhancements are evident in the visual comparisons, as illustrated in example 4⃝ in BIKE-1000.

5.3 ABLATION STUDIES AND ANALYSIS

Component Analysis. To validate the effectiveness of each component, we conduct an ablation
study as presented in Table 5. Starting with SAM-Free (M0), we add Background Similarity, Multi-
round Counting, and Residual Points Prompts in M1, M2, and M3, respectively, and then combine
them pairwise in M4, M5, and M6. Among these experiments, the best performance is observed in
M7, followed by M5, while M6 performs the worst. Additionally, the performance of each individual
component such as M1, M2, and M3 is worse than M0. This occurs because each component has a
unique function: Background Similarity filters out irrelevant masks to boost accuracy, while Multi-
round Counting and Residual Points Prompts expand the recall scope to include more target objects.
The best performance comes from combining these components, as Background Similarity alone
may exclude smaller objects, and Multi-round Counting or Residual Points Prompts alone may
include non-target objects.

Hyperparameters Analysis. We investigate the influence of the hyperparameter λ in the weighted
fusion of similarity maps. Two fusion methods are tested: 1) ”Mean” fusion, formulated as S =
T(µ + λSimB), where µ is the mean value of SimF ; and 2) ”Max” fusion, formulated as S =

9
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Figure 7: Performance in different density images.

T(ϕ + λSimB), where ϕ is the maximum value of SimF . Figure 6 shows the impact of different
λ values and fusion methods on the BIKE-1000 dataset. As λ increases, both MAE and RMSE
initially decrease and then rise, with the optimal point slightly differing between 0.7 and 0.6. This
suggests an optimal fusion ratio for the BIKE-1000 dataset. Fine-tuning this ratio for each image
could improve accuracy and is a potential direction for future research. In this paper, the ”Mean”
method with λ = 0.7 is adopted for the BIKE-1000 dataset and CARPK, while the ”Mean” method
with λ = 0.5 is used for FSC147.

Density Analysis. We compared three training-free methods on test images with varying densities.
Figure 7 presents the MAE on the FSC147 and BIKE-1000 datasets, using a logarithmic scale on the
vertical axis for better visualization. GroundingDINO performs best on low-density images, but its
MAE increases rapidly with density. TFCounter demonstrates superior accuracy in medium to low-
density scenarios. Conversely, SAM-Free outperforms TFCounter in high-density images. However,
SAM-Free’s performance in high-density images is partly due to recalling more non-target objects,
which unexpectedly brings the counting results closer to the true value. An example of this can be
seen in example 4⃝ in the BIKE-1000 dataset of Figure 5.

6 LIMITATIONS

The initial version of TFCounter presents several limitations. Segmentation Problem. As a
segmentation-based approach, TFCounter struggles with high-density overlapping objects compared
to density-based methods. It also faces double-counting issues, especially when segmenting objects
with multiple parts, such as the red flesh and green calyx of a strawberry. Future research on more
fine-grained or improved semantic/instance segmentation models could help mitigate these limita-
tions. Train-free Problem. TFCounter’s train-free design avoids large annotated training datasets
and reduces computational overhead. However, relying on manually designed structures limits its
generalization. Future work will explore training components such as prompt selection and similar-
ity fusion, or using techniques like LoRA to improve performance.

7 CONCLUSIONS

In this paper, we explore an intriguing question: how to adapt large-scale foundation models to var-
ious downstream tasks and domain data without training, while maintaining superior performance.
To this end, we introduce TFCounter, a novel training-free, segmentation-based, class-agnostic ob-
ject counter that supports both few-shot and zero-shot counting. The originality of TFCounter stems
from three core designs: a multi-round counting strategy, a dual prompt system, and a background-
enhanced similarity module. The first two broaden the recall scope, while the latter boosts accuracy
by incorporating background context. Experimental results show that TFCounter outperforms ex-
isting state-of-the-art training-free models on two standard counting benchmarks and the proposed
BIKE-1000, and displays competitive performance compared to training-based models. Future work
will focus on improving the counting of high-density overlapping objects and developing lightweight
training for better performance.

10
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Nobuyuki Otsu et al. A threshold selection method from gray-level histograms. Automatica, 11
(285-296):23–27, 1975.

Jer Pelhan, Vitjan Zavrtanik, Matej Kristan, et al. Dave-a detect-and-verify paradigm for low-
shot counting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 23293–23302, 2024.

Dezhi Peng, Zikai Sun, Zirong Chen, Zirui Cai, Lele Xie, and Lianwen Jin. Detecting heads using
feature refine net and cascaded multi-scale architecture. In 2018 24th International Conference
on Pattern Recognition (ICPR), pp. 2528–2533. IEEE, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Viresh Ranjan and Minh Hoai Nguyen. Exemplar free class agnostic counting. In Proceedings of
the Asian Conference on Computer Vision, pp. 3121–3137, 2022.

Viresh Ranjan, Udbhav Sharma, Thu Nguyen, and Minh Hoai. Learning to count everything. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3394–
3403, 2021.

Min Shi, Hao Lu, Chen Feng, Chengxin Liu, and Zhiguo Cao. Represent, compare, and learn: A
similarity-aware framework for class-agnostic counting. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 9529–9538, 2022.

Zenglin Shi, Ying Sun, and Mengmi Zhang. Training-free object counting with prompts. arXiv
preprint arXiv:2307.00038, 2023.

Vishwanath A Sindagi, Rajeev Yasarla, and Vishal M Patel. Pushing the frontiers of unconstrained
crowd counting: New dataset and benchmark method. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 1221–1231, 2019.

Aayush Kumar Tyagi, Chirag Mohapatra, Prasenjit Das, Govind Makharia, Lalita Mehra, Prathosh
AP, et al. Degpr: Deep guided posterior regularization for multi-class cell detection and counting.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
23913–23923, 2023.
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