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Abstract

Embodied navigation is a fundamental capability that enables
embodied agents to effectively interact with the physical
world in various complex environments. However, a signifi-
cant gap remains between current embodied navigation tasks
and real-world requirements, as existing methods often strug-
gle to integrate high-level human instructions with spatial un-
derstanding, which is essential for agents to perceive their
surroundings, adapt to intricate layouts, and make informed
decisions based on spatial relationships. To address this gap,
we propose a new task of embodied navigation called spatial
navigation, which encompasses two key components: spatial
object navigation (SpON) for object-specific guidance and
spatial area navigation (SpAN) for navigating to designated
areas. Specifically, SpON guides agents to specific objects by
leveraging spatial relationships and contextual understanding,
while SpAN focuses on navigating to defined areas within
complex environments. Together, these components signifi-
cantly enhance agents’ navigation capabilities, enabling more
effective interactions in real-world scenarios. To support this
task, we have generated a spatial navigation dataset con-
sisting of 10,000 trajectories within the AI2ZTHOR simulator.
This dataset includes high-level human instructions, detailed
observations, and corresponding navigation actions, provid-
ing a comprehensive resource to enhance agent training and
performance. Building on the spatial navigation dataset, we
introduce SpNav, a hierarchical navigation framework de-
signed to embody the principle of “What You See is What
You Reach.” Specifically, SpNav employs vision-language
model (VLM) to interpret high-level human instructions and
accurately identify goal objects or areas within the observa-
tion range, achieving precise point-to-point navigation using
a map and enhancing the agent’s ability to operate effectively
in complex environments by bridging the gap between per-
ception and action. Extensive experiments show that SpNav
achieves state-of-the-art (SOTA) performance in spatial nav-
igation tasks across both simulated and real-world environ-
ments, validating the effectiveness of our method.

Introduction

Embodied navigation is crucial for autonomous agents oper-
ating in physical environments, serving as the foundation for
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advanced robotic tasks such as mobile manipulation, explo-
ration, and human-robot interaction (Hao et al. 2025; Zhang
et al. 2025a; Tang et al. 2025b; Team et al. 2025; Li et al.
2024a). This capability allows agents to navigate and in-
teract effectively within real-world spaces, enabling them
to perform complex tasks across a diverse range of scenar-
ios. (Wu et al. 2025, 2024b; Zheng et al. 2024; Zhang et al.
2024d; Tang et al. 2022; Xu et al. 2024; Liu et al. 2025c¢; Liu,
Guo, and Cangelosi 2025; Ma et al. 2024; Liu et al. 2025b)

Existing embodied navigation research primarily fo-
cuses on two main paradigms: vision-language navigation
(VLN) (Zhang et al. 2025c; Gao et al. 2025; Cheng et al.
2025; Zhang et al. 2024a) and object-goal navigation (Ob-
jectNav) (Zhang et al. 2025d, 2024c; Wu et al. 2024a; Long
et al. 2025; Gong et al. 2025). VLN approaches require
agents to execute detailed sequential commands, such as
“turn left, go through the doorway, and keep going,” de-
manding meticulous spatial understanding but often relying
on overly specific instructions that do not reflect natural hu-
man communication patterns. In contrast, ObjectNav centers
on recognizing predetermined object categories (e.g., “find
any chair”’) and making conclusions based on representative
instances, independent of contextual location or specific user
needs. However, real human instructions frequently embody
abstract intent and necessitate complex reasoning and envi-
ronmental perception. For instance, instructions like “Wait
for me around the door” or “Help me get the fruit from the
left side of the tea area” require not only basic goal navi-
gation but also a nuanced understanding of spatial relation-
ships among objects and regions. These discrepancies be-
tween current navigation frameworks and practical applica-
tions highlight a critical need for advancements in the field,
strongly motivating the design of a navigation task that can
effectively comprehend complex human instructions and
reason about spatial relationships, thereby enhancing the
capabilities of embodied agents in real-world scenarios.

To address this critical gap, as shown in Fig. 1, we in-
troduce the spatial navigation task, which requires agents
to understand high-level human instructions and navigate to
specific objects or areas. This task is divided into two com-
plementary components: Spatial Object Navigation (SpON)
and Spatial Area Navigation (SpAN). The SpON compo-
nent enables agents to locate specific objects through an un-
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Figure 1: Overview of Spatial Navigation. Our spatial navigation requires the agent to understand high-level human instruc-
tions and navigate to a specific object or area. This task encompasses two key components: Spatial Object Navigation (SpON),
where agents are tasked with locating specific objects based on spatial constraints (e.g., “Put the cup on the closer table”), and
Spatial Area Navigation (SpAN), which involves navigating to designated areas defined by spatial relationships (e.g., “Go to

the area in front of the door”).

derstanding of spatial relationships and contextual reason-
ing, while SpAN focuses on navigating to designated en-
vironmental areas within complex environments. Together,
these components significantly enhance the navigation ca-
pabilities of agents in real-world scenarios. To support this
novel task, we developed a comprehensive spatial navi-
gation dataset comprising 10,000 trajectories generated in
the AI2THOR simulator, with 5,000 trajectories dedicated
to SpON and 5,000 to SpAN. Each trajectory contains a
sequence of navigation actions spanning 10-30 timesteps
and includes high-level human instructions, egocentric ob-
servations, and corresponding navigation action sequences,
thereby laying a solid foundation for agent training and eval-
uation. Based on this dataset, we propose SpNav, a hierar-
chical navigation framework aiming to achieve the principle
of “what you see is what you get.”” Specifically, our hierar-
chical approach decomposes the spatial navigation task into
structured stages: first, a general Vision-Language Model
(VLM) is employed to reason about human instructions and
extract goal objects or regions (e.g., “clean the right window
— right window”); subsequently, our dedicated NaviPoint
is utilized for accurate visual goal pointing. After identify-
ing the target point from the egocentric image, we employ
Map-to-Action, based on a constructed map, to perform co-
ordinate transformation and precise point-to-point naviga-
tion, enabling the agent to reach its final destination. Exten-
sive experiments demonstrate that SpNav exhibits superior
performance in spatial navigation tasks, outperforming all
baseline methods. The main contributions of our work can
be summarized as follows:

* We introduce a challenging spatial navigation task with
two components: Spatial Object Navigation (SpON) and
Spatial Area Navigation (SpAN). The agent must inter-

pret high-level human instructions to navigate to objects
or areas while considering spatial relationships.

* For (SpON) and (SpAN), we collected and generated
5,000 episodes for each, totaling 10,000 episodes. Each
episode includes high-level human instructions, goal lo-
cations, and navigation action sequences.

* We propose a novel hierarchical framework, SpNav,
which leverages vision-language models (VLMs) for in-
struction reasoning and spatial-aware goal pointing. Ad-
ditionally, we introduce Map-to-Action to facilitate pre-
cise point-to-point navigation to the final destination.

» Extensive experiments show that SpNav achieves state-
of-the-art performance in spatial navigation, surpassing
all baseline methods and paving the way for future ad-
vancements in embodied navigation systems.

Related Work

Embodied Navigation Research in embodied navigation
primarily focuses on vision-language navigation (VLN) and
object-goal navigation (ObjectNav) (Zhang et al. 2025e,b;
Liu et al. 2025a). Key VLN efforts include NavGPT (Zhou,
Hong, and Wu 2024), which leverages GPT-40 for action
generation; DiscussNav (Long et al. 2024), which minimizes
human supervision; and Nav-CoT (Lin et al. 2025), enhanc-
ing environmental understanding through thought chaining.
MapNav (Zhang et al. 2025¢) optimizes memory with map-
based spatial representations, while NaVid (Zhang et al.
2024b) maintains temporal context. In ObjectNav, Pirl-
Nav (Ramrakhya et al. 2023) and XGX (Wasserman et al.
2024) mimic human demonstrations, and semantic mapping
approaches like InstructNav (Long et al. 2025) enable zero-
shot navigation. However, current methods primarily em-
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Figure 2: Dataset Generation Progress for Spatial Navigation Tasks. We collect egocentric observations to extract spatial
relationship triplets (goal object, spatial relation, reference object). These triplets are processed by vision-language models
(VLMs) to generate diverse high-level human instructions, which are paired with expert trajectory sequences, resulting in a

comprehensive spatial navigation dataset for robotic training.

phasize step-by-step instruction following and predefined
object categories, limiting their ability to interpret high-level
instructions and complex spatial relationships, which con-
strains their applicability to our proposed navigation tasks.

VLMs for Spatial Reasoning Effective spatial reason-
ing enhances robotic systems’ performance in navigating
and manipulating physical environments. (Liu, Emerson,
and Collier 2023; Wang et al. 2024; Zha et al. 2025; Zhou
et al. 2024; Tang et al. 2025a; Xiao et al. 2025) Recent re-
search has aimed to improve the spatial understanding ca-
pabilities of vision-language models (VLMs) through var-
ious approaches. For instance, Spatial VLM (Chen et al.
2024) utilizes metric depth estimation to convert visual in-
put into object-centric point cloud representations for spa-
tial visual question answering (VQA). SpatialRGPT (Cheng
et al. 2024) advances region-based spatial reasoning with a
proposal mechanism and spatial scene graph construction.
RoboPoint (Yuan et al. 2025) offers a synthetic dataset for
unrestricted spatial reference and accurate action point pre-
diction. SpatialBot (Cai et al. 2024) and RoboRefer (Zhou
et al. 2025) enhance spatial understanding by integrating
RGB-D modalities. Additionally, SpatialCoT (Liu et al.
2025d) employs bidirectional spatial language alignment
to boost complex reasoning capabilities. However, existing
methods often lack spatially-aware object and region lo-
calization as well as seamless integration with navigation
frameworks, which limits their effectiveness in real-world
robotic navigation scenarios.

Methodology
Overview

As shown in Fig. 2, we leverage the ground truth seman-
tic graph from the AI2THOR simulator to establish spatial
relationships between objects and regions, identifying rela-
tionships like “left,” “right,” “above,” and “below.” Using
a vision-language model, we generate high-level human in-
structions such as “pick up the mural on the right side of
the refrigerator” or “go to the open space in front of the
door.” Our SpNay framework, illustrated in Fig. 3, operates
in two stages: during training, we create question-answer

pairs from spatial relationship data to enhance NaviPoint’s
pointing ability; during inference, given a high-level instruc-
tion (e.g., “go to the open space on the left side of the sofa”),
NaviPoint processes RGB-D observations to locate the goal.
We then use Map-to-Action to convert image coordinates to
map coordinates, enabling effective path planning and suc-
cessful navigation to complete the spatial navigation task.

Preliminaries

Problem Definition In our spatial navigation task, an agent
starts at a random position and orientation in an unknown
indoor environment. Given a high-level human instruction,
the agent must navigate to either a specific object with spa-
tial constraints (SpON) or a designated area (SpAN). At each
timestep ¢, the system processes multimodal inputs: RGB-
D observations o4, natural language instruction /;, and the
robot’s pose state ;. The agent generates navigation actions
as follows:

Spatial Navigation Agent: (04,1, 7¢) = azy1, (1)

where o, = (rgby, depthy), I, specifies object or area con-
straints, and 7, denotes the current pose. The predicted ac-
tion a;y; € {MoveAhead, RotateLeft, RotateRight, Done}.
Success is achieved when the agent executes the Done ac-
tion and reaches a final position pfinq: such that ||pfine —
gll2 < 1.0 meters, facilitating consistent evaluation across
both object-centric and area-centric navigation scenarios.

Map Construction Our map construction module, based
on (Zhang et al. 2024¢) and (Zhang et al. 2025d), creates a
comprehensive environmental representation by integrating
multimodal sensor observations from the AI2THOR simu-
lator. We initialize a multi-channel map M € RE*HxW
where C' is the number of geometric channels and H x W
defines the spatial resolution. The map consists of layers
Mps (obstacle occupancy), M.z, (explored areas), and
M free (traversable areas), with each cell corresponding to
a bcm x bem real-world area.

At each timestep ¢, we receive RGB images I;%°, depth
maps D;, and agent poses p: = (xt,yt,0:). We convert
depth data into a 3D point cloud and project it onto a 2D
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Figure 3: Overview of our SpNav framework. During training, we develop our NaviPoint model using spatial question-answer
pairs to enhance goal-pointing capabilities. In the inference phase, we use a vision-language model (VLM) to interpret human
instructions, determine egocentric goal coordinates with NaviPoint, construct maps from RGB-D observations and pose data,

and execute point-to-point navigation to reach the destination.

map. The map is updated using a probabilistic fusion ap-
proach, where obstacle occupancy and explored areas are
adjusted based on sensor data, allowing us to accurately rep-
resent traversable space. This construction is crucial for ef-
fective spatial navigation tasks.

Dataset Construction

As shown in Fig. 2, our spatial navigation dataset is built
through multimodal data collection, spatial relationship ex-
traction, high-level instruction generation, expert trajectory
verification. For each scene s € S, we randomly sample a
proxy location p € P, and capture multimodal observations:

OBS = {Irgb; Ideptha Iseg7 Msemantic} = ¢(87p7 G)a (2)

where I,.4, is the RGB image, ey, is the depth map, I,
indicates instance segmentation, and M, antic CcONtains se-
mantic annotations. We collect 50,000 observation pairs.

From these pairs, we extract spatial relationships between
objects. For two objects with centers (x1,y1) and (z2, y2),
the relationship is determined by:

rij = argmax iy, (w5, y2), (25, 95)); 3

where R = {left_of, right_of, above, below, near, next_to}.
Each spatial relationship results in a triple (o;,r;j,0;). We
then use GPT-4 to generate natural language instructions:

Linstruction = g(OZ‘, Tij5 05, Ccontea:t); (4)

ensuring semantic coherence while preserving spatial infor-
mation, yielding commands like “navigate to the free area
left of the sofa.” This process generates 10,000 question-
answer pairs, split evenly between 5,000 SpON tasks (object
navigation) and 5,000 SpAN tasks (area navigation).

To create realistic navigation sequences, we employ the
A* algorithm to plan optimal trajectories from the agent’s
initial position to the goal:

*

" = A" (pstartvpgoah Mcollision)7 )

where 7* = {(so,a0),(s1,01),...,(sT,ar)} represents
the state-action sequence, 7" ranges from 10 to 30 time steps,
Dstart 1 the agent’s starting position, pyoq; is the goal ob-
ject’s 3D position, and M o1isi0n 1S @ collision-free navi-
gation mesh. Validity is confirmed through successful path
completion. Each navigation trajectory comprises observa-
tions, expert actions, spatial annotations, and instructions for
effective training and evaluation of spatial understanding.

SpNav

Training Phase In the training phase, we developed the
NaviPoint model for accurate object pointing capabilities
using a dataset of 200,000 spatial relation question-answer
pairs (100,000 for object goals and 100,000 for region
goals) collected from 200 indoor scenes in the AI2THOR
simulator. Each pair includes a spatial question, such as
“point out the free area on the table to the left of the
chair,” and a corresponding ground truth point derived
from precise annotations. The model takes input as a tu-
ple (I,Q)—where I € RH*WX3 j5 the RGB obser-
vation and Q = {q1,92,...,q5} is the tokenized spa-
tial question—and generates text-based point coordinates
through the mapping function fy : (I,Q) — Y, where
Y = “[(x1,91), (x2,¥2)s- -, (Tn,yn)]- The architecture
combines a visual encoder and a language model to under-
stand spatial queries and produce coordinate responses, fine-
tuned using a cross-entropy loss function, enabling precise
spatial reasoning and effective navigation:

Y]
Lspr ==Y _10g P(yily<i, I, Q;0), (6)

i=1

where y; represents the ith token in the goal sequence Y.
This enables the model to learn precise spatial reasoning and
coordinate pointing capabilities from the rich spatial rela-
tionship annotations in the dataset, laying the foundation for
effective spatial navigation.



Spatial Navigation
Category Methods SpON SpAN Average
NE, PL, SPLT SRf |NE|, PL| SPLT SR{ | NE, PL| SPLT SR{

Closed. | GPT-o (Hurstetal. 2024) 478 1234 123  48% | 523 1367 91 32% | 501 1301 107 4.0%

Claude-3.5-Sonnet (Anthropic 2024) | 3.89 1145 158  6.1% | 434 1278 124  47% | 412 1212 141  54%
source Qwen-VL-Max (Bai et al. 2025) 545 1389 87  34% | 612 1523 69 28% | 579 1456 718  3.1%

Janus-Pro-7B (Chen et al. 2025) 667 1845 00 00% | 723 2134 00 00% | 695 1990 00  00%
Open- Qwen2.5-VL-7B (Baietal. 2025) | 634 2278 00  00% | 689 2567 00 00% | 662 2423 00  0.0%
source LLaVA-Next-7B (Lietal. 2024b) | 589 20.12 0.0  0.0% | 645 2345 00  00% | 617 2179 00  0.0%

NaVid* (Zhang et al. 2024b) 323 867 289 142% | 382 989 257 11.8% | 3.53 928 273 13.0%
Navigation-| NaVILA* (Cheng et al. 2025) 278 794 324 186% | 325 873 291 159% | 3.02 834 308 17.3%
specific | MapNav* (Zhang et al. 2025¢) 221 689 337 224% | 287 756 305 197% | 254 723 321 21.1%

SpNav (Ours) 102 3.4 354 423% | 118 3.67 341 398% | 110 341 348 411%

Table 1: Comparison with SOTA methods on spatial navigation task. * denotes that we adapt their task formulation to

complete our spatial navigation task.

Inference Phase In the inference phase, our SpNav
framework performs spatial navigation tasks by integrating
high-level instruction reasoning, precise goal localization,
map construction, and dynamic path planning to achieve
robust navigation performance in complex indoor environ-
ments. The inference process begins with a VLM for reason-
ing, which reasons on the input high-level human instruction
Linstruction to extract the goal description, (e.g., “go to the
open space on the left side of the sofa” — “the open space
on the left side of the sofa”). Subsequently, we input the
current RGB observations and the extracted goal description
into the trained NaviPoint to obtain the goal coordinates ob-
served from the egocentric observation. At the same time,
we use the RGBD observations and pose information from
the AI2THOR simulator to build and continuously update
the map M described in Section Preliminaries.

During Map-to-Action, the key coordinate transformation
uses the transformation matrix Pyjopar = Tego—giobal - Pego
to transform the goal point observed from egocentric obser-
vations into the global map coordinates:

cos; —sinf; x;
Tego—)global = [sin at COs ot Yt | - (7)
0 0 1

Then we map the global coordinates to the spatial grid us-
ing Ppaplu,v] = [Pyiobal - resolution_lj, where resolu-
tion denotes the map’s spatial resolution. Using the goal
map coordinates, we apply a fast marching method (FMM)
path planner to compute the optimal trajectory over the
traversable areas of the spatial map, generating waypoints
W = {wi,ws,...,wg} that define the navigation path.
These waypoints are then converted into discrete actions via
a policy function a; = T(Weurrent, Wnewt; Qagent ), With ac-
tion selection following the formula:

MOVE_FORWARD  if |0reiative| < 15°

0y — TURN_LEFT if Orelative < —15° )
TURN_RIGHT if Oretative > 15°
STOP if reached goal

where 0,..;qti0e denotes the angle between the agent’s direc-
tion and the next waypoint. During navigation, we continu-
ously update M? with new RGB-D observations and poses,
conduct real-time obstacle detection by marking obstacles
in M s, and replan the trajectory as needed to adapt to dy-
namic changes in the environment. This approach ensures
robust navigation performance until the agent reaches the
goal location within the specified proximity threshold.

Experiments
Experimental Details

Evaluation Benchmark To comprehensively evaluate the
performance of various methods on spatial navigation
tasks, we created a challenging benchmark dataset in the
AI2THOR simulator (Kolve et al. 2017), featuring previ-
ously unseen indoor scenes. This dataset includes 1,315 nav-
igation trajectories, evenly split between 713 SpON tasks
and 602 SpAN tasks, ensuring complete separation between
the training and evaluation environments. Each trajectory
contains high-level human instructions, such as “navigate to
the empty space on the left side of the sofa,” along with
the corresponding ground truth goal location. Our bench-
mark assesses the agent’s ability to perform real-time in-
teractions, generate appropriate navigation actions, and suc-
cessfully reach the specified goal.

Evaluation Metrics We assess the performance of our
methods using four standard metrics commonly employed in
embodied navigation research: navigation error (NE), path
length (PL), success-weighted path length (SPL), and suc-
cess rate (SR). Navigation error measures the Euclidean dis-
tance between the agent’s final position and the goal, with
lower values indicating better performance. Path length rep-
resents the total distance traveled during navigation. SPL
combines success rate and efficiency, defined as SPL =

1 N L Cindi )
N Dimq Si X (WﬁL))’ where S; indicates success, L;

is the shortest path length, P; is the actual path length, and IV
is the total number of scenarios. Success rate reflects the per-
centage of scenarios in which the agent successfully reaches
within 1.0 meter of the goal. We evaluate these metrics sepa-



rately for SpON (spatial object navigation) and SpAN (spa-
tial area navigation), reporting the average performance over
all 1,315 trajectories to provide a comprehensive assessment
of spatial navigation capabilities across different task types.

Implementation Details For goal extraction from high-
level human instructions, we utilize GPT-40 (Hurst et al.
2024), a generic reasoning VLM. The NaviPoint model, re-
sponsible for precise goal pointing, is initialized with pre-
trained Qwen2.5-VL-7B (Bai et al. 2025) weights and un-
dergoes supervised fine-tuning using a standard instruction-
following protocol. Training is conducted on four A100
GPUs with the AdamW (Kingma and Ba 2014) optimizer
and a learning rate of 1075 per cycle. The batch size per
GPU is set to 4, with 2 steps of gradient accumulation,
resulting in an effective batch size of 32. During infer-
ence, the spatial map module maintains a 480480 grid at
a 5 cm resolution, while the FMM path planner (Engheta
et al. 1992) operates on a binary occupancy map to gen-
erate collision-free trajectories. Coordinate transformations
between egocentric image coordinates and global map coor-
dinates leverage the agent’s real-time pose information from
the AI2THOR simulator (Kolve et al. 2017).

Baseline Methods Since existing navigation methods are
not tailored for spatial relation instructions, we adapt their
task formulation by modifying the prompt format to include
explicit spatial guidance. For fair comparison, we adjust the
instruction prompt to read: “Follow the following instruc-
tions to navigate to the goal: Wait for me in the empty space
to the left of the sofa. Stop near the goal point.” All baseline
models are constrained to the same discrete action space and
provided with equivalent observation information. We eval-
uate three types of baseline models: (1) closed-source gen-
eral VLMs, including GPT-40 (Hurst et al. 2024), etc; (2)
open-source general VLMs, such as Qwen2.5-VL-7B (Bai
etal. 2025), etc; and (3) navigation-specific methods, includ-
ing NaVid (Zhang et al. 2024b), etc.

Comparisons with SOTA Methods

We compare our SpNav framework against SOTA base-
line methods across three categories on the spatial navi-
gation benchmark, demonstrating significant performance
gains across all evaluation metrics. As shown in Tab. 1, our
method achieves notable improvements over existing ap-
proaches. Compared to the best-performing closed-source
model, Claude-3.5-Sonnet (Anthropic 2024), SpNav real-
izes a 661% increase in success rate (SR), achieving 41.1%
versus 5.4%. Additionally, it reduces navigation error (NE)
by 73% (1.10 vs. 4.12) and improves success-weighted path
length (SPL) by 147% (34.8 vs. 14.1). The open-source
general-purpose VLM performs poorly, registering a 0%
success rate, underscoring the difficulty of understanding
spatial relationships without specialized training. Among
navigation-specific methods, our framework outperforms
the strongest baseline, MapNav (Zhang et al. 2025c), by
95% in SR (41.1% vs. 21.1%), reduces NE by 57% (1.10 vs.
2.54), and improves SPL by 8% (34.8 vs. 32.1). Our frame-
work consistently excels in both SpON and SpAN tasks,
demonstrating its effectiveness in handling both object-
centric (SpON) and area-based (SpAN) spatial navigation

Spatial Navigation
NE| PL| SPLT SRt
SpNav (w/o Reasoning) 412 113 8.3 12.4%
Open-source
SpNav (w/ Qwen2.5-VL-72B) (Bai et al. 2025) 212 6.78 243  289%
SpNav (w/ Qwen2.5-VL-7B) (Bai et al. 2025) 2.80 845 19.7  234%
SpNav (w/ LLaVA-NeXT-7B) (Li et al. 2024b) 334 9.23 168  19.6%
SpNav (w/ Janus-Pro-7B) (Chen et al. 2025) 3.78 10.67 142 16.8%
Closed-source
SpNav (w/ Claude-3.5-Sonnet) (Anthropic 2024) | 1.34  4.12 312 37.5%
SpNav (w/ Qwen-VL-Max) (Bai et al. 2025) 148 4.67 29.6  358%
SpNav (w/ GPT-4o (Hurst et al. 2024)) (Ours) | 1.10 3.41 348 41.1%

VLM:s for Reasoning

Table 2: Ablation study on different VLMs for reasoning.

. Spatial Navigation
VLMs for Goal Pointing Params
NE| PL| SPLT SRt
Open-source
SpNav (w/ Qwen2.5-VL) (Bai et al. 2025) 72B 423 1267 121 16.7%
SpNav (w/ Qwen2-VL) (Bai et al. 2025) 7B 5.67 15.89 8.9 12.4%
SpNav (w/ Janus-Pro) (Chen et al. 2025) 7B 6.78 1845 52 8.1%
SpNav (w/ LLaVA-NeXT) (Li et al. 2024b) 7B 723 2034 38 6.5%
Closed-source
SpNav (w/ GPT-40) (Hurst et al. 2024) - 2.89 845 187  254%
SpNav (w/ Claude-3.5-Sonnet) (Anthropic 2024) - 312 9.23 162 22.8%
SpNav (w/ Qwen-VL-Max) (Bai et al. 2025) - 345 1012 145  203%
Specific
SpNav (w/ RoboPoint) (Yuan et al. 2025) 13B 145 478 289 352%
SpNav (w/ NaviPoint) (Ours) 7B 1.10 341 348 41.1%

Table 3: Ablation study on different VLM:s for goal pointing.

scenarios. These results validate the efficacy of our hier-
archical approach, which combines general reasoning with
specialized spatial pointing for complex navigation tasks.

Ablation Study

Effect of VLMs for Reasoning We conducted ablation
studies to assess the impact of various VLMs on reason-
ing high-level human commands and extracting goal ob-
jects within our SpNav framework. The choice of reason-
ing VLM significantly influences overall navigation per-
formance. Among open-source models, larger architec-
tures generally yield better results, SpNav w/ Qwen2.5-VL-
72B (Bai et al. 2025) achieving the highest success rate
(SR) at 28.9%. SpNav w/ GPT-40-based (Ours) (Hurst et al.
2024) reasoning enhances SR by 42% (41.1% vs. 28.9%)
and reduces navigation error (NE) by 48% (1.10 vs. 2.12)
compared to the best open-source model, underscoring the
importance of high-level reasoning capabilities. Compared
to closed-source alternatives, GPT-4o0 (Hurst et al. 2024)
achieves a 10% higher SR than Claude-3.5-Sonnet (An-
thropic 2024) (41.1% vs. 37.5%) and an 18% lower NE (1.10
vs. 1.34), also surpassing Qwen-VL-Max (Bai et al. 2025)
by 15% in SR (41.1% vs. 35.8%). The performance gap be-
tween open-source and closed-source models is substantial,
with GPT-40’s (Hurst et al. 2024) SR being 76% higher than
the best 7B open-source model, Qwen2.5-VL-7B (Bai et al.
2025) (41.1% vs. 23.4%), highlighting the critical role of
advanced language understanding and spatial reasoning in
processing complex spatial relationship instructions.

Effect of VLMs for Pointing We evaluate the perfor-
mance of various VLMs on egocentric goal pointing to val-



Spatial Navigation
Methods NE] PL| SPLT SR}
Random 723 1067 84 1.0%
Direct-and-Avoid 415 734 152 15.0%
PointNav 387 589 187 28.0%
Map-to-Action (Ours) | 1.10 3.41 348 41.1%

Table 4: Ablation on point-to-point navigation methods.

idate our specially designed NaviPoint. As shown in Tab 3,
NaviPoint significantly outperforms general VLMs and ex-
isting pointing methods across categories. Among closed-
source models, GPT-40 (Hurst et al. 2024) achieves the best
performance with a success rate (SR) of 25.4%. However,
our specialized method surpasses it, achieving a 62% im-
provement in SR (41.1% vs. 25.4%) and a 62% reduction in
navigation error (NE) (1.10 vs. 2.89), highlighting the im-
portance of task-specific training. Open-source models per-
form notably worse; our approach shows a remarkable 146%
improvement in SR and a 74% reduction in NE (1.10 vs.
4.23) compared to the best open-source model, Qwen2.5-
VL-72B (Bai et al. 2025) (41.1% vs. 16.7%). Most im-
portantly, our 7B NaviPoint outperforms the state-of-the-art
13B method, RoboPoint (Yuan et al. 2025), achieving a 17%
improvement in SR (41.1% vs. 35.2%), a 24% reduction
in NE (1.10 vs. 1.45), and a 20% improvement in success-
weighted path length (SPL) (34.8 vs. 28.9), demonstrating
superior effectiveness in spatial pointing tasks.

Effect of Map-to-Action To verify the importance of
Map-to-Action, we conducted an ablation study comparing
the spatial map method with other navigation strategies. As
shown in Tab. 4, spatial map-based navigation significantly
outperforms all baseline methods across all metrics. Com-
pared to the random baseline, our method achieves a remark-
able 4010% improvement in success rate (SR) (41.1% vs.
1.0%) and an 85% reduction in navigation error (NE) (1.10
vs. 7.23). The direct avoidance strategy, which employs sim-
ple straight-line movement and basic obstacle avoidance
measures, exhibits average performance; our method im-
proves SR by 174% (41.1% vs. 15.0%) and reduces NE by
73% (1.10 vs. 4.15). Most notably, compared to a learning-
based PointNav approach focused on point-to-point navi-
gation, our Map-to-Action method enhances SR by 47%
(41.1% vs. 28.0%), reduces NE by 72% (1.10 vs. 3.87), and
improves success-weighted path length (SPL) by 86% (34.8
vs. 18.7). These results show that our incremental Map-to-
Action construction—integrating obstacle tracking, explo-
ration region labeling, and traversability analysis—offers
vital environmental insights, leading to more efficient and
successful navigation compared to direct point-to-point ap-
proaches that lack spatial context.

Qualitative Analysis

Fig. 4 demonstrates the effectiveness of our SpNav frame-
work and NaviPoint in various spatial navigation scenarios.
In the simulator, our system accurately interprets complex
spatial commands and identifies goal locations, as shown in

Human Instruction: Put this to /e right cabinet.

Simulator Environments

Real-world Environments

Figure 4: Qualitative analysis on our SpNav framework.

the progression from observation to goal recognition with
precise pointing coordinates. Importantly, our framework
exhibits strong zero-shot transfer capabilities, functioning in
real-world settings without additional training. In the real-
world scenario depicted, our system processed commands
like “I want to sit on the blue chair on the left” and “Wait
for me in the open space to the left of the plant.” These re-
sults confirm that our spatial relationship understanding and
goal pointing can effectively transition from simulation to
practical deployment in diverse indoor environments.

Conclusion

This paper presents spatial navigation, a novel embodied
task requiring intelligent agents to interpret high-level hu-
man commands and navigate based on spatial relationships,
bridging the gap between current research and practical ap-
plications. We introduce SpNav, a layered framework that
integrates a visual-language model for command reasoning,
a specialized NaviPoint for precise target pointing, and Map-
to-Action for efficient navigation. Extensive experiments
show that SpNav achieves state-of-the-art performance, sig-
nificantly surpassing existing methods, and demonstrates ef-
fective zero-shot transfer from simulated to real environ-
ments, confirming its practical applicability. In future work,
we will release datasets, benchmarks, and source code to
support research in spatially aware embodied navigation and
enhance the development of intelligent agents for natural
human-computer interaction.
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