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Abstract

Instruction tuning for large language models001
(LLMs) can drive them to produce results con-002
sistent with human goals in specific down-003
stream tasks. However, the process of continual004
instruction tuning (CIT) for LLMs may bring005
about the catastrophic forgetting (CF) problem,006
where previously learned abilities are degraded.007
Recent methods try to alleviate the CF problem008
by modifying models or replaying data, which009
may only remember the surface-level pattern of010
instructions and get confused on held-out tasks.011
In this paper, we propose a novel continual in-012
struction tuning method based on Key-part In-013
formation Gain (KPIG). Our method computes014
the information gain on masked parts to dynam-015
ically replay data and refine the training objec-016
tive, which enables LLMs to capture task-aware017
information relevant to the correct response018
and alleviate overfitting to general descriptions019
in instructions. In addition, we propose two020
metrics, P-score and V-score, to measure the021
generalization and instruction-following abil-022
ities of LLMs. Experiments demonstrate our023
method achieves superior performance on both024
seen and held-out tasks.025

1 Introduction026

Large language models (LLMs) make remarkable027

breakthroughs in recent years (Zhao et al., 2023).028

LLMs such as PaLM (Chowdhery et al., 2023) and029

LLaMA (Touvron et al., 2023a) show powerful ca-030

pabilities in multiple tasks such as information ex-031

traction, question answering, commonsense reason-032

ing, and mathematical operations. One of the major033

issues is how to leverage the knowledge of LLMs034

pretrained with unsupervised or general objectives035

to produce results consistent with human intent dur-036

ing task-specific interactions (Zhang et al., 2023b).037

To endow LLMs with such “instruction-following”038

ability, instruction tuning is proposed as an effec-039

tive technique that can bridge the gap between the040
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Figure 1: Task confusion on item classification (IC) af-
ter training merchant classification (MC). Note that IC
is a held-out task for evaluation, and LLM at t gener-
ates more illegal categories defined in MC (36.4% →
49.6%) as their instructions are similar.

generation process of LLMs and the objective of 041

users (Ouyang et al., 2022; Zhang et al., 2023b,a). 042

Although tuning a pretrained LLM with instruc- 043

tion data before deployment gains wide applica- 044

tion, it still faces challenges when dealing with 045

incremental data and tasks (Zhang et al., 2023c). 046

Continual learning (CL) (Biesialska et al., 2020) 047

is introduced to avoid costly retraining on all col- 048

lected instances (Biesialska et al., 2020), and con- 049

tinual instruction tuning (CIT) (Zhang et al., 2023c) 050

is a sub-task of it about instruction data. However, 051

catastrophic forgetting (CF) is still an unavoidable 052

problem during CIT, which refers to the forgetting 053

of previously learned tasks and the deterioration of 054

original generalization ability (Zhao et al., 2022; 055

Zeng et al., 2023b; Zhang et al., 2023c). 056

Recently, replay, architecture, and regulariza- 057

tion are three main strategies to mitigate the CF 058

problem. Replay is the most prevalent strategy that 059

leverages task-specific features to replay a small 060
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set of previous data (Yin et al., 2022; Mok et al.,061

2023) or generated pseudo samples (Zhao et al.,062

2022; Zeng et al., 2023b). Architecture obtains the063

target model by performing a model merging of064

other available LLMs (Xiao et al., 2023; Yu et al.,065

2023) or introducing task-specific components for066

newly emerging tasks (Madotto et al., 2021; Hu067

et al., 2022). Moreover, regularization is usually068

utilized as a penalty strategy to alleviate overfitting069

on seen tasks (Kirkpatrick et al., 2017).070

Despite their impressive performance on seen071

tasks, these methods may only learn surface-level072

patterns (Zhang et al., 2023b) of instructions when073

applied to the CIT scenario. This observation is074

supported by prior research (Kung and Peng, 2023),075

which suggests that LLMs may generate unchanged076

responses on seen tasks and become confused on077

held-out tasks, even if we modify some compo-078

nents in original instructions. We also observe a079

similar phenomenon, as shown in Figure 1, com-080

pared to responses of the item classification task at081

t − 1, the LLM generates more illegal categories082

that are not defined in the item classification in-083

struction at t (after training on the merchant clas-084

sification task). This half-listening phenomenon085

indicates that the overfitting to seen instructions086

is serious in CIT, potentially leading to confusion087

during inferring on held-out tasks. Therefore, we088

focus on a new challenge concerning the degra-089

dation of instruction-following and generalization090

abilities within the CIT framework, both of which091

are essential abilities of instruction-based LLMs.092

In this paper, we propose a novel CIT paradigm093

based on key-part information gain (KPIG) to han-094

dle the above challenge. Key parts are consecutive095

spans in the instruction which provide task-aware096

guidance on the content, length, and format to gen-097

erate desired responses. And we expect that LLMs098

can be sensitive to key parts for task-aware perfor-099

mance, which exhibits strong instruction-following100

and generalization abilities on various tasks. Firstly,101

we rewrite the instructions and corresponding key102

parts to diversify the combination of key parts and103

general descriptions. Then we selectively replay104

a small set of historical data whose information105

gain (IG) is the lowest. And IG is our proposed106

indicator used to measure the task-aware ability107

of LLMs, which is calculated by masking the key108

parts. Finally, we apply a Jensen–Shannon (Endres109

and Schindelin, 2003) divergence (JSD) on masked110

instructions, and IG is utilized as a dynamic tem-111

perature, to increase the IG margin relative to the112

surface-level patterns. Moreover, as instruction- 113

following and generalization abilities are our con- 114

cerns, we propose two novel evaluation metrics, 115

P-score and V-score, instead of simply using 116

Rouge-L (Lin, 2004) as previous methods (Mok 117

et al., 2023; Zhang et al., 2023c). Experiments con- 118

ducted on Super-NaturalInstructions (SupNatInst) 119

(Wang et al., 2022) and our Chinese domain (Do- 120

main) datasets show superior performance on both 121

seen and held-out tasks, and violations of instruc- 122

tions such as out-of-scope, wordy statements, and 123

illegal formats are reduced. 124

Our contributions can be summarized as follows: 125

1) We propose a novel CIT paradigm by masking 126

key parts to alleviate the half-listening problem 127

of instructions. 2) We propose information gain 128

as an indicator for measuring task-aware ability, 129

which serves to dynamically replay data and re- 130

fine the training objective. 3) We propose a novel 131

evaluation metric V-score centered on instruction- 132

following ability. 4) Compared to other CL base- 133

lines, our method achieves state-of-the-art perfor- 134

mance on public and domain datasets. 135

2 Related Work 136

2.1 Instruction Tuning 137

LLMs show powerful emergent abilities in many 138

downstream tasks (Chowdhery et al., 2023; Tou- 139

vron et al., 2023b; Zhao et al., 2023). Since most 140

LLMs are typically pretrained with the next word 141

prediction error on large corpora, instruction tun- 142

ing is proposed as an effective technique to fur- 143

ther enhance the instruction-following ability of 144

the generation process (Ouyang et al., 2022; Zhang 145

et al., 2023b). And increasing the quantity, diver- 146

sity, and creativity of instructions is empirically 147

validated as an effective strategy to improve the 148

instruction-following and generalization capabili- 149

ties of LLMs (Zhang et al., 2023b; Xu et al., 2023; 150

Zeng et al., 2023a). Collecting existing datasets and 151

synthesizing data with LLMs are main strategies to 152

obtain high-quality instruction data (Zhang et al., 153

2023b,a). The former collects existing data and 154

converts it into instruction-style datasets through 155

templates or machine translation (BELLEGroup, 156

2023; Taori et al., 2023), while the latter like Evol- 157

Instruct (Xu et al., 2023), instructWild (Ni et al., 158

2023) and Self-Instruct (Wang et al., 2023) ask 159

LLMs to rewrite seed instructions based on specific 160

strategies. In addition to increasing the diversity 161

of task data, optimizing LLM with a comparison 162
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Figure 2: The continual instruction tuning framework of our KPIG. In the instruction diversity stage, we require
GPT-4 to pay more attention to key parts during the rewriting process. In the information gain fine-tuning stage, we
dynamically replay previous tasks with our learning objective based on IG to alleviate the half-listening problem.

dataset collected by human feedback or LLMs also163

helps to generate desired responses (Ouyang et al.,164

2022; Zhang et al., 2023b). However, LLMs may165

only remember surface-level patterns of seen in-166

structions, causing the output results not satisfy all167

constraints on held-out instructions (Zhang et al.,168

2023b; Kung and Peng, 2023). In this paper, we169

propose a key-part information mask mechanism to170

make LLMs focus more on tokens in instructions171

that are pertinent to the content, length, and format172

of the ground truths.173

2.2 Continual Learning174

Compared with multi-task learning, CL (Biesial-175

ska et al., 2020) refers to learning from sequential176

data across multiple time steps, which may lead177

to CF problem. Since CIT (Zhang et al., 2023c)178

is a sub-task of CL applied to instruction data, we179

do not discuss them separately. Recent methods180

mainly focus on tackling the forgetting of previ-181

ously learned tasks, and CITB (Zhang et al., 2023c)182

categorizes them into three groups, replay, archi-183

tecture, and regularization. Replay-based methods184

replay experience with historical data (Yin et al.,185

2022; Scialom et al., 2022; Mok et al., 2023) or186

generated pseudo samples (Zhao et al., 2022; Zeng187

et al., 2023b), while architecture-based methods188

introduce task-specific parameters (Madotto et al.,189

2021; Hu et al., 2022) or gradually merging mod-190

els trained on different tasks (Xiao et al., 2023;191

Yu et al., 2023). Moreover, regularization-based192

methods are strategies for objective optimization193

and overfitting penalty (Hinton et al., 2015; Kirk-194

patrick et al., 2017), which are used alone or in195

combination with other methods (Mok et al., 2023;196

Zhao et al., 2022; Zeng et al., 2023b). Despite197

effectively alleviating the forgetting of previously198

learned tasks, they lack attention to instructions 199

and may half-listen to surface-level descriptions in 200

held-out instructions when applied to CIT. In this 201

paper, we selectively replay a few historical data 202

and employ temperature based on the IG of masked 203

key parts, which encourages LLMs to be more sen- 204

sitive to task-aware information in instructions. 205

3 Methodology 206

This section introduces our proposed method, 207

named Key-part Information Gain (KPIG), for con- 208

tinual instruction tuning on LLMs. We first define 209

the task and notations in §3.1. Then we detail our 210

instruction diversity module (§3.2) and informa- 211

tion gain fine-tuning (§3.3) module in Figure 2. 212

Moreover, considering the specificity of sequential 213

training in CIT, we introduce how to reconstruct 214

datasets and evaluate performance (§3.4). 215

3.1 Task Definition and Notations 216

We finetune a LLM with a stream of task sets 217

T T = {τ1, τ2, . . . , τn}Tt=1 sequentially, where T 218

is the number of time steps and n is the number 219

of tasks at corresponding time t. Each instance 220

dτ in the task τ can be formed as a triple (i, c, y): 221

instruction i, which is a natural language text to 222

demonstrate the definition of current task in human 223

style; an optional context c which provides sup- 224

plementary information for context; an expected 225

output y corresponding to the instruction and the 226

context. And each task τ can be split into τtrain and 227

τtest. At each time step t, we finetune the LLM on a 228

mixture of τtrain, where τ ∈ T t. After completing 229

the T -step training, we evaluate its performance 230

on the τtest of seen tasks Tseen and held-out tasks 231

Tunseen, where Tseen ∩ Tunseen = ∅. 232
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3.2 Instruction Diversity233

Due to the inefficiency of manual annotation, the234

number of instructions for a task may be scarce235

(Zhang et al., 2023b). Taking the SupNatInst as236

an example, each task has hundreds to thousands237

of instances but only one human-handwritten in-238

struction. Moreover, humans may struggle to pro-239

duce different instructions with the same meaning240

(Xu et al., 2023). Motivated by WizardLM (Xu241

et al., 2023), we diversify the combination of key242

parts and other general descriptions in instructions243

via GPT-4 (OpenAI, 2023) and different templates,244

which aims to prompt the LLM to identify task-245

aware information in instructions with varying lev-246

els of complexity.247

As shown in Figure 3, we first ask GPT-4 to gen-248

erate key parts of the seed instruction and return249

them as a list. Then we input seed instructions and250

their corresponding key parts to gain new instruc-251

tions and key parts recursively. As we expect that252

key parts can play an important role in controlling253

text generation, we encourage GPT-4 to focus on254

key parts when evolving with the following strate-255

gies: 1) Concretizing, which replaces general con-256

cepts in key parts with more specific concepts. 2)257

Reasoning, which explicitly requests multiple-step258

reasoning if key parts can be organized into a few259

simple thinking processes. 3) Constraint, which260

adds one more constraint on seed instructions. 4)261

Breadth, which rewrites the seed instruction while262

keeping length close and key parts unchanged. It263

should be noted that we also need to give GPT-4264

some demonstrations when rewriting the instruc-265

tions and obtaining the key parts. More details266

about templates can be found in Appendix A.267

3.3 Information Gain Fine-tuning268

Although diversified instructions are proven help-269

ful to train instruction-following LLMs (Xu et al.,270

2023), we argue that LLMs sometimes may only 271

half-listen to surface-level patterns (Zhang et al., 272

2023b; Kung and Peng, 2023), which refers to over- 273

fitting on seen instructions and confusion with held- 274

out tasks. To measure the task-aware ability of 275

current LLM for specific task τ , we propose the 276

concept of information gain (IG) by masking key 277

parts in each instance dτ = (i, c, y): 278

G(dτ , dmτ ) = Info(y|x)− Info
(
y|mask(x)

)
, (1) 279

where dτ ∈ τ and Info(·) is a weighted sum of the 280

generation probabilities of sequence y. Meanwhile, 281

mask(·) denotes the operation of applying a key- 282

part mask to the instruction i, which replaces the 283

key parts in instruction i with [MASK] symbol to ob- 284

tain mask instruction im and surface-level instance 285

dmτ = (im, c, y). Giving an input x = (i, c) and an 286

expected output y = {t1, t2, . . . , tK}, where K is 287

the length of y after the tokenization process. The 288

Info(y|x) can be calculated as follows: 289

Info(y|x) = Info
(
y|(i, c)

)
=

K∑
k=1

αkp(tk), (2) 290

where p(tk) is the probability of expected token 291

tk in y given the concatenation of input x and the 292

previously generated output tokens thistory. α is 293

an exponential decay hyperparameter because the 294

probability of subsequent tokens always becomes 295

greater as the inference process progresses. As for 296

the p(tk), we gain it via retrieving from the softmax 297

function results on the head logits according to its 298

index in the vocabulary: 299

p(tk) = softmax
(
LLM(x; thistory)

)
[tk]. (3) 300

The information gain defined above represents the 301

uncertainty reduction of the masked part to the ex- 302

pected output. For example, if the information gain 303

is similar between complete and masked instruc- 304

tions, it indicates that the LLM may half-listen to 305

the surface-pattern of the input instruction. 306

At each time step t, we randomly sample N 307

instances and compute their IG for each seen task. 308

Then we select M seen tasks with the lowest mean 309

IG as replay tasks, and merge the |MN | instances 310

into current training tasks T t. Since our goal is 311

to widen the gap between the complete (without 312

mask) instance dτ and the surface-level (with mask) 313

instance dmτ , the loss function is defined as: 314

L = LCE(dτ ) + λLJSD
(pt(dmτ )

β

∥∥∥pt−1(d
m
τ )

β

)
,

(4) 315
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where LCE is cross entropy loss to maximize the316

ground truths. LJSD is Jensen–Shannon (Endres317

and Schindelin, 2003) divergence of two distribu-318

tions output by current LLM and frozen LLM from319

t − 1, which is usually utilized as penalty in CL320

methods (Zhao et al., 2022; Zeng et al., 2023b; Mok321

et al., 2023) to preserve original abilities. How-322

ever, we only apply JSD on masked instance dmτ323

rather than complete instance dτ . And JSD value324

is symmetric and in [0, 1] to easily balance LJSD325

and LCE . λ is a hyperparameter that controls the326

weight of LJSD. Moreover, β is the dynamic tem-327

perature to soften probability distribution and is328

calculated as follows:329

β = 2−min
(
G(dτ , dmτ ), 1

)
, (5)330

where min represents the scaling of G(dτ , dmτ ) into331

the range (−∞, 1]. The lower the information gain,332

the greater the opportunity we give other tokens to333

improve the generalization ability of the LLM. By334

doing so, LCE maximizes likelihood for complete335

instances, and LJSD dynamically adjusts the de-336

gree of conservatism when instructions are masked,337

enabling the LLM to be sensitive to key parts and338

alleviate the half-listening problem. The detailed339

implementation is shown in Appendix B.340

3.4 Evaluation Protocol341

Since CIT trains tasks sequentially, we first intro-342

duce our construction method of multi-step datasets343

in this section. Furthermore, different from using344

ROUGE-L (Lin, 2004) as metric in previous meth-345

ods (Mok et al., 2023; Zhang et al., 2023c), we pro-346

pose a multi-dimensional evaluation method that347

pays more attention to the instruction-following348

ability of LLMs.349

Data restructuring. We evaluate our method on350

SupNatInst and Domain datasets, where each task351

contains a task definition, a few demonstrations,352

and several instances. SupNatInst consists of over353

1000 NLP tasks and 76 categories (e.g., text clas-354

sification, information extraction and etc.) (Wang355

et al., 2022). We select 128 tasks in 40 categories356

from SupNatInst, 88 tasks are used for training357

Tseen and 40 as held-out tasks Tunseen. And our358

Chinese domain dataset has 20 tasks and 12 cate-359

gories, where 13 tasks are used for training Tseen360

and 7 as held-out tasks Tunseen. We use two strate-361

gies, single-task (ST) and single-category (SC), to362

build multi-step training datasets. For the ST set-363

ting, we fix n equal to 1, where only 1 task in T t
seen364

at time step t. For the SC setting, we divide seen 365

tasks into multiple groups according to their cate- 366

gories, and train different categories at each time 367

step, because real training scenarios may gradually 368

enhance model abilities of specific categories when 369

training tasks are not available synchronously. Fur- 370

thermore, to enhance the balance and diversity of 371

each test dataset while accelerating the evaluation 372

process, we sample a few instances for each τtest 373

based on Self-BLEU (Zhu et al., 2018) score and 374

label distribution. More details about datasets can 375

be found in Appendix C. 376

Evaluation metrics. Previous methods use the 377

ROUGE-L score to measure model performance 378

(Mok et al., 2023; Zhang et al., 2023c), which 379

may not comprehensively evaluate the instruction- 380

following ability. For example, {[1, 2, 3]} and 381

[1, 2, 3] have same Rouge-1 scores with the 382

ground truth [1, 2], but the instruction explicitly 383

requires generating a one-dimensional list format. 384

We evaluate model on τtest of trained (seen) task 385

set Tseen and held-out (unseen) task set Tunseen 386

with the following metrics: 387

• WFR measures the wrong-format rate of tasks 388

that instructions in them explicitly constrain 389

delimiters, sequence, formats, or length limits. 390

• OOS measures the out-of-scope rate of classi- 391

fication or extraction tasks whose instructions 392

constrain output choices. 393

• WR measures wordy rate when the length of 394

responses are greater than the threshold. 395

• F1 measures the performance for sequence 396

labeling tasks. 397

• ACC measures the precision for classification 398

tasks or execution accuracy for code tasks. 399

• ROUGE and BLEU measures the similarity 400

for tasks such as summarization. 401

• Match measures the match rate for tasks that 402

the ground truths are unordered sets. 403

• GPT leverages GPT-4 to measure whether 404

tasks of generating open-ended short texts are 405

reasonable, which require commonsense or 406

reasoning skills to verify. 407

Then we use P-score and V-score to measure 408

the performance and instruction-following abil- 409

ity. P-score is the average of F1, ACC, ROUGE, 410

BLEU, Match, and GPT, which can measure gen- 411

eralization ability on held-out tasks. V-score is 412

the average of WFR, OOS, and WR, acting as an 413

indicator of instruction-violation degree. 414
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Sup-NatInst-ST Sup-NatInst-SC Domain-ST Domain-SC

Seen Tasks Held-out Tasks Seen Tasks Held-out Tasks Seen Tasks Held-out Tasks Seen Tasks Held-out Tasks

Model P-score V-score P-score V-score P-score V-score P-score V-score P-score V-score P-score V-score P-score V-score P-score V-score

SFT 35.1 12.0 25.9 24.1 51.1 4.5 34.2 6.7 43.5 12.0 37.0 16.3 52.2 8.3 43.1 10.5
LoRA 33.7 12.4 26.7 23.0 48.7 4.7 36.1 5.3 41.8 12.8 38.2 15.9 49.5 8.9 44.6 10.0
L2 34.7 12.3 26.5 23.2 50.4 4.8 35.4 5.6 42.9 12.6 37.7 16.7 50.2 8.6 42.9 10.4
EWC 30.2 13.5 25.1 24.6 47.9 5.9 33.6 7.4 41.4 13.2 35.8 17.9 48.7 10.4 41.5 11.8

DARE - - - - 54.4 3.9 39.8 4.4 - - - - 56.6 5.7 45.9 10.1
LM-Cocktail - - - - 55.0 3.7 40.0 4.1 - - - - 56.9 6.3 46.4 10.5

PCLL 50.5 5.4 38.2 5.6 - - - - 52.4 10.8 43.7 14.6 - - - -
DCL 50.2 4.9 38.8 5.2 - - - - 52.5 10.3 44.1 12.2 - - - -
DYNAINST 50.9 4.6 38.7 4.4 54.2 4.2 40.7 3.3 53.2 9.1 44.6 10.9 56.3 8.3 47.2 9.6

KPIG 52.2 3.5 42.5 1.7 56.5 2.4 43.6 ∗1.2 54.1 ∗4.8 47.8 ∗3.3 57.5 ∗4.0 49.7 ∗2.7

INIT 43.2 5.3 ∗43.8 ∗1.5 43.2 5.3 ∗43.8 1.5 28.9 10.8 39.1 13.5 28.9 10.8 39.1 13.5
MULTI ∗59.8 ∗2.2 41.4 4.2 ∗59.8 ∗2.2 41.4 4.2 ∗60.0 9.7 ∗49.9 10.8 ∗60.0 9.7 ∗49.9 10.8

Table 1: Performance of different methods on Sup-NatInst and Domain datasets. ∗ indicates the best, and _ indicates
the second best. The higher the P-score, the better the model performance. The lower the V-score, the stronger
the instruction-following ability. Since INIT usually serves as an upper bound for held-out tasks, and MULTI is
usually the upper bound for seen tasks, we report their results.

4 Experiments415

4.1 Experimental Setup416

Baselines. We compare our method in the CIT417

setting with the following baselines. INIT is the418

foundation LLM without training. MULTI shuf-419

fles instances in all training tasks and trains them420

together. SFT (Ouyang et al., 2022) directly fine421

tunes the LLM on seen tasks sequentially. LoRA422

(Hu et al., 2022) updates the low-rank matrices423

while the LLM backbone is fixed. L2 and EWC424

(Kirkpatrick et al., 2017) mitigate forgetting by425

regularizing the loss to penalize the changes of im-426

portant parameters. DARE (Yu et al., 2023) and427

LM-Cocktail (Xiao et al., 2023) obtain the target428

LLM by model merging, which train multiple mod-429

els on different tasks and merge them into a single430

model through weighted average. DYNAINST431

(Mok et al., 2023) determines which instances are432

stored and replayed based on the entropy of model433

predictions. PCLL (Zhao et al., 2022) and DCL434

(Zeng et al., 2023b) generate pseudo samples for435

history tasks and utilize knowledge distillation strat-436

egy to mitigate catastrophic forgetting.437

Hyperparameters. We choose LLaMA-2-7B-438

Chat (Touvron et al., 2023b) and baichuan-vicuna-439

chinese-7b 1 as foundation models for experiments440

on SupNatInst and Domain datasets respectively.441

Our experiments are implemented based on Deep-442

Speed (Rasley et al., 2020) and FastChat (Zheng443

et al., 2023). And 8 NVIDIA A100 GPUs are444

used. We optimize the model parameters by using445

1https://huggingface.co/fireballoon/
baichuan-vicuna-chinese-7b

AdamW optimizer (Loshchilov and Hutter, 2018) 446

with the learning rate of 2e − 5. The batch size 447

is 384 with 16 gradient accumulation steps and 3 448

sentences per GPU. We conduct a grid search to 449

find other hyperparameters that maximize the av- 450

erage P-score on seen and held-out tasks. The 451

optimal settings are: {α = 0.3, λ = 0.02,M = 452

10, N = 10, epoch = 1} on Sup-NatInst and {α = 453

0.6, λ = 0.01,M = 3, N = 100, epoch = 1} on 454

Domain. Additionally, we iteratively perform 30 455

evolutions for each task in the instruction-diversity 456

stage. And when evaluating held-out tasks, we add 457

2 additional pre-written demonstrations to the in- 458

put context. More detailed information about the 459

implementation can be found in Appendix B. 460

4.2 Main Results 461

Table 1 summarizes the performances of different 462

methods. It should be noted that INIT is a pre- 463

trained LM, and MULTI trains the LLM with all 464

seen tasks together, so they have the same results 465

on ST and SC. We train PCLL and DCL only on 466

the datasets constructed by the ST strategy which 467

are designed to learn single-task parameters sequen- 468

tially. Moreover, we only conduct SC experiments 469

on DARE and LM-Cocktail which merge peer 470

models on each category, because training a sub- 471

LLM for each task requires a much larger resource 472

than training a sub-LLM for each category. Our 473

observations are summarized as follows. 474

Firstly, foundation LLMs require more train- 475

ing on domain-specific datasets to achieve perfor- 476

mance improvements. In the benchmark of CIT 477

(Zhang et al., 2023c), multi-task learning (MULTI) 478
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Seen Tasks Held-out Tasks

Model P-score V-score P-score V-score

w/o div 52.5 4.1 41.6 3.2
w/o mask 48.3 4.9 41.2 3.6
w/o jsd ∗52.9 4.7 39.4 5.9
w/o temp 51.7 4.4 40.9 4.0

KPIG 52.2 ∗3.5 ∗42.5 ∗1.7

Table 2: Ablation studies on Sup-NatInst-ST.

is served as an upper bound on seen tasks while479

INIT is the upper bound for held-out tasks. The dif-480

ference is that MULTI achieves the best P-score481

on held-out tasks of Domain. This may be because482

our domain-specific dataset is highly specialized,483

which leaves the foundational model (INIT) lack-484

ing in pertinent knowledge without training. In ad-485

dition, compared with the held-out results of INIT486

on Sup-NatInst, most methods show performance487

degradation of P-score and V-score, which may488

indicate forgetting ability in the foundation LLM.489

Secondly, the catastrophic forgetting problem490

of the single-task setting is more severe than the491

single-category setting. The performance of SFT,492

LoRA, L2, and EWC on seen tasks and held-out493

tasks under the ST setting is significantly worse494

than the SC setting, while the performance gap be-495

tween ST and SC on DYNAINST and KPIG is496

relatively small. Furthermore, MULTI stands out497

with the highest P-score on all seen tasks. The498

above phenomenons indicate that the training dif-499

ficulty and overfitting become more pronounced500

when training on a single task sequentially, and501

mixing data from different tasks and replaying data502

can help mitigate performance degradation.503

Thirdly, data-replay methods perform better on504

held-out tasks, and model-merge methods perform505

better on seen tasks. Compared with DYNAINST,506

DARE and LM-Cocktail perform better on seen507

tasks because they selectively inherit abilities of508

different task categories from multiple models, but509

abilities are limited when faced with held-out tasks.510

Finally, our proposed KPIG achieves the best511

performance, especially on held-out tasks and512

the instruction-following ability (V-score). The513

P-score of KPIG on seen tasks is slightly higher514

than the model-merge methods while V-score is515

much lower. And for the held-out tasks, our method516

performs significantly better than other CL base-517

lines in both P-score and V-score, which shows518

stronger generalization ability and instruction-519

following ability. Moreover, the V-score of other520

baselines on the Domain dataset is much larger 521

than the Sup-NatInst dataset, while our method 522

maintains lower V-score on both Sup-NatInst 523

and domain-specific datasets. This indicates half- 524

listening and instruction violations may be more 525

likely to occur on a specific domain, and our 526

method can better capture the task-aware informa- 527

tion and improve the instruction-following ability. 528

4.3 Ablation Study 529

To evaluate the effectiveness of each component 530

in KPIG, we conduct ablation studies on the Sup- 531

NatInst-ST dataset. Firstly, we remove the instruc- 532

tion diversity module (w/o div) and only extract 533

key parts for the initial instruction of each task. 534

Then, to investigate the significance of our key-part 535

mask mechanism, we remove the mask step (w/o 536

mask). The w/o mask setting replays data based on 537

predictive entropy like DYNAINST and performs 538

JSD on the predictive distribution of the complete 539

instruction of current LLM and frozen LLM. Fi- 540

nally, we investigate the effects of removing LJSD 541

(w/o jsd) and dynamic temperature (w/o temp). 542

The results are shown in Table 2. When only 543

initial instructions for each task are used with- 544

out diversification (w/o div), the P-score of seen 545

tasks is slightly higher than KPIG, but the per- 546

formance of held-out tasks become worse, indi- 547

cating that increasing data diversity helps allevi- 548

ate overfitting and preserve generalization. In the 549

w/o mask setting, the V-score drops significantly 550

and the P-score of seen tasks is much lower than 551

KPIG. It proves the effectiveness of measuring 552

and learning task-aware information by masking 553

key-part in instructions, which assists LLMs in 554

comprehending the tasks to be executed rather than 555

simply maintaining the original ability. The results 556

of w/o jsd and w/o temp on held-out tasks suggest 557

that they are helpful in maintaining instruction- 558

following and generalization abilities. Moreover, 559

the decline in w/o mask results for seen tasks and 560

in w/o jsd for held-out tasks suggests an interdepen- 561

dence between key-part mask and LJSD. Without 562

LJSD and key-part mask, LLMs may struggle to 563

widen the gap between task-aware constraints in 564

key parts and some general descriptions in instruc- 565

tions, which is crucial for balancing learning new 566

information with maintaining original judgments. 567

4.4 Investigations on Information Gain 568

Herein, we investigate the correlation between our 569

information gain and the instruction-following abil- 570
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Figure 4: The changing trends of information gain, loss,
P-score, and V-score on Sup-NatInst-ST over steps.

Metric Ins1 Ins2 Ins3 Ins4 Ins5 Ins6

P-score 68.0 67.0 68.0 70.0 72.0 66.0
V-score 4.0 14.0 8.0 3.0 3.0 15.0
IG 0.28 0.22 0.26 0.29 0.30 0.15

Table 3: Results of the smcalflow classification task
(one of seen tasks) on 6 held-out instructions.

ity on held-out tasks and held-out instructions.571

Overfitting. As shown in Figure 4, the IG of572

our method oscillates above the initial value, while573

other methods begin to decline at approximately574

t = 20. This interesting oscillation may be re-575

lated to our replay mechanism based on IG, which576

chooses tasks with the lowest IG. The curve grad-577

ually rises when IG is low, and then falls back to578

the level of the foundation model when it reaches579

the upper bound. Meanwhile, the changing trends580

of P-score and V-score of held-out tasks are in581

alignment with information gain, indicating the582

validity of employing IG as a metric for measur-583

ing task-aware ability. In addition, compared with584

other methods, our loss progression maintains a585

more stable and smooth decline. This may be be-586

cause our method can effectively alleviate overfit-587

ting on individual tasks and does not require more588

recalibrations after training previous tasks.589

Held-out instructions. To further explore the590

instruction-following and generalization abilities,591

we modify the instruction of smcalflow classifi-592

cation task after training. We collect 6 held-out593

instructions which are not seen during training. As594

Table 3 shows, the P-score and V-score on held-595

out instructions are significantly correlated with596

information gain, indicating that information gain597

Response INIT MULTI SFT LM-Cocktail DYNAINST KPIG

User 0.0 49.0 0.0 4.0 85.0 14.0
Agent 0.0 50.0 0.0 58.0 15.0 8.0
user (required) 1.0 0.0 0.0 15.0 0.0 45.0
agent (required) 69.0 0.0 0.0 9.0 0.0 26.0

IG 0.13 0.07 0.00 0.11 0.04 0.19

Table 4: Statistics of responses after modifying con-
straints in the smcalflow classification instruction. It
should be noted that this task requires the first letter of
User and Agent to be capitalized during training, and
we require user and agent during testing.

can be used to measure the generalization ability 598

and instruction-following ability. 599

In addition, as shown in Table 4, we modify the 600

constraints of capital letters (Answer with User 601

or Agent) to obtain the misleading constraints 602

(Answer with user or agent). Most of the re- 603

sponses of INIT are legal, indicating that the initial 604

foundation LLM has strong instruction-following 605

ability. LM-Cocktail gives a small proportion of 606

legal responses because model-merging methods 607

can inherit abilities of other LLMs. All responses 608

of MULTI and DYNAINST are illegal, which 609

means they are overfitting to training instructions 610

and half-listen to the misleading instruction during 611

testing. The responses given by SFT are all irrel- 612

evant due to catastrophic forgetting in CL, which 613

forgets not only historical tasks but also the ability 614

of the foundation LLM. Moreover, 71% responses 615

of our method are user and agent, and our average 616

information gain on the misleading instruction is 617

the highest, which shows that KPIG has a stronger 618

ability to alleviate the half-listening problem even 619

if similar instructions are seen during training. 620

5 Conclusion 621

In this paper, we propose a novel CIT method to al- 622

leviate catastrophic forgetting and half-listening 623

problems, which enables LLMs to be sensitive 624

to task-specific constraints of both seen and held- 625

out tasks. Our method calculates the information 626

gain of masked key parts, to selectively replay his- 627

torical data and dynamically adjust the tempera- 628

ture. Experimental results show strong instruction- 629

following and generalization abilities in compari- 630

son to other continual learning methods. Further- 631

more, our investigation into the proposed P-score, 632

V-score, and IG not only confirms their relevance 633

in model performance and instruction adherence, 634

but also demonstrates that our method effectively 635

alleviates overfitting to seen-task instruction and 636

maintains the generalization ability. 637
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Limitations638

In this paper, we use GPT-4 to extract key parts of639

instructions and diversify instructions, but the gap640

between this method and manual writing in con-641

trollability and accuracy is not fully evaluated. We642

propose WFR, OOS, and WR as evaluation dimen-643

sions of the instruction-following ability based on644

manually annotating explicit constraints in instruc-645

tions. However, there may be other constraints646

or ways for evaluating the instruction-following647

ability that exist and deserve to be considered.648

Moreover, we dynamically replay instances and649

adjust the training objective by calculating infor-650

mation gain of key parts, making the LLM more651

sensitive to task-specific constraints in instructions652

and thereby alleviating the half-listening problem.653

Our experiments (Table 4) also find that such half-654

listening problem also occurs in multi-task learning,655

so the implications of our mask information gain656

on other natural language processing tasks involv-657

ing LLMs and the effects of masking other parts658

(e.g., context, demonstrations) within instances can659

be explored in the future.660

Ethics Statement661

In this paper, we propose a novel CIT paradigm662

to alleviate problems such as catastrophic for-663

getting and half-listening, which aims to im-664

prove instruction-following ability and general-665

ization ability of LLMs. Our experiments are666

conducted with the publicly available Super-667

NaturalInstructions dataset, our in-house dataset,668

and LLMs from open sources, one of whose ini-669

tial intentions is to promote the development of670

instruction-based LLMs. Since LLMs trained with671

web data may produce toxic content, we must state672

that the texts generated by our method do not rep-673

resent our opinions. To alleviate such potential674

negative impacts, we can adopt appropriate detoxi-675

fication strategies and principle constraints as de-676

fault key parts in our method, and we encourage677

future work to explore these issues.678
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A Templates 900

Table 5 shows our English templates for key-part 901

extraction and instruction diversity. We have four 902

evolving strategies. The strategies of concretizing, 903

reasoning, and constraint make instructions more 904

detailed, complex, and longer. The breadth strategy 905

rewrites the general description within the instruc- 906

tion while keeping the key parts and length of the 907

instruction nearly unchanged. 908

We obtain more combinations of key parts 909

and instructions for each task with the following 910

instruction-diversity process. Initially, each task 911

has an instruction pool, which contains a manually 912

written instruction related to the task definition. For 913

each task, we first randomly select an instruction 914

as the seed instruction from the instruction pool. 915

We use the OpenAI-API2 (gpt-4-06133) and key- 916

part extraction template to extract key parts for 917

the seed instruction. Then we randomly apply one 918

strategy from the four evolving templates on the 919

seed instruction to obtain the evolution instruction. 920

Finally, we extract the key parts of the evolution 921

instruction and add them to the instruction pool. 922

We iteratively repeat such process until the size of 923

the instruction pool reaches 31. 924

B Implementation 925

Our detailed algorithm implementation is shown in 926

Algorithm 1. In practice, sampling new instruction 927

for current seed instruction from the instruction- 928

diversity cached pool (line 13) can serve as a pre- 929

processing step. And the IG results and outputs 930

ofMt−1 calculated during the replay stage (line 931

3-8) can be reused during the fine-tuning stage (line 932

12-19). Therefore, in real fine-tuning, our method 933

only hasMt in the graphics memory. 934

In our experiments, we finetune the exponential 935

decay α in {0.05, 0.1, 0.3, 0.6, 1.0}, the weight λ 936

in {0.001, 0.01, 0.02, 0.03, 0.05, 0.1}, the learning 937

rate in {5e−6, 1e−5, 2e−5, 3e−5, 5e−5} with 938

a grid search according to the average P-score on 939

seen and held-out tasks. In addition, since the num- 940

ber of replay tasks M and the number of replay 941

instances N are key hyperparameters that affect 942

model performance and runtime, we search the 943

optimal M and N based on the average size of 944

tasks and instances. For Sup-NatInst, we select 945

M in {1, 5, 10, 15, 20} and N in {1, 5, 10, 15, 20}. 946

2https://api.openai.com/v1/chat/completions
3https://platform.openai.com/docs/models/

gpt-4-and-gpt-4-turbo
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Key-part extraction

What is the #key part# in the #instruction#?
The #key part# refers to the consecutive span in the #instruction# that has guiding significance for
the format, length, content, and rationality of the ground truth when bridging #input# to #output#.
Please return key parts as a list.
#instruction#:
{...}
#input#:
{...}
#output#:
{...}

2Concretizing 2�Reasoning 2Constraint

I want you act as an Instruction Creator.
Your goal is to draw inspiration from the #Given Instruction# and #Key Part# to create a brand new
instruction #Created Instruction#.
The #Created Instruction# must be reasonable and must be understood and responded by humans.
And this #Created Instruction# can guide the #Input# to give the #Output#.
Your #Created Instruction# cannot omit the non-text parts such as the table and code in the #Given
Instruction#.
You should complicate the #Given Instruction# using the following method:
2Please replaces general concepts in #Key Part# with more specific concepts.
2�If #Key Part# can be organized into a few simple thinking processes, you can rewrite it to explicitly
request multiple-step reasoning.
2Please add one more constraints/requirements into #Given Instruction#.
You should try your best not to make the #Created Instruction# become verbose, #Created Instruction#
can only add 10 to 20 words into the #Given Instruction#.
’#Given Instruction#’, ’#Created Instruction#’, ’given instruction’ and ’created instruction’ are not
allowed to appear in #Created Instruction#.
#Given Instruction#:
{...}
#Key Part#:
{...}
#Input#:
{...}
#Output#:
{...}
#Created Instruction#:

Breadth

I want you act as a Instruction Rewriter.
Your goal is to draw inspiration from the #Given Instruction# and #Key Part# to rewrite a brand new
instruction #Rewritten Instruction#.
This #Rewritten Instruction# should belong to the same domain as the #Given Instruction# but be even
more rare.
And this #Rewritten Instruction# can guide the #Input# to give the #Output#.
#Key Part# in the #Given Instruction# should be unchanged.
The LENGTH and complexity of the #Rewritten Instruction# should be similar to that of the #Given
Instruction#.
The #Rewritten Instruction# must be reasonable and must be understood and responded by humans.
’#Given Instruction#’, ’#Rewritten Instruction#’, ’given instruction’ and ’rewritten instruction’ are
not allowed to appear in #Rewritten Instruction#.
#Given Instruction#:
{...}
#Key Part#:
{...}
#Input#:
{...}
#Output#:
{...}
#Rewritten Instruction#:

Table 5: Our templates for extracting key parts and evolving instructions.
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Dataset Task Category Training Test Held-out Time Step

Sup-NatInst-ST 128 40 50,901 12,800 40 88
Sup-NatInst-SC 128 40 50,901 12,800 40 34
Domain-ST 20 12 52,000 10,000 7 13
Domain-SC 20 12 52,000 10,000 7 9

Table 6: Statistics of datasets.

For Domain, we select M in {1, 2, 3, 4, 5} and N947

in {100, 200, 300, 400, 500}. And we find that in-948

creasing M and N improves the P-score of seen949

tasks, but has a significant negative effect on the950

performance of held-out tasks, so we also choose951

a trade-off setting based on the average P-score952

on seen and held-out tasks. For the experimental953

settings of other baselines, we give priority to the954

hyperparameters reported in their paper. In particu-955

lar, to be fair and reproduce the better performance956

of baselines, M and N of DYNAINST adopt the957

same settings as KPIG, and we set M to be the958

number of historical tasks and N to be the same as959

KPIG in PCLL and DCL.960

As for the training time, our KPIG takes 340961

minutes to complete the training on Sup-NatInst-962

ST dataset. Compared with SFT (200 minutes), the963

extra time cost is mainly in the calculation stage964

of information gain, which takes about 1 minutes965

for each time step. In addition, under the setting966

of M = 10 and N = 10, replay-based methods967

like PCLL, DCL and DYNAINST take about 300968

minutes, and our time difference (40 minutes) is969

that the logits of the masked part need further cal-970

culation. However, to achieve the results reported971

in Table 1, PCLL and DCL need to replay all his-972

torical tasks, which takes about 400 minutes. The973

above analysis shows that our method offers a rela-974

tively balanced trade-off between performance and975

training efficiency under the setting of CIT.976

C Dataset977

Table 6 shows the details of our datasets. For Sup-978

NatInst, we have 40 held-out tasks. and we select979

100 instances from each task based on Self-BLEU980

score and label distribution, which are used for981

evaluation. For Domain, we have 7 held-out tasks,982

and we select 500 instances from each task for983

evaluation. The difference between ST and SC984

settings lies in the time steps. The former trains a985

single task at each time step, while the latter trains986

all tasks of different category at different time step.987

In addition, we list the details of each task in988

Table 7, Table 8, Table 9 and Table 10. We mark989

the evaluation method, format constraints, and re-990

Algorithm 1 Algorithm of our proposed KPIG
Input: A sequence of task sets T T =
{τ1, τ2, . . . , τn}Tt=1, initial foundation LLM
M0, instruction-diversity cached pool Iτ for each
task τ
Output: Target LLMMT

1: t← t+ 1
2: while t <= T do
3: Replay task setR = {}
4: for each τ ∈ T t′<t do
5: Randomly sample N instances and calcu-

late IG for them ▷Eq. 1
6: Calculate the average IG of N instances

as the IG of task τ viaMt−1

7: end for
8: Put the M tasks with the lowest IG intoR,

|R| = M ×N
9: T t ← T t ∪R

10: DeepcopyMt ←Mt−1

11: FrozenMt−1

12: for each instance dτ = (iseed, c, y) ∈ T t

do
13: Sample an instruction i for dτ from Iτ
14: Mask the key parts in i with [MASK] sym-

bol to obtain im

15: dτ ← (i, c, y), dmτ ← (im, c, y)
16: Get output of dτ viaMt, and apply LCE

on it
17: Get outputs of dmτ viaMt−1 andMt, and

apply LJSD on them
18: Optimize Loss ▷Eq. 4
19: end for
20: t← t+ 1
21: end while

sponse range for each task based on manual annota- 991

tion. For example, In choice usually represents a 992

classification task that must be selected from within 993

the scope of instruction constraints. In context 994

+ In entity type represents a combination con- 995

straint on named entity recognition tasks, which 996

means that entities of the given type must be ex- 997

tracted from the given context. Based on these 998

manually annotated constraints, we can calculate 999

P-score and V-score for all tasks. 1000

D 6 Held-out Instructions 1001

The six held-out instructions we used in our inves- 1002

tigations on the information gain (§4.4) are listed 1003
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Name Category Metric Scope Format Usage

mctaco_wrong_answer_generation_event_ordering Wrong Candidate Generation GPT - - train

mctaco_grammatical_logical Text Quality Evaluation ACC In choice - train

essential_terms_identifying_essential_words Question Understanding F1 - Split by , train

multirc_classify_correct_answer Answer Verification ACC In choice - train

squad11_question_generation Question Generation ROUGE - - train

conala_remove_duplicates Program Execution Match - List train

commongen_sentence_generation Data to Text ROUGE - - train

story_cloze-rocstories_sentence_generation Text Completion ROUGE - - train

zest_text_modification Question Rewriting ROUGE - - train

detoxifying-lms_classification_fluency Text Completion ACC In choice - train

afs_argument_quality_death_penalty Text Matching ACC In choice - train

count_nouns_verbs Pos Tagging ACC - Number train

snli_contradiction_to_entailment_text_modification Sentence Composition ROUGE - - train

snli_classification Textual Entailment ACC In choice - train

hotpotqa_sentence_generation Explanation ROUGE - - train

iirc_link_exists_classification Answerability Classification ACC In choice - train

stereoset_sentence_generation_antistereotype Fill in The Blank GPT - - train

dream_incorrect_answer_generation Wrong Candidate Generation ROUGE - - train

tellmewhy_question_answerability Answerability Classification ACC In choice - train

(296)storycloze_correct_end_classification Text Completion ACC In choice - train

(298)storycloze_correct_end_classification Coherence Classification ACC In choice - train

numeric_fused_head_resolution Coreference Resolution ACC In choice - train

stereoset_classification_profession Stereotype Detection ACC In choice - train

jigsaw_classification_obscene Toxic Language Detection ACC In choice - train

winomt_classification_gender_anti Gender Classification ACC In choice - train

winomt_classification_profession_pro Gender Classification ACC In choice - train

squad20_answerable_unanswerable_question_classification Answerability Classification ACC In choice - train

winomt_classification_gender_identifiability_anti Gender Classification ACC In choice - train

casino_classification_negotiation_vouch_fair Negotiation Strategy Detection ACC In choice - train

inverse_causal_relationship Cause Effect Classification ACC In choice - train

numeric_fused_head_reference Coreference Resolution ACC In context - train

com_qa_paraphrase_question_generation Question Rewriting ROUGE - - train

scruples_anecdotes_title_generation Title Generation ROUGE - - train

senteval_odd_word_out Linguistic Probing ACC In choice - train

aquamuse_answer_given_in_passage Answerability Classification ACC In choice - train

udeps_eng_coarse_pos_tagging Pos Tagging ACC In choice - train

multi_woz_classification Speaker Identification ACC In choice - train

esnli_classification Textual Entailment ACC In choice - train

extreme_abstract_summarization Summarization ROUGE - - train

Table 7: Details of 1-40 task in the SupNatInst dataset.
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Name Category Metric Scope Format Usage

ambigqa_text_generation Question Rewriting ROUGE - - train

mmmlu_answer_generation_computer_security Question Answering ACC In choice - train

mmmlu_answer_generation_world_religions Question Answering ACC In choice - train

protoqa_question_generation Question Generation ROUGE - - train

copa_commonsense_reasoning Cause Effect Classification ACC In choice - train

copa_commonsense_cause_effect Cause Effect Classification ACC In choice - train

synthetic_multiply_evens Program Execution Match - List train

synthetic_multiply_odds Program Execution Match - List train

cfq_mcd1_explanation_to_sql Text to Code GPT - - train

cfq_mcd1_sql_to_explanation Text to Code ACC In choice - train

freebase_qa_topic_generation Question Understanding ROUGE - - train

dialogre_identify_names Speaker Identification ACC - - train

coached_conv_pref_classifier Speaker Identification ACC In choice - train

defeasible_nli_atomic_classification Textual Entailment ACC In choice - train

librispeech_asr_text_auto_completion Text Completion ROUGE - - train

librispeech_asr_missing_word_prediction Fill in The Blank GPT - - train

bard_analogical_reasoning_affordance Word Analogy GPT Noun - train

bard_analogical_reasoning_travel Word Analogy GPT - - train

bard_analogical_reasoning_trash_or_treasure Word Analogy GPT - - train

penn_treebank_coarse_pos_tagging Pos Tagging ACC In choice - train

atomic_classification_causes Commonsense Classification ACC In choice - train

hrngo_quality_classification Text Quality Evaluation ACC In choice - train

glue_mrpc_paraphrasing Text Matching ACC In choice - train

wiki_qa_answer_verification Answer Verification ACC In choice - train

amazonreview_summary_classification Summarization ACC In choice - train

numer_sense_multiple_choice_qa_generation Fill in The Blank ACC In choice - train

cb_entailment Textual Entailment ACC In choice - train

wscfixed_coreference Coreference Resolution ACC In choice - train

dart_question_generation Data to Text ROUGE - Contain _ train

gene_extraction_chemprot_dataset Named Entity Recognition F1 In context - train

chemical_extraction_chemprot_dataset Named Entity Recognition F1 - One answer train

hatexplain_classification Toxic Language Detection ACC In choice - train

imppres_longtextgeneration Sentence Composition GPT - - train

daily_dialog_question_classification Dialogue Act Recognition ACC In choice - train

parsed_pdfs_summarization Title Generation ROUGE - - train

scitail_classification Textual Entailment ACC In choice - train

blimp_binary_classification Linguistic Probing ACC In choice - train

bless_hypernym_generation Word Semantics ROUGE - - train

scifact_title_generation Title Generation ROUGE - - train

Table 8: Details of 41-80 task in the SupNatInst dataset.
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Name Category Metric Scope Format Usage

smcalflow_classification Speaker Identification ACC In choice - train

disfl_qa_text_modication Question Rewriting GPT - - train

medical_question_pair_dataset_text_classification Text Matching ACC In choice - train

winobias_text_generation Coreference Resolution Match In context Split by , train

civil_comments_threat_classification Toxic Language Detection ACC In choice - train

civil_comments_insult_classification Toxic Language Detection ACC In choice - train

web_nlg_data_to_text Data to Text GPT - - train

quartz_question_answering Question Answering ACC In context - train

mctaco_wrong_answer_generation_absolute_timepoint Wrong Candidate Generation GPT - - test

mctaco_span_based_question Answerability Classification ACC In choice - test

winogrande_question_generation_person Question Generation GPT - - test

ropes_story_generation Story Composition ROUGE - - test

abductivenli_classification Coherence Classification ACC In choice - test

scan_structured_text_generation_command_action_short Text to Code Match In choice Split by _ test

odd-man-out_classification_no_category Word Semantics ACC In context - test

combinations_of_list Program Execution Match - 2D list test

rocstories_correct_ending_classification Text Completion ACC In choice - test

rocstories_title_answer_generation Title Generation ROUGE - Length <= 3 test

dream_classification Question Understanding ACC In choice - test

scruples_event_time Text Categorization ACC In choice - test

stereoset_classification_race Stereotype Detection ACC In choice - test

gap_answer_generation Coreference Resolution ACC - - test

winomt_classification_gender_pro Gender Classification ACC In choice - test

hybridqa_answer_generation Pos Tagging ACC In choice - test

casino_classification_negotiation_small_talk Negotiation Strategy Detection ACC In choice - test

grailqa_paraphrase_generation Question Rewriting ROUGE - - test

persent_sentence_sentiment_verification Sentiment Analysis ACC In choice - test

senteval_inversion Linguistic Probing ACC In choice - test

mwsc_question_generation Question Generation ROUGE - - test

scruples_anecdotes_whoiswrong_classification Ethics Classification ACC In choice - test

argument_consequence_classification Text Matching ACC In choice - test

glucose_cause_event_detection Cause Effect Classification GPT - - test

google_wellformed_query_sentence_generation Text Quality Evaluation ACC In context - test

mmmlu_answer_generation_international_law Question Answering ACC In choice - test

glucose_reverse_cause_emotion_detection Information Extraction ROUGE - A >Causes> B test

conv_ai_2_classification Speaker Identification ACC In choice - test

gap_fill_the_blank_coreference_resolution Coreference Resolution ACC In choice - test

defeasible_nli_snli_classification Textual Entailment ACC In choice - test

bard_analogical_reasoning_causation Word Analogy GPT - - test

atomic_classification_xneed Commonsense Classification ACC In choice - test

atomic_answer_generation Fill in The Blank GPT - One answer test

superglue_multirc_answer_verification Answer Verification ACC In choice - test

dart_text_generation Data to Text GPT - - test

drug_extraction_ade Named Entity Recognition F1 In context - test

scitail11_sentence_generation Sentence Composition ROUGE - - test

daily_dialog_formal_classification Dialogue Act Recognition ACC In choice - test

smcalflow_sentence_generation Dialogue Generation ROUGE - - test

ethos_text_classification Toxic Language Detection ACC In choice - test

Table 9: Details of 81-128 task in the SupNatInst dataset.
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Name Category Metric Scope Format Usage

sale_relevance Relevance ACC In choice Json train

commodity_alignment Alignment Match In choice List train

ingredient_identification Identification F1 In context Json train

recommendation Recommendation ACC In choice - train

click_prediction Recommendation ACC In choice Json + Explanation train

user_interest_mining Mining F1 In choice List train

recipe_generation Generation BLEU - Step 1 2 3 train

product_description_generation Generation BLEU Contain center word - train

summary_generation Generation ROUGE - - train

food_entity_extraction Named Entity Recognition F1 In context + In entity types Json train

comment_entity_extraction Named Entity Recognition F1 In context + In entity types Json train

text2sql Code ACC - Legal sql train

merchant_classification Classification ACC In choice - train

item_classification Classification ACC In choice - test

logical_reasoning Reasoning ACC In choice Uppercase letter test

conversation_completion Completion BLEU - Length <= 50 test

**_ner Named Entity Recognition F1 In context + In entity types Json test

property_rel Relevance ACC In choice - test

post_extraction Named Entity Recognition ACC In context + In entity types Json test

food_rewrite Rewriting GPT - Length <= 7 test

Table 10: Details of each task in the Domain dataset.

in Table 11. The smcalflow classification task is a1004

seen task, which requires determining whether the1005

sentence is spoken by a user or an agent. Ins6 has1006

the smallest information gain and the worst model1007

performance in Table 3. This may be because it is1008

not concise enough and has more redundant con-1009

straints compared with other instructions, which1010

may indicate that our information gain may be help-1011

ful in measuring the clarity of the task definition.1012

E Details in Human Annotation1013

In this section, we show the details of manual an-1014

notation on the constraints and the metric for each1015

task. We recruited 4 students aged 25 to 30 with1016

computer background and proficient English com-1017

munication skills. Since they are volunteers, they1018

were not paid. We shuffled the data randomly and1019

assigned data to them. The task is not included1020

until at least 3 people have consistent annotations.1021

Our annotation instruction is like: "Given the in-1022

struction of the task definition, two positive demon-1023

strations, two negative demonstrations, and the cor-1024

responding explanations, mark out the format (such1025

as JSON, separator, upper and lower case, numbers,1026

letters and so on), length restrictions, inclusion of1027

specified words, selection from a specified range,1028

and other constraints that are critical to generating1029

desired responses. And choose the most applicable 1030

metric from F1, ACC, ROUGE, BLEU, Match, and 1031

GPT". The above metrics are illustrated in §3.4, 1032

and we also give three demonstrations of applicable 1033

tasks for each metric. 1034
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Ins1

Instruction: In this assignment, you are presented with a dialogue segment, a piece of communication
between a User and an Agent. Your responsibility is to identify the speaker. The User generally instructs
the Agent to arrange activities, obtain event details, and inspect the timetable. In contrast, the
Agent’s reply is a response to the User’s queries or additional inquiries based on the User’s directive.
Respond with "User" or "Agent". Additionally, it’s important to note that the User may also ask the
Agent to cancel events.
Key parts: identify the speaker, User generally instructs the Agent to arrange activities, obtain event
details, and inspect the timetable, Agent’s reply is a response to the User’s queries or additional
inquiries based on the User’s directive, Respond with "User" or "Agent", User may also ask the Agent
to cancel events

Ins2

Instruction: For this activity, you are presented with an excerpt from a dialogue involving a User
and an Agent. It is your task to identify who is speaking. The User typically instructs the Agent to
organize events, obtain data on events, or survey the event plan. In contrast, the Agent’s replies
often address the User’s queries or extend the conversation based on the User’s directives. Please
respond with either "User" or "Agent".
Key parts: identify who is speaking, User typically instructs the Agent to organize events, obtain
data on events, or survey the event plan, Agent’s replies often address the User’s queries or extend
the conversation based on the User’s directives, Please respond with either "User" or "Agent"

Ins3

Instruction: In this task, you will be presented with a statement, a fragment of a dialogue between
a User and an Agent. Your responsibility is to identify the speaker. The User typically instructs
the Agent to organize events, gather details about events, and verify the schedule. Conversely, the
Agent’s reply is a response to the User’s inquiries or additional queries based on the User’s directive.
Respond with either "User" or "Agent".
Key parts: identify the speaker, User typically instructs the Agent to organize events, gather details
about events, and verify the schedule, Agent’s reply is a response to the User’s inquiries or additional
queries based on the User’s directive, "Respond with either "User" or "Agent"

Ins4

Instruction: In this task, you are presented with a dialogue fragment, a piece of conversation between
a User and an Agent. Your responsibility is to identify the speaker. The User typically instructs the
Agent to arrange events, fetch details about events, and verify the schedule. Conversely, the Agent’s
reply is a response to the User’s inquiries or additional queries based on the User’s directive. Respond
with either "User" or "Agent".
Key parts: identify the speaker, User typically instructs the Agent to arrange events, fetch details
about events, and verify the schedule, Agent’s reply is a response to the User’s inquiries or additional
queries based on the User’s directive, Respond with either "User" or "Agent"

Ins5

Instruction: In this task, you are presented with a dialogue fragment from a conversation between a
User and an Agent. Your responsibility is to identify the speaker. The User typically instructs the
Agent to organize events, fetch details about events, and verify the schedule. Conversely, the Agent’s
reply is a response to the User’s inquiries or additional queries based on the User’s directive. Respond
with either "User" or "Agent".
Key parts: identify the speaker, User typically instructs the Agent to organize events, fetch details
about events, and verify the schedule, Agent’s reply is a response to the User’s inquiries or additional
queries based on the User’s directive, Respond with either "User" or "Agent"

Ins6

Instruction: In this assignment, you are presented with a snippet of a dialogue between a User and an
Agent. The User typically instructs the Agent to organise events, gather details about an event, and
inspect the agenda, whilst the Agent’s reply consists of answers to the User’s inquiries or additional
questions pertaining to the User’s directive. Your task is to identify the speaker from the dialogue
snippet, taking into consideration the typical role of the User and the Agent, and to provide the
speaker’s identity as "User" or "Agent". Additionally, ensure your judgement is supported by reasonable
analysis of the given dialogue.
Key parts: identify the speaker from the dialogue snippet, taking into consideration the typical role
of the User and the Agent, provide the speaker’s identity as "User" or "Agent", ensure your judgement
is supported by reasonable analysis of the given dialogue

Table 11: Six held-out instructions and corresponding key parts of the smcalflow classification task.
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