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Abstract

Cryo-Electron Microscopy (Cryo-EM) is an important imaging method which
allows high-resolution reconstruction of the 3D structures of biomolecules. It
produces highly noisy 2D images by projecting a molecule’s 3D density from
random viewing directions. Because the projection directions are unknown, esti-
mating the images’ poses is necessary to perform the reconstruction. We focus on
this task and study it under the group synchronization framework: if the relative
poses of pairs of images can be approximated from the data, an estimation of the
images’ poses is given by the assignment which is most consistent with the relative
ones. In particular, by studying the symmetries of cryo-EM, we show that rela-
tive poses in the group O(2) provide sufficient constraints to identify the images’
poses, up to the molecule’s chirality. With this in mind, we improve the existing
multi-frequency vector diffusion maps (MFVDM) method: by using O(2) relative
poses, our method not only predicts the similarity between the images’ viewing
directions but also recovers their poses. Hence, we can leverage all input images in
a 3D reconstruction algorithm by initializing the poses with our estimation rather
than just clustering and averaging the input images. We validate the recovery
capabilities and robustness of our method on randomly generated synchronization
graphs and a synthetic cryo-EM dataset.

1 Introduction

Cryo-Electron Microscopy (Cryo-EM) revolutionized the field of structural biology, enabling the
reconstruction of protein structures at unprecedented resolutions. Indeed, the 2017 Nobel Prize in
Chemistry was awarded to three scientists for their pioneering works on it [1]. In single-particle
cryo-EM, a purified solution containing the molecule of interest is frozen on a thin film and then
bombarded with electrons to obtain a 2D tomographic (integral) projection of it. The resulting image
contains the projection of each copy of the molecule in the solution; in a particle picking phase,
these projections are cropped to obtain a dataset of 2D images. Since each copy in the solution is
randomly rotated in 3D, each image is a projection of the molecule’s density in a random unknown
pose. Moreover, the produced images are characterized by very low signal-to-noise ratios (SNR) [2],
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e.g. see Fig. |1} The objective is reconstructing the molecule’s 3D structure from these observations,
but the high noise and the unknown poses make this inverse problem particularly challenging.

Common methods attempt to estimate the images’ poses while performing the reconstruc-
tion. This is typically done via iterative refinement with an Expectation-Maximization (EM)
algorithm [3, 4]]. Unfortunately, EM-like methods are known to suffer from convergence is-
sues due to local minima and generally require sufficiently good initializations and restarts
[3]. The 3D density of known molecules can be used as initial guess but this often causes
model bias [6]]. Ab-initio methods, which don’t rely on an initial guess, are particularly useful
to initialize the iterative methods above clean _ SNR=030 SNR=0.05 SNR=0.01

and, therefore, are a fundamental el- e
ement of the reconstruction pipeline.
Moreover, a good initialization of the
poses can speed up iterative refinement
by providing a non-flat prior over poses,
and so, reducing the search space. Figure 1: Example of Cryo-EM images at different SNR values.

Due to the high level of noise, a first phase of 2D classification and averaging is performed, where a
smaller denoised set of images is generated by clustering images with a similar viewing direction and
averaging images within each cluster. Because this blurs out the fine details, it can reduce the final
reconstruction’s resolution and, therefore, it is desirable to minimize the averaging performed [Z, 3.
Vector Diffusion Maps (VDM), and their variants, [8} 9] are powerful methods to estimate the
similarity between images’ viewing directions and, therefore, provide a robust metric for clustering. In
short, these methods leverage the equivariance of Cryo-EM to planar rotations (SO(2)) and interpret
the planar rotations aligning pairs of images as an approximation of the local parallel transport over a
sphere of viewing directions. The closer the viewing directions of two images are, the more consistent
is the transport along different paths between them. This notion of consistency is encoded in the top
eigenvectors of an Hermitian matrix representing the discretized parallel transport operator.

Contributions and Outline In this work, we consider the problem of estimating Cryo-EM images’
poses under the group synchronization framework, i.e. using the relative poses of pairs of images to
recover an estimation of the absolute poses. First, in Sec. |Z, we relate the symmetries of Cryo-EM
with those of the synchronization task: we show that SO(2) relative poses are not sufficient to solve
the multi-view synchronization problem, but O(2) relative poses are. Second, in Sec. |3, we use this
insight to construct an improved VDM method, which is able to recover not only a similarity metric
between the images, but also an estimation of each image’s pose. In particular, we extend VDM by i)
using vector diffusion over a projective plane (rather than a sphere) to reconstruct denoised similarity
and parallel transport and by ii) including a final synchronization step to recover the absolute poses.
This minor modification of VDM allows one to replace the 2D classification phase with a pose
estimation phase and, therefore, leverage all the raw cryo-EM images in the final 3D reconstruction
without the loss of resolution caused by averaging. Additionally, our improved VDM method shares
the same spectral properties of the original VDM method and, hence, the same noise stability and
recovery guarantees. We discuss the complexity of our method in Sec. and its limitations in
Sec.[3.4] Finally, we validate experimentally our theoretical results in Sec.

1.1 The mathematics of Cryo-EM

Following [[11]], we consider the problem of single-particle homogeneous reconstruction and assume
no image translations for simplicity. Then, a molecule’s 3D density is a function ¥ : R* — R €
L?(R3) with compact support around the origin of R3. An observation is a gray-scale image generated
by the integral projection along the Z axis I : L?(R3) — L?(R?), which is defined as:

() (2, ) = / U(z,y,2)dz a,y,7 € R.

Let {0;})¥, be the collection of images observed. The image o; := II(g; *.¥) € L?(R?) is the
projection of a copy of the molecule ¥ rotated by a random g, 1 € SO(3), where the action of SO(3)
on L?(R3) is the standard action:

[9.9](x) := V(g .x) VgeSO3).



Figure 2: Generation process Figure 3: First row: images sharing a similar viewing direction with the

of Cryo-EM images. Projec- top-left image. Second row: images with opposite viewing direction with
tions from similar or opposite respect to the top-left image. The colored group elements are the relative
directions are related by ele- transformation with respect the top-left image; e is the identity, r is a
ments of O(2), see also Fig. rotation by %’r around the viewing axis Z and f mirrors along the X axis.

An element g; € SO(3) is identified with a real orthonormal matrix (x;, y;, 2;) € R3*3 with positive
determinant. The three columns x;, y;, z; € R? form an orthonormal basis for R?. We can write:

0i(z,y) = (g, ' W)] (z,y) = /‘I’(l’l’i +yy; + zz;)dz . (1)

z
In particular, if g; = (x;,y;, 2;), then z; € R? is the viewing direction along which W is projected,
while (z;,y;) defines the camera rotation around z;. We define the projection map 7 (g;) = z; € R3.

2 On the symmetries of the Cryo-EM synchronization problem

One of the main challenges in cryo-EM is the fact that the pose g; € SO(3) of each observation o; is
unknown. This prevents one to glue the observations together to reconstruct the density W. However,
the set of observations {o; }; can be used to estimate the relative poses {ﬁw R gij = gj_1 g,;}ij. A
synchronization problem is defined by a “synchronization graph” G = (V, £), i.e. a graph with a
node in ) per image and an edge (i, j) € £ associated with g;; if its estimation is available. Given a
synchronization graph G, the goal is now to “synchronize” them, i.e. find a global assignment of the
poses {g; }; consistent with the estimated relative poses:

9 ~G:g;; V(i) €G. 2)

Global SO(3) ambiguity If {g;}, is a solution, so is {gg; }; for any g € SO(3). This ambiguity
is not unexpected and corresponds to the fact that any rotated molecule g~ '.¥ is an equally valid
reconstruction, i.e. cryo-EM can not recover the orientation of a molecule.

2.1 Relative poses in SO(2): the impossibility of synchronization

Before solving the synchronization problem, it is necessary to estimate the relative poses {g;; =
g;l ¢; }i;. Unfortunately, since the projection II loses information about the 3D structure, it is not
possible to estimate the relative pose of any pair of images. However, when the viewing directions
7(gi) = z; and 7(g;) = z; of two images are sufficiently close, they generally differ only by a
planar rotation r;; € SO(2) which can be directly estimated as

rij = argmin ||o; — r.o:3 if w(g:) & 7(g;) - 3)
resSo(2)

where 7 acts on image o; by rotating it. The closer z; and z; are, the better r;; approximates g;;.
Indeed, if z; = z;, then g;; = gj_lgi has for {g % ﬂ , where the top-left 2 x 2 block is an SO(2)

2This is shown using the orthogonality of g; and g;’s columns.



matrix. We identify all the rotations of this form as the subgrou SO(2) = R, < SO(3) of planar
rotations around the Z axis. The projection operator II is SO(Z)-equivarian ie.:

(r.0) = rI(V) ¥reR,=SO(2). )

Hence, if g7 ! = rg; 1 it follows that 0; = r.0;. For example, all projections generated by the top
view in Figjg] are related by a rotations r as shown in the top row of Fig.[3]

Global SO(2) ambiguity While this is a common approach in the literature, e.g. in VDM [} 12}
101 [13]}, it does not provide sufficient information to estimate the poses {g; };. Indeed, the estimated
relative rotations {r;; € SO(2)};;)eg yield the following constraints:

g ~giri;t V(i,j)€G.
Since SO(2) is abelian, if {g;}; is a solution to this set of constraints, then {g;r}; is an equally valid
solution for any r € R, = SO(2):
gj ~ @'ﬁjl = gjr & @'Tfjlr = gjr ~ (gir) T;jl
This implies that any method which estimates the poses {g;}; from the estimated relative ones
{r:;j € SO(2)};; will only be able to recover them up to a global rotation r € R,. This global

ambiguity prevents using these estimations to directly invert the linear projection II and recover the
original molecule W, since it would result in averaging randomly rotated versions of the images.

Nevertheless, the ambiguous poses {g;}; still contain information about the viewing direction of
the projections. Indeed, note that 7(g;r) = 7(g;), i.e. the viewing directions are invariant to this
global ambiguity and, therefore, can be recovered from this method. Previous works such as VDM
[8, 112} [10] exploit this invariance to estimate the relative distance between different images. This
distance is generally used for class averaging i.e. to cluster images and average images within each
cluster to generate a smaller, de-noised, images dataset.

2.2 Relative poses in O(2): a sufficient condition for synchronization

In this work, we solve this global SO(2) ambiguity and directly estimate the absolute poses {g; }
of the images. To do so, we will exploit another symmetry of Cryo-EM. Indeed, the tomographic

L . . . Lo . 100 .
projection I is also invariant to mirroring along the Z axis m, = {8 1 _OJ € 0(3)ie.

M(m, . V) = /\I/(x,y, —2)dz = /\Il(a:,y7 2)dz = TI(V)

This additional symmetry turns out useful to break the global SO(2) symmetry explained earlier.

-10 0
First, let r, = { 01 91} € SO(3) be a 7 rotation along the Y~ axis; note that 7, = m, m,, where
m, is a mirroring along the X axis. Then, let f = [—01 (1)] € O(2) be the flip of a planar image along

the X axis. Then:
II(r,.¥) = II(m, m, .¥) = I(m, .¥) = { I(T), (®)]

i.e. the projection operator II is flip equivariant: projections along a direction (II(g; L.w)) are
related to projections from the opposite direction (f .II(r,g; 1.\11)) by a planar reflection f. For
example, all projections generated by the bottom view in Fig|2|are related by a rotation r followed by
the reflection f with the images generated from the top view, as shown in the bottom row of Fig.[3] To
simplify the notation, we will also let r,, act on a image; this action should be intended as that of f.

That means that we can not only estimate the relative pose g;; ~ h;; € R, when the viewing direc-
tions 7(g;) and 7(g,) are sufficiently close, but also h;; € H = O(2) when 7(g;) =~ —m(g;), i.e.:

hij = argmin |o; — h.ong if m(g;) = £m(g;) . (6)
he H=0(2)

where H =2 O(2) is the subgrou of SO(3) containing R, (planar rotations along the Z axis) and 7.

3SO(3) has many subgroups isomorphic to SO(2) so we use R, to indicate this particular one.
*For simplicity, the action of R, on 3D densities or 2D images is not distinguished.
*More precisely, H := R, x {e,r,} = O(2).



Table 1: Summary of the Cryo-EM symmetries.

| description of the transformation | symmetry name
0; = (g, '¥) gi € SO(3) generative process
r.0; = (rg; W) r € SO(2) any rotation around Z axis SO(2) equivariance
0; = (m, g; ') m. € O(3) mirroring along Z axis Mirroring (Z) invariance
f.0; = (Mg, ' ) m, € O(3),f € O(2) mirroring along X axis Mirroring (XY") equivariance
f.0; = (ryg; '¥) | ry = m,m. € SO(3) rotation by 7 around Y" axis Flip equivariance

Global chirality ambiguity The relative poses {h;; € O(2)};; still don’t fully constrain the
absolute ones; if {g; }; is a solution, so is {g;r, };, with r, € R, being a w-rotation around the Z axiﬂ

g = Gihy; = Gjr. R Gihy;'r. = Gir. ~ (Girz) hi;'
This ambiguity is related to the well known problem that Cryo-EM can not recover the chirality of a

-10 0 . o
molecule. To see why, leti = [ 8 —01 0 } be the inversion, i.e. a mirroring along all axes; note that

m, = r,iand that i commutes with any element g € SO(3). Then:

0; =(g; ' ¥) =(m, g; " V) =(r,ig; " 0) = T(r.g; .(1.9)) = T((gir.) " H.(1.9))
i.e., 0; is equally likely to be generated by the molecule ¥ with pose g; or its mirrored version i . ¥
with pose g;7 .. Together with the global SO(3) symmetry introduced earlier, this means Cryo-EM
intrinsically suffers from a global O(3) ambiguity which we can not hope to resolve. Nevertheless,
since r, is the only element of SO(3) commuting with all elements in H = O(2), we have that
relative poses in H constrain the synchronization problem precisely up to this O(3) symmetry and,

thus provide sufficient constraints to identify the images’ poses. We provide a theoretical argument
based on Vector Diffusion Maps (VDM) [9] supporting this informal claim in Apx.

3 Multi-Frequency Vector Diffusion Maps on the Projective Plane

In this section, we use the new insights on the symmetries of cryo-EM to enable the Vector Diffusion
Map (VDM) method to recover the poses {g; };. The key component is the Graph Connection Lapla-
cian (GCL) of the synchronization graph G with the estimated relative poses {h;; € O(2)};; on its
edges. Under certain conditions, its eigenvectors converge to the eigen-vector-fields of the connection
Laplacian operator on the projective plane, which contain information about the absolute poses. Our
method involves rwo steps: a denoising step (like the original VDM) and a synchronization step; Alg.T]
provides an overview of the proposed method. We study its computational complexity in Sec.

3.1 Quotient Spaces and Projective Plane

Each image o; is uniquely identified by an element g; € SO(3) via Eq. |1} assuming the molecule has
no symmetries. Two images o; and o; related by a rotation r;; € R, contain the same information
and are considered equivalent. We can define a similar equivalence relation on their respective poses,
i.e. g; ~ g; = gir;. This defines the quotient space SO(3)/R, which is isomorphic to the sphere
S2. An element g; € SO(3) is interpreted as a point 7(g;) = 2; in S? and a choice of frame on it, i.e.
the choice of basi (x;,y;) for the tangent space at z; or, equivalently, the rotation of the camera
around the axis z;. Then, the relative rotation r;; € R, estimated in Eq. is interpreted as the unique
rotation such that g; ri_jl is the parallel transport of g; along the shortest geodesic connecting 7 (g;) to
m(g;) (this is unique unless m(g;) = —m(g;)). Here, we want to leverage the larger symmetry H. We
define the new equivalence relation g ~ gh for all h € H on SO(3), which determines the quotient
space SO(3)/H, isomorphic to the projective plan PR2. While it is harder to visualize, elements of
SO(3) are now interpreted as points in PR? together with a choice of frame for their tangent space

Finally, the relative pose h;; € H from Eq. Eis interpreted as the element such that g hi—jl is the

parallel transport of g; along the shortest geodesic between the projections of g; and g; on PR

°One can verify that r, commutes with any » € R, and 7.

"Indeed, (2, y:) span a 2D plane through the origin parallel to the tangent plane at z;.

8The projective plane can be thought as a sphere where antipodal points are identified together.

By moving from S? to PR?, we change the structure group and consider frames in O(2) rather than SO(2).



3.2 Vector Diffusion Maps on PR?

An initial synchronization graph G can be generated by comparing all pairs of images using Eq.[6
and preserving only the edges with smallest distances. Ideally, this graph is a discretization of
PR? = SO(3)/H with local connectivity, but the noise on the images negatively affects the estimated
distances and relative poses, introducing “shortcut” edges in this graph. Therefore, the first step of
our method is re-estimating the geodesic distances and the relative poses of the points in the graph.

Like previous works, we leverage the consistency of the local alignments to do this. Indeed, since
a manifold is locally Euclidean, parallel transport along sufficiently short paths is approximately
path-independent in the local neighborhood of a point. On the other hand, the further away two
points are, the more inconsistent the cycles through them will be. When summing the transport over
multiple paths between two points, inconsistent paths tend to average out.

We use the synchronization graph to build a discretization of this local parallel transport operator. Let
the graph connection Laplacian W be the 2N x 2NN matrix with its ¢, j-th 2 x 2 block defined as:

o plhi) if(,5)€G 2x2
Wi, j) = {O otherwise - R )
where p(h;;) is the standard representation of /;; € O(2) as a 2 x 2 orthogonal matrix. Let D be the
2N x 2N diagonal matrix containing the degree of each node in G (repeated twice) in its diagonal.
The matrix W acts by parallel-transporting tangent vectors along each edge of the graph while
A := D~'W averages all vectors transported to a node. Then, W transports vectors along all length-
t paths in G and the block A’ (i, 7) is the average of the transport over all length-¢ paths from i to j.
If the paths are mostly inconsistent, A?(i, 5) tends to 0, being the average of uncorrelated orthogonal
matrices. Hence, A*(i, j) provides information about the geodesic distance between 4 and ;.

Like [12], we take a multi-frequency approach to improve robustness to noise. In practice, we build
a different graph connection Laplacian Ay, for different choice of irreducible representation (irrep)
pr. of O(2). For k > 0, py is a 2 x 2 orthogonal matrix with rotational frequency k; see Apx.[A.

In the limit ¢ — oo, the power iteration of A converges to its top eigenspace and A (i, j) will be the
product of the top eigenvectors of Ay. It is therefore important to discuss the spectral properties of
Ay. [14] proved that the normalized graph connection Laplacian is a discretization of the connection
Laplacian operator and that, under certain conditions, its eigenvectors and eigenvalues converge
to those of the connection Laplacian operator. In Apx. B}l we study the spectral properties of the
connection Laplacian operator over PR? and relate it with the operator over S? studied in [13]. In
particular, we show that the eigenspaces of our Laplacian operator over PR? are subspaces of the
eigenspaces of the spherical Laplacian and they share the same eigenvalues. This also implies our
graph connection Laplacians enjoy the same spectral properties studied in [13]], including the spectral
gap and the robustness to noise.

For frequency k& > 0, the top eigen-space of Ay is 2k + 1 dimensional. Additionally, denote

o1+ V — REFDX2 the stack of the top 2k + 1 eigen-vectors. Let ¢y, (i) = ﬁwk(i) and
Yk OIE

define A (i, j) = @i (j) pr(i) € R**2. Then:

Theorem 3.1. Let s;; = (z;, z;) = (7(g;),7(g;)) € [—1,1] be the cosine similarity of the viewing
directions 7(g;), m(g;) € S* The two following identities hold:

Uil |2 1+ s 2k 1— s 2k (1t 2k - sy 2k
2"(’4’“)(”7)“F”(2> ) G s ST ) e

The proof is in Apx. @ Since we need a similarity over PR? rather than S2, we are interested
in w;; = |s;;]. In other words, the top eigenspace of Ay allows the estimation of the geodesic
distance between points. In practice, d;, > 2k + 1 top-eigenvectors can be used, as in [8 [12]].

Denoised similarity and parallel transport The information obtained from the different Ay,
matrices can be combined in multiple ways to obtain an estimation of s;;. Define

1, —~ 2 1~ 2N
sk =1 | A G| % 5 det(Auti, ) = <2> v

19The standard representation of O(2) as rotation matrices correspond to k = 1.



Algorithm 1 MFVDM based synchronization over PR?
Require: {0; |i=1,..., N € V} the input raw images, max frequency L > 0
1: G(V,&) + synchronization-graph ({hi; = arg min,, [|o; — h.0i||3}ij, {di; = miny, [|o; — h.OiH;}ij)
2: for0 < k < Ldo
3: Ak < [pr(hij) if (i,7) € € else 0], > Frequency-k graph connection Laplacian; Eq.
4: pr < top-eigenvectors(Ax, 2k + 1)
i va N (2 ;
3o Ay {(\wku)np‘”k(])) (nsak@)nﬂ’“(”)} 3

]

. kRt , 1
6: S 1

— 2 —
(Ak)(i,j)HF + Ldet(Ax(i,j)) Vij €V >Eq.H

log Sfji

. ot 1 L
7: 85; < exp (f D k1 —aR

8: 5y « sign(s), — 5;;) - max(5;,5;;) > Denoised similarity over PR?; Eq.
9: ﬁij < arg max,, Zo<kgL dim,, Tr (;1; (i,j)pk(h)T) > Denoised parallel transport; Eq.
10: G'(V,E’) « synchronization-graph ({71“}”, {I8:5 |}”) > Build denoised Synchronization Graph
11: A+ [pl (ﬁ”) if (i,7) € £ else 0} B > Build denoised graph connection Laplacian; Eq.
12: x,y + ¢ < top-eigenvectors(A’, 3)2] > Final Synchronization

13: g; «+ projectSVD(z(2), y(2), z(¢) X y(2))

Then, if L is the largest frequency considered, the similarity s;; can be estimated as

L k+
log S’
PN . ~t _ i
Sij = 8;;—s;; with s = exp(L o7 ) . )
In practice, we found the following estimator more robust for the nearest neighbors search:
i = sign(s]; —5;;) - max(s;},5,;), and W = [55;] = max(s];, 5;;) (10)

although it approximates 28” rather than s;;. In Apx.|E| we discuss an alternative estimator which
can be expressed as a dot product, enabling the use of a fast K -nearest neighbors (/-NN) search
rather than computing the similarity between all pairs. Additionally, note that, due to the decaying
spectrum of the Laplacian operators, the noise has a stronger effect on the lowest eigenvalues;
discarding the lower eigenvectors also helps denoising the GCL matrices. That means that the top

eigenvectors of Ay can be used to partially denoise the frequency-k parallel transport. Next, we

combine all denoised blocks {Zl\k (i,7) } by interpreting them as the Fourier coefficients of a function
on H; we estimate the relative pose with the element h € H maximizing this function:

hij = arg max Z m, T (Ax(i, ()" (11)

Final Synchronization So far, we have used the MFVDM method on PIR? to estimate the similarity
Wi = 5 j\ and parallel transport h;; over PR2. With respect to [12]], our method includes a final
synchronization step, where these quantities are used to recover {g; };. We construct a new graph
connection Laplacian matrix A’ as in Eq. using the new estimations and the standard representation
(k = 1) of O(2). The top eigen-space of A’ is 3 dimensional and its 3 top eigenvectors define a
tangent frame at each node in the following way. Let ¢ : V — R3*2 be the stack of the top 3

eigen-vectors, ©(i) = Hsozf)ll p(i)andz : V — R3and y : V — R3 be its two columns. Then,

x(i) and y(i) € R? define a basis for the tangent space at w(g;) € S?, see Apx.|C} Recall that
gi = (®i,Yi,2;) € SO(3), then x(¢) and y(¢) approximates respectively x; and y;, while z; can
be recovere as z(i) = x(i) x y(4). Note that recovered poses {g; = (z(i),y(i), z(¢))}; present
the global O(3) symmetry discussed in Sec. g Indeed, eigenvalue decomposition is unique up to
an orthogonal change of basis in each eigenspace. Since the top eigenspace is 3 dimensional, the
solution is unique up to a global g € O(3) transformation, i.e. if ¢ is a set of orthogonal eigenvectors,

"2(4), 2(3)) = (@(j) x y(5), z(3) x y(i)) = det (¢(j)" (i) ~ si; by using Theoremeith k=1




so is gy, defined as [gp] (i) = gy (7). Hence, all tangent frames {(z(¢), y(¢)) }; can be simultaneously
rotated by any g € O(3). Finally, because x(¢) and y(¢) are not perfectly unitary and orthogonal to
each other, the matrix (z(7), y(¢), z(¢)) will not be orthogonal; therefore, we project it to the closest
SO(3) element via SVD.

3.3 Cryo-EM Pipeline and Computational Complexity

We study the complexity of our method in a pipeline similar to the one implemented in ASPIRE
and described in [15]. Assume a dataset of NV images of resolution D x D; consider the MFVDM
algorithm with frequencies up to L and that at most M top-eigenvectors of Ay, are computed for each
frequency k. The pipeline consists of the following three stages, with relative complexity:

Preprocessing O(N D? + Nklog N): a number of invariant features are built using (fast) steer-
able PCA O(ND?) [16] and the bispectrum, and are used for a K-nearest neighbors (K-NN)
search O(N K log N) as in [[15]. Then, the O(2) relative alignments of each pair are estimated in
O(ND?log D + N K D?) by leveraging Polar and Fast Fourier Transforms (FFT).

MFVDM denoising O(NLM? + NKLM?log N): the eigenvalue decomposition of the matrices
{ Ay}, can be accelerated to O(NL(M?+MK)) ~ O(N LM?) as in [12]. The denoised similarities
5;; cost O(N?). By aggregating multiple frequencies without log as in [12], however, a faster K-NN

search in O(N K LM?1og N) can be used, see Apx. E Finally, the denoised parallel transports Eij
between neighbors are computed in O(N K Llog L) with an FFT.

Synchronization O(NK): since only the top 3 eigenvectors of A’ are required, the eigenvalue
decomposition only costs O(NK).

3.4 Limitations

The main limitation of our method is that VDM assumes uniformly distributed poses, which is not
generally the case for real cryo-EM data. Renormalization techniques such as [[17, 18] can help
relaxing this requirement. Our analysis of the synchronization symmetries, however, is not limited
to VDM but applies to any cryo-EM synchronization method. Moreover, 2D classification or pose
estimation methods which do not explicitly account for the image formation model might fail at the
lowest SNR regimes [5]]. Indeed, if the noise is too high, the relative poses estimation itself can be
impossible and increasing the number of observations can not solve this problem [19] 20], although
methods like steerable PCA [[16] can alleviate that. Nevertheless, in practice, 2D classification with
VDM is leveraged as a denoising step in reconstruction pipelines like ASPIRE; our method can
replace this step, providing pose estimation and reducing the need for averaging. Finally, while we
assumed non-symmetric molecules, our method can handle symmetries, provided they are known
a priori, since they enforce precise sparsity patterns in the spectrum of the diffusion operators; we
leave this as future work.

4 Related Works

Vector-Diffusion Maps (VDM) were initially proposed in [9} 8] for solving the cryo-EM synchro-
nization problem with SO(2) constraints. The O(2) symmetry was noted also in [8] which suggests
augmenting a dataset with mirrored images; still, it only uses SO(2) relative alignments and, therefore,
recovers only a similarity metric over the sphere. VDMs were later extended to a multi-frequency
setting in [[12,]10} [13]]. [21] describes a strategy based on the classical method of moments to solve
the generic problem of recovering orbits from invariants. Additionally, the authors provide theoreti-
cal analysis of sample complexity of such problems; in particular, they show that in the cryo-EM
synchronization problem with uniform viewing distribution, the sample complexity scales as SN%.
Some works exploit the property that the Fourier transforms of any pair of cryo-EM images must
agree on a line passing through the origin (common lines approach) to define a set of constraints
on each pair of absolute poses. [22] use a Semi-Definite Programming (SDP) relaxation to find the
solution; however, SDP is known for its high computational cost. Instead, [7, 23] rely on a faster
spectral relaxation of the problem. Still, the estimation of common lines itself is expensive - since it
requires comparing each pair of images - and very sensitive to noise; for this reason, it usually follows
a first 2D classification and averaging phase [24]. Popular reconstruction methods include RELION
[25] and cryoSPARC [26], which are based on an EM-like algorithm. [27] suggested using stochastic


https://computationalcryoem.github.io/ASPIRE-Python/

rather than batch optimization for iterative refinement, thereby improving the computational cost.
Recent advances employ neural networks optimized by SGD to represent the 3D density (28] [29].
Note that these methods still need to periodically perform an expensive search over the images’ poses
and [29] found resetting the model’s weights throughout training essential for convergence.

5 Experiments

We first evaluate our method on a synchronization task over some synthetic datasets of vectors which
share the same symmetries of cryo-EM. Then, we include our method in a simple 3D reconstruction
pipeline which we test on synthetic cryo-EM data. We include additional experiments in Apx.

5.1 Synthetic Vector dataset

1.0
We generate a number of synthetic datasets which im- Sos
itate the symmetry of the cryo-EM generative process. % —
To do so, we first construct a matrif'2] M € Rx? £0.6 S
which has the symmetries of IT described in Table T} b e
where H acts on the left with a d-dimensional rep- g 0.4 — o
resentation p of the group O(2) while O(3) acts on 0.2 o

its right with a b-dimensional representation ). Both 1500 2000 3000 3000 5000
representations contain irreps of different frequencies #samples

of the two groups. See Apx.[A for more details about

the representations of these groups. A dataset is gen- Figure 4: Correlation with the SO(3) poses in
erated by sampling a random vector ¥ € R?, a set different variations of the vector dataset.

of random poses {g: € SO( )}” and then evaluating
{oi = My(g; hw + eZ € R4};, where ¢;’s entries
are normally dlstrlbuted and \? is the SNR.

0O(2) MFVDM, L=5

I
o

0O(2) MFVDM, L=1

e
[
[

We evaluate variants of our method on this data and
compare it with MFVDM w1th SO(2 poses We O e
use the SO(3 correlano \f ||Z 9:9; | a Real s; Real s;

the correlatlon between t e real and est1mated co- S0(2) MFVDM, L=1
sine similarities {s;;};; as metrics. Fig. [4 shows &},
the SO(3) correlation achieved by our method in
different settings; in the low-noise regime, perfect
reconstruction is achieved. As expected, in the high- oo -

est noise regime, reconstruction is almost impossi- T Reals; T P Reals,
ble as increasing the number of samples helps only

m.arginally.(S.NR=O. 16). Fig.[5|compares our methOd Figure 5: Estimated {$;, }:; vs real {s;; }:; cosine
with the original MFEVDM-SO(2), for two choices of  gimilarities in the synthetic vector dataset. We
maximum frequency L. While the original estimator  compare our method with O(2) relative poses with
from MFVDM is stable when s;; > 0, our estimator  the original MFVDM with SO(2) poses.

from Eq. @is stable when |s;;| > 0. We also ob-

serve the effect of the multi-frequency approach: leveraging higher frequencies provide a more robust
estimation.

Estimated s;;
i

SO(2) MFVDM, L=5

5.2 3D reconstruction of synthetic cryo-EM data

For a more realistic evaluation, we integrate our method in the pipeline described in Sec.[3.3 and test
it on the 70S Ribosome structure from the Protein Data Bank database (structure 5060). See
Apx.[E2 for more details. In summary, a first synchronization graph is built via two K -NN searched
by using invariant features generated with Steerable PCA and bispectrum [13] (we pick K rotated
and K mirrored neighbors). Then, the estimated relative poses can, optionally, be denoised with
MFVDM, either using SO(2) or O(2) and with different values of the maximum frequency L. If
MFVDM-SO(2) is used, information about reflections is lost, hence our VDM-based synchronization

"2 M contains a subset of the matrix decomposing Ind$, HX {e may P into O(3) irreps.

*Note that this metric is invariant to the global 0O(3) symmetry.



Table 2: Pose correlation (and error in radians) with different methods.
VDM (our) VDM (our) VDM (our) CL CL CL CL

Synchronization

Denoising None 0(2),L=5 0(2),L=10 None SO(2),L=5 0O(2),L=5 0(2),L=10
N SNR |
3000 0.35 99.6 (0.1) 99.3 (0.13) 99.3 (0.13) 99.6 (0.09) 99.7 (0.08) 99.7 (0.08)
5000 0.12 82.0 (0.69) 97.5 (0.22) 97.5 (0.21) 98.0 (0.20) 97.9 (0.18) 99.0 (0.14) 99.0 (0.14)
5000 0.05 60.1 (1.11) 63.4 (1.05) 63.5 (1.05) 64.6 (1.03) 71.4 (0.87) 75.9 (0.77) 76.6 (0.75)

can not be used later. Next, the dataset can be clustered to n < N images and denoised by averaging
nearest neighbors.

As a synchronization baseline, we consider the common line method (CL) from [7} 123, 24]. Note that
the estimation of common lines estimation is more sensitive to noise. Moreover, the method requires
O(N?) comparisons to find common lines between each pair of images; in comparison, MFVDM
only needs to estimate the relative poses of O(N K) nearest neighbors. For these reasons, the CL
method is usually applied on the smaller subset of n < [N averaged images.

Once the poses are estimated, we perform a first 3D reconstruction using an algorithm inspired
by [31] which optimizes via SGD a Gaussian posterior over the 3D density leveraging the Fourier
Slice Theorem. See also Apx. for more details about it and other experiments. Finally, this
low-resolution reconstruction is used to initialize the 3D Refine method in RELION [25]], which
performs the final refinement. RELION also re-estimates the images’ poses and the final resolution
using the gold-standard Fourier Shell Coefficient. Since RELION is based on an EM method, it
can show large variance in the final results and, sometimes, fail to converge. To reduce the impact
of this on the variance of the results, for each method, we perform the initial reconstruction three
times using the method above and, for each reconstruction, we consider the best run of RELION
out of three trials. In the tables, we report the mean and the standard deviation over the three initial
reconstructions of the corresponding best RELION trials.

In our experiments, we use images of resolution D = 97, K = 20 for the nearest neighbors search
and n = 1000 averaged images for the CL methods. In Tab. 2, we report the pose correlation (and
the average error in radians) after synchronization on three synthetic datasets, with different levels
of noise. Tab. [3reports the correlation and error of the poses after the refinement performed by
RELION, as well as the corresponding resolutions (lower is better). We observe that the CL method
achieves better initial pose estimation in Tab. [2, although only by a small margin in the low noise
regime. However, this does not reflect on the final resolution achieved by RELION in Tab. 3] which
is generally lower for CL methods since fewer images are used and averaging loses details. Note
also that our MFVDM-O(2) denoising improves the performance of the CL method with respect to
MFVDM-SO(2), since it also recovers reflected neighbors and, therefore, allows averaging over a
larger set of images with similar viewing direction.

Table 3: Pose correlation, pose error (radians) and estimated resolution after refinement with RELION.
VDM (our) VDM (our) VDM (our) CL CL CL CL

Synchronization

Denoising None 0(2),L=5 0(2),L=10 None SO(2),L=5 O0O(2),L=5 0(2),L=10
N SNR |
5000 0.12 99.9+0.0 99.8+0.1 99.9+0.0 76.6 85.7+10.1 84.2+9.6 78.5+14.2
0.04+0.0 0.06+0.02 0.04+0.0 — 0.52+40.27 0.50+0.24 0.67+0.35
2.42+0.12 3.31+0.63 2.4+40.03 8.0 7.6543.45 5.17+1.47 9.02+3.50
5000 0.05 98.7+0.0 99.0+0.1 99.0+0.1 67.14+13.2 59.4+11.5 76.4+2.6 69.2+3.3
0.10+0.0 0.09+0.01 0.09+0.0 0.93+0.32 1.14+0.32 0.70+0.08 0.91+0.07
3.51+0.06 3.47+0.06 3.56+0.0 6.65+1.49 8.2144.41 5.11+0.83 6.71+0.22

6 Conclusions and Discussion

In this work, we studied the symmetries of cryo-EM and found that the O(2) relative poses estimated
from the images are sufficient to solve the SO(3) poses synchronization task. With this insight,
we proposed a new method which can replace current VDM-based 2D classification methods with
limited changes to directly estimate poses rather than clustering and averaging images, while enjoying
the same noise robustness properties.
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