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Abstract
Imitation learning (IL) enables agents to acquire
skills directly from expert demonstrations, pro-
viding a compelling alternative to reinforcement
learning. However, prior online IL approaches
struggle with complex tasks characterized by high-
dimensional inputs and complex dynamics. In
this work, we propose a novel approach to on-
line imitation learning that leverages reward-free
world models. Our method learns environmental
dynamics entirely in latent spaces without recon-
struction, enabling efficient and accurate model-
ing. We adopt the inverse soft-Q learning objec-
tive, reformulating the optimization process in the
Q-policy space to mitigate the instability associ-
ated with traditional optimization in the reward-
policy space. By employing a learned latent dy-
namics model and planning for control, our ap-
proach consistently achieves stable, expert-level
performance in tasks with high-dimensional ob-
servation or action spaces and intricate dynam-
ics. We evaluate our method on a diverse set
of benchmarks, including DMControl, MyoSuite,
and ManiSkill2, demonstrating superior empirical
performance compared to existing approaches.

1. Introduction
Imitation learning (IL) has garnered considerable attention
due to its broad applications across various domains, such
as robotic manipulation (Zhu et al., 2023; Chi et al., 2023)
and autonomous driving (Hu et al., 2022; Zhou et al., 2021).
Unlike reinforcement learning, where agents learn through
reward signals, IL involves learning directly from expert
demonstrations. Recent advances in offline IL, including
Diffusion Policy (Chi et al., 2023) and Implicit BC (Flo-
rence et al., 2022), highlight the advantages of leveraging
large datasets in conjunction with relatively straightforward
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behavioral cloning (BC) methodologies. However, despite
its wide applicability, IL methods that do not incorporate on-
line interaction often suffer from poor generalization outside
the expert data distribution, especially when encountering
out-of-distribution states. Such limitations make these meth-
ods vulnerable to failure, as even minor perturbations in
state can lead to significant performance degradation. This
is often reflected in issues such as bias accumulation and
suboptimal results (Reddy et al., 2019). These challenges
stem from BC’s inability to fully capture the underlying
dynamics of the environment and its inherent lack of explo-
ration capabilities (Garg et al., 2021).

To address these shortcomings, methods like GAIL (Ho &
Ermon, 2016), SQIL (Reddy et al., 2019), IQ-Learn (Garg
et al., 2021), and CFIL (Freund et al., 2023) have introduced
value or reward estimation to facilitate a deeper understand-
ing of the environment, while leveraging online interactions
to enhance exploration. Nevertheless, these approaches con-
tinue to face substantial challenges, particularly when ap-
plied to tasks with high-dimensional observation and action
spaces or complex dynamics. Additionally, framing online
IL as a min-max optimization problem within the reward-
policy space, often inspired by inverse reinforcement learn-
ing (IRL) techniques, introduces instability during training
(Garg et al., 2021). Recent advancements in world models
have demonstrated exceptional performance across a wide
range of control tasks, underscoring their potential in com-
plex decision-making and planning scenarios (Hafner et al.,
2019a;b; 2020; 2023; Hansen et al., 2022; 2023). Specifi-
cally, world models offer advantages over model-free agents
in terms of sampling complexity and future planning capa-
bilities, resulting in superior performance on complex tasks
(Hansen et al., 2022; 2023; Hafner et al., 2019a). Notably,
decoder-free world models, which operate exclusively in la-
tent spaces without reconstruction, have proven to be highly
effective and efficient in modeling complex environment
dynamics (Hansen et al., 2022; 2023).

Motivated by these insights, we explore the application of
world models in the context of online imitation learning
without rewards, enabling IL agents to develop a deeper un-
derstanding of environmental dynamics and improve their
performance in tasks characterized by high-dimensional ob-
servations and complex dynamics. In this work, we present
a novel approach to online imitation learning that leverages
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the strengths of decoder-free world models, specifically
designed for complex tasks involving high-dimensional ob-
servations, intricate dynamics, and vision-based inputs. In
contrast to conventional latent world models, which rely
on reward and Q-function estimation, our approach com-
pletely eliminates the need for explicit reward modeling.
We propose a framework for reward-free world models
that redefines the optimization process within the Q-policy
space, addressing the instability associated with min-max
optimization in the reward-policy space. By utilizing an in-
verse soft-Q learning objective for the critic network (Garg
et al., 2021), our method derives rewards directly from Q-
values and the policy, effectively rendering the world model
reward-free. Moreover, by performing imitation learning
online, our model addresses key challenges in IL, such as
out-of-distribution errors and bias accumulation.

Through online training with finite-horizon planning based
on learned latent dynamics, our method demonstrates strong
performance in complex environments. We evaluate our ap-
proach across a diverse set of locomotion and manipulation
tasks, utilizing benchmarks from DMControl (Tunyasuvu-
nakool et al., 2020), MyoSuite (Caggiano et al., 2022), and
ManiSkill2 (Gu et al., 2023), and demonstrate superior em-
pirical performance compared to existing online imitation
learning methods.

Our contributions are as follows:

• We introduce a novel, robust methodology that lever-
ages world models for online imitation learning, ef-
fectively addressing the challenges posed by complex
robotics tasks.

• We propose an innovative gradient-free planning pro-
cess, operating without explicit reward modeling,
within the context of model predictive control.

• We showcase the model’s effectiveness in inverse rein-
forcement learning tasks by demonstrating a positive
correlation between decoded and ground-truth rewards.

2. Related Works
Our work builds upon literature in Imitation Learning (IL)
and Model-based Reinforcement Learning.

Imitation Learning Recent works regarding IL leveraged
deep neural architectures to achieve better performance.
Generative Adversarial Imitation Learning (GAIL) (Ho &
Ermon, 2016) formulated the reward learning as a min-max
problem similar to GAN (Goodfellow et al., 2014). Model-
based Adversarial Imitation Learning (MAIL) (Baram et al.,
2016) extended the GAIL approach to incorporate a for-
ward model trained by data-driven methodology. Inverse

Soft Q-Learning (Garg et al., 2021) reformulated the learn-
ing objective of GAIL and integrated their findings into
soft actor-critic (Haarnoja et al., 2018) and soft Q-learning
agents for imitation learning. CFIL (Freund et al., 2023) in-
troduced a coupled flow approach for reward generation and
policy learning using expert demonstrations. ValueDICE
(Kostrikov et al., 2019) proposed an off-policy imitation
learning approach by transforming the distribution ratio esti-
mation objective. (Das et al., 2021) proposed a model-based
inverse RL approach by predicting key points for imita-
tion learning tasks. SQIL (Reddy et al., 2019) proposed
an online imitation learning algorithm with soft Q func-
tions. Diffusion Policy (Chi et al., 2023) is a recent offline
IL method using a diffusion model for behavioral cloning.
Implicit BC (Florence et al., 2022) discovers that treating
supervised policy learning with an implicit model generally
improves the empirical performance for robot learning tasks.
Hybrid inverse reinforcement learning (Ren et al., 2024)
proposed a new methodology leveraging a mixture of online
and expert demonstrations for agent training, achieving ro-
bust performance in environments with stochasticity. Prior
works (Englert et al., 2013; Hu et al., 2022; Igl et al., 2022)
explored the potentials of model-based imitation learning
on real-world robotics control and autonomous driving. Ef-
ficientImitate (Yin et al., 2022) combined EfficientZero (Ye
et al., 2021) with adversarial imitation learning, achieving
excellent results in DMControl (Tassa et al., 2018) imitation
learning tasks. V-MAIL (Rafailov et al., 2021) introduced
a model-based approach for imitation learning using vari-
ational models. CMIL (Kolev et al., 2024) proposed an
imitation learning approach with conservative world models
for image-based manipulation tasks. Ditto (DeMoss et al.,
2023) developed an offline imitation learning approach with
Dreamer V2 (Hafner et al., 2020) and adversarial imitation
learning. DMIL (Zhang et al., 2023) utilized a discriminator
to simultaneously evaluate both the accuracy of the dynam-
ics and the suboptimality of model rollout data relative to
real expert demonstrations in the context of offline imitation
learning.

Model-based Reinforcement Learning Contemporary
model-based RL methods often learn a dynamics model for
future state prediction via data-driven approaches. PlaNet
(Hafner et al., 2019b) was introduced as a model-based
learning approach for partially observed MDPs by propos-
ing a recurrent state-space model (RSSM) and an evidence
lower-bound (ELBO) training objective. Dreamer algo-
rithm (Hafner et al., 2019a; 2020; 2023) is a model-based
reinforcement learning approach that uses a learned world
model to efficiently simulate future trajectories in a latent
space, allowing an agent to learn and plan effectively. TD-
MPC series (Hansen et al., 2022)(Hansen et al., 2023) learns
a scalable world model for model predictive control using
temporal difference learning objective.
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Our approach employs a model-based methodology to ad-
dress challenges in online imitation learning. By integrating
a data-driven approach for latent dynamics learning with
planning for control, the agent is able to effectively cap-
ture and leverage the underlying environment dynamics.
Empirical evaluations demonstrate that our model achieves
superior performance on complex online imitation learning
tasks compared to existing methods.

3. Preliminary
We model the decision-making process in the environment
as a Markov Decision Process (MDP), which can be defined
as a tuple ⟨S,A, p0,P, r, γ⟩. S and A represent state and
action space. p0 is the initial state distribution and P :
S × A → ∆S is the transition probability. r(s,a) ∈ R
is the reward function and R is the reward space. γ ∈
(0, 1) is the discount factor. We denote the expert state-
action distribution as ρE and the behavioral distribution
as ρπ. Similarly, we denote the expert policy as πE and
the behavioral policy as π. Π is the set of all stochastic
stationary policies that sample an action a ∈ A given a
state s ∈ S. Z is the space for the latent representation
of the original state observations, and Q is the space for
all possible Q functions. H(·) represents the entropy of a
distribution.

Maximum Entropy Inverse Reinforcement Learning
Inverse Reinforcement Learning (IRL) focuses on recov-
ering a specific reward function r(s, a) in the reward
space R given a certain amount of expert samples us-
ing expert policy πE . Maximum entropy IRL (Ziebart
et al., 2008) seeks to solve this problem by optimiz-
ing maxr∈Rminπ∈ΠEρE [r(s,a)]− (Eρπ [r(s,a)] +H(π)).
GAIL (Ho & Ermon, 2016) generalized the objective into a
form including an explicit reward mapping with a convex
regularizer ψ(r):

max
r∈R

min
π∈Π

EρE [r(s,a)]−Eρπ [r(s,a)]−H(π)−ψ(r) (1)

For a non-restrictive set of reward functions R = RS×A,
the objective can be reformulated into a minimization of the
statistical distance between distributions ρE and ρπ (Ho &
Ermon, 2016):

min
π

dψ(ρπ, ρE)−H(π) (2)

Inverse Soft-Q Learning Prior work (Garg et al., 2021)
introduced a bijection mapping T π : RS×A → RS×A

between Q space Q and reward space R, i.e., the inverse
Bellman operator:

(T πQ)(s,a) = Q(s,a)− γEs′∼P(·|s,a)V
π(s′) (3)

where V π(s) = Ea∼π(·|s)[Q(s,a) − log π(a|s)]. The re-
ward decoding is defined as r = T πQ. By applying the

operator T π over Eq.1, prior work reformulated the GAIL
training objective in Q-policy space (Garg et al., 2021):

J (π,Q) = E(s,a)∼ρE

[
Q(s,a)− γEs′∼P(·|s,a)V

π(s′)
]

− E(s,a)∼ρπ

[
V π(s)− γEs′∼P(·|s,a)V

π(s′)
]

− ψ(T πQ)

(4)

which is the inverse soft-Q objective for critic learning.
In this way, we can perform imitation learning by lever-
aging actor-critic architecture. The critic and policy can
be learned by finding the saddle point in a joint opti-
mization problem Q∗ = argmaxQ∈Q minπ∈Π J (π,Q) and
π∗ = argminπ∈Π maxQ∈Q J (π,Q). (Garg et al., 2021)
proved the uniqueness of the saddle point. For a fixed Q, the
optimization for policy has a closed-form solution, which is
the softmax policy:

πQ(a|s) =
expQ(s,a)∑
a expQ(s,a)

(5)

In the actor-critic setting, we can optimize the policy π using
maximum-entropy RL objective, which approximates πQ,
and learn critic using:

max
Q∈Q
J (π,Q)

= max
Q∈Q

[
E(s,a)∼ρE

[
ϕ(Q(s,a)− γEs′∼P(·|s,a)V

π(s′))
]

− E(s,a)∼ρπ

[
V π(s)− γEs′∼P(·|s,a)V

π(s′)
]]

(6)

where ϕ is a concave function. Specifically, if we leverage
χ2 regularization, we will have ϕ(x) = x − 1

4αx
2. The

scalar coefficient α controls the strength of χ2 regulariza-
tion in the inverse soft-Q objective. Intuitively, the additonal
regularization term penalizes the magnitude of the estimated
reward. Prior work (Al-Hafez et al., 2023) interpreted the
objective with this regularizer as minimizing the squared
Bellman error, establishing a connection between inverse
soft-Q learning and SQIL (Reddy et al., 2019). A detailed
empirical analysis on hyperparameter α is shown in Ap-
pendix E.3.

4. Methodology
In reinforcement learning, world models typically regress
explicit reward signals provided by the environment. In
imitation learning, prior approaches (Kolev et al., 2024;
DeMoss et al., 2023) aim to train a reward model through
adversarial objectives alongside a separate critic network
trained on temporal difference objectives. In contrast, we
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Figure 1. IQ-MPC We demonstrate the training workflow for IQ-MPC. The reward-free world model leverages both expert and behavioral
data for training, using objectives in Section 4.1. The policy prior from the world model guides the MPPI planning process along with
rewards decoded from Q estimations. The detailed planning process is revealed in Algorithm 1.

eliminate the need for a separate reward model by retrieving
rewards directly from the learned critic. To this end, we
propose a reward-free world model that learns exclusively
from reward-free expert demonstrations and environment
interactions, without training a dedicated reward model.
Furthermore, since our model can decode dense rewards
from the critic, it can solve inverse reinforcement learning
tasks using reward-free interactions and a limited set of
expert demonstrations that include only states and actions.

4.1. Learning Process of a Reward-free World Model

World models used in reinforcement learning settings often
contain a reward model R(z,a) that requires supervised
learning using explicit reward signals from the online en-
vironment interactions or the offline data. However, if our
learning objective is able to form a bijection between Q
space Q and reward spaceR, it would be natural to decode
the reward from the Q value instead of learning another sep-
arate mapping for the reward, which also enables the world
model to perform imitation learning with expert demonstra-
tions without explicit reward signal. An overview of our
proposed method is shown in Figure 1. The detailed train-
ing algorithm is shown in Algorithm 2. We also provide a
theoretical analysis of our training objective, as detailed in
Section 4.2 Appendix H.3.

Model Components We introduce our approach for im-
itation learning as Inverse Soft-Q Learning for Model
Predictive Control, or IQ-MPC as an abbreviation. Our
architecture consists of four components:

Encoder: z = h(s) (7)
Latent dynamics: z′ = d(z,a) (8)

Value function: q̂ = Q(z,a) (9)
Policy prior: â = π(z) (10)

where s and a are states and actions, z is latent representa-
tions. The policy prior π guides the model predictive plan-
ning process, along with rewards decoded from the value
function Q. We maintain two separate replay buffers BE
and Bπ for expert and behavioral data storage respectively.
Behavioral data are collected during the learning process.
For simplicity, we denote the sampling process from the
joint buffer as B = BE ∪ Bπ. We sample trajectories with
short horizons of length H from the replay buffers.

Model Learning We learn the encoder h, latent dynamics
d(z,a) and Q function Q(z,a) jointly by minimizing the
objective for prediction consistency and critic learning:

L =
H∑
t=0

λt

(
E(st,at,s′t)∼B∥zt+1 − sg(h(s′t))∥22

)
+ Liq

(11)
where sg is the stop gradient operator and Liq is the inverse
soft-Q critic objective, which is a modification for horizon
H and latent representation z from Eq.7 based on Eq.6:

Liq(Q, π)

=

H∑
t=0

λt

[
− E(st,at,s′t)∼BE

[
Q(zt,at)− γV̄ π(h(s′t))

]
+ Es0∼BE

[
(1− γ)V π(z0)

]
+ E(st,at,s′t)∼B

1

4α

[
Q(zt,at)− γV̄ π(h(s′t))

]2]
(12)
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Compared to Eq.6, the key difference is the second term of
the objective, which computes the original value difference
E(st,at,s′t)∼Bπ

[V π(zt)− γV π(z′t)] using only the represen-
tation of the initial state s0. This reformulation, derived in
Lemma H.3 (Appendix H.1), yields more stable Q estima-
tion, as confirmed by the ablation in Appendix E.3. We also
apply χ2 regularization, as noted in (Garg et al., 2021). We
leverage λ ∈ (0, 1] as a constant discounting weight over
the horizon, guaranteeing the influence to be smaller for
states and actions farther ahead. Note that λ here differs
from the environment discount factor γ. All value functions
in the objective are computed from Q and policy network
via V π(z) = Ea∼π(·|z)[Q(z,a)−β log π(a|z)], where β is
the entropy coefficient. We will further discuss the selection
of β in the policy learning part. Especially, V̄ π(h(s′)) is
the value function computed by the target Q network Q̄. z
is retrieved by rolling out dynamics model from the latent
representation of the first state:

zt+1 = d(zt,at), z0 = h(s0)

We update the Q, encoder, and dynamics network by mini-
mizing Eq.11 while keeping policy prior π fixed.

Policy Prior Learning We choose to learn the policy prior
network with the maximum entropy reinforcement learning.
We minimize the following maximum entropy RL objective
using data sampled from both the expert buffer and the
behavioral buffer:

Lπ =

H∑
t=0

λt

[
E(st,at)∼B

[
−Q(zt, π(zt))+β log(π(·|zt))

]]
(13)

β is an entropy coefficient which is a fixed scalar. (Hansen
et al., 2023) experimented on adaptive entropy coefficient
and observed no performance improvement on model pre-
dictive control compared to a fixed scalar. Therefore, we
also choose not to leverage a learnable β for simplicity. We
prove in Theorem H.4 that this policy update can achieve
π∗ = argmaxπ∈Π minQ∈Q Liq(Q, π) to find the saddle
point.

Balancing Critic and Policy Training We observe un-
stable training processes in some tasks due to the imbal-
ance between the critic and the policy. When the dis-
criminative power of the critic is too strong, the policy
prior π may fail to learn properly. In those cases the Q
value difference between expert batch and behavioral batch
E(s,a)(0:H)∼BE

Q(zt,at)−E(s,a)(0:H)∼Bπ
Q(zt,at) will not

converge. To mitigate this issue, we choose to use the
Wasserstein-1 metric for gradient penalty (Gulrajani et al.,
2017; Garg et al., 2021) in addition to the original inverse
soft-Q objective, enforcing Lipschitz condition for the gra-

Algorithm 1 IQ-MPC (inference)
Require: θ : learned network parameters

µ0, σ0: initial parameters for N
N,Nπ: number of sample/policy trajectories
st, H: current state, rollout horizon

1: Encode state zt ← hθ(st)
2: for each iteration j = 1..J do
3: Sample N trajectories of length H from

N (µj−1, (σj−1)2I)
4: Sample Nπ trajectories of length H using πθ, dθ

// Estimate trajectory returns ϕΓ using dθ, Qθ, πθ,
starting from zt and initialize ϕΓ = 0:

5: for all N +Nπ trajectories (at,at+1, . . . ,at+H) do
6: for step t = 0..H − 1 do
7: zt+1 ← dθ(zt,at) ◁ Latent transition
8: ât+1 ∼ πθ(·|zt+1)
9: Compute V π(zt+1) via Qθ(zt+1, ât+1) −

β log πθ(ât+1|zt+1)
10: r(zt,at) = Qθ(zt,at)− γV π(zt+1) ◁

Reward decoding
11: ϕΓ = ϕΓ + γt[r(zt,at)− β log πθ(at|zt)]
12: end for
13: ϕΓ = ϕΓ + γHV π(zH) ◁ Terminal value
14: end for
15: // Update parameters µ, σ for next iteration:
16: µj , σj ←MPPI update with ϕΓ.
17: end for
18: return a ∼ N (µJ , (σJ)2I)

dient:

Lpen =

H∑
t=0

λt

[
E(̂st,ât)∼B

(
∥∇Q(ẑt, ât)∥2 − 1

)2]
(14)

In Eq.14, ŝ and â are sampled from the straight line between
samples from expert buffer (s,a) ∼ BE and behavioral
buffer (s,a) ∼ Bπ by linear interpolation. ∇ is the gradient
with respect to the interpolated input ẑt and ât. By incorpo-
rating this additional objective, we can enforce unit gradient
norm over the straight lines between state-action distribu-
tion ρπ and ρE . We show the ablation study regarding this
regularization term in Appendix E.3.

4.2. Theoretical Analysis on the Learning Objective

In this section, we demonstrate theoretically that the learn-
ing objectives of IQ-MPC effectively minimize the value dif-
ference between the current policy and the expert, ensuring
that Q-value estimation can follow as the latent dynamics
model learns. We begin by utilizing the following lemma
established in (Kolev et al., 2024):

Lemma 4.1 (Bounded Suboptimality). Given an unknown
latent MDPM and our learned latent MDP M̂ with tran-
sition probabilities d and d̂ in the latent state space Z and
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action space A, and letting Rmax denote the maximum
reward of the unknown MDP, the difference between the
expected return of the current policy, ηπM, and that of the
expert policy, ηπE

M , is bounded by:

|ηπE

M − ηπM| ≤
2Rmax

1− γ
DTV (ρ

π
M̂, ρπE

M )︸ ︷︷ ︸
T1

+
γRmax

(1− γ)2
Eρπ

M̂

[
DTV (d(z

′|z,a), d̂(z′|z,a))
]

︸ ︷︷ ︸
T2

Our critic and policy objectives can be interpreted as a min-
max optimization of Eq.4. Moreover, this approach can be
viewed as minimizing a statistical distance with an entropy
term, corresponding to Eq.2. Thus, on one hand, our critic
and policy objectives effectively minimize T1 in the bound
provided in Lemma 4.1. On the other hand, optimizing
our consistency loss in Eq.11 is approximately minimizing
the second term T2 in the bound. Our training objective
ensures that as the dynamics model learns, it simultaneously
minimizes the upper bound of the deviation between the
expected return for current policy π and the expert expected
return. A more detailed analysis on T2 is given in Appendix
H.3.

4.3. Planning with Policy Prior

Similar to TD-MPC (Hansen et al., 2022) and TD-MPC2
(Hansen et al., 2023), we utilize the Model Predictive Con-
trol (MPC) framework for local trajectory optimization over
the latent representations and acquire control action by lever-
aging Model Predictive Path Integral (MPPI)(Williams et al.,
2015) with sampled action sequences (at,at+1, ...,at+H)
of length H . Instead of planning with explicit reward mod-
els like TD-MPC and TD-MPC2, we estimate the parame-
ters (µ∗, σ∗) using derivative-free optimization with reward
information decoded from the critic’s estimation:

µ∗, σ∗ = argmax
(µ,σ)

E
(at,...,at+H)∼N (µ,σ2)

[
γHV π(zt+H)

+

H−1∑
h=0

γh(r(zt+h,at+h)− β log π(at+h|zt+h))
]

(15)

where µ, σ ∈ RH×m,m = dimA. (zt, ..., zt+H) are
computed by unrolling with (at, ..,at+H) using dynamics
model dθ. The reward r(z,a) is computed by Q(z,a) −
γEz′∼d(·|z,a)V

π(z′). Eq.15 is solved by iteratively com-
puting soft expected return ϕΓ of sampled actions from
N (µ, σ2) and update µ, σ based on weighted average with
ϕΓ. We describe the detailed planning procedure in Al-
gorithm 1. Eq.15 is an estimation of the soft-Q learning

objective (Haarnoja et al., 2017) for RL with horizon H .
After iteration, we execute the first action sampled from the
normal distribution at ∼ N (µ∗

t , (σ
∗
t )

2I) in the environment
to collect a new trajectory for behavioral buffer Bπ .

5. Experiments
We conduct experiments for locomotion and manipulation
tasks to demonstrate the effectiveness of our approach. We
choose to leverage the online version of IQ-Learn+SAC
(referred to as IQL+SAC in the experiment plots) (Garg
et al., 2021), CFIL+SAC (Freund et al., 2023), and HyPE
(Ren et al., 2024) as our baselines for comparison stud-
ies. The results presented below for our IQ-MPC model
are obtained through planning. We provide an analysis of
the computational overhead of our model in Appendix F.
The empirical results regarding state-based and visual ex-
periments are shown in Section 5.1. We experiment on the
reward recovery capability of our IQ-MPC model, for which
we reveal the results in Appendix G. We conduct ablation
studies for our model, which are discussed in Section 5.2.
The details of the environments and tasks can be found in
Appendix D. We also analyze the training time and the ro-
bustness of our model under noisy environment dynamics.
The corresponding results are presented in Appendix F and
E.4.

5.1. Main Results

5.1.1. STATE-BASED EXPERIMENTS

Locomotion Tasks We benchmark our algorithm on DM-
Control (Tunyasuvunakool et al., 2020), evaluating tasks in
both low- and high-dimensional environments. Our method
outperforms baselines in performance and training stabil-
ity. We use 100 expert trajectories for low-dimensional
tasks (Hopper, Walker, Quadruped, Cheetah), 500 for Hu-
manoid, and 1000 for Dog (both high-dimensional). Each
trajectory contains 500 steps, sampled using trained TD-
MPC2 world models (Hansen et al., 2023). Performance
is averaged over 3 seeds per task. The results are demon-
strated in Figure 2. Our method is comparable to HyPE in
the Quadruped Run and Cheetah Run tasks, while outper-
forming all other baselines in the remaining tasks. We also
conducted high-dimensional experiments on various tasks
in the Dog environment, with results provided in Appendix
E.1.

Manipulation Tasks We consider manipulation tasks
with a dexterous hand from MyoSuite (Caggiano et al.,
2022) to show the capability and robustness of our IQ-MPC
model in high-dimensional and complex dynamics scenar-
ios. We leverage 100 expert trajectories with 100 steps
sampled from trained TD-MPC2 for each task. We evaluate
the episode reward and success rate of our model along with
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Figure 2. Locomotion Results Our method demonstrates much stabler performance near expert level compared to baseline methods. In
the plots, blue lines refers to the online version of IQL+SAC (Garg et al., 2021), orange lines refers to the HyPE method (Ren et al., 2024),
purple lines refers to the CFIL+SAC (Freund et al., 2023) baseline and red lines refers to our IQ-MPC model. The dotted green lines are
the mean episode reward for the expert trajectories used during training.

Figure 3. Manipulation Results in MyoSuite Our IQ-MPC shows stable and outperforming results in MyoSuite manipulation experiments
with dexterous hands. In the plots, the color settings are the same as those in Figure 2. In the Pen Twirl task, the CFIL+SAC agent is
unable to train after 20K time steps. Thus, we interpolate the rest of the time steps with a straight line in the plot.

IQ-Learn+SAC, HyPE, and CFIL+SAC. We show superior
empirical performance in three different tasks, including
object holding, pen twirling, and key turning. Regarding
the results for episode reward, we refer to Figure 3. Table
1 shows the success rate results. We take the mean for 3
seeds regarding the performance for each task. We have
conducted additional experiments on ManiSkill2 (Gu et al.,
2023), for which we refer to Appendix E.2.

5.1.2. VISUAL EXPERIMENTS

We further investigate the capability of handling visual tasks
for our IQ-MPC model. We conduct the experiments on
locomotion tasks in DMControl with visual observations.
We demonstrate that our IQ-MPC model can cope with vi-
sual modality inputs by only replacing the encoder with a

shallow convolution network and keeping the rest of the
model unchanged. We sample the expert data using trained
TD-MPC2 models with visual inputs. We take 100 expert
trajectories for each task. The expert trajectories contain
actions and RGB frame observations. We leverage a mod-
ification of IQL+SAC as our baseline. We add the same
convolutional encoder as our IQ-MPC for processing visual
inputs and keep the rest of the architecture the same. We
perform superior to the baseline model in a series of visual
experiments in the DMControl environment. We demon-
strate the results in Figure 4.

5.2. Ablation Studies

In this section, we will show the ablation studies of our
model, including the ablation over expert trajectory num-
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Method IQL+SAC CFIL+SAC HyPE IQ-MPC(Ours)

Key Turn 0.72±0.04 0.65±0.08 0.55 ± 0.09 0.87±0.03
Object Hold 0.00 ± 0.00 0.01±0.01 0.13 ± 0.10 0.96±0.03

Pen Twirl 0.00 ± 0.00 0.00±0.00 0.00 ± 0.00 0.73±0.05

Table 1. Manipulation Success Rate Results in MyoSuite We evaluate the success rate of IQ-MPC on the Key Turn, Object Hold, and
Pen Twirl tasks in MyoSuite. Our IQ-MPC demonstrates strength in handling complex manipulation tasks with dexterous hands and
musculoskeletal motor control. We show the results by averaging over 100 trajectories and evaluating over 3 random seeds.

Figure 4. Results for Visual Experiments Our IQ-MPC (red lines) shows stable and expert-level results in visual observation tasks. In
the plots, we denote the IQL+SAC with an additional convolutional encoder as IQL+SAC (Visual) (blue lines). Our model outperforms
IQL+SAC (Visual) in the Cheetah Run and Walker Run, and it has comparable performance in the Walker Walk task. The expert
trajectories used for training are sampled from TD-MPC2 trained on visual observations.

bers. Regarding the ablations for objective formulation,
gradient penalty selection, and hyperparameter α, we refer
to Appendix E.3.

We ablate over the expert trajectories used for IQ-MPC
training. We demonstrate our results with 100, 50, 10, and
5 expert trajectories in the Hopper Hop task and Object
Hold task. We show that our world model can still reach
expert-level performance with only a small amount of expert
demonstrations but with slower convergence. The instability
is observed with 5 expert trajectories in the Hopper Hop
task. We reveal the empirical results for this ablation in
Figure 5.

6. Conclusions and Broader Impact
We propose an online imitation learning approach that uti-
lizes reward-free world models to address tasks in complex
environments. By incorporating latent planning and dynam-
ics learning, our model can have a deeper understanding
of intricate environment dynamics. We demonstrate stable,
expert-level performance on challenging tasks, including
dexterous hand manipulation and high-dimensional locomo-
tion control. In terms of broader impact, our model holds
potential for real-world applications in manipulation and
locomotion, particularly for tasks that involve visual inputs
and complex environment dynamics.

Figure 5. Ablation on Expert Trajectory Numbers. Performance
of IQ-MPC with varying numbers of expert trajectories. Stable
expert-level performance is achieved with only 10 expert demon-
strations for Hopper Hop (top) and 5 for Object Hold (bottom).
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Hyperparameters and Architectural Details
This section will show the detailed hyperparameters and architectures used in our IQ-MPC model.

A.1. World Model Architecture

All of the components are built using MLPs with Layernorm (Ba, 2016) and Mish activation functions (Misra, 2019). We
leverage Dropout for Q networks. The amount of total learnable parameters for IQ-MPC is 4.3M. We depict the architecture
in a Pytorch-like notation:

Architecture: IQ-MPC(
(_encoder): ModuleDict(

(state): Sequential(
(0): NormedLinear(in_features=state_dim, out_features=256, bias=True, act=Mish)
(1): NormedLinear(in_features=256, out_features=512, bias=True, act=SimNorm)

)
)
(_dynamics): Sequential(

(0): NormedLinear(in_features=512+action_dim, out_features=512, bias=True, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): NormedLinear(in_features=512, out_features=512, bias=True, act=SimNorm)

)
(_pi): Sequential(

(0): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): Linear(in_features=512, out_features=2*action_dim, bias=True)

)
(_Qs): Vectorized ModuleList(

(0-4): 5 x Sequential(
(0): NormedLinear(in_features=512+action_dim, out_features=512, bias=True, dropout

=0.01, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): Linear(in_features=512, out_features=1, bias=True)

)
)
(_target_Qs): Vectorized ModuleList(

(0-4): 5 x Sequential(
(0): NormedLinear(in_features=512+action_dim, out_features=512, bias=True, dropout

=0.01, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): Linear(in_features=512, out_features=1, bias=True)

)
)

)
Learnable parameters: 4,274,259

The exact parameters above represent the situation when the state dimension is 91, and the action dimension is 39.
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Additionally, we also show the convolutional encoder used in our visual experiments:

(_encoder): ModuleDict(
(rgb): Sequential(

(0): ShiftAug()
(1): PixelPreprocess()
(2): Conv2d(9, 32, kernel_size=(7, 7), stride=(2, 2))
(3): ReLU(inplace=True)
(4): Conv2d(32, 32, kernel_size=(5, 5), stride=(2, 2))
(5): ReLU(inplace=True)
(6): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
(7): ReLU(inplace=True)
(8): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1))
(9): Flatten(start_dim=1, end_dim=-1)
(10): SimNorm(dim=8)

)
)

A.2. Hyperparameter Details

The detailed hyperparameters used in IQ-MPC are as follows:

• The batch size during training is 256.

• We balance each part of the loss by assigning weights. For inverse soft Q loss, we assign 0.1. For consistency loss, we
assign 20. For the policy and gradient penalty, we assign 1 as the weight.

• We leverage λ = 0.5 in a horizon.

• We apply the same heuristic discount calculation as TD-MPC2 (Hansen et al., 2023), using 5 as the denominator, with
a maximum discount of 0.995 and a minimum of 0.95.

• We iterate 6 times during MPPI planning.

• We utilize 512 samples as the batch size for planning.

• We select 64 samples via top-k selection during MPPI iteration.

• During planning, 24 of the trajectories are generated by the policy prior π, while normal distributions generate the rest.

• Planning horizon H = 3.

• The temperature coefficient is 0.5.

• We set the learning rate of the model to 3e− 4.

• The entropy coefficient β = 1e− 4.

• We found no significant improvement by adding the Wasserstein-1 gradient penalty (Eq.14) in locomotion tasks.
Therefore, we only apply gradient penalty to manipulation tasks.

• We use α = 0.5 for χ2 divergence ϕ(x) = x− 1
4αx

2.

• We use soft update coefficient τ = 0.01.

12
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B. Training Algorithm
For completeness, we show the pseudo-code for IQ-MPC training in Algorithm 2.

Algorithm 2 IQ-MPC (training)
Require: θ, θ−: randomly initialized network parameters

η, τ, λ,Bπ,BE : learning rate, soft update coefficient, horizon discount coefficient, behavioral buffer, expert buffer
for training steps do

// Collect episode with IQ-MPC from s0 ∼ p0:
for step t = 0...T do

Compute at with πθ(·|hθ(st)) using Algorithm 1 ◁ Planning with IQ-MPC
(s′t, rt) ∼ env.step(at)
Bπ ← Bπ ∪ (st,at, s

′
t) ◁ Add to behavioral buffer

st+1 ← s′t
end for
// Update reward-free world model using collected data in Bπ and BE:
for num updates per step do
(st,at, rt, s

′
t)0:H ∼ Bπ ∪ BE ◁ Combine behavioral and expert batch

z0 = hθ(s0) ◁ Encode first observation
// Unroll for horizon H
for t = 0...H do
zt+1 = dθ(zt,at)
q̂t = Q(zt,at)

end for
Compute critic and consistency loss L(z0:H , q̂0:H , h(s′0:H), λ) ◁ Equation 11
Compute policy prior loss Lπ(z0:H , λ) ◁ Equation 13
if use gradient penalty then

Compute gradient penalty Lpen(z0:H ,a0:H , λ) ◁ Equation 14
else
Lpen = 0

end if
θ ← θ − 1

H η∇θ(L+ Lπ + Lpen) ◁ Update online network
θ− ← (1− τ)θ− + τθ ◁ Update target network

end for
end for
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C. Task Visualizations
We visualize each task using the random initialization state of an episode. Regarding the locomotion tasks in DMControl,
we show them in Figure 6. Figure 7 shows the visualizations of manipulation tasks with dexterous hands in MyoSuite.

Figure 6. Locomotion Visualizations The visualizations for DMControl environments, including Hopper, Cheetah, Walker, Quadruped,
Humanoid, and Dog.

Figure 7. Manipulation Visualizations with Dexterous Hands The visualizations for MyoSuite tasks, including Key Turn, Object Hold,
and Pen Twirl.

Figure 8. Manipulation Visualizations with Robot Arms The visualizations for ManiSkill2 tasks, including Pick Cube and Lift Cube.

14



Reward-free World Models for Online Imitation Learning

D. Environment and Task Details
D.1. Locomotion Environments

We experiment on 6 locomotion environments in DMControl. The details of the corresponding environments are shown in
Table 2. Regarding the visual inverse RL tasks, we take RGB image observations with the shape of 64× 64× 9 for inputs.
Each observation consists of 3 RGB frames.

Environment Observation Dimension Action Dimension High-dimensional?

Hopper 15 4 No
Cheetah 17 6 No

Quadruped 78 12 No
Walker 24 6 No

Humanoid 67 24 Yes
Dog 223 38 Yes

Table 2. Environment Details for State-based Experiments in DMControl. We show the environment details for experiments on
DMControl with state-based observations. High-dimensional tasks have higher hard levels compared to normal tasks for imitation
learning.

D.2. Manipulation Environment

We experiment on 5 manipulation tasks in ManiSkill2 and MyoSuite. Among these tasks, 2 of them are in ManiSkill2, for
which we describe the task details in Table 3, and 3 of them are in MyoSuite, for which we describe the task details in Table
4.

Task Observation Dimension Action Dimension

Lift Cube 42 4
Pick Cube 51 4

Table 3. Task Details for Experiments in ManiSkill2. We show the environment details for experiments on ManiSkill2. The ManiSkill2
benchmark is built for large-scale robot learning and features extensive randomization and diverse task variations.

Task Observation Dimension Action Dimension

Object Hold 91 39
Pen Twirl 83 39
Key Turn 93 39

Table 4. Task Details for Experiments in MyoSuite. We show the environment details for experiments on MyoSuite. The MyoSuite
benchmark is designed for physiologically accurate, high-dimensional musculoskeletal motor control, featuring highly complex object
manipulation using a dexterous hand.
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E. Additional Experiments
E.1. Additional High-dimensional Locomotion Experiments

To show the robustness of our model in high-dimensional tasks, we conduct locomotion experiments on the Dog environment
with different tasks such as standing, trotting, and walking, in addition to the running task in Section 5.1.1. The dog
environment is a relatively complex environment due to its high-dimensional observation and action spaces. We leverage
500 expert trajectories sampled from trained TD-MPC2 for each experiment. We show the results in Figure 9.

Figure 9. Additional High-dimensional Locomotion Experiments Our IQ-MPC shows stable and expert-level performance on different
tasks in the Dog environment, which demonstrates our model’s capability in handling high-dimensional tasks. In the plots, the blue lines
and orange lines represent the results from IQL+SAC (Garg et al., 2021) and CFIL+SAC (Freund et al., 2023), respectively, while the red
lines represent the results from our IQ-MPC.

E.2. Additional Manipulation Experiments

We also evaluate our method on simpler manipulation tasks in ManiSkill2 (Gu et al., 2023). We show stable and comparable
results in the pick cube task and lift cube task. IQL+SAC (Garg et al., 2021) also performs relatively well in these simple
settings. Figure 10 shows the episode rewards results in ManiSkill2 tasks, and Table 5 demonstrates the success rate of each
method.

Figure 10. Manipulation Results in ManiSkill2 Our IQ-MPC shows stable and comparable results in ManiSkill2 manipulation experi-
ments. In the plots, the color settings are the same as those in Figure 9.

Method IQL+SAC CFIL+SAC IQ-MPC(Ours)

Pick Cube 0.61±0.13 0.00±0.00 0.79±0.05
Lift Cube 0.85 ± 0.04 0.01±0.01 0.89±0.02

Table 5. Manipulation Success Rate Results in ManiSkill2 We evaluate the success rate of IQ-MPC on pick and lift tasks in the
ManiSkill2 environment. We show outperforming empirical results compared to IQL+SAC, and CFIL+SAC. We show the results by
averaging over 100 trajectories and evaluating over 3 random seeds.
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E.3. Additional Ablation Studies

In this section, we demonstrate the results of ablating over objective formulation, gradient penalty, and hyperparameter α.

Objective Formulation We observe performance improvement using the reformulated objective Eq.12 as we mentioned in
the Model Learning part of Section 4.1. In details, we changed the value temporal difference term E(st,at,s′t)∼Bπ

[V π(zt)−
γV π(z′t)] into a form only containing value from initial distribution Es0∼BE

[(1 − γ)V π(z0)]. This technique is also
mentioned in the original IQ-Learn paper (Garg et al., 2021). We have given the theoretical proof for mathematical
equivalence in Lemma H.3. In this section, we provide the empirical analysis regarding the effectiveness of this technique
in the context of our IQ-MPC model. We observe stabler Q estimation leveraging this technique. Moreover, in this case,
the difference in Q estimation between the expert batch and the behavioral batch can converge more easily, especially for
high-dimensional cases like the Humanoid Walk and Dog Run task. The better convergence of Q estimation difference
shows that the Q function faces difficulty in distinguishing between expert and behavioral demonstrations, which implies
that the policy prior behaves similarly as expert demonstrations. The stable Q estimation results in a better learning behavior
for the latent dynamics model, which is observed by measuring the prediction consistency loss (The first term in Eq.11)
during training. The results in Humanoid Walk task are shown in Figure 11.

Figure 11. Ablation on Objective Formulation We show that the Q estimation and training dynamics are stabler by utilizing objective
with initial distribution compared to leveraging objective with temporal difference. Moreover, we obtain stable expert-level performance
leveraging the objective with the initial distribution. We depict the stability by showing plots regarding Q estimation and prediction
consistency. The red lines are the stabler results using the objective with initial distribution while orange lines are the results with temporal
difference objective. The ablation experiments are conducted on the Humanoid Walk task.
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Gradient Penalty We ablate over the Wasserstein-1 metric gradient penalty in Eq.14 with our experiments. This training
technique balances the discriminative power of the Q network to ensure stable policy learning. We show improvement in
training stability on the Pick Cube task in the ManiSkill2 environment. By leveraging gradient penalty, we observe stable
convergence regarding the difference in Q estimation between expert and behavioral batch. This behavior results in stabler
policy learning, especially in tasks with low dimensional state or action space, where expert and behavioral demonstrations
can be easily distinguished. The ablation results are shown in Figure 12 and Table 6.

Figure 12. Ablation on Gradient Penalty. We show the improvement by adopting the Wasserstein-1 gradient penalty by demonstrating
the effect over the convergence of Q-difference, which is the difference between Q estimation on expert and behavioral demonstrations.
The converging Q-difference implies stable policy learning and reasonable discriminative power of the Q network. We also demonstrate
the effectiveness of the gradient penalty by episode reward during training. The red lines represent results with gradient penalty while
orange lines represent results without it.

Gradient Penalty? Yes No

Success Rate 0.79±0.05 0.51±0.11

Table 6. Ablation on Gradient Penalty with Success Rate We evaluate the success rate of IQ-MPC with and without gradient penalty on
ManiSkill2 Pick Cube task. We show the results by averaging over 100 trajectories and evaluating over 3 random seeds.

Hyperparameter Selection We perform an ablation study on the selection of the hyperparameter α in Eq.12. The
hyperparameter α controls the strength of the χ2 regularization applied to the inverse soft-Q objective. Intuitively, the last
term in Eq.12 serves as a penalty on the magnitude of the estimated reward. Therefore, smaller values of α result in a larger
penalty on the estimated reward magnitude, which helps enforce training stability and prevents Q estimation from exploding.
In contrast, larger values of α encourage more aggressive estimation of the reward and Q value, increasing the chances of
training instability. We experiment with the effect of this hyperparameter in the Humanoid Walk task and conclude that
α = 0.5 is the optimal choice. We present our results in Figure 13.

E.4. Experiments on Noisy Environment Dynamics

In this section, we evaluate the robustness of our IQ-MPC model under noisy and stochastic environment dynamics.
HyPE (Ren et al., 2024) has demonstrated relatively robust performance when subjected to minor noise perturbations in
environment transitions. Although our model is primarily designed for fully deterministic settings, we observe that it exhibits
a degree of robustness when handling stochastic environment dynamics.

For our experiments, we adopt the same environment settings as HyPE (Ren et al., 2024), introducing a trembling noise
probability, ptremble, into the environment transitions. Specifically, we assess the impact of ptremble on our IQ-MPC model
in the Walker Run task. The results indicate that our model maintains certain robustness even in the presence of transition
noise. We present the results the Figure 14.
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Figure 13. Ablation on Hyperparameter Selection. In our ablation study, we found that larger values of α may lead to higher Q
estimations, resulting in suboptimal and unstable training behavior. Conversely, smaller values of α lead to lower Q estimations, which
correspond to stronger regularization and may also cause suboptimal performance.

Figure 14. Experiments on Noisy Environment Dynamics We evaluate our model’s performance on the Walker Run and Cheetah Run
task under different values of ptremble, where a larger ptremble indicates greater stochasticity in the environment dynamics. Specifically,
we experiment with ptremble = 0.01 and ptremble = 0.02, observing only slight performance degradation. This suggests that our model
exhibits a degree of robustness to noisy environment dynamics.

E.5. Additional Experiments with Few Expert Demonstrations on Visual Tasks

In this section, we demonstrate that our approach can also learn visual tasks using only 10 expert demonstrations. Results
with 10 demonstrations are shown in Figure 15. While the convergence is slower, successful learning is still achievable
under this low-data regime.

Figure 15. Additional Experiments with Few Expert Demonstrations on Visual Tasks We show that our IQ-MPC method can
successfully learn from only 10 expert demonstrations in DMControl visual tasks. We present results on the Walker Run, Cheetah Run,
and Walker Walk tasks, and include performance curves with 100 expert demonstrations as a reference.
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F. Training Time Evaluation
We evaluate the computational overhead of our approach in comparison to model-free baselines (IQL+SAC (Garg et al.,
2021), CFIL+SAC (Freund et al., 2023), HyPE (Ren et al., 2024)) and the model-based baseline (HyPER (Ren et al., 2024)).
Additionally, we assess the training time of IQ-MPC with model predictive control enabled and when interacting solely with
the policy prior. The experiments are conducted on the Humanoid Walk task, with training time reported in seconds. All
baselines are trained using a single RTX 2080 Ti GPU. The results are shown in Figure 16.

Figure 16. Computational Overhead We evaluate the computational cost during training of our model on the Humanoid task. Leveraging
a policy prior for direct interaction, instead of relying on MPC, accelerates the training process but may introduce greater instability. Our
model requires less computational time compared to HyPER, although its training remains slower than model-free baselines.

G. Reward Correlation Analysis
We evaluate the ability to recover rewards using a trained IQ-MPC model, which demonstrates our model’s capability of han-
dling inverse RL tasks. We observe a positive correlation between ground-truth rewards and our recovered rewards. We con-
duct this experiment on the DMControl Cheetah Run task and decode rewards via r(z,a) = Qθ(z,a)−γEz′∼dθ(·|z,a)V

π(z′).
We evaluate over 5 trajectories sampled from a trained IQ-MPC. The results are revealed in Figure 17.

We further analyze the correlation between the decoded rewards and ground-truth rewards in the Hopper Hop, Cheetah
Run, Quadruped Run, and Walker Run tasks. Specifically, we compute the Pearson correlation between the estimated and
ground-truth rewards in these settings, using IQL+SAC (Garg et al., 2021) as the comparison baseline. The results are
presented in Table 7.

In Figure 17, we observe that the variance of the estimated rewards is higher when the ground-truth reward is high. One
possible explanation for this high variance in the estimated expert rewards is as follows:

There are multiple equivalent reward formulations that result in optimal trajectories, and the maximum entropy objective
selects the one with the highest entropy. Our actor-critic architecture, optimized with the maximum entropy inverse RL
objective, leads to a more evenly distributed reward structure for expert demonstrations. Consequently, rewards closer to the
expert tend to exhibit higher variance, a phenomenon also observed in (Freund et al., 2023).

H. Additional Theoretical Supports
We first give a proper definition of distributions involving latent state representations:

Definition H.1. Define a latent state distribution p̃πt = h∗p
π
t as a pushforward distribution of original state distribution pπt

for policy π given an encoder mapping h : S → Z .

Definition H.2. Define a latent state-action distribution with policy π as ρ̃π on Z × A from an original state-action
distribution ρπ on S ×A with an encoder mapping h : S → Z .
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Figure 17. Reward Recovery. The IQ-MPC model successfully recovers rewards in the inverse RL setting, showing a positive correlation
with ground-truth rewards. This experiment is conducted on the Cheetah Run task with state-based observations from DMControl.

Method IQL+SAC IQ-MPC (Ours)

Hopper Hop 0.49 0.88
Cheetah Run 0.79 0.87
Walker Run 0.65 0.91

Quadruped Run 0.88 0.93

Table 7. Pearson Correlations of Reward Recovery We evaluate the Pearson correlation between the decoded rewards from IQL+SAC
and IQ-MPC in the Hopper Hop, Cheetah Run, Quadruped Run, and Walker Run tasks. Our results demonstrate that IQ-MPC achieves a
higher correlation with ground-truth rewards when trained on these tasks.

H.1. Objective Equivalence

In this section, we will provide proof for the reformulation of the second term in Eq.12 for completeness. We borrow the
proof from (Garg et al., 2021) and slightly modify it to fit our setting with latent representations instead of actual states. The
proof is demonstrated in Lemma H.3. In Eq.12, we use the mean over encoded latent representation batch sampled from the
expert buffer BE to approximate the mean over initial distribution p̃0 on latent representation.

Lemma H.3 (Objective Equivalence). Given a latent transition model d(z′|z,a), a latent state distribution p̃πt for time step
t and a latent state-action distribution ρ̃π , we have:

E(z,a)∼ρ̃π [V
π(z)− γEz′∼d(·|z,a)V

π(z′)] = (1− γ)Ez0∼p̃0 [V
π(z0)]

Proof. We decompose the left-hand side into a summation:

E(z,a)∼ρ̃π [V
π(z)− γEz′∼d(·|z,a)V

π(z′)]

= (1− γ)
∞∑
t=0

γtEz∼p̃πt ,a∼π(z)[V
π(z)− γEz′∼d(·|z,a)V

π(z′)]

= (1− γ)
∞∑
t=0

γtEz∼p̃πt [V
π(z)]− (1− γ)

∞∑
t=0

γt+1Ez∼p̃πt+1
[V π(z)]

= (1− γ)Ez0∼p̃0 [V
π(z0)]
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H.2. Policy Update Guarantee

We prove that policy update objective Eq.13 can search for the saddle point in optimization, which increases Liq(π,Q) with
Q fixed, following (Garg et al., 2021). For simplicity, we prove it with horizon H = 1, and it’s generalizable to objective
with discounted finite horizon.

Theorem H.4 (Policy Update). Updating the policy prior via maximum entropy objective increases Liq(π,Q) with Q fixed.
We assume entropy coefficient β = 1.

Proof. For a fixed Q:

V π(z) = Ea∼π(·|z)[Q(z,a)− log(π(a|z))]

= −DKL

(
π(·|z)

∥∥∥ expQ(z, ·)∑
a exp(Q(z,a))

)
+ log

(∑
a

exp(Q(z,a))
)

Policy update with maximum entropy objective is optimizing:

π∗ = argminπDKL

(
π(·|z)

∥∥∥ expQ(z, ·)∑
a exp(Q(z,a))

)
Assume that we have an updated policy π′ via gradient descent with learning rate ξ:

π′ = π − ξ ∇πDKL

(
π(·|z)

∥∥∥ expQ(z, ·)∑
a exp(Q(z,a))

)
We can obtain V π(z) < V π

′
(z). In regions where ϕ(x) is monotonically non-decreasing and Q is fixed, we can have

Liq(π′, Q) > Liq(π,Q).

H.3. Analysis on the Consistency Loss

We provide a more detailed analysis regarding the relationship between minimizing the consistency loss in Eq.11 and
minimizing T2 in the bound provided by Lemma 4.1.Specifically, our consistency loss directly minimizes the upper bound
of T2 under following assumptions:

Assumption H.5. The latent dynamics d : Z ×A → ∆Z is approximately a Gaussian distribution on latent space Z with
N (µd, σ

2
d).

Assumption H.6. The standard deviation of our learned latent dynamics σ̂d is close to the actual standard deviation σd.

Considering T2 in Lemma 4.1 and neglecting the constant coefficient, according to Pinsker Inequality, we have:

Eρπ
M̂

[
DTV (d(z

′|z,a), d̂(z′|z,a))
]
≤ Eρπ

M̂

√
1

2
DKL(d(z′|z,a), d̂(z′|z,a))

With Assumption H.5 and H.6, we can represent the KL divergence by mean and standard deviation of actual and learned
latent dynamics:

DKL(d(z
′|z,a), d̂(z′|z,a)) = log

σ̂d
σd

+
σ2
d + (µd − µ̂d)2

2σ̂2
d

− 1

2
≈ (µd − µ̂d)2

2σ2
d

Given a predicted latent state ẑ′ from the learned dynamics d̂ and an actual latent state z′ = h(s′) encoded from the next state
observation with unknown dynamics d, minimizing the L2 loss approximately minimizes the distance between the means of
the learned and actual latent dynamics distributions. This, in turn, minimizes the right-hand side of the Pinsker inequality
under our assumptions. Consequently, our consistency loss minimizes the statistical distance between the dynamics.

22



Reward-free World Models for Online Imitation Learning

I. Limitations and Future Work
One limitation of our method is its sensitivity to the size of the observation and action spaces. Empirically, we find that in
scenarios with low-dimensional observations or actions, the discriminator can become overly powerful, potentially leading
to training instability, as discussed in Section 4.1. While we address this issue by incorporating a Wasserstein-1 gradient
penalty, it may not be sufficient in all settings. Future work could explore more robust stabilization techniques tailored to
tasks with small observation or action space dimensions. Additionally, applying our method to real-world robotic tasks
would be a valuable direction to assess its practical effectiveness and generalization capabilities.
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