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ABSTRACT

Reliable evaluation of LLM-based agents is often confounded by artifacts that
conflate model errors with benchmark flaws, thereby misrepresenting the agents’
true capabilities. To address this, we present a component-wise taxonomy of com-
mon benchmark pitfalls spanning the user, environment, evaluation, and ground
truth elements of agent tasks. This analysis exposes pervasive issues such as incor-
rect ground-truth action sequences, ambiguous tool APIs, user simulation faults,
and brittle evaluation metrics. Guided by these insights, we develop AgentBench-
Cleaner, an automated pipeline in which the first two stages filter out flawed tasks:
first, rule-based detectors catch deterministic errors; second, an LLM-as-a-judge
identifies nuanced issues; and third, a secondary difficulty-based curation step en-
hances evaluation rigor. Applying the issue-filtering stages yields an issue-cleaned
benchmark that removes pervasive artifacts and supports more trustworthy evalu-
ation. The difficulty-based curation step produces a harder derivative, AgentHard-
Bench, with standardized evaluation protocols and explicit quality criteria. Across
diverse LLM agents, evaluations on AgentHard-Bench deliver more stable model
rankings, clearer performance separations, and improved benchmark diversity rel-
ative to the original benchmarks. We will release AgentHard-Bench, along with
the taxonomy and pipeline upon acceptance, to support robust, reproducible agent
evaluation.

1 INTRODUCTION

Agent benchmarks have become essential infrastructure for evaluating and deploying large language
model (LLM) agents in realistic settings. However, evaluating LLM agents remains challenging due
to the complexity of their interactive tasks. In particular, unlike static single-turn evaluations, agent
benchmarks require an LLM to engage in multi-turn interactions, invoke tools or APIs, and operate
in dynamic environments (Zhou et al., 2023} |Xie et al.,[2024;|Yao et al.,2024). These settings target
practically useful capabilities—especially function calling, which bridges an agent’s reasoning to
concrete actions. Small choices in tool schemas or argument semantics can produce large swings
in measured performance (Patil et al., 2025; |Wang et al., [2025} |Saha et al., 2024). Because these
benchmarks guide research and deployment decisions, they must deliver reliable and discriminative
assessments of agent capability.

High-quality agent benchmarks are difficult to design because tasks couple four components—user
simulation, environment, evaluation harness, and ground-truth action sequences. This coupling
introduces failure modes absent in static QA: brittle string-match evaluation, unrealistic user behav-
ior, schema ambiguities, environment drift, and leaky assumptions across components. Recent au-
dits have surfaced many of these pitfalls, including erroneous ground-truth trajectories, abstention-
friendly tasks (where doing nothing can pass), ambiguous APIs, and user-simulation failures (Zhu
et al.,|2025)). Such flaws permit shortcuts that inflate scores, degrade model separability, and desta-
bilize leaderboards.

A series of agent benchmarks have pushed beyond static QA toward interactive, tool-augmented
settings, including realistic web/OS environments (WebArena, OSWorld) and dialog-based tool use
(MINT, 7-Bench) (Zhou et al., 2023; Xie et al.| [2024}; Wang et al.| 2024} [Yao et al., 2024). Com-
plementary function-calling evaluations (BFCL, ComplexFuncBench) tighten API semantics and
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execution-based checking (Patil et al.| [2025; |Zhong et al.|[2025). In parallel, LLM-as-a-judge meth-
ods and mixture/filter pipelines scale judgments and stabilize rankings (e.g., MT-Bench/Arena, Mix-
Eval, SMART) and offer checklists and auto-curation workflows (ABC, Arena-Hard) (Zheng et al.,
2023 Ni et al.|[2024; |Gupta et al.,[2025;|Zhu et al.| 2025} Li et al.| 2025a)). Yet these efforts emphasize
environment realism, API strictness, or rank stability in isolation, and stopping short of a unified,
component-wise diagnosis of errors (User, Environment, Evaluation, Ground Truth) and an auto-
mated issue-focused per-task filtering mechanism. We provide that missing layer: a fine-grained
taxonomy of agent-benchmark issues and AgentBenchCleaner, which encodes the taxonomy into
scalable detectors to filter issue-bearing tasks and yields an issue-cleaned benchmark that improves
evaluation reliability. A secondary difficulty-based curation further produces AgentHard-Bench,
a compact yet challenging suite with higher model separability and more stable rankings. In this
work, our primary focus is the taxonomy and the issue-filtering pipeline that removes systematic
benchmark artifacts; the harder AgentHard-Bench variant arises from a secondary difficulty-based
curation. Our main contributions are summarized as follows:

* Taxonomy of Agent Benchmark Issues: We present a systematic, component-wise tax-
onomy of fundamental issues in LLM agent benchmarks, derived from expert analysis of
representative diverse benchmarks. This taxonomy reveals common failure modes (e.g.,
function-call ambiguities, brittle evaluations, unrealistic user simulations) and provides a
blueprint for diagnosing and avoiding such pitfalls.

* Automated Benchmark Cleaning Pipeline: We develop AgentBenchCleaner, an auto-
mated filtering pipeline that leverages the above taxonomy to filter out flawed tasks. It
combines rule-based issue detectors with LLM-as-a-judge evaluations (augmented by se-
lective human review) to scalably remove problematic benchmark items, constituting the
core of our issue-filtering pipeline and greatly improving evaluation robustness.

* High-Quality Benchmark Suite: We develop an issue-cleaned benchmark composed
of cleaned tasks. A secondary difficulty-based curation step yields AgentHard-Bench, a
consolidated and more challenging variant that provides clearer downstream evaluation—
evidenced by higher model separability and more stable model rankings compared to the
existing benchmarks. Hence, AgentHard-Bench will enable clearer comparison of LLM
agent capabilities and promotes more trustworthy evaluation.

2 RELATED WORKS

Agent Evaluation Benchmarks. Early LLM-agent benchmarks move beyond static QA to inter-
active, multi-turn settings with tool use and dynamic environments (Zhou et al., 2023} Xie et al.,
2024; 'Wang et al., 2024} Yao et al., 2024). WebArena and OSWorld test agents on realistic web and
OS tasks with automated correctness checks, while suites like MINT and 7-Bench simulate dialog-
based tool use in closed interaction loops. Specialized benchmarks expand coverage: ACEBench
categorizes tool-use into basic, ambiguous, and multi-agent dialogue scenarios (Chen et al., |[2025),
and AgentBench spans domains from web navigation to code editing (Liu et al.,[2023)). These efforts
advance realism and breadth, but their tightly coupled components expose reliability flaws—e.g., in-
consistent user simulations and overly lenient success metrics (7-Bench even counted empty outputs
as “successful” (Zhu et al.;|2025))). These highlight the need for a more structured evaluation design.

Function-Calling Evaluation and Tool Typle 1: Summary of key design features of

Use. Tool APIs are central to agent be- jx widely used agent benchmarks.
havior, motivating benchmarks that test

funCtiOl’l Callil’lg BFCL evaluates cor Benchmark  Capacity User Environment  Evaluation
rectness across diverse schemas (PythOIl, ACEBench Diverse tool use Ilj;ue;\:l/[eﬁned, Stateful ;Ii'gzll-sctz:tlé
JavaScript, SQL, REST) and patterns (se- LM
quential, parallel), executing calls to ver- ~ BFCLV3  Multi-step, Predefined  Stateful Tool-call
ify results (Patil et al, [2025), while CFB Multi-turm
targets long—horizon tOOl use Wlth multi— CFB Complex tool call Predefined Stateless Tool-call
step calls over 128K-token contexts (Zhong| ~ "o Polieviolloving - LIM St e
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following but assume error-free tasks and dual-control
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ground-truth trajectories. In practice,
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schema ambiguities and flawed “expected” calls often mislead models. We address this by filter-
ing such tasks to ensure evaluation reflects execution semantics.

Benchmark Filtering Pipelines. Another line of work improves benchmarks by mixing datasets
and filtering noise or overly easy items. MixEval combines existing tasks (including user queries)
to yield stable rankings aligned with human-driven Arena results (N1 et al., 2024), while SMART
filtering removes easy or contaminated items—shrinking datasets by up to about 70% yet improv-
ing correlation with human judgments (Gupta et al.| [2025). ABC provides a high-level checklist
for identifying conceptual flaws in benchmark design (Zhu et al., [2025). Its criteria (e.g., verifying
that a task avoids random-guess shortcuts) are intended for human auditors and are not directly au-
tomatable at task granularity. In contrast, our taxonomy is component-aligned and task-level: each
issue type corresponds to a concrete, operationalizable failure mode in the User, Environment, Eval-
vation System, or Ground Truth components. This enables scalable automated detection of flawed
tasks rather than conceptual, design-level auditing. Thus, ABC and our approach are complemen-
tary: ABC supports human-oriented benchmark review, whereas our taxonomy is designed for au-
tomated issue filtering. Our work fills the remaining gap by providing a unified, fine-grained taxon-
omy of structural agent-task issues and operationalizing it into a two-stage automated issue-filtering
pipeline. A lightweight, optional difficulty-based curation step then produces a harder variant for
frontier-model stress testing.

3 SYSTEMATIC ANALYSIS OF AGENT BENCHMARK ISSUES

3.1 OVERVIEW OF AGENT BENCHMARKS

User Tool Calls We analyze six widely used LLM-agent
a——— S —— v benchmarks that span diverse settings and
S T Instruetion ———— Tool Calls f:%f’,‘,‘,’[’ff‘,’,‘,‘f“‘ evaluation styles (see Table [T): BFCL

R EDhgentModel [ rca | 5 e | 3 (Patil et al} 2025), ACEBench (Chen

Predefined Prompt | MEJ et al., 2025)), DrafterBench (Ll et all

= Evaluation 2025c), 7-Bench (Yao et all [2024),

GT"’:'::'TM" 72-Bench (Barres et all [2025), and

i CFB (Zhong et all P025). They dif-

fer along four structural components that

together define an agent evaluation set-

Figure 1: Illustrating generalized components of agen- ting (see Figure[I): User (e.g., predefined

tic Al benchmarks and their interactions. vs. LLM-simulated, single vs. multi-turn),

Environment (e.g., stateless vs. stateful;

tool/API availability and semantics), Evaluation (e.g., final-state checks, tool-call matching, LLM-

based judging), and Ground Truth (e.g., full trajectories vs. milestone steps; policy constraints).

This four-component decomposition exposes failure modes that static QA does not encounter and
motivates a systematic taxonomy.

System

and/or
Final State / Substring

3.2 COMPONENT-ALIGNED ISSUE TAXONOMY

We characterize and categorize recurrent benchmark issues by the component in which they origi-
nate, as shown in Table E} Such a component-wise view turns scattered anecdotes into actionable
categories and directly informs the modular detectors used in our pipeline (see Sec. ).

User-related issues. User-side issues often stem from un-
derspecified prompts that force agents to produce a sin-
gle “correct” response despite open-ended instructions (e.g.,

Table 2: A concrete example: issue
breakdown for 7-Bench.

some ACEBENCH and CFB tasks). In settings with LLM- ~ Component Share (%)
simulated users (e.g., T-Bench and 72-Bench) (Yao et all User 21.0
2024; Barres et al.l[2025), we observe role confusion where  Epvironment 30.6
the user model produces assistant-like confirmations (e.g.,  Evaluation System 22.6
“your reservation has been canceled”), corrupting dialogue  Ground Truth 258

flow and making agent behavior hard to judge.

Environment-related issues. These arise when the ac-
tions available to the agent or the feedback it receives are inaccurate, misleading, or insufficient.
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Table 3: A summary of the identified issue taxonomy of agent benchmarks.

Benchmark Issue Category Description Affected Bench-
Component marks
User Ambiguous The predefined user prompt is underspecified and allows multiple ~ ACEBench,
instruction interpretations while the benchmark expects one specific task com-  CFB
pletion trajectory.
User role confusion The user simulator sends messages or behaves like an assistant ~ 7-Bench,
rather than a user. 72-Bench
Incorrect tool-call A tool returns inaccurate or irrelevant results that prevent the agent ~ CFB,  7-Bench,
Envi . responses from completing the task correctly. 72-Bench
NVII(
Insufficient toolset The environment does not provide the necessary tools for the agent ~ ACEBench,
to fulfill the user’s request. BFCL V3
Misleading tool Tool names or descriptions misrepresent their actual behavior. ACEBench,
design 7-Bench
Incorrect The system prompt itself contains errors or misleading examples  DrafterBench
system prompt that guide the agent toward invalid calls.
Too lenient Evaluation criteria allow trivial or incomplete solutions to pass. T-Bench

Evaluation System

Too strict

Evaluation criteria unfairly penalize semantically correct answers
for minor deviations.

ACEBench, CFB

Ground Truth

Malformed tool calls

Ground-truth calls violate the function schema by using wrong
types, invalid values, or missing arguments.

ACEBench,
BFCL V3, CFB

Incorrect tool calls

Ground-truth calls select the wrong function or parameters, con-

ACEBench, CFB,

BFCL V3, -
Bench, 72-Bench

tradicting the user’s request or context.

Redundant/ungrounded Ground-truth call sequences contain tool calls that are unnecessary ~ CFB

tool calls or ungrounded by the context, causing unfair evaluation.

(1) Incorrect tool-call responses provide wrong or irrelevant results even for correct queries, block-
ing task completion (e.g., CFB, 7-Bench, and 72-Bench). (ii) Insufficient toolsets omit necessary
tools, rendering tasks unsolvable by construction (e.g., ACEBENCH and BFCLV3). (iii) Mislead-
ing tool design (names/descriptions that contradict actual behavior) steers agents toward suboptimal
functions (e.g., ACEBENCH and 7-Bench). (iv) Incorrect system prompts can hardwire invalid
behavior—for example, a prompt instructing agents to call Python methods without parentheses
(DRAFTERBENCH) produces systematically invalid calls.

Evaluation-System Issues. Evaluation criteria can be miscalibrated. Overly lenient scoring allows
agents to exploit loopholes — for example, about 38% of T-Bench tasks pass if the database remains
unchanged, enabling a “do nothing” strategy (Zhu et al.,|2025)). Conversely, overly strict criteria can
reject semantically correct outputs due to brittle exact-match requirements.

Ground-truth issues. Errors in the benchmark’s answer key are especially harmful because they
redefine correctness. We observe: (i) Malformed tool calls in the reference trajectories that vio-
late schemas (wrong types/enums, missing required arguments), penalizing agents that adhere to
the APL. (ii) Incorrect function or parameters in ground truth that contradict user intent or policy
(canceling a non-cancelable item), forcing agents to mimic mistakes to receive credit. (iii) Redun-
dant or ungrounded steps that add unnecessary actions; efficient solutions are marked wrong for not
reproducing superfluous calls.

Discussion. The aforementioned issues arise across all four components rather than being con-
centrated in one place. For example, in 7-Bench (see Table , the shares are: User - 21.0%,
Environment - 30.6%, Evaluation - 22.6%, and Ground Truth - 25.8%. This spread motivates a
component-wise design of detectors; in Sec. 4] we operationalize the taxonomy into modular rules
and LLM-judge checks in our AgentBenchCleaner.

4  FRrROM TAXONOMY TO AUTOMATED FILTERING

4.1 OVERVIEW

Our issue taxonomy provides a principled framework for identifying and categorizing recurring
issues in agent benchmarks. It reveals that many flaws are not one-off quirks of specific tasks,
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Figure 2: Overview of the end-to-end process of utilizing issue taxonomy, AgentBenchCleaner
pipeline, and the final cleaned output AgentHard-Bench

but stem from systematic patterns across benchmark components and their interactions. This insight
underpins a filtering approach that avoids ad hoc fixes and instead generalizes across diverse settings.

While one could theoretically resolve issues by manually annotating each task according to the
taxonomy, such an expert-driven process would be prohibitively costly and unscalable. To address
this, we develop AgentBenchCleaner, an automated multi-stage pipeline that operationalizes the
taxonomy into a systematic and scalable method for pruning flawed tasks as illustrated in Figure[2]
The taxonomy’s categories serve as actionable criteria that we instantiate into filtering mechanisms,
effectively extending expert judgment across large and evolving benchmark suites. In the following,
we describe the pipeline’s three stages, which progressively filter out problematic tasks and refine
the benchmark. Stages 1 and 2 perform taxonomy-guided issue filtering, which is the core of our
cleaning pipeline.

4.2 THE AGENTBENCHCLEANER PIPELINE

Our pipeline consists of three sequential stages. These stages work in concert to realize taxonomy-
guided cleaning: a rule-based filter, an LLM-as-a-judge filter, and a final quality filter.

Stage 1: Rule-based Issue Filtering. The first stage targets issues that can be detected through
explicit patterns or deterministic criteria. Serving as a fast first-pass, it removes tasks with obvious
flaws and thus reduces the burden on subsequent stages. We derive a set of filtering rules for this
stage directly from the taxonomy, focusing on categories with clear, unambiguous signals. For
example, a task with a ground-truth function-call sequence that contradicts its specification can
be automatically flagged, as can tasks with ambiguous API schemas (e.g., missing or conflicting
parameter definitions). By enforcing these rules, we eliminate easily detectable defects upfront,
allowing later stages to concentrate on subtler, context-dependent issues.

Stage 2: LLM-as-a-Judge Issue Filtering. The second stage addresses more nuanced issues that
require semantic understanding and cannot be caught by simple rules. Here, we leverage LLMs as
judges, guided by the taxonomy to evaluate each task for complex flaws. We craft prompts that
instruct an LLLM to check for specific issue categories in the context of the task, providing relevant
details such as the ground-truth action sequence, tool/API definitions, and any user simulator behav-
ior. Each prompt follows a general template (see Appendix [A.4) informed by the taxonomy but is
tailored to the benchmark and issue at hand. The taxonomy serves as a flexible guideline rather than
a rigid script: it ensures systematic coverage of known issue types, while the prompting framework
remains modular and extensible to new issues as they emerge. This LLM-as-a-judge stage effec-
tively scales expert assessment and, together with Stage 1, forms the backbone of our issue-filtering
pipeline allowing subtle flaws to be identified at scale that would be impractical to enumerate with
hard-coded rules.

Stage 3: Difficulty-based Filtering. The final stage performs a secondary, difficulty-based cura-
tion of the benchmark to enhance its evaluative usefulness after obvious issues have been removed.
Inspired by recent mixture-and-filter pipelines in the literature (Gupta et al.,2025), we apply a sim-
ple heuristic: filtering out tasks that nearly all models can solve. Removing these overly easy tasks
prevents benchmark saturation and ensures that the remaining benchmark remains challenging, in-
formative, and better suited for evaluating model capabilities.
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4.3 AGENTHARD-BENCH

Applying the issue-filtering stages to the six representative benchmarks introduced in Sec. [3|yields
an issue-cleaned benchmark: a curated collection of agent tasks that have been rigorously cleaned
according to the taxonomy. Applying the secondary quality-filtering step then produces AgentHard-
Bench, a harder derivative of this suite. This issue-cleaned benchmark serves as a high-quality
benchmark for evaluating LLM agents, free from the most prominent pitfalls identified by our taxon-
omy. In Sec. 5] we report statistics on how many tasks are removed and demonstrate improvements
in key metrics (e.g., increased model separability and diversity), with the harder AgentHard-Bench
variant showing clearer comparative signals across models. We will release both the issue-cleaned
benchmark and AgentHard-Bench to facilitate more reliable and informative agent evaluation, pro-
viding the community with a foundation for more trustworthy comparisons and future benchmark
development.

5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENTAL SETUP

Evaluation metrics. To validate the effectiveness of the AgentBenchCleaner pipeline, we conduct
experiments focusing on two objectives: (1) measuring human alignment to assess the accuracy of
issue detection, and (2) quantifying improvements in benchmark quality metrics such as separability,
diversity, and compression rate. For human alignment, we adopt two complementary protocols to
measure consistency with expert judgments:

* Balanced subset validation: human experts annotate 10% of tasks (with a minimum of 30
tasks) using controlled sampling to construct a balanced evaluation set with a 50:50 ratio of
issue and non-issue tasks. This approach ensures sufficient representation of both classes
and enables reliable precision and recall estimation for the LLM-as-a-judge filtering stage.

* Post-hoc validation on the full benchmark: after running the full pipeline, human experts
manually verify all tasks identified as issues by the pipeline across the entire benchmark to
measure false positives and true positives at scale.

Rule-based filtering is deterministic by construction and thus achieves perfect alignment. Thus,
human validation primarily targets the LLM-as-a-judge filtering stage.

For benchmark quality, we evaluate three key metrics: separability, diversity, and compression. Sep-
arability is quantified using standard metrics such as model agreement rates (Gupta et al.,|2025)) and
separability with confidence (Li et al.,|2025b)). To fairly contextualize separability with confidence
(e.g., CI non-overlap), we compare it against a baseline obtained by randomly sampling tasks of the
same size. Diversity is measured through embedding-based distance metrics, where we embed task
prompts using the Qwen3-Embedding-8B model and compute pairwise cosine distances. Compres-
sion is defined as the percentage reduction in task count after filtering, reflecting the extent of flawed
or saturated task removal.

Implementation details. We use Gemini-2.5-pro-thinking (Googlel [2025) as the default LLM-as-
a-judge model, chosen for its strong reasoning capabilities and robustness in structured evaluation
tasks. Prompt templates for this stage are provided in Appendix [A.4] The rule-based filtering stage
is validated automatically using predefined criteria derived from the issue taxonomy. We constructed
a leaderboard and evaluated 16 LLMs on the six benchmarks, including a mix of proprietary and
open-source systems that are representative of diverse model families as reported in Table 3}

5.2 MAIN RESULTS: AGENTBENCHCLEANER VALIDATION

We report results validating the effectiveness of the AgentBenchCleaner across six representative
agent benchmarks. The results focus on evaluating the pipeline’s main motivation of scaling human
efforts in issue detection, with additional analyses examining how the secondary difficulty-based
curation stage improves downstream benchmark utility. To this end, we present results on two
primary aspects: human alignment and quality metric improvement of AgentBenchCleaner.
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Table 4: Human alignment and benchmark quality metrics before and after applying the Agent-
BenchCleaner pipeline.

Human Alignment Separability
Benchmark Precision Recall F1-Score Model agreement (,L)] CI non-overlap (‘[‘)2 Diversity (']‘)3 Compression ratio
ACEBench 0.846 0.917 0.880 0.735 (-0.138) 0.236 (+0.181) 0.506 (+0.013) 68.0%
BFCL V3 0.805 0.805 0.805 0.620 (-0.034) 0.817 (+0.025) 0.332 (+0.001) 23.1%
CFB 0.875 0.840 0.857 0.572 (-0.040) 0.825 (+0.025) 0.492 (-0.005) 23.4%
T-Bench 0.786  0.733  0.759 0.617 (-0.040) 0.467 (+0.059) 0.157 (-0.043) 33.3%
72-Bench 0.867 0.867 0.867 0.658 (-0.016) 0.592 (+0.050) 0.235 (-0.015) 39.6%
DrafterBench! - - - 0.791 (-0.021) 0.642 (+0.094) 0.278 (-0.014) 82.9%

Notes.  Values in parentheses indicate the difference between before and after applying AgentBenchCleaner. ' DrafterBench: all issues are
detected by rule-based filtering. 2 Model agreement: change relative to the initial value. > C1 non-overlap: change relative to the randomly
sampled baseline. 4 Diversity: change relative to the initial value.

Rule-based (TP) [ LLM Judge (TP, pipeline-identified)
LLM Judge (TP, human-identified) LLM Judge (FP)

.
39
+106) H121
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ACEBench  BFCLV3 CFB t-Bench  t>-Bench DrafterBench Initial (ACEBench)
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Figure 3: Post-hoc breakdown of tasks flagged  Figure 4: Improved model agreement for
as issues by the AgentBenchCleaner pipeline. ACEBench before and after applying Agent-
BenchCleaner.

5.2.1 HUMAN ALIGNMENT OF AGENTBENCHCLEANER

We first evaluate the pipeline’s alignment with human expert judgments using the balanced sub-
set validation. Table E| reports precision, recall, and F1 scores across all benchmarks, excluding
DrafterBench where all issues are detected by rule-based filtering. The results show consistently
strong alignment, with F1 scores ranging from 0.759 to 0.880, indicating that the LLM-as-a-judge
filtering stage effectively captures nuanced issues identified by experts.

To assess scalability beyond the sampled subset, we further conduct post-hoc validation on the
full benchmarks. Figure [3] presents the manual verification results against the tasks flagged by the
pipeline. The results indicate that the pipeline maintains high accuracy at scale, with end-to-end
accuracy at least about 77 %. Moreover, the pipeline identifies a substantial number of previously
undetected issues, with up to 121 newly discovered cases in CFB. These findings confirm that Agent-
BenchCleaner not only aligns closely with human judgments but also generalizes beyond the labeled
subset, effectively scaling expert-level evaluation to large benchmarks.

5.2.2 BENCHMARK QUALITY IMPROVEMENTS

We next evaluate benchmark quality before and after applying the complete AgentBenchCleaner
pipeline, including the secondary difficulty-based curation stage. As shown in Table [] the full
pipeline consistently improves benchmark quality across all key metrics. Separability shows no-
table gains, with model agreement rates decreasing by an average of 0.0482 and confidence interval
(CI) non-overlap increasing by 0.072, indicating clearer differentiation between model capabilities.
As illustrated in Figure[d] a heatmap visualization further highlights this improvement, showing re-
duced agreement among models and sharper distinctions in their performance. The pipeline does
not substantially reduce diversity, as the embedding distance remains largely stable, showing that
the process effectively preserves a broad range of task types. Finally, the full pipeline yields an aver-
age compression ratio of 45.0% across benchmarks, reflecting a substantial reduction in task count
while retaining challenging and informative tasks. Together, these results demonstrate that Agent-
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Table 5: Performances on 7-Bench across the initial dataset and the versions after issue filtering and
after the full pipeline (AgentHard-Bench). Parentheses show rankings relative to the initial dataset.
Cells highlighted in indicate models with ranking changes at each step.

Num. | Model Name Initial Issue-Filtered AgentHard-Bench

(T-Bench)

1 0O3-high 0.685 (1) 0.711 (2) 0.652 (2)
2 Claude-4-opus-thinking-off 0.667 (2) 0.719 (1) 0.697 (1)
3 Claude-4-sonnet-thinking-on-10k 0.667 (3) 0.686 (3) 0.629 (4)
4 | GPT-4.1 0.642 (4) 0.636 (7) 0.573 (7)
5 | O4-mini-high 0.636 (5) 0.645 (6) 0.596 (6)
6 | DeepSeek-V3.1-thinking-off 0.624 (6) 0.669 (4) 0.618 (5)
7 | Kimi-K2-Instruct 0.624 (7) 0.669 (5) 0.640 (3)
8 | GPT-40-20240806 0.594 (8) 0.603 (9) 0.573 (8)
9 Claude-4-sonnet-thinking-off 0.588 (9) 0.579 (10) 0.528 (11)
10 | DeepSeek-V3-0324 0.582 (10) 0.620 (8) 0.551 (9)
11 Qwen3-235B-A22B-Thinking-2507-FP8 0.558 (11) 0.562 (11) 0.539 (10)
12 | GPT-4.1-mini 0.479 (12) 0.512 (12) 0.461 (12)
13 | Qwen3-235B-A22B-FP8 0.455 (13) 0.471 (13) 0.449 (13)
14 | GPT-40-mini 0.436 (14) 0.463 (14) 0.382 (15)
15 Qwen3-235B-A22B-Instruct-2507-FP8 0.406 (15) 0.430 (15) 0.404 (14)
16 GPT-4.1-nano 0.194 (16) 0.174 (16) 0.146 (16)

BenchCleaner not only scales issue detection but also produces a harder derivative of benchmarks
that offers clearer comparative signals, maintains diversity, and efficient for evaluating LLM agents.

5.2.3 PRACTICAL IMPACT: LEADERBOARD SHIFTS

To further demonstrate the practical impact of the AgentBenchCleaner pipeline, we analyze how
model leaderboards and performance gaps change before and after filtering. Reliable benchmarks
should produce stable rankings that accurately reflect model capabilities while maintaining suffi-
ciently large performance gaps to ensure meaningful differentiation between models. We therefore
examine how filtering affects both leaderboard positions and performance disparities across LLMs.
In particular, we investigate how removing benchmark issues influences ranking stability and mea-
sured performance, and we present the resulting changes after applying the complete end-to-end
pipeline to deliver AgentHard-Bench.

Table [5] compares the model leaderboard scores for 7-Bench across the initial version, the issue-
filtered version, and the final AgentBenchCleaner pipeline. The results show substantial shifts: final
rankings changed for 75% of the models, with an average shift of 1.12 positions. Notably, the
top two positions exchanged places, and their performance gap widened from 0.018 to 0.045. We
also observe a resolved tie between Claude-4-opus-thinking-off and Claude-4-sonnet-thinking-on-
10k, where a previously tied score now exhibits a clear performance difference. These findings
underscore the importance of benchmark quality for accurate evaluation and highlight the value of
the AgentBenchCleaner pipeline in producing a more reliable, informative, and practically useful
evaluation infrastructure. Additional analysis of leaderboard ranking changes, including a bump-
chart visualization of ranking movements corresponding to Table[3] is provided in Appendix
5.3 AGENTHARD-BENCH STATISTICS

Retention Ratio
0.4 0.6

0.0 0.2 0.8 1.0
We provide a comprehensive summary of the X -
AgentHard-Bench, detailing the number of &
tasks retained and removed at each stage of the , 0.65
pipeline across the six benchmarks. Figure [§ 8 ¥ {sa
presents these statistics, highlighting the effec- E (gf@ original
tiveness of each filtering stage. The issue filter- e g1 e atlo
ing stage removes an average of 32.1% of tasks, & o 0.62
while the difficulty-based curation stage further N
eliminates 35.4%, resulting in a final compres- oo nts

sion rate of 56.1%. To prevent the complete
removal of any task category, we add a safe-
guard to retain at least 10% of tasks from each
category. In addition to aggregate compression

Figure 5: Retention ratio of each subtask category
in CFB before and after applying AgentBench-
Cleaner
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Table 6: Robustness of judge models for the LLM-as-a-judge issue filtering stage.

Benchmark ‘ Performance H Judge Models
| || DeepSeek-V3.1-thinking-on Gemini-2.5-pro-thinking-on Claude-4-opus-thinking-on-10k
Precision 0.781 0.846 0.778
ACEBench ‘ Recall H 0.694 0.917 0.778
Precision 0.745 0.805 0.917
BFCL V3 ‘ Recall H 0.950 0.805 0.550
CFB Precision 0.742 0.875 0.825
Recall 0.920 0.840 0.660
+-bench Precision 0.750 0.786 1.000
Recall 0.800 0.733 0.400
2_pench Precision 0.722 0.867 0.786
7--benc Recall 0.867 0.867 0.733

* Notes. DrafterBench: all issues are detected by rule-based filtering.

statistics, we provide a qualitative analysis of subtask-level retention to verify that capability cover-
age is preserved after filtering in Appendix

5.4 ABLATION STUDIES
5.4.1 ROBUSTNESS OF JUDGE MODELS

To evaluate the robustness of the LLM-as-a-judge filtering stage, we compare its performance across
different judge models. Because the task requires strong reasoning capabilities, we select models
known for their reasoning strength, including Gemini-2.5-pro-thinking (Googlel [2025)), Claude-4-
opus-thinking-on (Anthropicl [2025), and the open-source DeepSeek-V3.1-thinking-on (DeepSeek,
2025). Table [6] reports the human alignment results of the pipeline across six benchmarks for each
model. The results show that all judge models achieve a similar level of alignment with human anno-
tations with an average precision and recall of 0.836/0.832, 0.748/0.846, 0.861/0.624, respectively.
These findings demonstrating that the pipeline remains robust to the choice of LLM judge.

5.4.2 STAGE-WISE ABLATIONS OF AGENTBENCHCLEANER

We conduct ablation studies to dissect the contributions of each stage in the AgentBenchCleaner
pipeline. We summarize the benchmark quality metrics after each filtering stage compared to the
initial benchmarks in Appendix The results show that each stage contributes meaningfully to
overall improvements, with the rule-based filtering stage providing an initial reduction in flawed
tasks, and the LLM-as-a-judge stage further refining the set. Difficulty-based curation enhances
separability and diversity, confirming the value of each component in the pipeline.

5.5 CASE STUDIES

In this section, we present representative examples of issues detected by our pipeline. We begin
with cases where the pipeline effectively uncovers diverse benchmark flaws, thereby extending hu-
man evaluations. We then examine failure cases in which the LL.M-as-a-judge makes incorrect
judgments. We first highlight two representative pipeline detections.

User role confusion in 72-bench. In a 72-bench telecom scenario, the user simulator generated the
message “It looks like your phone is currently set to “2G only’ ” revealing a clear role-confusion
error. This sample was effectively filtered out by the rule-based step, which flagged the frequent
occurrence of the phrase ’your phone” in user messages across task-completion trajectories.

Incorrect tool call in BFCL V3. A ground truth in a BFCL V3 sample calls a Unix-like touch
command to node . md, although it was asked for notes.md. The LLM-as-a-judge flagged this
case under incorrect tool call, recognizing that the parameter value contradicted the user’s instruc-
tion.

Additional case studies are provided in Appendix [A.T] We also present the failure modes of the
judge model in Appendix Collectively, these findings reveal key limitations of automated
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filtering and suggest directions for improvement, such as stronger prompting for scenarios that may
possibly mislead the judge model.

To illustrate that our pipeline can also facilitate targeted task repairs when maintainers prefer fixing
over filtering, we include three representative repairable cases in Appendix[A.3] where the structured
reasoning traces directly pinpoint the minimal edits required to correct flawed tasks.

6 LIMITATIONS

Our work has several limitations. First, the difficulty-based curation step is designed specifically to
produce a harder variant (AgentHard-Bench) for frontier-model evaluation; consequently, its com-
position depends on the reference models used for stratification. To ensure long-term comparability
across diverse model families, we recommend using the issue-filtered benchmark, the primary out-
put of our pipeline. Second, AgentHard-Bench is not intended for evaluating weaker or mid-scale
models, which may require the broader difficulty range preserved in the full issue-filtered set. Third,
our pipeline focuses on identifying issue-bearing tasks rather than repairing them. While reliable
automatic repair of complex agent trajectories remains an open challenge, the structured reasoning
traces produced by our detectors can aid human-in-the-loop repair as shown in Appendix[A.3] which
we leave for future work. Finally, although our taxonomy is easily applicable to unseen benchmarks,
it may require extension as new agentic task types and interaction modalities emerge.

7 CONCLUSIONS

We tackle a central obstacle in LLM-agent evaluation: benchmark artifacts that confound measured
capability. Our approach couples a component-wise taxonomy of issues with an automated, scal-
able cleaning pipeline—AgentBenchCleaner—that combines rule-based detectors, LLM-as-a-judge
checks, and a final quality curation step. Applying this process yields AgentHard-Bench, a suite that
is cleaner, more discriminative, and more informative for agent assessment. Across six representa-
tive benchmarks, the pipeline is validated to align strongly with expert judgment and consistently
improves benchmark quality: separability increases, diversity is maintained or improved, and the
cleaned suites compress to roughly half their original size, exposing clearer performance gaps and
more stable rankings. Hence, it can be expected that our work will enable the development of more
effective LLM agent benchmarks and capable LLM agents.

10
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A APPENDIX

A.1 CASE STUDIES

This appendix provides additional case studies that expand on the examples in Section[5.5]

ACEBench. We identify issues arising from user queries, provided toolset, and the ground truth
annotation. First, some user queries are underspecified; for example, a task that asks for “some
climate data” fails to specify the detail level, which is required by the tool schema. Second, the
toolset can be insufficient to solve some problems and sometimes misleading: one example is
vlookup_formula_generator, which has a parameter exact_match that performs an ex-
act match when set to false. Finally, ground truth annotations are often flawed or contain malformed
inputs.

BFCL V3. We find the issues in the available toolsets and the ground truths. First, the toolset is
insufficient for certain tasks; for instance, a user requests a travel-time estimate, but only a distance-
estimation tool is provided. Second, the ground truth contains various errors: malformed calls using
strings instead of integers, flawed or redundant tool calls, such as using an incorrect file name or
requiring unnecessary sorting before counting the characters in file system-handling tasks.

CFB. This benchmark contains issues regarding the integrity of the environment, evaluation sys-
tem, and the ground truth. First, the environment yields incorrect tool responses, such as resolving
“Melbourne” to Florida instead of Australia. The evaluation system is occasionally too strict, requir-
ing exact string matches for coordinate values, marking tool calls that use rounded values wrong.
Additionally, the ground truths are plagued by data type violation, incorrect parameter values (e.g.,
searching LA instead of requested NYC), and redundant steps.

DrafterBench. We find an error in the system prompt design. The prompt provided to the agent
contains syntactically incorrect Python code examples, instructing to perform a method call without
parentheses.

7-Bench. We observe problems in user simulation, tool descriptions, and evaluation validity.
First, the user simulator exhibits role confusion, producing assistant-like messages such as “I
can look up your reservation”. Second, some tool definitions are misleading. An example is
search_onestop_flight being described as searching for direct flights. Third, the evaluation
is excessively lenient, allowing a trivial “do-nothing” model to achieve a 38% success rate. Lastly,
the ground truth contains policy violations, such as canceling basic-economy reservations, which is
explicitly prohibited by the given system policy.

72.Bench. This benchmark suffers from user role confusion, environment errors, and incorrect
ground truth. Similar with 7-bench, the user model occasionally experiences role confusion and the
ground truth actions often violates the given policy. Additionally, we discover that the tool responses
are sometimes unreliable, such as retrieving orders for a user different from the requested ID.

Table[7)summarizes all identified issues, organized by the benchmark component, their specific issue
category, and representative examples drawn from each benchmark.

A.2 CASE STUDY OF LLM-AS-A-JUDGE FAILURE MODES

In this appendix, we provide the failure cases of LLM-as-a-judge based on a comprehensive review
of the evaluation results, where the model incorrectly flags an issue-free sample as flawed (false
positives) or fails to identify a flawed sample (false negatives). Below are the four identified sources
of false positive decisions:

* Logical inference failure. The judge model often fails to infer the intended ground truth
using straightforward logical reasoning. For example, in a BFCL V3 sample, the user re-
quests the agent to delete the message sent “in the previous turn,” and the ground truth cor-
rectly deletes the most recently sent message. However, the LLM-judge marks the sample
as flawed by pointing out that another message might have been sent outside the displayed
dialog, which is an overly skeptical and unreasonable assumption.

* Misjudgment due to partial trajectory. The context provided to the judge omits many
intermediate interactions between the user and the agent. In practice, agents may issue con-

13
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Table 7: Comprehensive summary of benchmark issues and representative cases

Benchmark Issue Category Benchmarks & Representative Cases
Component
U Ambiguous instruc-  ACEBench: A user asks for “some climate data,” but the function requires a detail-level
ser tion field (Summary/Detailed), making the request ambiguous.
User role confusion 7-Bench: The user model says “No worries! I can look up your reservation using your
user ID.”
72-Bench: The user model responds " Your reservation has been canceled.”
Incorrect  tool-call ~ CFB: Thecall Search_Flight._Location resolves the input “Melbourne” to Florida
responses instead of Australia.
Environment

72-Bench: A tool retrieves orders made by sofia_hernandez_5364 instead of
sofia_hernandez.8513 asitis asked.

Insufficient toolset

ACEBench: The sample forces the agent to use a culturally focused landscape tool to
answer a broad land-use change request.

BFCL V3: The user requests a travel-time estimate, but only a distance-estimation tool
is available.

Misleading tool de-
sign

ACEBench: The parameter exact_match in vlookup_formula_generator con-
tradicts its actual behavior by performing an exact match when it is set to false.
7-Bench: The function search_onestop-flight is described as searching direct
flights, which is misleading.

Incorrect
prompt

system

DrafterBench: The system prompt shows Python code that calls a method without paren-
theses.

Evaluation System

Too lenient

T-Bench: A trivial do-nothing model succeeds in 38% of cases.

Too strict

CFB: The evaluation system requires an exact string match for latitude/longitude, despite
multi-dimensional matching being allowed elsewhere.

Ground Truth

Malformed tool calls

ACEBench: The field schedule. time violates the required HH:MM regex because
it provides a time range (“08:00-17:00") instead of a single time.

BFCL V3: A ground-truth call close_ticket is invoked with the string t icket_id
instead of an integer.

CFB: A ground-truth call provides latitude/longitude as floats instead of strings, violating
the schema.

Incorrect tool calls

ACEBench: The ground truth schedules the task with a “High” priority instead of the
requested “Urgent,” using an inappropriate scheduling tool.

BFCL V3: A ground-truth call creates note .md instead of the requested notes.md.
CFB: A ground truth searches for a taxi in LA, although the request was for NYC.
7-Bench: A ground truth cancels a basic-economy reservation, violating policy.
72-Bench: A ground truth cancels a departed flight, violating policy.

Redundant/ungrounded BFCL V3: The agent is asked to display last ten lines after sorting a file; The ground truth

tool calls

calls sort followed by tail, while tail call, which prints last lines of the original,
unsorted file, is redundant.

CFB: The user instructs the agent to continue until it finds an attraction that meets a
specified criterion, but the ground truth invokes Get _Attraction.-Details in an
arbitrary order and continues after the condition is met, producing redundant tool calls.

firmations or follow-up questions in natural language, and some benchmarks expose only
milestone tool calls rather than full sequences, none of which is included in the judge’s
context. Although the prompt instructs the judge to reasonably infer such unobserved in-
teractions (Appendix [A4), it sometimes fails to do so. For example, in a CFB task re-
questing a trending museum, many agents correctly call a generic attraction-search tool
and identify museums in their natural-language response, but the judge mislabels this as an
insufficient-toolset flaw, noting the absence of a dedicated museum-finding tool.

* Insufficient provided context. Some misclassifications stem from the lack of necessary
context about the internal state of the environment. For example, in a retail-domain sample
of 72-bench, the set of relevant order details is not trivial and thus is difficult to determine
statically when constructing the prompt. This caused the judge to misclassify a few samples
as using hallucinated order details.

* Misjudgment of redundancy. The judge model often labels required steps as redundant,
marking valid samples as flawed. For example, in a BFCL V3 sample, an agent performs a
login step because it is the only way to identify the currently authenticated user; However,
the judge misinterprets this as unnecessary, claiming that the log-in is redundant since the
account is already authenticated.

14
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We also identify the modes of false negative decisions, based on the categorization of their actual
issues. We note that no false negatives were found for issue categories not listed below, either
because those categories fall outside the scope of what LLM-judge aims to detect or because such
cases occur infrequently.

* Malformed or incorrect tool calls overlooked: The judge sometimes fails to identify tool
calls that are incorrect or directly violates API specification. For example, in a BFCL V3
sample, a tool explicitly requires distance inputs in miles, yet the agent supplies values in
kilometers. Despite this clear mismatch, the judge does not flag the call as incorrect.

* Incorrect tool responses overlooked: The judge also occasionally fail to identify incorrect
or irrelevant tool responses. For example, in a CFB sample, an attraction-finding tool
queried for the Tokyo city center returns results located in the suburbs, yet the judge does
not flag the sample as flawed.

* Ambiguity overlooked: Some samples that resolve an ambiguous user instruction arbi-
trarily were not discovered by the LLM-judge. One instance is a CFB car-rental sample,
which asks for vehicles that meet “conditions of reimbursement” without specifying the
exact conditions. However, the ambiguity was not identified by the judge.

* Insufficient toolset overlooked: The judge occasionally misclassifies tasks as solvable
even when the available tools are insufficient. For example, in a CFB sample that requires
filtering only SUVs, the toolset provides neither an SUV-specific filter nor car-type infor-
mation in the generic search results. Nonetheless, the judge incorrectly marks the agent’s
behavior as non-flawed.

We present the detailed breakdown of each failure category in Table

Table 8: Breakdown of the failure modes of LLM-as-a-judge.

Type Category Percentage (%)
Logical inference failure 11.3
FP Partial trajectory 17.7
Insufficient provided context 1.6
Misjudgement of redundancy 8.1
Malformed/incorrect tool-calls overlooked 46.8
FN Incorrect tool responses overlooked 8.1
Ambiguity overlooked 1.6
Insufficient toolset overlooked 4.8

A.3 REPAIRABLE CASES ENABLED BY THE PIPELINE

While our evaluation focuses on filtering, the structured reasoning traces produced by the pipeline
also naturally support task repair when benchmark maintainers prefer fixing over removal. Below
we provide three representative examples where the reasoning trace directly identifies the minimal
edit needed to correct a flawed task.

A.3.1 BFCL: GROUND-TRUTH FILENAME ERROR (GROUND-TRUTH ISSUE).

Task: multi_turn_long_context_10

Reasoning trace: “Turn 3: The user requests creation of a file named notes .md, but the ground
truth calls touch (file_name=‘note.md’ ), which misspells the filename. Turn 4 again refers
to notes .md, while the ground truth continues with the incorrect name. This contradicts the user’s
instructions in both turns.”

Minimal fix: Replace all occurrences of note .md with notes .md in the ground-truth sequence.

A.3.2 ACEBENCH: API SCHEMA VIOLATION (ENVIRONMENT ISSUE).

Task: normal_single_turn_single_function_50
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Reasoning trace:

“The user wants to create a morning routine for their son. The ground-truth function call uses
the FamilyRoutineManager_createMorningRout ine tool, which is correct for the task.
However, the parameter startTime is set to ‘07:30°. The API schema restricts startTime to
one of {*06:00”, ‘07:00’, ‘08:00’}, so the call violates the tool specification.”

Minimal fix: Adjust the argument to a valid enum (e.g., ‘07:00”) or update the schema to allow
free-form times.

A.3.3 COMPLEXFUNCBENCH: UNDERSPECIFIED USER INSTRUCTION (USER ISSUE).

Task: Car—-Rentals—49

Reasoning trace: “The user asks for the booking summary of all vehicles that meet ‘the conditions
for reimbursement’, but these conditions are never defined. The ground truth arbitrarily selects three
vehicles to summarize, which is unsupported by the user’s request and logically inconsistent.”

Minimal fix: Specify the reimbursement conditions explicitly in the user prompt (e.g., price thresh-
old, mileage, or rental duration).

These examples illustrate how the pipeline’s component-level reasoning traces substantially reduce
the effort needed to diagnose and repair flawed tasks, complementing the primary use case of issue
filtering.

A.4 LLM-AS-A-JUDGE PROMPT TEMPLATE

We carefully designed the prompt for the LLM-as-a-judge filtration step. Although each benchmark
differs in the implementation of benchmark components, we designed the judging instructions to
share a common structure: (i) define the LLM’s role as an expert evaluator, (ii) enumerate all inputs
the judge receives (e.g., conversation history, system policies, available toolset), (iii) specify the
issue categories with corresponding examples, and (iv) provide decision criteria and the required
output format. The issue categories were specified according to our issue taxonomy discussed in
Section E} However, issues irrelevant to flaws in individual samples, such as those related to the
evaluation system, were omitted from the prompt. Some issues, such as user role confusion, were
also not specified in the prompt since they can be addressed better in rule-based filtering.

Based on this template, only benchmark-specific details were adapted. For example, for bench-
marks that do not provide the full ground truth trajectory, we added a separate section that instructs
the judge to actively reconstruct the unshown conversation. Additionally, issues irrelevant to each
benchmark were not listed in the prompt to avoid misleading the judge model and causing false
positives.

We provide the prompt used to filter out 72-bench samples as a representative example, since it con-
sists of all the design choices that would complicate the evaluation: an LLM-simulated user, direct
tool calls from the user, non-exhaustive ground-truth tool-call trajectory, complex domain-specific
policy, and persistent state involving internal database. This representative prompt illustrates the full
range of instructions and issue categories used in our benchmarks; prompts for other benchmarks
follow the same template with minor, benchmark-specific adjustments. We note that this template
can be readily adapted to other agentic benchmarks beyond those covered in this paper.

LLM-as-a-Judge Filtration Prompt for 72-Bench

You are an expert evaluator for Tau-2-Bench, a benchmark designed to assess an agent’s
ability to follow complex rules and interact with a simulated user.

Your task is to determine if a given benchmark sample has a fundamental flaw in its user
prompt, environment, or ground-truths, which would make it unable to be incorporated
in the evaluation.

You will be provided with the following information:

16



Under review as a conference paper at ICLR 2026

* «xTask Description/Instructions*+: The prompt or scenario given to the model that
simulates user. You need to expect how the model that simulates the user would
behave given this instruction.

* xxSystem Policyxx: Domain-specific rules that the agent model needs to obey. This will
be given as the system prompt for agent models.

* *xUser Context and Relevant Information*x: a brief information of the user and relevant
information. This may be in a form of system message given to the user-simulating
model.

* xxInitial Statexx: The initial environment setup and conditions before the task begins.
This defines the starting state of the system.

* xxTools available to the agent*x: a list of tools available for the agents and their
schema.

* *xTools available to the userxx: a list of tools available for the user-simulating
models and their schema. When the user cannot directly call any tools, this is set
to be empty.

* xxComplete Evaluation Criteriax*: The complete evaluation criteria including milestone
ground-truth actions (function calls), and final environment state assertion to
validate. The sample is considered to be flawed if one or more of these criteria is
unachievable.

* *xGround-Truth Milestone Tool Calls*x: the provided ground-truth trajectory. Note that
this is not a complete log of all tool calls. Instead, it is a curated list
containing only the key milestone tool calls required to solve the task. Note that
messages with ‘"role": "observation"' are the outputs of the immediately preceding
tool call.

A sample is *xflawedx if it exhibits one or more of the issues described below.

## Flaw Categories

Below is the categorization of benchmark issues, outlined according to its x*relevant
benchmark componentx*. A sample is considered flawed if it has one or more of the
issues below.

### Environment

This category covers flaws within the agent’s operating environmentthe tools and API
resultswhich can make a task unsolvable regardless of the agent’s logic.

* Insufficient toolset: the environment does not provide the necessary tools (functions),
making it impossible for the agent to solve the task even with a combination of
multiple tools and reasoning.

« Example: A user asks for an advanced file manipulation, while the environment only
provides basic tools like ‘mkdir‘ or ‘ls‘.

* Misleading toolset design: the naming or the description of an available tool is
misleading or contradicts its actual functionality.
« Example: A tool named ‘vt_get_votes_on_ip_address' provides "example.com" as an
example for its argument value in its schema.

### Ground-Truth

This category addresses errors in the provided ground-truth trajectory, where the
supposed correct solution is itself incorrect, forcing any correct agent to fail the
evaluation.

* Malformed tool calls: A technical error where a ground-truth tool call violates the
provided API schema.

« Example: A parameter requires a string but is given a number (e.g., dest_id: 123
instead of dest_id: "123"), a required parameter is missing, the tool name is
wrong, or a parameter value is misspelled (e.g., sort_by: "popularitye" instead of
"popularity") .

* Incorrect tool calls: A tool call is syntactically valid but logically flawed. The tool
choice or a parameter value contradicts the user’s request or the context from
previous steps.

% Unjustified/hallucinated parameters: A value (e.g., a date, a coordinate) that
appears without any grounding context. For example, searching for a hotel on a
date that was not returned by a preceding flight search.

* Contradictory: A value that directly contradicts a constraint in the user’s prompt.
However, it is NOT a flaw if there is any chance that the agent’s action was a
necessary alternative due to constraints like an insufficient budget or a lack of
available seats.

* Policy violation: A tool call in the ground truth trajectory directly violates the
provided system policy. Example: The ground truth where the agent uses a specific
tool twice, although it is mentioned in the system policy that the tool can only
be used once.

* Misspelled or incorrectly identified parameter values: A misspelled name or an
ID/slug that points to the wrong entity (e.g., selecting the wrong airport ID).
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* Redundant/ungrounded tool calls: The ground truth tool call trajectory consists of tool
calls that are redundant in solving the task, ungrounded by the context, or
irrelevant in solving the task.

* Irrelevant tool call: A tool call in the ground truth trajectory is totally
irrelevant to the task or belongs to a completely different domain. Example: agent
calls a tool to reserve a flight, though it was asked to process product exchange.

* Redundant tool call: A tool call that is not necessary in solving the task. Example:
the agent is asked to search for attractions until it finds one that meets a
certain condition; However, the agent performs the search in an arbitrary order,
resulting in an excessive number of tool calls.

## Crucial Rule: Actively Reconstruct the Conversation

The ground-truth trajectory only contains key milestone tool calls. It intentionally
omits tool calls that are less important for evaluation and the natural language
conversation between the user and the agent (e.g., user confirmations, request,
clarifications, or follow-up questions) .

Your task is to find undeniable flaws. Therefore, you MUST operate under the following
assumption:

* For example, the ground truth milestone sequence may not contain a call that
authenticates the user identity. It may have been intentionally omitted from the
milestone sequence, since it is considered less important than calls that explicitly
process user requests. Therefore, lack of authentication, user’s confirmation or
request, clarification should NOT be the sole reason to judge a sample as flawed.

« If a sequence of function calls can be justified by a plausible, un-shown conversation
that does not contradict the User Scenario or System Policy, then it is NOT a flaw.
The agent would have explained the user why it cannot process the request, although
it is not shown in the milestone trajectory.

* In other words, imagine a possible conversation history that would justify the ground
truth milestone tool call trajectory. When you consider a plausible trajectory, note
that the user can make a request that is not mentioned in the prompt, guided by the
agent. Flag a sample as flawed ONLY if a tool call is impossible to justify, even
with a hypothetical conversation. Do NOT infer a flaw from missing conversational
steps.

## Evaluation and Output Format
Carefully analyze the provided sample. Think step-by-step to determine if the
ground-truth trajectory is a correct and logical solution to the user’s prompt.

Your final output must be a JSON object with the following structure, with no additional
commentary:

‘Y Yjson
{{

"reasoning": "Provide a clear, step-by-step explanation for your decision. If the
sample is flawed, specify what is incorrect and why it contradicts the user’s
prompt, system policies, or the user’s role. If it is not flawed, briefly explain
why the sample is valid.",

"reasoning_summary": "A shorter rationale for your decision. If the sample is not
flawed, just mention that it is not flawed. If it is flawed, specify the issue
concisely. e.g., The ground truth books a connecting flight, but the user
requested a direct flight.",

"error_category": "The category that corresponds to the issue. e.g., \"Incorrect tool
calls\". If the sample is not flawed, use \"Not Flawed\".",

"is_flawed": <true or false>

## Target Sample

### Task Description/Instructions

Y

{instruction}

Y

### System Policy
{agent_system_prompt}
### User context and relevant information

{user_context}
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### Initial Status
{initial_state}
### Tools available to the agent and their schema

““vison
{available_tool_list}

Y

### Tools available to the user and their schema

““Vjson
{available_user_tool_list}

Y

### Complete Evaluation Criteria
*YYjson
{evaluation_criteria}

### Ground-Truth Milestone Tool Calls
* Note that messages with "role": "observation" are the results of the tool call right
before.

““Vjson
{gt_tool_call_traj}

Y

A.5 ANALYSIS ON LEADERBOARD RANKING CHANGE

In this appendix, we provide an extended analysis of the leaderboard ranking changes. We employ
three metrics to quantitatively measure the ranking changes:

Ranking Change Rate. This metric is defined as the proportion of models whose ranking
positions differ between the original benchmark and the filtered benchmark.

Average Rank Shift. This metric measures the average change in ranking position for each model.
While Ranking Change Rate only captures whether a model’s ranking changes or not, without
considering the extent of the change, Average Rank Shift complements it by quantify the magnitude
if running movements.

Indistinguishable NUM. We define two models as indistinguishable if the absolute difference in
their performance is less than 0.01, indicating that the benchmark cannot effectively differentiate
between them. The number of indistinguishable models is then computed as the total count of such
indistinguishable models. This metric reflects the discriminative ability of the benchmark across
different models.

Table [9] summarizes the results. As shown in the table, after applying our pipeline, at least 37.5%
of the model rankings in Agent-Bench changed compared to the initial version, and the number of
indistinguishable models was consistently reduced, indicating that the discriminative ability of the
benchmark has been improved.

Figure [6] presents a bump chart that directly corresponds to Table [5} It highlights how individual
models shift across ranking positions under (i) the initial benchmark, (ii) the issue-filtered bench-
mark, and (iii) the curated AgentHard-Bench. This visualization makes it easier to see crossing
trajectories and relative movements, especially in cases where several models undergo small but
meaningful shifts.

A.6 STAGE-WISE ABLATION STUDY OF AGENTBENCHCLEANER
We present stage-wise ablation results of AgentBenchCleaner across all benchmarks to show how

each metric - model agreement, CI overlap, diversity, and compression ratio - changes at each stage
of the pipeline. Tables[TO{I5|report the results.
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Table 9: Model ranking changes compared across benchmarks for initial, issue-filtered, and
AgentHard-Bench versions.

Benchmark | Performance || Issue-Filtered vs. Initial ~AgentHard-Bench vs. Initial
Ranking change rate 56.2% 62.5%
ACEBench | Average rank shift 1.00 1.00
Indistinguishable num. 13 =11 13—-9
Ranking change rate 125 % 37.5%
BFCL V3 Average rank shift 0.12 0.38
Indistinguishable num. 8 —4 8 —2
Ranking change rate 25.0% 37.5%
CFB Average rank shift 0.25 0.38
Indistinguishable num. 4—2 4—4
Ranking change rate 56.2% 75.0%
T-bench Average rank shift 0.88 1.12
Indistinguishable num. 8 —8 8 —2
Ranking change rate 37.5% 62.5%
72-bench Average rank shift 0.50 0.75
Indistinguishable num. 9—38 9—6

* Notes. DrafterBench: all issues are detected by rule-based filtering.

Model Name l Initial ‘ Issue-Filtered [Ageanard-Bench (r-Bench)
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4| GPT-4.1
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7 Kimi-K2-Instruct

Rank

10 g
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11 | Qwen3-235B-A22B-Thinking-2507-FP8
o
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14 GPT-40-mini

16 | GPT-4.1-nano 0

Figure 6: Bump chart visualization of model ranking changes on 7-Bench across the initial dataset,
the issue-filtered version, and the full pipeline (AgentHard-Bench). This is a visual counterpart to
Table

Table 10: Step-wise ablation on 7-Bench

Metrics Initial Stage 1 Stage 2 Stage 3
Agreement (|) 0.657 0.657 0.643 0.617
CI Overlap (P! 0.475 0.367/0.600 0.392/0.317 0.408/0.467
Diversity (1) 0.200 0.185 0.156 0.157
Total Questions 165 146 121 110
Compression Ratio (%) 0 11.5 26.3 333

* Notes. ': CI Overlap is reported as baseline / current value, where the baseline is a randomly sampled set of equal size.
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Table 11: Step-wise ablation on CFB

Metrics Initial Stage 1 Stage 2 Stage 3
Agreement (|) 0.612 0.612 0.586 0.572
CI Overlap (P! 0.833  0.833/0.833 0.808/0.825 0.800/0.825
Diversity (1) 0.497 0.497 0.498 0.492
Total Questions 1000 1000 797 766
Compression Ratio (%) 0 0 20.3 234

* Notes. ': CI Overlap is reported as baseline / current value, where the baseline is a randomly sampled set of equal size.

Table 12: Step-wise ablation on 72-Bench

Metrics Initial Stage 1 Stage 2 Stage 3
Agreement (]) 0.674 0.675 0.677 0.658
CI Overlap (1)! 0.625 0.533/0.550 0.458/0.558 0.542/0.592
Diversity (1) 0.250 0.247 0.239 0.235
Total Questions 273 228 179 165
Compression Ratio (%) 0 16.5 34.4 39.6

* Notes. . CI Overlap is reported as baseline / current value, where the baseline is a randomly sampled set of equal size.

Table 13: Step-wise ablation on ACEBench

Metrics Initial Stage 1 Stage 2 Stage 3
Agreement (|) 0.873 0.869 0.881 0.735
CI Overlap (1)! 0.417 0.325/0.325 0.417/0.300 0.055/0.236
Diversity (1) 0.493 0.493 0.491 0.506
Total Questions 1023 996 901 327
Compression Ratio (%) 0 2.6 11.9 68.0

* Notes. ' CI Overlap is reported as baseline / current value, where the baseline is a randomly sampled set of equal size.

Table 14: Step-wise ablation on BFCL v3

Metrics Initial Stage 1 Stage 2 Stage 3
Agreement (|) 0.654 0.654 0.621 0.620
CI Overlap (1)! 0.817 0.817/0.817 0.792/0.817 0.792/0.817
Diversity (1) 0.331 0.331 0.332 0.332
Total Questions 800 800 618 615
Compression Ratio (%) 0 0 22.8 23.1

* Notes. ': CI Overlap is reported as baseline / current value, where the baseline is a randomly sampled set of equal size.

Table 15: Step-wise ablation on DrafterBench (Rule-based only)

Metrics Initial Stage 1 Stage 2 Stage 3
Agreement (|) 0.812 0.814 0.847 0.791
CI Overlap (P! 0.842  0.700/0.642 0.667/0.625 0.558/0.642
Diversity (1) 0.292 0.288 0.281 0.278
Total Questions 1920 640 457 328
Compression Ratio (%) 0 66.7 76.2 82.9

* Notes. ': CI Overlap is reported as baseline / current value, where the baseline is a randomly sampled set of equal size.
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Subtask Retention Ratios Across Benchmarks (After Issue Filtering)

Ratio (STEP2,

Benchmark

Figure 7: Subtask retention ratios after issue filtering. The majority of subtasks retain substantial
coverage across all benchmarks, indicating that Stage 1 and Stage 2 filtering primarily removes
structurally invalid tasks.

A.7 CAPABILITY RETENTION ANALYSIS

To complement the embedding-based diversity analysis in the main text, we examine subtask-level
retention and capability coverage across all benchmarks. Our goal is to verify that the AgentBench-
Cleaner pipeline preserves the breadth of agentic capabilities while removing structurally flawed
or saturated tasks. Figures [7] and [§| report the retention ratio after issue filtering and after the full
pipeline including difficulty-based curation.

Benchmarks with high retention and balanced capability structure. For BFCL V3, CFBench,
tau-bench, and tau2-bench, retention remains 55-77%. The remaining tasks preserve a balanced
distribution of subtasks, indicating that filtering primarily removes structural issues (e.g., ground-
truth inconsistencies, schema ambiguities, evaluation harness errors) rather than disproportionately
affecting specific agentic skills. Thus, the issue-filtered benchmark maintains strong capability cov-
erage while improving data validity.

Benchmarks with benchmark-specific removal patterns. For ACEBench and DrafterBench, re-
tention is lower but driven by identifiable structural reasons. In DrafterBench, the addvector sub-
task is fully removed due to a verified system-prompt error that produces inconsistent ground-truth
references. In ACEBench and the remaining DrafterBench subtasks, additional filtering reflects
that many tasks provide limited discriminative signal for frontier models. Our pipeline includes a
10% per-subtask retention safeguard to avoid removing any capability domain entirely, ensuring that
easier subtasks remain represented.

Takeaway. These analyses confirm that AgentHard-Bench maintains capability diversity. Filtering
decisions are driven by task validity and discriminative value, not by excluding any particular skill
or subtask type. The subtask-level retention ratios demonstrate that the pipeline effectively preserves
the breadth of agent behaviors while removing tasks unsuitable for reliable evaluation.
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Subtask Retention Ratios Across Benchmarks (After Quality Filtering)

Ratio (STEP4

Benchmark

Figure 8: Subtask retention ratios after the full pipeline (including difficulty-based curation).
Even after optional curation, a 10% per-subtask safeguard ensures capability diversity across all
benchmarks.
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