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Abstract

The ultimate goal of multi-objective optimization (MO) is to assist human decision-
makers (DMs) in identifying solutions of interest (SOI) that optimally reconcile
multiple objectives according to their preferences. Preference-based evolutionary
MO (PBEMO) has emerged as a promising framework that progressively approxi-
mates SOI by involving human in the optimization-cum-decision-making process.
Yet, current PBEMO approaches are prone to be inefficient and misaligned with
the DM’s true aspirations, especially when inadvertently exploiting mis-calibrated
reward models. This is further exacerbated when considering the stochastic nature
of human feedback. This paper proposes a novel framework that navigates MO to
SOI by directly leveraging human feedback without being restricted by a prede-
fined reward model nor cumbersome model selection. Specifically, we developed a
clustering-based stochastic dueling bandits algorithm that strategically scales well
to high-dimensional dueling bandits. The learned preferences are then transformed
into a unified probabilistic format that can be readily adapted to prevalent EMO
algorithms. This also leads to a principled termination criterion that strategically
manages human cognitive loads and computational budget. Experiments on 48
benchmark test problems, including the RNA inverse design and protein structure
prediction, fully demonstrate the effectiveness of our proposed approach.

1 Introduction

Multi-objective optimization (MO) represents a fundamental challenge in artificial intelligence [49],
with profound implications that span virtually every sector—from scientific discovery [67] to en-
gineering design [22]], and societal governance [23]. In MO, there is no single utopian solution
that optimizes all objectives; instead, the Pareto front (PF) comprises non-dominated solutions,
each representing an efficient yet incomparable trade-off between objectives. The goal of MO is
to assist human decision-makers (DMs) in identifying solutions of interest (SOI) that optimally
reconcile these conflicting objectives according to their preferences. This field has been a subject
of rigorous study within the multi-criterion decision-making (MCDM) community [43]] for more
than half a century. Over the past two decades, we have witnessed a seamless transition from purely
analytical methodologies to a burgeoning interest in interactive evolutionary meta-heuristics, known
as preference-based evolutionary MO (PBEMO) [39].

As in Figure[I(a), a PBEMO method involves three building blocks. The optimization module
uses a population-based meta-heuristics to explore the search space. The preference information is
progressively learned by periodically involving human DM in the consultation module to provide
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Figure 1: (a) Flow chart of a conventional PBEMO. (b) Conceptual illustration of reward-based,
model-based, and direct preference learning strategies.
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preference feedback. The learned preference representation is then transformed into the format
that guides the evolutionary search progressively towards SOI in the preference elicitation
module. The overall PBEMO process is DM-oriented and is an optimization-cum-decision-making
process. While PBEMO has been extensively studied in the literature in the past three decades
(e.g., [44, I15L 18 136, 159, [38]]), there are several fundamental issues unsolved, especially in the
consultation and preference elicitation modules, that significantly hamper the further
uptake in real-world problem-solving scenarios.

* The consultation module serves as the interface for DM interaction with the
optimization module. It queries the DM about their preferences to effectively recommend
solutions. This closely aligns with preference learning in the machine learning community.
There are three strategies to accomplish this. The first, as shown in Figure[[(b-1), involves
reward models [51] or ranking mechanisms [29} 27, [38]]. In this approach, DMs often pro-
vide scores or rankings for a large set of solutions. However, this overburdens the DM and
risks introducing errors into the optimization process due to overlooked human cognitive
limitations. The other two strategies are grounded in the dueling bandits settings [66]],
utilizing pairwise comparisons in consultation but with different assumptions about human
feedback. Specifically, the second strategy relies on a parameterized transitivity model [5] or
a structured utility function for dueling feedback, such as the Bradley-Terry-Luce model [11]
in Figure [[(b-2). While theoretically appealing, this method faces a challenge in model
selection that can be as complex as the original problem, posing difficulties in practical
applications. Different from the previous two strategies, the last one tackles human feedback
as stochastic events such as Bernoulli trials [63], and it learns DM’s preferences from their
feedback as shown in Figure[[(b-3). However, a key bottleneck here is the souring number
of DM queries required when considering a population of solutions in PBEMO.

* The preference elicitation module acts as a catalyst, transforming the preference
information learned in the consultation module—usually not directly applicable—into a
format usable in the underlying EMO algorithm. The stochastic nature of human feedback [[1]]
can lead to a misuse of learned preferences that adversely disturb search processes. This
issue is pronounced in PBEMO contexts, where the number of consultations is constrained
to reduce the human cognitive burden. Additionally, there is no thumb rule for determining
the frequency of DM interactions or terminating such interactions, where current methods
are often heuristics (e.g., setting a fixed number of interactions [36l]).

In this paper, we propose a novel direct PBEMO framework (dubbed D-PBEMO) that directly leverages
DM’s feedback to guide the evolutionary search for SOI. Note that it neither relies on any reward
model nor cumbersome model selection. Our D-PBEMO framework consists of two key features.

* Given the stochastic nature of human feedback, we develop a novel clustering-based stochas-
tic dueling bandits algorithm in the consultation module. It is model-free and its regret



is O(K?1ogT), where K is the number of clusters and 7" is the number of rounds. This
overcomes the challenge of substantial queries inherent in conventional dueling bandits [4].

* The preference elicitation module transforms the learned preferences from the
consultation module into a unified probabilistic format, in which the associated uncer-
tainty represents the stochasticity involved in preference learning. This not only streamlines
the incorporation of learned preferences into the optimization module to guide EMO
to search for SOI, but also constitutes a principled termination criterion that strategically
manages human cognitive burden and the computational budget.

2 Preliminaries
2.1 Multi-Objective Optimization Problem

The MO problem is formulated as: min F(x) = (fi(x),..., fm(x))T, where X = (z1,...,2,) " is
xe

an n-dimensional decision vector and F(x) is an m-dimensional objective vector whose i-th element
is the objective mapping f; :  — R, where €2 is the feasible set in the decision space R™. Without
considering the DM’s preference information, given x!,x? € €, x! is said to dominate x? (denoted
as x! < x?)iff Vi € {1,...,m} we have f;(x') < fi(x?) and F(x') # F(x?). A solution x € {2
is said to be Pareto-optimal iff 7x’ € € such that x’ < x. The set of all Pareto-optimal solutions is
called the Pareto-optimal set (PS) and their corresponding objective vectors constitute the PF.

The ultimate goal of MO is to identify the SOI from the PS satisfying DM’s preference. It consists of
two tasks: @ searching for Pareto-optimal solutions that cover SOI, and @ steering these solutions
towards the SOI. PBEMO addresses the task @ by employing an EMO algorithm as a generator of
an evolutionary population of non-dominated solutions S = {x?},, striking a balance between
convergence and diversity for coverage. For the task @, PBEMO actively queries DM for preference
information regarding these generated solutions, then it leverages the learned preferences to guide the
EMO algorithm to approximate the SOI.

2.2 Preference Learning as Dueling Bandits

Since human feedback from relative comparisons is considerably more reliable than absolute labels
[48]], we focus on pairwise comparisons as a form of indirect preference information. In PBEMO,
a DM is asked to evaluate pairs of solutions (x*, x7) selected from S, where 7,5 € {1,..., N} and
i # j. The DM’s task is to decide, based on her/his preferences, whether x? is better, worse, or
equivalent to x7, denoted as x’ > x7, x* =p xJ, or x* ~, xJ, Regarding stochastic preference,
there is a preference matrix for K-armed dueling bandits defined as P = [p; ;] x x ', where p; ; is the
winning probability of the i-th arm over the j-th arm [65)]. In particular, we have p; ; + p;; = 1 with
pi,i = 0.5. The i-th arm is said to be superior to the j-th one iff p; ; > 0.5. Simply considering each
solution as an individual arm will yield K = N, which suffers efficiency in targeting the SOI when
the evolutionary population is large [35)]. The ranking of all arms is determined by their Copeland
scores, where the SOI should be the Copeland winners that have the biggest Copeland scores.
Definition 2.1 ([60]). The normalized Copeland score of the i-th arm, i € {1, ..., K}, is given by:
1
G=g—1 X lpy>05), (1)
Jj#i,j€{1,....K}
where I (+) is an indicator function. Arm k* satisfying k* = argmax (; is the Copeland winner.
ie{l,...,K}

The goal of dueling bandits algorithm is to identify the Copeland winner among all candidate arms
with no prior knowledge of P. To this end, a winning matrix is introduced as B = [b; ;] x x k to record
the pairwise comparison labels, where b; ; is the number of time-slots when the -th arm is preferred
from pairs of i-th and j-th arms. Consequently, we can approximate the preference probability with
mean p; ; = , whose upper confidence bound u; ; and lower confidence bound /; ; can be
quantified as:
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Ui 5 = ’ +4/ y ol = ! —4/ ) 2
J bij +bji bij +bj; 7 bij +bji bij +bji )

i
bi j+bj:




where o > 0.5 controls the confidence interval, and ¢ is the total number of comparisons so far. The
performance of a dueling bandits algorithm is often evaluated by the regret defined as follows.

Definition 2.2. The expected cumulative regret for a dueling bandits algorithm is given as:

T (et x _ 1 T

t=1 t=1

where T is the total number of pairwise comparisons, ¢’ (¢) and ¢’ (¢) denote the pair to be compared
at the t-th (1 < ¢ < T') round, * represents the Copeland score of the Copeland winner.

3 Proposed Method

Our proposed D-PBEMO framework follows the conventional PBEMO flow chart as in Figure[I(a).
In the following paragraphs, we mainly focus on delineating the design of D-PBEMO with regard
to both consultation and preference elicitation modules, while leaving the design of the
optimization module open.

3.1 Consultation Module

As the interface by which the DM interacts with an EMO algorithm, the consultation module
mainly aims to collect the DM’s preference information from their feedback upon S to identify the SOI.
We employ the stochastic dueling bandits [74], to directly derive preferences from human feedback
without relying on further assumptions such as contextual priors [41]] or structured models [[11]]. In
this setting, a natural choice is to consider each candidate solution as an arm to play. However, since
the size of S is usually as large as over 100 in the context of EMO, the conventional dueling bandits
algorithms will suffer from a large amount of preference comparisons to converge [73} 35]]. This
is impractical in PBEMO when involving DM in the loop. To address this problem, we propose
clustering-based stochastic dueling bandits algorithm that consist of the following three steps.

Step 1: Partition S into K subsets {3 1K | based on solution features in the context of EMO.
Such partitioning is implemented as a clustering method based on the Euclidean distances between
solutions of S in the objective space. Instead of viewing each solution as an individual arm, we
consider each subset S? as an arm in our proposed dueling bandits. We denote the solution-level
preference matrix as Py = [p§ ;]nxn, where pj ; represents the probability that x* >, x7. Then, the

preference matrix P in the subset-level can be calculated by p; ; = m D oxredi Daxvedi Puws

where \3”| stands for the size of S*. This probability is well-defined since it satisfies p; ; + p;; = 1.
So far, we have reformulated a subset-level dueling bandits problem. Accordingly, the subset-level
Copeland winner is the subset S* that beats others on average.

Step 2: Subset-level dueling sampling and solution-level pairwise comparisons. We employ the
double Thompson sampling algorithm [62]] to determine the subset pairs, and then select solutions
from the pairs to query DM preferences. We introduce two vectors v = (v1,...,vy) " and £ =
(¢1,...,¢Nn)" to record the winning and losing times of each solution respectively, initialized by
v; =0,4;,=0,i={1,..., N}. We perform the following steps within a given budget 7.

Step 2.1: Determine the subset S’ that most likely covers the SOI. We first narrow candidates
to the subsets having the highest upper confidence Copeland scores, denoted as C I =

{S’|i = argmax; (;}, where ¢; = = >z Muij > 05), 4,5 € {1,...,K}. Then,
VSt € CL, we apply Thomp~spn sampling as 95,13‘) f:Beta(bi,j +1,b; + 1) to sample
the winning probability of S* over other subsets S7, where j € {1,...,K} and j #
1. Finally, we apply the majority voting strategy to determine the candidate by S’ <
ArgMAaxXgi et Y i ]I(Gl(ylj) > 0.5), where ties are broken randomly.

Step 2.2: Select the subset S” that can be potentially preferred over S'. To promote exploration,
we narrow candidates to the subsets whose lower-confident winning probability over S "is
at most 0.5, denoted as C? = {S'|l;, < 0.5}. Note that S’ € C? because [, , < p,, = 0.5.
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Figure 2: (a) The evolutionary population of an EMO algorithm is divided into three subsets, where

S2 covers the SOI (denoted as a x). (b) After a PBEMO round, in the next consultation session,
all solutions are steered towards the SOI and their spreads become more tightened towards the SOL.

Then, VS* € C2, we apply Thompson sampling as 0;2/) ~ Beta(b;,+1,b,;+1) to sample
the winning probability of S? over S, and fix 9,(,2,) = 0.5 according to the definition of
preference matrix. Finally, the candidate is determined by S" + argmax Siceo 953).

Step 2.3: Select two representative solutions x’ € S’ and x” € S” to query DM. We conduct
uniform sampling to obtain solutions from the least-informative perspective. The DM
is asked to evaluate the pair of solutions (x’,x”). If we observe x’ >, x”, we update
bry b,y +1,v < v, +1,and ¢, < £, + 1, and vice versa. Note that other strategies
to obtain solutions x’ and x”” can be used to improve the query efficiency.

Step 3: Output the learned preferences. The output is a triplet {S*,v, £}, where S* =

argmaxg,; (; is the optimal subset that most likely covers SOI, and candidate solutions are considered
to be the SOI with uncertainty encoded by their winning and losing times.

The pseudo codes of the above algorithmic implementation are detailed in Appendix [C] Figure 2]
gives an illustrative example of the consultation process.

Remark 1. PBEMO is a optimization-cum-decision-making process. Instead of having a set of
Pareto-optimal candidate solutions upfront, PBEMO starts with a coarse-grained representation
of the PF. Then, it gradually steers incumbent solutions towards the learned SOI, which may be
inaccurate initially. Subsequent consultations then serve as a refinement process. In this context,
different from the dueling bandits, which are designed for identifying the single best solution in each
round, our proposed method aims to recognize the SOI with a progressively refined fidelity.

Remark 2. Based on the Remark|[I] we intend to explore the dependency among solutions [47 53]].
This involves performing pairwise comparisons for solution groups, rather than for a single candidate,
to enable more efficient interaction. Consequently, in the preference elicitation stage, it becomes
essential not only to rely on the learned preference but also to consider the uncertainty introduced by
the coarse-grained representation.

Theoretical Analysis. We present a rigorous analysis of the regret bound of our proposed algorithm.
To this end, we introduce the following two assumptions derived from the current literature.

Assumption 3.1 ([62]]). The winning probability between two arms satisfies p; ; # 0.5, Vi # j.

Assumption 3.2 (Tight clustering [33]]). All solutions in S* are the Copeland winners over other
solutions in the sub-optimal subsets.
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Theorem 3.3. Under the Assumptionsand Sforany € € (0,1] and o > 0.5, the regret of our
clustering-based stochastic dueling bandits algorithm is bounded by:

log T dalog T K?
LIRS ((”)DKL( 05 ", —05)>+O(ez>'

i#j, p, <0.5

Definitions of p, i and proof can be found in AppendixIB;f}

Remark 3. Theorem|3.3|reveals that the expected regret of our algorithm is bounded by O(K?logT).
Compared with the dueling bandits algorithms based on Thompson sampling and their extensions
to large arms [162 33]], whose regret is bounded by O(N?logT'), our proposed clustering-based
stochastic dueling bandits algorithm is more efficient in searching for the SOI, given K < N.

3.2 Preference Elicitation Module

The preference elicitation module plays as a bridge that connects consultation and optimiza-
tion. It transforms the preference learned from the consultation module into the configurations
used in the underlying EMO algorithm, thus steering the EMO process progressively towards the
SOL. In addition, this module maintains the preference information to inform a strategic termination
criterion of consultation, thus reduces DM’s workload. We present the design of this module by
addressing the following three questions.

How to leverage the preference learned from the consultation session? Let us assume the DM’s
feedback collected in the consultation session is drawn from a preference distribution as the
density ratio p, (X)/pe(X), where p, (X) and p,(X) is respectively the winning and losing probability
of a solution X sampled from the PS, see an illustrative example in Figure[3[a). After the 7-th round of
the consultation session, we perform density-ratio estimation based on v and £. By using moment
matchmg techniques (see Appendix , we obtain a Gaussian distribution with mean x} and covari-
ance 3. Let &, take the largest value of diagonal elements of >.. The preference elicitation
module maintains a Gaussian mixture distribution by a convex combination of Gaussian distributions
from multiple consultation sessions:

. 1 Nconsult 1 e =
Pr(x) = — > —N(x|%},3,), 4)
=1 o

where x € Q, Neonsult 18 the total number of consultation sessions conducted so far, and Z =
Zivi‘““““ 1/, is the normalization term. Figure b) gives an illustrative example of a Gaussian
distribution approximated by the DM’s feedback collected at one consultation session.

How to adapt f’vr(x) to EMO algorithms? We believe f—’vr(x) can be applied in any EMO algorithms
with few adaptation in their environmental selection. For proof-of-concept purpose, this paper takes

NSGA-II [[14] and MOEA/D [68]], two most popular algorithms in the EMO literature, as examples
and we design two D-PBEMO instances, dubbed D-PBNSGA-IT and D-PBMOEA/D.



* At each generation of the original NSGA-II, it first uses non-dominated sorting to divide
the combination of parents and offspring into several non-domination fronts F1, ..., Fj.
Starting from F7, one front is selected at a time to construct a new population, until its size
equals to or exceeds the limit. The exceeded solutions in the last acceptable front will be
eliminated according to the crowding distance metric to maintain population diversity. In
D-PBNSGA-II, we replace the crowding distance with Pr(x). As a result, the solutions
close to the SOI will survive to the next generation.

* The basic idea of the classic MOEA/D is to decompose the original MOP into a set of
subproblems using weight vectors. Then, these subproblems are tackled collaboratively
using population-based meta-heuristics. In D-PBMOEA/D, we progressively transform the
originally uniformly distributed weight vectors W = {w*}}¥ | used in the original MOEA/D

to the preference distribution Pr(x). In practice, the transformed weight vector is w” =

—~—1 X —~—1
Pr (w?"), where Pr (-) is the weighted sum of inverse Gaussian distribution, defined
in equation (T9).

Detailed implementation of D-PBNSGA-IT and D-PBMOEA/D are in Appendix

When to stop querying DM? There is no principled termination criterion in exiting PBEMO, but is
often set as a pre-defined number of consultation sessions. This is not rationale and likely to incur
unnecessary workloads to DM, even when the evolutionary population is either converged to the SOI
or being trapped by local optima. Under our D-PBEMO framework, we have the following theoretical

result about the convergence property of f’vr(x)

Theorem 3.4. Assume the preference distribution Pr(x) around the SOI follows a Gaussian mixture
distribution. It becomes stable when N_onsuit increases.

The proof of Theorem [3.4]is in Appendix In D-PBEMO, we apply Theorem [3.4] to adaptively
terminate the consultation session when Pr(x) becomes stable. In practice, this happens when

the Kullback—Leibler (KL) divergence of i;r() between two consecutive consultation sessions is
smaller than a threshold e:

log ﬁrrfl (59)

— ) 5
log Pr, (X;) ©)

Ny N
D, (Prroy || Pry) = 3 Pres (1)
i=1

where 1 < 7 < Neonsult, X; 18 sampled from S*. Ny is the number of samples when calculating the
KL divergence. Here we use ¢ = 1072, and its parameter sensitivity is studied in Section

4 [Experiments

4.1 Experimental Setup

This section outlines some key experimental setup including benchmark test problems and perfor-
mance metrics. More detailed information can be found in Appendix [D]

Benchmark problems Our experiments considers 33 synthetic test instances including ZDT1 to
ZDT4 and ZDT6 [[72]) (m = 2), DTLZ1 to DTLZ6 [18]] where m = {3, 5,8, 10}, and WFG1, WFG3,
WEGS, and WFG7 [30] (m = 3). These problems are with various PF shapes and challenges such
as bias, plateau, and multi-modal. In addition, we also consider two scientific discovery problems
including 10 two-objective RNA inverse design tasks [55,[70]] and 5 four-objective protein structure
prediction (PSP) task [69]. The problem formulations are detailed in Appendix @

Performance metrics As discussed in [37]], quality assessment of non-dominated solutions is far
from trivial when considering DM’s preference information regarding conflicting objective. In our
experiments, we consider two metrics to serve this purpose. One is approximation accuracy ¢*(S)
that evaluates the closest distance of x € S regarding the DM preferred solution in the objective
space, denoted as ‘golden point’ z* € R™, while the other is average accuracy €(S) that evaluates
the average distance to z*. Note that z* is unknown to the underlying algorithm in practice, and
the corresponding settings used in our experiments are in Appendix Due to the stochastic
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Figure 4: Box plot for the Scott-Knott test rank of D-PBEMO and peer algorithms achieved by 33 test
problems running for 20 times. The index of algorithms are as follows: 1 ~» D-PBNSGA-ITI, 2 ~»
D-PBMOEA/D, 3 ~ I-MOEA/D-PLVF, 4 ~» I-NSGA-II/LTR, 5 ~ IEMO/D.

Target Structure D-PBNSGA-II  D-PBMOEA/D I-MOEA/D-PLVF I-NSGA-II/LTR IEMO/D

MFE = —24.1 MFE = —25.7 MFE = -23.2 MFE = —-24.5 MFE = -24.2
o=0.92 o =0.85 o =0.77 o=0.77 o=0.77

Eterna ID:
852950

Figure 5: Comparison result of D-PBNSGA-IT against the other three state-of-the-art PBEMO
algorithms on a selected RNA inverse design task (Eterna ID: 852950). The target structure is shaded
in blue color while the predicted structures obtained by different optimization algorithms are
highlighted in red color. In this experiment, the preference is set to ¢ = 1. The closer ¢ is to 1, the
better performance achieved by the corresponding algorithm. When the o shares the same biggest
value, the smaller M F'E the better the performance is. Full results can be found in Appendix [E

nature of evolutionary computation, each experiment is repeated 20 times with different random
seeds. To derive a statistical meaning of comparison results, we consider Wilcoxon rank-sum test and
Scott-Knott test in our experiments. They are briefly introduced in Appendix [D.3]

4.2 Comparison Results with State-of-the-art PBEMO algorithms

To validate the effectiveness of our proposed D-PBEMO framework, we first compare the per-
formance of D-PBNSGA-II and D-PBMOEA/D against three state-of-the-art PBEMO algorithms,
I-MOEAD-PLVF [36], I-NSGA2/LTR [38], IEMO/D [58].

For the synthetic benchmark test problems, the comparison results of €*(S) and &(S) in Tables
and [A6| have demonstrated the competitiveness of our proposed D-PBEMO algorithm instances. In
particular, D-PBNSGA-II and D-PBMOEA/D have achieved the best metric values in 77 out of 96
comparisons according to the Wilcoxon rank-sum test at the 0.05 significant level. In Figure 4} the
box plots of the ranks derived from the Scott-Knott test of D-PBNSGA-II and D-PBMOEA/D compared
against the other three peer algorithms further consolidate our observation about the effectiveness
of our D-PBEMO framework for searching for SOI within a given computational budget. From the
plots of the final non-dominated solutions obtained by different algorithms shown in Figures [A§]
to[A9] we can see that the solutions found by our D-PBEMO algorithm instances are more concentrated
on the ‘golden point” while the others are more scattered. Further, the superiority of our proposed
D-PBEMO algorithm instances becomes more evident when tackling problems with many objectives,
i.e., m > 3. Similar observations can be found in the scientific discovery problems, as the results
shown in Tables[A22] [A23] [A24]and [A25] For the RNA inverse design tasks, the sequences identified
by our proposed D-PBEMO algorithm instances have a good match regarding the targets as the selected
results shown in Figure [5 (full plots in Figures and[AT5)). As for the PSP problems, from the
results in Figure [f] it is clear to see that D-PBEMO algorithm instances significantly outperform the
other peers. The protein structures predicted by our algorithms are more aligned with the native
protein structure. Full results can be found in Appendix [
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D-PBNSGA-II D-PBMOEA/D I-MOEA/D-PLVF I-NSGA-II/LTR IEMO/D

RMSD = 7.875 RMSD —2.475 RMSD = 9.553 RMSD = 10.459 RMSD = 11.052
RMSD = 1.958 RMSD =1.682 RMSD = 14.926 RSED = 8.358 RMSD = 2.032
RIS,
RMSD = 1.450 RMSD =0.673 RMSD = 1.768 RMSD = 1.359 RMSD = 1.036
- —— P
RMSD =2.495 RMSD =1.821 RMSD = 3.361 RMSD =2.600 RMSD = 3.994
3V1A @L S 5 % gk /jﬁ“ﬁ
RMSD =7.605 RMSD =1.656 RMSD = 10.169 RMSD = 8.050 RMSD = 12.461

Figure 6: Experiments results for comparison results between D-PBEMO and the other three
state-of-the-art PBEMO algorithms on the PSP problems. In particular, the native protein structure is
represented in a blue color while the predicted one obtained by different optimization algorithms are
highlighted in a red color. The smaller RMSD as defined in Equation (29) of appendix, the better
performance achieved by the corresponding algorithm.

4.3 Investigation of the Effectiveness of Our Consultation Module

The consultation module, which learns the DM’s preferences from their feedback, is one of the
most important building blocks of our proposed D-PBEMO framework. To validate its effectiveness,
we designed a D-PBEMO variant (denoted as D-PBEMO-DTS) that uses the double Thompson sampling
(DTS) widely used in conventional stochastic dueling bandits [62] as an alternative of our proposed
clustering-based stochastic dueling bandit algorithm. From the results in Tables[A7]and [A§] it is clear
to see that D-PBEMO-DTS is always outperformed by our three D-PBNSGA-II and D-PBMOEA/D. This
observation can be attributed to the ineffectiveness of the traditional dueling bandit algorithms for
tackling a large number of arms. In our PBEMO context, DTS requires at least thousands comparisons
when encountering more than 100 candidate solutions. This is not feasible under the limited amount
of computational budget. We envisage the same results will be obtained when considering other
dueling bandits variants such as [34].

Further, we designed another variant (denoted as D-PBEMO-PBO) that uses a parameterized preference
learning model in Bayesian optimization [25] as alternative in the consultation module. From
the comparison results shown in Tables[A7]and[A8] we find that the performance of D-PBEMO-PBO
is competitive on problems with a small number of objective (m = 2). However, its performance
degenerate significantly with the increase of the number of objectives. This can be attributed to
the exponentially increased search that renders D-PBEMO-PBO ineffective by suggesting too many
solutions outside of the region of interest. In contrast, the clustering strategy in our proposed method
strategically and significantly narrow down the amount of comparisons without compromising the
learning capability. Additionally, the enlarged search space also makes the model selection in
D-PBEMO-PBO difficult. Our proposed method, on the other hand, learns human preferences directly
from their feedback, thus is scalable to a high-dimensional space.
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4.4 Parameter Sensitivity Study

This section discusses the sensitivity study of two hyperparameters of the D-PBEMO framework.

K is the parameter that controls the number of subsets used in our clustering-based stochastic dueling
bandits algorithm. From the results shown from Tables and considering K = {2, 5,10}, it
is interesting to note that D-PBEMO is not sensitive to the setting of X when the dimensionality is low
(i.e., m = 2). This implies that we can achieve a reasonably good performance even when using a
smaller K, i.e., a coarser-grained approximation of SOI. By doing so, we can further improve the
efficiency of our D-PBEMO framework.

As the dimensionality increases (i.e., m = {3, 5,8, 10}), the population size will increase. Generally,
as is shown in Table[AT3]~ with larger populations, a higher K tends to yield better results,
aligning with our intuition. Furthermore, our significance analysis across 20 repeated experiment
(Figure {4) reveals that the optimal /K does not show significant differences in performance. In
summary, K does not significantly impact the performance of our proposed D-PBEMO framework.
For most problems, we do not recommend choosing a very small/large K (e.g., K =2, K = N), as
it may inefficiently narrow down the ROIL.

To a certain extent, the threshold € plays an important role for controlling the budget of consulting
the DM. From the results shown in Tables [A9] and [AT0] we find that all three settings of ¢ =
{1071,1073, 1075} have shown comparable results. However, a too large ¢ = 10~! may lead to a
premature convergence risk. On the other hand, a too small £ = 10~% may be too conservative to
terminate. This renders more consultation iterations, thus leading to a larger amount of cognitive
workloads to DMs. In contrast, we find that D-PBEMO algorithm instances can converge with less
than 10 consultation iterations with ¢ = 1073,

5 Limitations

Our proposed D-PBEMQ directly leverages DM’s feedback to guide the evolutionary search for SOI,
which neither relies on any reward model nor cumbersome model selection. However, there are
several potential limitations of D-PBEMO that warrant discussion here:

* The regret analysis of our proposed clustering-based stochastic dueling bandits is for the
optimal subset, i.e., the region of interest on the PF. It is not yet directly applicable to
identify the exact optimal solution of interest. As part of our future work, we will work on
efficient algorithms and theoretical study on the best arm identification in the context the
preference-based EMO.

* This paper only analyzes the regret of the consultation module. How to further analyze the
convergence of the D-PBEMOas a whole remains unknown. This will also lead to the next step
of our research. In particular, if it is successful, we may provide a radically new perspective
to analyze the convergence of evolutionary multi-objective optimization algorithms.

6 Conclusion

This paper introduced the D-PBEMO framework that is featured in a novel clustering-based stochastic
dueling bandits algorithm. It enables learning DM’s preferences directly from their feedback,
neither relying on a predefined reward model nor cumbersome model selection. Additionally, we
derived a unified probabilistic format to adapt the learned preference to prevelant EMO algorithms.
Meanwhile, such probabilistic representation also contributes to a principled termination criterion of
DM interactions. Experiments demonstrate the effectiveness of our proposed D-PBEMO algorithm
instances. In future, we will investigate more principled approaches to obtain K subsets, such as
fuzzy clustering with overlapping. Further, we plan to extend this current /-armed bandits setup to a
best arm identification. By doing so, we can directly obtain the solution of interest, with a potential
explainability for MCDM. Moreover, we will extend our theoretical analysis of the termination
criterion to a convergence analysis of PBEMO, even generalizable to the conventional EMO. Last but
not the least, we will collaborate with domain experts to promote a emerging ‘expert-in-the-loop’
scientific discovery platform, contributing to the prosperity of Al for science.
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A Related Works

A.1 Multi-objective optimization

In the context of MO, to align with DM’s preference, existing methods fall into three main categories:
the a posteriori methods, the a priori methods, and the interactive methods [12]. The a posteriori
methods first generates extensive efficient solutions through MO algorithms, then ask DM to select
SOI from these solutions. In this way, DM is involved only when solution generation from the
optimization module is finished, where the decision making process can be finished according to
multi-criterion decision analysis [26] or certain SOI analysis [[13}16,40]. However, the absence of
DM’s preferences in solution generation can paradoxically complicate pinpointing the SOI, and the
sheer number of generated solutions can be cognitively overwhelming for DM to choose from. The
a priori method, leverages pre-defined DM’s preference to guide the search of SOI [[7}, 142, 157, 37]].
In other words, the decision making happens before optimization. This is more related to offline
preference learning such as reinforcement learning from human feedback (RLHF) [38]. However,
given the black-box nature of real-world problems, eliciting reasonable preferences a priori can be
controversial. [39,54] pointed out that the a priori method may lead to disruptive preferences and
result in faulty decisions. Moreover, elaborating the DM labeled dataset used for offline preference
learning such as RLHF is also a difficult task. In contrast, the interactive method also known
as preference-based evolutionary multi-objective optimization (PBEMO) [39] presents a valuable
opportunity for the DM to gradually comprehend the underlying black-box system and consequently
refine user preference information [44, [15} 8} 136, 1591 138]].

A.2 Preference learning in PBEMO

The consultation module in PBEMO collects DM’s preference by actively querying DM’s preference
towards recommended candidates. Based on the requirements of human feedback, methods for
consultation can be categorized into the following three types, as also presented in Figure [T[(b).

* The first type requires DM to provide scores or rankings for a bunch of (typically more than
three) solutions. In [38]], a rank-net was introduced to conduct consultation in PBEMO. In
[27], a ranking model was required in the context of RLHF. In addition, as presented in
[50l, relative preference can only be leveraged by ranking on more than three candidates.
However, providing reward or ranking on a bunch of solutions will not only increase the
workload of DMs, but will also introduce uncertainty and randomness into optimization
processes due to the limited capacity of DMs [48]].

* Algorithms in the second type rely on a parameterized transitivity model or a structured
utility function for dueling feedback [5], such as the Bradley-Terry-Luce model [11] which
has been widely explored in the literature [32,24,[11,129,(71]]. These algorithms can be traced
back to 1982, when [32] introduced the UTA (UTilités Additives) method for deducing
value functions based on a provided ranking of reference set. Following up work included
[24] that employed pairwise preference to predict a ranking for potential labels associated
with new training examples, [11]] that utilized GP for pairwise preference learning (PGP)
within a Bayesian framework, and [9]] that proposed the ListNet which was an NN-based
learning-to-rank method to model preference feedback. In addition, [29] extended the
work in [9]] to handle multi-user scenarios by introducing a weight vector for each user
and combining multiple preference latent functions. More recently, [25]] proposed a novel
pairwise preference learning method using the concept of Bayesian optimization based
on a structured surrogate model assumption, named preferential Bayesian optimization
(PBO). Moreover, in [71]], a comparative study towards four prominent preference elicitation
algorithms was conducted, and results shown that ranking queries outperformed the pairwise
and clustering approaches in terms of utility models ad human preference.

* Algorithms that belong to the third type consider human feedback as stochastic events such
as Bernoulli trails, enabling quantifying randomness regarding the DM’s capability. Dueling
bandits algorithms are known for its efficiency towards interactive preference learning [65].
In recent years, work like [[75} 162} 63 has improved dueling bandits algorithms in both
querying efficiency and computational complexity. Further investigations on dueling bandits

are presented in
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Algorithms in the first two types burden the development of PBEMO, as reward/ranking method fails
to take human capability into account and will navigate solutions to an inaccurate direction, while the
parameterized method relies heavily on model selection. It is well known that, in real-world problems,
selecting an appropriate model is as difficult as solving the original problems. We appreciate the
model-free settings in dueling bandits algorithms.

A.3 Bandit algorithms

The dueling bandits problem involves a sequential decision-making process where a learner selects
two out of K “arms” in each round and receives binary feedback about which arm is preferred.
Following [4], dueling bandits algorithms can be classified into three categories: MAB-related, merge
sort/quick sort, and tournament/challenge. In this paper, we focus on traditional dueling bandit
algorithms falling in the MAB-related category. comprising four distinct methodologies for handling
pairwise comparisons.

* The first method is known as explore then commit (ETC), which is utilized by algorithms
such as interleaved filtering (IF) [65], beat the mean (BTM) [66] and SAVAGE [60]. ETC
methods kick out solutions that are unlikely to win, but this approach may lead to lower
accuracy of predictive probability.

* The second method involves using the upper confidence bound (UCB), for example relative
upper confidence bound (RUCB) [74], MergeRUCB [73]], and relative confidence sampling
(RCS) [75]. MergeRUCB, an extension of RUCB, is particularly designed for scenarios with
a large number of arms. RCS combines UCB and Beta posterior distribution to recommend
one arm for each duel in each iteration step.

* The third method employs Thompson sampling, as demonstrated by double Thompson
sampling (DTS) [62] and MergeDTS [35]. Similar to MergeRUCB, MergeDTS is designed
for dealing with a substantial number of arms. It is worth nothing that UCB methods
assume the existence of a Condorcet winner, whereas Thompson sampling methods assume
a Copeland winner, representing a fundamental distinction between these two types.

* The fourth method involves using the minimum empirical divergence, as introduced by
relative minimum empirical divergence (RMED) [34] and deterministic minimum empirical
divergence (DMED) [28]. RMED and DMED employ KL divergence as a metric to evaluate
candidate arms.

Overall, these four methods represent different approaches to pairwise comparison in traditional
dueling bandit algorithms. However, the key bottleneck here is the sourcing number of DM queries
required when considering a population solutions in PBEMO.

To our knowledge, there is no clustering-based dueling bandit algorithms. While in the field of
multi-armed bandit (MAB), there has already exists clustered MABs which consider the correlation
of arms [47,46]], they relied heavily on complex model selection that is not applicable for real-world
scenarios.

Additionally, it is noted that multi-objective multi-armed bandit (MOMAB) is potential to address
PBEMO problems. However, as pointed out in [31}[56], MOMABs belong to the a posteriori MO
method, recalling[A.T] Specifically, the goal of MOMABEs is to find an optimal multi-objective arm by
sampling potential winners. However, MOMABs do not involve optimization for PF generation nor
active query for preference learning. Thus it’s not feasible to use MOMABS as our peer algorithms or
consultation module.

B Derivation and Theoretical Analysis

B.1 Regret bound of clustering dueling bandits

Proof of Theorem[3.3] We follow the proof of double Thompson sampling for dueling bandits [62]],
different from which the clustering operation will lead to a non-stationary environment. As shown
subsequently, the Assumption [3.2]is important to build an auxiliary problem that is stationary,
facilitating to apply the results in [62].
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According to the property of Beta distribution, the estimated mean of probability for subset 7 beats
subset j is p; ;(t) = Wﬁg)(%l) Unfortunately, the pairwise comparison feedback does not
i, »

follow a stationary distribution. Specifically, p; ; represents winning probability between the best
solutions in 8% and 87, while p; ;(¢) is computed from comparison among different solutions in the
two subsets due to limited knowledge of the best solutions at the beginning. As a result, the reward
distribution is drifting [[10]. To handle this, we introduce an auxiliary problem with stationary reward
distributions. Based on comparison principles, the number of plays on each subset in the original
problem can be upper bounded by the ones of the auxiliary problem. Note that the auxiliary problem
are introduced merely for theoretical analysis.

Without loss of generality, we assume S' to be S*. Since we are most interested in locating the
optimal subset, we define the underestimation of winning probability of py ; as p, e which is the

winning probability between: i) the solution x! € S' with the lowest Copeland score over all

solutions in S7, and 4i) the solution X/ € S7 with the highest Copeland score over all solutions
inS!, j = 2,... K. Likewise, we define P, ; as the winning probability between: i) the solution

x! e S' with the lowest Copeland score over all solutions in &7 , and ii) the solution %/ € 87 with

the highest Copeland score over all solutions in S, pi; > 0.5, 45 =1,... K. Forp; ; < 0.5, denote

p, . =1—p. . Lastly, wedenote p. . = 0.5, Vi =1,..., K. According to Assumption | the
to

%,]
optlmahty remalns i.e., the optimal subset in the context of p;; is also optimal in the context of p. .
J —1J

With the auxiliary problem, we introduce the virtual Thompson sampling strategy that generates
samples as 0 ; ~ Beta(b/; ;(t) — 1,b] ;(t) — 1), where b] ; is the number of time-slots when subsets
S’ beats S7 under P . Itis easy to Ver1fy two facts in expectanon i) b’ < b, ;, and i) b;z > by
Consequently, when pi,j > 0.5 ori = 1, for samples 9”( ) ~ Beta(b” + 1,b;; + 1) and

0; ;(t) ~ Beta(b] ; + 1,0} ; + 1), we have 91 ,j dominates 0; ; in expectation [10].

In what follows, we are going to quantify the number of plays of subset pair S? and §7 To avoid
ambiguity, let N; ;(t) denote the case where S’ = S? and S” =

When the first subset for comparison has been determined as S?, the number of plays for S9,j # 1,18

BN, ()] =3P (s7=8)

t=1
T T

-3p (S” =8p,, < 0.5) +Y P (S” =8p,, > 0.5) . 6)
t=1 t=1

When p, . < 0.5, we consider the following facts: i) 0;,; are sampled from Beta(b;; + 1,b; ; + 1)

when j # 4; i) 0, ; = 0.5; i13) 6,; > 6, ; since subset S is selected by sampling for comparison.
From these observations, the problem is equivalent to a multi-arm bandit problem where the best arm
is indexed by i. Then, the left item of equation (6)) can be further divided by

M=

P(w —§ip,, < 0.5)
t

1

T
3/ QF LA
=8.p,, <c<05) +t§_1jn(s =8,c<p, <05)

I
[~
~
—~

&~
Il
-

-

~ - logT
P(S' =8 ,p <eNij(t—1)<—2
( P < &Nt —1) < DKL(c0.5)>

t

S T
E S G logT - .
+ 2 P <S =8 Py <6 N;i(t—1)> DKL(C||O.5)> + 2 P (S Sle< P, < 0.5) .
)

1
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When P . < 0.5,if p;j ; > 0.5, we have p; ; > P, , thus 0 ; dominates 9’ , in expectation. Therefore,

we have P (Nj’i(t 1)< %) <P (ﬂjyi( 1)< %) where N ,(t — 1) is the
number of plays of pair S’ against S? using the virtual Thompson sampling strategy. Otherwise, if
pji < 0.5, we have p;; < P, LthusP(p;; <c) >P (pj i < c) which follows the regular form as

Lemma 1 in [62]. Accordmg to the concentration property of Thompson samples [2], we have
T
> P(8"=8p,, <05)
t=1

T
- - logT'
<§ P(S"=8,p <eN..(t—-1)<—2
‘_1( Dy = oMl )—Dm@mm)

T T
~ < logT ~ <
E PlS"=8"p <c¢Nij(t—1)> —2— E P(S"=8,c<p. <05
+ 4 < B‘%z c Jv( ) DKL(C|O5)> +t:1 ( ¢ BJ,’L )

logT 1
= Drrlc05) " Dilelln,,)
As shown in [2], for any € € (0, 1], ¢ can be chosen such that Dky,(c||0.5) = DKL( ;110.5)/(1+¢€),
and 1/Dky,(c|| Bj,i) = O(1/€?). Therefore the left item in equation (6)) is bounded from above by

T
- - logT 1
P(§" =& p <05)<(+0—"2" ___Lo(2), 9
; ( 2, <05) < +€)DKL( o) " (é) ©)

To account for the second term in equation (G), the concentration property of relative upper confidence
bound [74, 162] will be used. For P > 0.5, define A ; = P~ 0.5 > 0, thus the right side of

equation (6) can be divided into
T

;P (8" =8p,,>05)

T
o dalog T
-y (S” =8,p,, > 05Nt —1) < aog)

+ 1. ®)

A

t=1 3y
a dalogT
oI QF D s 4
+ E P (S = SJ,QN, >0.5,N,,;(t—1)> . ) ) (10)

Note that the subset S7 can be selected as S only if /;; < 0.5. For the right item in equation (T0),
Nji(t—1)> 740‘Alcj’iT is sufficient to yield [; ; + A;; > u,; ;, finally we have u; ; < p; ;. Applying

concentration properties in Lemma 6 of [62], we have

T
~ . 4alogT
ZP(S” =& ,p,, > 0.5, Njalt = 1) > = Og ) ZIP wi; < piy) = O(1).
As a result, we can also have a upper bound of the left item in equatlon (10) as

4alog T) < 4alog T

T
Z]P’ (S" = Sj,gj,i > 0.5, N;(t—1) <

A N (11)
t=1

Jyi Jrt

Altogether, for j # i, we have
logT dalogT 1
E[N/ P(§"=8)<n o).
! Z =(l+e )DKL( ;110-5) LNV (62>

For the case where S’ and S are selected to be the same subsets, an upper bound of O(K) has been
proven in Lemma 3 of [[62]. Therefore we omit the proof of this case for brevity.

O
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B.2 Density-ratio estimation of preference distribution

Consider the DM’s preference distribution is determined by the density ratio of winning distribution
over losing distribution, in other word, preference on solution X is determined by p,, (X)/p¢(X). From
consultation module, we have obtained the winning and losing time vectors v and £ of all candidate
solutions, which in turn gives us a density estimation of p,, and p,. We are going to perform density-
ratio estimation based upon v and £ to obtain the density ratio, namely the preference distribution
pr(X), which can be mathematically formulated as

Po (i) = Dr (i)pg(f() (12)
We use finite-order moment matching approach without conducting complex density estimation of

each p,(X) and p,(X). Denote a vector-valued nonlinear function ¢ : v — R¥. Consider the first

k-th order moments, we have ¢ (%) = (xV),...,x®), where x*) stands for element-wise k-th
power of x. Then, the moment matching problem for density-ratio estimation can be formulated as

2
13)

[ o @ ax— [ op.x) dx

arg min
Pr
Equivalently, we can reformulate the problem by

s < [ o6om Gz i, [ om0 dsc> s

[ o @ ax

arg min
Pr

where (-) denotes the inner product. Viewing each component in equation (14)) as the expectation
operation of function ¢(X)p,(X) over distribution p, (X) and py(X), we use sample averages to esti-
mate the expectation [52]]. To this end, we construct two sample vectors ®,, = ((ﬁ(i}]), o (XD ))

and &, = (¢(§<}), e ’)) based on the wining and losing time vectors v and £. Specifically

x! and X/ are solutions that has won or lost one time during consultation. Note that a solution may
appear in ®,, or &, more than one time since its winning or losing time is greater than 1. N,, and N,
are the number of winning and losing solutions, calculated by the sum of all winning or losing times

for all solutions. Correspondingly, we denote p, = (pr (X}),---pr (iév ¢ )) An estimator p,. for p,.
can be calculated by solving the following problem:

P, = arg min o) dyp, — p, ®/ @, 1y (15)

pr€RNe

1 + 2
NzPr NN
¢ ¢4V
where 1y, is the N,-dimensional vector whose elements are all valued by 1. The optimality is
reached by when the derivative of equation is zero, i.e.,
2 0T 2 $Td,1y =0 (16)
NZQ ¢ LePr NZNE ¢ ¥viN, — Yk,

where 0y, is the k-dimensional vector whose elements are all valued by 0. Correspondingly, we have

. Ny -1
Pr=1r (@, ) @) D,1y,. (17)
v
Note that p, is the estimation of true density ratio p,., namely the probability density function,
on solutions Xj, 7 = 1,..., N;,. By assuming Gaussian distribution around SOI, we can further
approximate the mean and variance by

Ny o 5 Ny . .
%= xipl, S, = diag{§ %) %p! _;{:2}, (18)
i=1 i=1

where we dismiss the covariance between any two dimensions in solution space for brevity.

Remark 4. The sample averages can also be performed by first estimating the winning and losing
density distributions based on v and ¢, then sample solutions on them to increase the sample numbers.
This will improve the estimation in equation (I4) at the cost of complex density estimation. In addition,
perturbations on solutions can be introduced for legal inverse operation of @Z ®, in equation .
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B.3 Convergence of preference distribution

Proof of Theorem Form Theorem@ when N¢onsult increases, the clustering dueling bandits
can grasp DM’s preference towards pairwise comparisons with increasing accuracy. Therefore, the
convergence of preference distribution Pr(x) will be mainly influenced by the behaviors of EMO
algorithms as well as the landscape of MO problems. To this end, we consider two extreme cases: 7)
the population distribution of candidate solutions from EMO generators remains unchanged, and i)
the population of solutions are steered into shrinking regions by EMO algorithms.

For the first case, we let the unchanged distribution be N (x | X}, flu), vr > N,, where N, > 1
denotes a threshold number of consultation sessions. The convergence is presented by the following
truth:

N 1 N, 1 1 Neonsult 1
Prix) = > = NEx|XLE)+ - D —Nx[%],2)
=1 T T=Ny+1 ¢
N,
1 ~ 1 S
— —N(x|x7,%;)
Z,{Yil % + (Nconsult - Nu) &lu 7;1 or

(;%L(Nconsult - Nu)N(X | 5(;7 Zu)
TS L oo — N2
=175, consult u)F,

Note that (.% > 0 and is constant. When N¢onsuit > V., we have I’Dvr(x) =0+ N(x|xk, f}u)

therefore Pr(x) is convergent to ' (x | X*,3,).

For the second case, shrinking regions with increasing N¢onsult result in a uniform distribution in the
context of Gaussian distribution around SOL. In this case winning and losing probability are close to
each other. As a result, a large 6, will be computed. Therefore this distribution hardly contributes
to the mixture distribution. Consequently, with shrinking regions, effect of consultation sessions

decreases to zero, thus Pr(x) convergent ultimately.

Based on these observations, two extreme cases can result in a convergent stable mixture distribution,
covering all other cases in PBEMO between the two extreme ones. The proof is complete. O

C Algorithmic Implementation of Our D-PBEMO Instances

The structural pseudocode for D-PBEMO is shown in Algorithm[I] The D-PBEMO framework is made
up of three component, consultation, preference elicitation and optimization module. In this paper,
our contribution is mainly in consultation and preference elicitation module (highlighted by rhd). In
consultation module, we proposed a clustering-based stochastic dueling bandit algorithm (pseudocode
can be referenced in Algorithm [2). While in this section, we will delineate the step-by-step process
of three different preference elicitation module. The code of our algorithms and peer algorithms are
available at https://github. com/COLA-Laboratory/EMOC/.

C.1 D-PBNSGA-II

This section will discuss how the learned preference information can be used in NSGA-II [[17]. Based
on [16], solutions from the best non-domination levels are chosen front-wise as before and a modified
crowding distance operator is used to choose a subset of solutions from the last front which cannot
be entirely chosen to maintain the population size of the next population, the following steps are
performed:

Step 1: Before the first consultation session, the NSGA-II runs as usual without considering the
preference information.

Step 2: If it is time to consult user preferences (e.g., when we have evaluated the population for
50% of the total generation), we will update the preference distribution Pr(x) defined
in equation (@).

Step 3: Between two interactions, the crowding distance of each solution will be evaluated by the
predicted preference distribution Pr(x) learned from the last consultation session.
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Algorithm 1 D-PBEMO structure

Input: G maximum generation, N solutions in population.
1: 7 < 0;// 7 represents the consultation session count.
2: current_generation < 0.

3: PI'()(~) 0.
4: while current_generation < G do

5./l Phase 1:Consult user using C-DTS.

6

7

8

if time to consult (e.g. current_generation > 0.5 % G ) and Dk, (Pr,_1||Pr;) > ¢ then
t>run clustering-based stochastic dueling bandit (Algorithm [2));
: T+ T+1;
9: endif
10: /] Phase 2: Preference elicitation and optimization.
11:  if s = 0 then

12: Optimization;

13:  else N

14: > Preference Elicitation, update Pr. (x);
15: Optimization;

16:  end if

17: end while
Output: Solutions x;,7 € {1,2,...,N}.

C.2 D-PBMOEA/D

Following [36]], MOEA/D [68]] is designed to use a set of evenly distributed weight vectors W =
{wi}N | to approximate the whole PF. The recommendation point learned from the consultation
module is to adjust the distribution of weight vectors. The following four-step process is to achieve
this purpose.

Step 1: Before the first consultation session, the EMO algorithm runs as usual without considering
any preference information.

Step 2: If time to consult (e.g., when we have evaluated the population for 50% of the total gen-
eration), the whole population is fed to consultation module and the three outputs will be
recorded and used to update the predicted preference distribution for the current population

as ﬁ(x) defined in Equation .

Step 3: The weight vectors W = {w?}¥ | will be projected to the preference distribution Pr by
using the weighted sum of inverse Gaussian distribution. For a specific weight vector w*:

Nconsult
e VN Lot ien
w'=Pr (w)=_ ; a]\/ (wh | wE,2,), (19)
where 7 = 1,2,..., N and w7 is the corresponding weight vector of X} in f’;(x) (Equa-

tion ). Output the adjusted w* as new weight vectors W’ for next generation.

C.3 D-PBEMO-DTS

This section will discuss how to utilize DTS as consultation module in ablation experiment. In
each consultation session, the budget for pairwise comparison is limited to 100. The optimization
module is Pareto-based EMO algorithm, i.e., NSGA-II [17]. Based on [16]], solutions from the best
non-domination levels are chosen front-wise as before and a modified crowding distance operator is
used to choose a subset of solutions from the last front which cannot be entirely chosen to maintain
the population size of the next population, the following steps are performed:

Step 1: Before the first consultation session, the NSGA-II runs as usual without considering the
preference information.

Step 2: If it is time to consult (e.g., when we have evaluated the population for 50% of the total
generation), then the whole population will be fed into the DTS and the optimal arm will be
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Algorithm 2 Clustering-based Stochastic Dueling Bandit (C-DTS)
Input: 7' € {1,2,...} U {oo}, N arms, K subset.
1: VFON,E%ON;
2: B+ OKXK,ui,j =1, li,j :Ofori,j € {1,...,K};
3: fort=1,...,Tdo R
4: /I Step 1: Choose the first candidate subset S’
bij by e .
5 wig = g5 T Valogt/ (i +ba). Ly = 555 — Valogt/ (b +bja). if i # j,
and w;; = {;; = 1/2,Vi;//let /0 := 1 for any x, when b; j + b, ; = 0.

6 G+ 1/(K—1) > ;i L(ui; > 1/2); // Upper bound of the normalized Copeland score
7: Cl {Z : <~,’ = max; &};

8: forv,y=1,..., Kwithi < jdo

9: Sample 91%) ~ Beta(b; j + 1,05+ 1);

;0 10,

11:  end for

12: & + argmax;ccr > i ]I(GE}; > 1/2); //Choosing from C* to eliminate likely non-winner
arms; Ties are broken randomly.

13:  /IStep 2: Choose the second candidate subset S"

14: %« {S'|l;, <0.5});

15:  Sample 95’2,) ~ Beta(b; , + 1,b,; + 1) for all ¢ # S’, and let 9/(72,) =1/2;

16: S argmaxg; cc» 01(72,);

17: /] Step 3: Query and update

18:  Randomly select an arm x’ from S’, and x” from S”. And observe the result.

19:  ifx' >, x” then

20: by —by+landv, v+ 1,0, 0, +1;
21:  else

22: b//,/ «— b//,/ +1and v, < v, + 1, f/ — €, + 1;
23:  end if

24: end for_

Output: {S*,v, £}, where S* = argmaxg; G

recorded and used to update the predicted preference distribution f’\;(x) as Equation || for
the current population.

Step 3: Between two interactions, the crowding distance of each solution will be evaluated by the
predicted preference distribution Pr(x) learned from the last consultation session.

C.4 D-PBEMO-PBO

In this section, PBO [25] is utilized as the consultation module for D-PBEMO. The PBO is initialized
with 4 pairwise comparisons and its query budget is limited to 10. Also the acquisition function is
set to Thompson sampling. The optimization module is chosen to be decomposition-based EMO
algorithm, i.e., MOEA/D [68]. Following [36], the decomposition-based EMO algorithm (e.g.,
MOEA/D [68]]) is designed to use a set of evenly distributed weight vectors W = {w'}¥, to
approximate the whole PF. The recommendation point learned from the consultation module is to
adjust the distribution of weight vectors. The following four-step process is to achieve this purpose.

Step 1: Before the first consultation session, the EMO algorithm runs as usual without considering
any preference information.

Step 2: If time to consult (e.g., when we have evaluated the population for 50% of the total genera-
tion), the whole population is fed to consultation module and the recommendation solution
will be recorded and used to I@date the predicted preference distribution for the current

population PA’;(X) as Equation
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Step 4: The weight vectors W = {w'}¥ | will be projected to the preference distribution Pr by
using the weighted sum of inverse Gaussian distribution as defined in Equation (I9). The

adjusted weight vectors W’ = {w*}¥ | will be the new weight vectors for next generation.

We present the lookup table for key notations in the following table El

D Experimental Settings

D.1 Benchmark Test Problems

This section introduces the problem definitions of two real-world scientific discovery problems
considered in our experiments. Further, we summarize the key parameter settings in our experiments.

D.1.1 Inverse RNA design

An RNA sequence x of length n is specified as a string of base nucleotides x5 .. .x, where
x; € {A,C,G,U} fori =1,2,...,n. Asecondary structure P for x is a set of paired indices where
each pair (4, j) € P indicates two distinct bases z;z; € {CG,GC, AU,UA, GU,UG} and each

index from 1 to n can only be paired once. For example, given a target secondary structure ”(...)”,

the predicted sequence x1x2737475 should satisfied that the 15¢ and 5t" nucleotides in paired set
{CG,GC, AU, UA,GU,UG}.

Reference from [55/[70]], our inverse RNA design problem adopts two objective functions.

Stability The ensemble of an RNA sequence x is the set of all secondary structures that x can
possibly fold into, denoted as Y (x). The free energy AG(x,y) is used to characterize the stability
of y € Y(x). The lower the free energy AG(x,y), the more stable the secondary structure y for x.
The structure with the minimum free energy (MFE) is the most stable structure in the ensemble, i.e.,
MEE structure.

fi = MFE(x) = argmin AG(x,y). (20)

yey

Note that ties for argmin are broken arbitrarily, thus there could be multiple MFE structures for given
x. Technically, M F E(x) should be a set. In our experiment, the MFE is calculate by ViennaRNAE]
package.

Similarity The second objective function is to assess the similarity between the best secondary
structure of our predicted sequence and the target structure.

o= (n—-d)/n, 21

where d is the Hamming distance between our predicted structure and target structure, and o € [0, 1].
For example, when the target structure is ”(...)” and the predicted secondary structure is ”.....”, d = 2
and 0 = (5 — 2)/5 = 0.6. The bigger the similarity o, the more precise our predicted structure is.
Since our MO problems are minimization problems, the second objective should be:

fo=1—0=d/n. (22)

D.1.2 Protein Structure Prediction

Protein structure prediction (PSP) is the inference of the three-dimensional structure of a protein from
its amino acid sequence — that is, the prediction of its secondary and tertiary structure from primary
structure.

To computationally address PSP, the initial step involves constructing protein conformations using
a suitable model. Traditional Protein Data Bank files contain Cartesian coordinates of all atoms in
a protein, often totaling over 1000 atoms for a modest 70-amino acid sequence. This abundance
of coordinates renders Protein Backbone Exploration with EMO algorithms nearly impracticable.
To mitigate this, protein structures are represented using torsion and dihedral angles, obtained by

In Table we use the i-th arm to denote the ¢-th subset in the context of PBEMO.
3https://github.com/ViennaRNA/ViennaRNA
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converting atom coordinates along consecutive bonds, effectively reducing the search space while
retaining essential structural information. Protein backbones are primarily defined by three torsion
angles: ® (around the —N — C,— bond), ¥ (around the —C,, — C'— bond), and 2 (around the
—(C — N — peptide bond). Additionally, each amino acid residue may feature varying numbers of side-
chain torsion angles (x;, ¢ € 1,2, 3,4) depending on its structure. Despite this, the conformational
search space remains extensive. To address this, secondary structures and backbone-independent
rotamer libraries [21] are utilized to further constrain backbone and side-chain angles, respectively.
These libraries also integrate biological insights from protein secondary structures. Moreover, this
approach necessitates less optimization space compared to those relying on contact maps. For instance,
reconstructing the main and side chains of a 50-amino acid sequence requires only 250 — 300 angles
using dihedral angles, whereas contact maps demand 2500 distances for the main chain alone.

In this paper, we consider PSP tasks as a four-objective optimization problem. Each objective function
is an energy function that determines a regulatory property of a protein.

CHARMM The first objective function f; is CHARMM that calculates several energy terms that
determine protein properties. The corresponding energy function is formulated as:

fi=Ec= Z ko (b — bo)? + Z ko (0 — 60)°+

bounds angles
> k[l 4 cos(ng — §)]+
dihedrals (23)
o kolw—wo)’+ > ku(u—uo)’+
improper Urey—Bradly
Rij 12 Rij 6 4iq;
S D D

Van—der—Vaals charge

where b is the bound length, b is the ideal length, 6 is the angle formed by three atoms involved in
two connected bonds, ¢ is the torsion angle, w is the improper angle, w is the distance between two
atoms of nonbonded interactions in an angle, ks, kg, kg, 9, n, k., wo, kv, uo are constants. The bonds,
angles dihedrals, improper, and Urey-Bradley terms belong to the bond term, while the non-bond
term includes Van-der-Waals and charge terms. Apart from these, Van-der-Waals and charge terms
are used to calculate the Van der Waals force and electrostatic energy between a pair of atoms (i, j),
respectively.

dDFIRE The second one fs is dDFIRE that follows two interactions of atom pairs, i.e., that
between polar and nonpolar atoms, and that between polar and non-hydrogen-bonded polar atoms, to
get excellent solution for potential. The energy of atoms (p, q) pair is calculated as:

No(0p,04,0p9,7)
—RT In ————384F r < Teut
/j'D (T7 9177 etb 91011) = { (Tcut ) Sreut NO(Qpﬂq’gpq’rCM) ’ “ (24)
0 T2 Teut,

7

where N, (0,,8,,0,q,7) is the number of polar atom pair (p, ¢) at distance r. 6,, 6, and 6,, are
orientation angles of polar atoms. R is the gas constant, temperature 7" is set as 300 K, r is the

distance between an atom pair, the cutoff distance 7, is set to 14.5/1, and Ar(Arey:) is the bin
width at 7 (7¢y¢). The value of parameter « is proven to be 1.51 [64]]. The total dDFIRE potential is
the summation of energy of all possible atom pairs (p, ¢) in the protein structure:

fo=Ep= Z 1D (T'pq; Op, 0q; Opg)- (25)

Tpq:0p:0q,0pq

Rosetta The third objective function f3 is Rosetta, a composite energy energy function based on
physics and knowledge, each potentials of it is intricately designed:

fs=Er=> wiEi(©;,P), (26)

where w and O are the weight and degree of freedom of each energy term, respectively. P is the
protein structure. Details on Rosetta can be referenced in [3]].
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RWplus The last objective function f4 is RWplus, whose calculation is the same as that of dDFIRE.
However, it emphasizes more about the potential of short-range interactions:

No(av, B, R)
Ne(a767 R)

No(AvaOAB)

NE(AaB)OAB), (27)

+3 " —0.16(A, B)kT'In

f1=FEgpw = Z —kTIn
a,f A,B

where k is the Boltzmann constant and T is the temperature in units of Kelvin. N,(a, 5, R) and
N(a, 8, R) are the observed and expected number of atom pairs, with « and 8 atom types within
a distance R, respectively. Similarly, N, (A, B,O4p) and N.(A4, B,O4p) are the observed and
expected number of atom vector pairs with (A, B) type within a relative orientation O 4 g respectively.
The type of atom vector pairs between atom types « and 3 is (A, B). §(A, B) is 0 when vector pairs
A and B are not contact, and 1 vice versa. The total RWplus potential is the sum of these atom pairs’
energies.

The problem formulation of PSP can be referenced in [69] ﬂ

D.2 Parameter Setting

This section lists several parameters used in experiments, including the parameters in EMO algorithms,
and other parameters we need in D-PBEMO:

* The probability and distribution of index for SBX: p. = 1.0 and n. = 20;

» The mutation probability and distribution of index for polynomial mutation operator: p,, =
L and ,, = 20;

m
* The population size for different problems can be referenced in Table [AZ}

* The maximum number of generation G can be referenced in Table [A3}

» For I-MOEA/D-PLVF and I-NSGA2/LTR, the number of incumbent candidate presented to
decison maker (DM) for consultation: p = 10;

e For I-MOEA/D-PLVF and I-NSGA2/LTR, there exists the number of consecutive consultation
session 7: T = 25;

* The step size of reference point update 1 for MOEA/D-series PBEMO algorithms are set to:
n =0.3.

* The reference points in different test problems can be referenced in Table[A4] The reference
point of real-world problems will be introduced in their experiment results.

* While the winning probability is usually known in advance in dueling bandits, it however
does not exist in the context of MO. In this paper, to project a MO solution to an arm in

the bandit setting, we define the winning probability p; ; of a pair of candidate solutions
(xi,%;),Vi,5 € {1,..., N} as [20]:

pi,; = w(Pr(x;) — Pr(x;)), (28)

where p(a) = 1/(1 + exp(—a)), Pr denotes the real preference distribution of each arm.
For example, we set Pr(x) = N (x|x*,0*?), where x* is decision vector of the reference
point z* (Table[Ad) and o* is a constant value initially set as 0.1. Note that p; ; can take
other forms in case it satisfies the conditions in Section

¢ The subset number K:

10 ifm =2,
8 ifm =3,
K=¢12 ifm=25,
14 ifm =38,
18 if m = 10.

* The budget for dueling bandits algorithm 7" is set as 100.

* The parameter « in u; ; and [; ; is set as a = 0.6.

*https://github.com/zhangzm0128/PCM-Protein-Structure-Prediction
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D.3 Statistical Test

Wilcoxon rank-sum test To offer a statistical interpretation of the significance of comparison
results, we conduct each experiment 20 times. To analyze the data, we employ the Wilcoxon
signed-rank test [61] in our empirical study.

The Wilcoxon signed-rank test, a non-parametric statistical test, is utilized to assess the significance
of our findings. The test is advantageous as it makes minimal assumptions about the data’s underlying
distribution. It has been widely recommended in empirical studies within the EA community [19]. In
our experiment, we have set the significance level to p = 0.05.

Scott-Knott rank test Instead of merely comparing the raw €*(S) and &(S) values, we apply the
Scott-Knott test [45] to rank the performance of different peer techniques over 31 runs on each
experiment. In a nutshell, the Scott-Knott test uses a statistical test and effect size to divide the
performance of peer algorithms into several clusters. In particular, the performance of peer algorithms
within the same cluster is statistically equivalent. Note that the clustering process terminates until no
split can be made. Finally, each cluster can be assigned a rank according to the mean €*(S) or €(S)
values achieved by the peer algorithms within the cluster. In particular, since a smaller €*(S) and
€(S) value is preferred, the smaller the rank is, the better performance of the technique achieves.

E Experiment on Test Problem Suite

E.1 Population Results

In this section, we show the results of our proposed method running on ZDT, DTLZ, and WFG test
suites.

From the selected plots of the final non-dominated solutions obtained by different algorithms shown
in Figure (full results are in Figures to [A9), we can see that the solutions found by our
D-PBEMO instances are more concentrated on the ‘golden solution’ while the others are more scattered.
Furthermore, the superiority of our proposed D-PBEMO algorithm instances become more evident
when tackling problems with many objectives, i.e., m > 3.

The population results of D-PBEMO running on ZDT1~ZDT4, and ZDT6 are shown in Figure [AS]
The population results running on DTLZ1~DTLZ4 (m = {3, 5, 8, 10}) are shown in FigureFig—
ure [ATT| Figure [AT2] Figure [AT3| respectively. The results running on WFG (m = 3) are shown
in Figure

The performance metrics are shown in Table[A5]and Table [A6]

E.2 Parameter influence

In this section, we testify the influence of different hyperparameters, including KL threshold ¢, and
subset number K.

We set ¢ in D-PBEMO-MOEA/D to three different values, e = {107%,1073,107°}. The experiment
results of €*(S) and &(S) can be referenced in[A9)and

We set K in D-PBEMO-MOEA/D to three different values running on ZDT test problems
(N = 100), K = {2,5,10}. The experiment results of ¢*(S) and &(S) can be referenced
in[ATT} [AT3] [ATS| [AT7][ATO} [AT2] [AT4] [AT6L [AT8] and [A20]

F Experiments on Scientific Discovery Problems

F.1 Experiment on Inverse RNA Design

This section shows the experiment result of our proposed method, specifically D-PBEMO-NSGA-ITI.
Our method and peer algorithms run on Eternal(00-viennal benchmarkﬂ which contains 100 RNA
sequences. We selectively run our method on 10 short sequences n € [12, 36]. For inverse RNA

>https://github.com/eternagame/eternal 00-benchmarking
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Figure A7: Selected plots of the final populations of a D-PBEMO instance and peer algorithms. The
red star (x) or line (—) represents reference point, the gray lines (—) represent PF, and the black
points (e) or lines (—) represent the non-dominated solutions obtained by an algorithm.

design problems, the most important task is to predict an accurate sequence whose secondary structure
is the same as target structure, fo = 0. However, in real-world scenarios, we need to tradE-off between
stability and similarity. When fo = 0, the stability f; can not reach its global optimum in PF. Our
D-PBEMO framework can do more than those singlE-objective algorithms for RNA. Users can guide
the search of D-PBEMO algorithms and finally reach a point which sacrifices a little similarity but has
better stability. So our experiment are divided into two parts. In the first part, D-PBEMO-NSGA-II
only focuses on finding the most similar solutions, whose reference point locates on fo = 0. In
another part, user prefers a solution in the middle of PF, f> € (0,1). The reference points of our
two-session experiments can be referenced in[A21]

The experiment results of running on reference point 1 are listed in and[A23] The predicted
secondary structures of each algorithm are shown in[AT4]and [AT5] Each algorithm repeatedly runs
for 10 times. As we can see from these two tables, D-PBEMO-NSGA-IT has best performance for 5
times from the perspective of €*(S) while 6 times from &(S).

The experiment results of running on reference point 2 are listed in[A24]and [A25] As we can see
from these two tables, D-PBEMO-NSGA-IT has best performance for 8 times with reference to €*(S)
and €(S).

F.2 Experiment on PSP

In this section we listed the results implementing our proposed method, specifically
D-PBEMO-NSGA-II on PSP problems. We implement RMSD as the performance metric for PSP
problems:

Natom J2
22y d;

Natom

RMSD = (29)
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Figure A8: The population distributions of D-PBEMO and peer algorithms running on ZDT test suite

(m

=92).

where n4¢0m, 1S the total number of matched atoms between the two protein structures and d; is the
distance between each pair of atoms. The four energy settings and predicted results of our proposed
method are in Table[A26] Other parameters in PSP problems are align with [69].

The population results are shown in Figure [AT6|and the secondary structures are dipicted in Figure 6}
The RMSD comparison results are shown in Table[A27] As we can see our proposed method have
better convergence and accuracy than synthetic problems. This may be caused by two reasons:

* The first one is the PSP problem is only conducted on 4-dimensional objective spaces. In
synthetic problems, our proposed method shows better performance results when dimension
m > 3 while peer algorithms may collapse.

* The second reason is the formulation of PSP problems. In this paper, we adopt utilizing
4 energy function to represent, which are empirically proved to be more accurate than in
1-dimensional objective function[69].

29



D-PBNSGA-II WFG1(m = 3) D-PBNSGA-II WFG3(m = 3) D-PBNSGA-II WFG5(m = 3) D-PBNSGA-II WFGT7(m = 3)

Figure A9: The population distribution of D-PBEMO algorithms and peer algorithms running on
WEG test suite (m = 3).
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Figure A10: The population distribution of our proposed method (i.e., D-PBMOEA/D) running on
DTLZ test suite (m = 3).
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Table A1: Lookup Table for Key Notations

Notation Dimension Description
X R™ n-dimensional decision vector
T; R the i-th decision variable
F RrR™ m-dimensional objective vector
fi R the i-th objective function
P REXK preference matrix of K arms
winning probability of the ¢-th arm over the
Pij [0,1] j-th arm
¢ [0,1] the normalized Copeland score of the i-th
’ ’ arm
k* NE the Copeland winner in K arms
B REXK cons.tructed Winning .matrix of K arms in
dueling bandits algorithm
number of time-slots when the ¢-th arm is
bi,; [0,1] preferred from the pair of the i-th and the
j-th arms
- 0,1] approximated preference probability of the
Pij ’ i-th arm over the j-th arm
Us 5 [0,1] upper confidence bound of p; ;
i j [0,1] lower confidence bound of p; ;
Q R+ parameter for confidence level
t NT total number of comparisons so far
Rt R expected cumulative regret
T N+ maximum number of comparisons
P, RNXN solution-level preference matrix
s winning probability of x’ is preferred over
pz J [07 1] Xj
v NN winning time vector of population of solu-
tions
v; N winning times of the i-th solution
P NN losing time vector of population of solu-
tions
¢; N losing times of the i-th solution
= upper confidence Copeland score of the i-th
Gi [0, 1] solution
PI) [0,1] winning probability of S° S}Jbsets S’ sam-
¥ pled from Thompson sampling
g2 [0,1] winning probability of S’ i over S’ sampled
@/ ’ from Thompson sampling
Q R™ feasible set in the decision space
S finite set population of non-dominated solutions
= . the i-th subset of population of non-
S* finite set dominated solutions pop
subset of population of non-dominated so-
ct finite set lutions with the highest upper confidence
Copeland score
S finite set subset most likely covers the SOI
subset of population of non-dominated so-
C? finite set lutions with lower-confident winning prob-
ability over S’
S” finite set subset potentially preferred over S’
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Table A2: Population size in different problems

Problem | m | N
ZDT | 2 | 100

3 | 64

oms |3
10 | 288

WFG | 3 | 64
PSP | 4 | 50
Inverse RNA | 2 | 100

Table A3: Maximum generation in different problems
Problem | G

ZDT 250
DTLZ1 500 + 50(m — 2)
DTLZ2 200 + 50(m — 2)
DTLZ3 1000 + 50(m — 2)
DTLZ4 200 + 50(m — 2)
WFG 1000 4 50(m — 2)
PSP 300
Inverse RNA | 250

—— Pareto Front === Population — z"

DTLZ1(m = 5

objectives objectives objectives objectives

(a) (b) (¢) (d)

Figure A11: The population distribution of our proposed method (i.e., D-PBMOEA/D) running on
DTLZ test suite (m = 5)
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Figure A12: The population distribution of our proposed method (i.e., D-PBMOEA/D) running on
DTLZ test suite (m = 8).
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Table A4: The settings of the ‘golden solution’ z* for different benchmark problems (represented in
the objective space).

problem | m | reference point

ZDT1 | 2 | (0.3,0.4)7

ZDT2 | 2 | (0.2,0.8)7

ZDT3 | 2 | (0.15,0.4)T

ZDT4 | 2 (0304)T

ZDT6 | 2 | (0.9,0.3)7

WFGI | 3 | (0.2,0.5,0.6)7

WFG3 | 3 | (0.6,0.8,0.8)7

WFG5 | 3 | (0.3,0.7,0.3)7

WFG7 | 3 | (0.7,0.4,0.4)7
3| (0.3,0.3,0.2)7
5 | (0.2,0.1,0.1,0.3,0.4)7

DTLZL | g | (0.1,0.2,0.1,0.4,0.4,0.1,0.3,0.1)T
10 | (0.02,0.01,0.06,0.04,0.01,0.02,0.03,0.05,0.08) T
3 | (0.7,0.8,0.5)T
5 | (0.7,0.6,0.3,0.8,0.5)T

DTLZ2 | g | (0.6,0.5,0.75,0.2,0.3,0.55,0.7,0.6) T
10 | (0.3,0.3,0.3,0.1,0.3,0.55,0.35,0.35,0.25,0.45) T
3 | (0.7,0.8,0.5)7
5 | (0.7,0.6,0.3,0.8,0.5)T

DTLZ3 | g | (0.6,0.5,0.75,0.2,0.3,0.55,0.7,0.6) T
10 | (0.3,0.3,0.3,0.1,0.3,0.55,0.35,0.35,0.25,0.45) T
3| (0.7,0.8,0.5)7
5 | (0.7,0.6,0.3,0.8,0.5)T

DTLZ4 | g | (0.6,0.5,0.75,0.2,0.3,0.55,0.7,0.6) T
10 | (0.3,0.3,0.3,0.1,0.3,0.55,0.35,0.35,0.25,0.45) T
3| (0.2,0.3,0.6)7
5 | (0.12,0.12,0.17,0.24,0.7) 7

DTLZ5 | g | (0.04,0.04,0.0566,0.8,0.113,0.16,0.2263 0.68)7
10 | (0,0,0,0,0.0096,0.027, 0.082, 0.25,0.75, 0.08) |
3| (0.2,0.3,0.6)7
5 | (0.12,0.12,0.17,0.24,0.7) 7

DTLZ6 | g | (0.04,0.04,0.0566,0.8,0.113,0.16,0.2263 0.68)7
10 | (0,0,0,0,0.0096,0.027, 0.082, 0.25,0.75, 0.08) |
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Figure A13: The population distribution of our proposed method (i.e., D-PBMOEA/D) running on
DTLZ test suite (m = 10).
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Table AS: The mean(std) of €*(S) obtained by our proposed D-PBEMO algorithm instances against
the peer algorithms.

PROBLEM m D-PBNSGA-II D-PBMOEA/D I-MOEA/D-PLVF I-NSGA-II/LTR IEMO/D
ZDTI1 2 0.067(1.85E-3)  0.054(1.23E-3)7  0.064(5.99E-4)F  0.066(8.83E-3)
ZDT2 2 0.172(1.71E-3)f 0.208(1.26E-3)f  0.274(1.07E-2) 0.294(5.59E-2)
ZDT3 2 0.086(5.87E-4)f 0.098(2.17E-3)f  0.362(4.32E-2) 0.117(6.93E-4)
ZDT4 2 0.141(1.91E-2)  0.114(7.88E-3) 0.078(5.34E-3)  0.086(5.37E-3)
ZDT6 2 [JO046(ITEE 0.055(2.16E-5)  0.106(1.07E-2)7  0.048(7.62E-5)  0.052(5.77E-6)f
WEG1 3 224(644E-4):  2.36(3.17E-1)i 2.2(2.30E-2) 2.48(9.35E-2)
WEG3 3 17(L17B-1)}  1.OL(4.48E-2)i _ 0.835(2.09E-3)  0.743(6.97E-5)
WFG5 3 1.62(1.23e+00)  224(227E-1)7  1.59(1.86E-2)7  2.64(2.28E-4)}
WFG7 3 _ 1.79(1.58E-1)  2.12(3.19E-1)t 1.5(4.39E-4) 1.49(4.53E-3)F

3 [JONZ4(I4SEB)N 0.194(3.11E-4)  0.171(1.04E-3)  0.178(4.41E-4)F  0.171(1.11E-4)f
5  0417(220E-2)f 0.318(3.99E-4)f  0.25(1.69E-2) 0.302(3.38E-5)
DTLZ1 8  0.526(7.62E-1)i 0.512(2.81E-4)i 0.367(1.78E-2)  0.473(7.06E-5)
10 0.5491E-3)f  0.25(6.59E-4)% 0.246(4.95E-3)  0.224(2.97E-4)
3 0.237(1.74E-3); 0.213(1.77E-3)f  0.256(1.03E-2)  0.177(5.09E-5)
5 0.669(278E-2); 0.507(4.02E-3)f  0.504(8.40E-3)  0.594(3.74E-2) _
DTLZ2 8 0.714(2.53E-3)  0.623(2.87E-2)t  1.06(7.44E-3)  0.647(4.35E-3)}
10 M_ 0.684(2.87E-2)  0.845(1.74E-2)7  0.447(8.80E-3)t
3 0.552(8.33E-2)f 0.265(6.54E-3)f  1.8(2.42e+00) 0.912(3.99E-1)
5 0.702(5.80E-1); 0.498(7.69E-3)f  1.13(5.84E-1) W_
DTLZ3 g 0701(3.39E-3)  0.786(3.77E-2)t  2.28(3.64e+00)  0.625(4.35E-3)7
10 _ 0.385(1.01E-2)  0.637(1.52E-2)F  1.35(4.79E-1)  0.431(7.60E-3)}
3 0.551(9.04E-2)f 0.618(9.03E-2)  0.621(9.88E-2) 0.553(8.92E-2)
5  0.877(3.90E-2)f  0.612(2.75E-2) 1.16(1.15E-2)  0.664(6.38E-2)
DTLZ4 g  087502.18E-2)f 0.851(1.17E-2) 1.5(2.09E-6)  0.835(3.24E-2)
10 0.773(1.88E-1)  0.6(2.26E-2) 0.668(1.69E-2) 1.26(1.10E-8)  [OB56(I65E2)M
3 0.336(6.22E-5) 0.327(1.15E-3)  0.312(3.10E-6)  0.321(5.68E-9)}
5 0.226(8.72E-1) 0.344(4.26E-2)7  0.426(1.52E-2)7  0.23(3.00E-6)}
DTLZ5 8  0.756(3.11E-1) 0.8(7.53E-3)t  0.734(1.14E-3)  0.736(1.42E-7)F
10 0.581(1.17E-2)  0.779(1.49E-2)7  1.51(5.33E-2)7  1.22(1.37E-9)f
3 0.444(349E-2)f 0.425(1.06E-3)  0.459(2.43E-3) 1.54(1.40E-2)
5 0.449(7.50E-1) 0.4(4.59E-2)  3.41(2.17e+00)7  0.33(1.40E-3)
DTLZ6 8  0.941(5.30E-1) L11Q228E-1)7  2.76(5.79E-1)T  0.741(2.75E-4)
10 1.033.71E-1) 0.889(2.11E-2)t  7.54(1.06e+00)7  1.29(6.01E-4)t

T denotes our proposed method significantly outperforms other peer algorithms according to the
Wilcoxon’s rank sum test at a 0.05 significance level;
I denotes the corresponding peer algorithm outperforms our proposed algorithm.
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Table A6: The mean(std) of €(S) obtained by our proposed D-PBEMO algorithm instances against the
peer algorithms.

PROBLEM m D-PBNSGA-II D-PBMOEA/D I-MOEA/D-PLVF  I-NSGA-II/LTR IEMO/D
ZDT1 2 0.126(1.41E-3)  0.146(3.37E-3)7  0.162(1.24E-3)7  0.082(1.14E-2)
ZDT2 2 0.683(9.54E-2)  0.426(1.85E-2)7  0.208(1.64E-3)  0.366(9.23E-2)
ZDT3 2 0.209(3.26E-3)  0.593(4.02E-2)7  0.188(2.15E-3)7  0.129(8.78E-4)7
ZDT4 2 0.161(229E-2)  0.166(6.78E-3)  0.145(7.41E-3)  0.337(2.80E-2) [OMIIZSEZ)N
ZDT6 2 0.134(4.59E-5)  0.226(1.81E-2)F  0.33(1.21E-3)7  0.053(6.69E-6)7
WFG1 3 231(5.73E-4):  2.37(3.19E-1)% 2.17(3.73E-4) 2.52(8.62E-2)
WFG3 3 L7(L17E-Di  1.15(1.66E-1)i 1.12(3.28E-2) 1.27(2.38E-3)  [OT45GA4ES)N
WFG5 3 257(3.74E-1) 3.14(3.15E-1)} 25(2.69E-2)7  2.64(2.11E-4)7
WFG7 3 2.193.78B-1)i  1.8(1.57e+00)% 3.33(2.32E-1) 29(9.81E-3)  [ISI@E05ESB)M

3 0.223(1.42E-3) 0.239(2.02E-3)  0.21(8.71E-4)t  0.172(9.39E-5)t
5 056(8.51E-2) 0.391(1.12E-4)% 3.6(5.58E-1) 0.305(1.65E-5)
DTLZ1 8 3.38(8.02¢+01) 57.6(4.90e+00)t  0.399(1.69E-2)T  0.548(1.40E-3)
10 13.3(5.29¢+02) 8.87(7.74E-1)t  0.285(7.48E-3)  0.255(9.30E-4)}
3 0.254(3.64E-3); 0.416(2.08E-3);  0.55(9.63E-3) 0.235(1.38E-3)
5  0.669(2.72E-2); 0.626(3.14E-3);  0.779(1.32E-2)  0.701(3.59E-2)
DTLZ2 8  1.25(2.68E-2) 1.03(2.51E-2)F 1.12(3.55E-3)F  0.941(7.17E-2)t
10 1.65(3.64E-1) _ 0.968(1.13E-2)F  0.905(1.41E-2)F  0.831(4.02E-2)}
3 0.574(8.00E-2) 158.0(1.42e+02)T  0.502(1.23E-2)f  1.04(4.56E-1)T
5 6.03(5.18e+01)f 0.633(6.21E-3)f  19.4(7.02e+00)  1.46(2.65e+00) [HOM29@SIER)N
DTLZ3 8 48.5(7.50e+03) 329.0(8.25¢+01)t  4.82(1.14e+02)F  0.903(4.10E-2)t
10 1.47(3.72E-1) 49.7(5.93¢+00)7  2.25(3.56e+00)7  0.814(2.43E-2)
3 0566(9.57E-2) 0.716(5.49E-2)  0.834(5.17E-2)  0.615(4.95E-2)
5  0.989(4.83E-2); 0.684(2.42E-2)  0.777(1.45E-2) 1.17(8.18E-3) _
DTLZ4 8  1.21(2.31E-2) 1.19(4.18E-2)F 1.5(0.00e+00)+ 1.0(4.23E-2)
10 1.62(4.54E-1) _ 0.979(6.08E-3)F  1.26(5.69E-8)F  0.893(1.01E-2)t
3 0337(4.33E-5); 0.345(1.37E-4)i  0.552(5.70E-3)  0.344(2.43E-4)
5  1.548.14E-1)f  0.261(6.29E-4);  0.909(1.48E-1)  0.576(1.99E-2) _
DTLZ5 8  1.69(3.34E-1) 1.15(7.10E-2)T  0.772(4.92E-3)  0.776(4.04E-8)
10 2.3(347E-1) _ 0.992(1.11E-1)  1.79(5.38E-21)  1.22(1.41E-9)t
3 1.54(7.80E-2); 0.489(1.64E-3);  1.81(4.49E-3) 1.83(2.18E-2)
5  899(8.03E-1); 0421(2.94E-3);  1.57(4.90E-1) 3.86(2.41e+00)
DTLZ6 8  9.57(5.51E-1)i 3.79(1.98E-1) 3.12(7.40E-1) -
10 10.5(2.09E-1) _ 1.533.75E-1)t  8.15(8.62E-1)t  1.3(1.76E-3)T

T denotes our proposed method significantly outperforms other peer algorithms according to the
Wilcoxon’s rank sum test at a 0.05 significance level;
I denotes the corresponding peer algorithm outperforms our proposed algorithm.



Table A7: The mean(std) of €*(S) obtained by our proposed D-PBEMO algorithm in distillation

experiments.

PROBLEM

D-PBNSGA-II

D-PBMOEA/D

D-PBEMO-DTS

D-PBEMO-PBO

0.067(1.85E-3)

0.172(1.71E-3)%  0.208(1.26E-3)%

0.141(1.91E-2)

0.098(2.17E-3)
0.114(7.88E-3)
0.055(2.16E-5)

0.721(4.48E-3)1
0.915(4.78E-2)
1.16(2.38E-2)t
0.146(2.07E-2)
0.13(1.41E-3)

0.04(3.53E-6)
0.75(4.25E-2)T

0.058(2.59E-5)

L7(L17E-)%

2.36(3.17E-1)
1.01(4.48E-2)
1.62(1.23e+00)
1.79(1.58E-1)

2.26(8.56E-4)

1.72(1.21E-3)
1.33(2.30E-3)}

2.28(2.03E-2)
0.926(3.82E-4)
1.97(2.74E-3)1
2.04(2.35E-2)F

DTLZ1

m
2
2
2
2
2
3
3
3
3
3
5
8

0

0.417(2.20E-2)

0.194(3.11E-4)

0.526(7.62E-1)%  0.512(2.81E-4)%

IORSESIEAN 599(5.99+01)7

0.5(4.91E-3)

0.34(3.26E-3)1
0.572(1.05E-1)
4.23(5.36e+01)

0.204(2.32E-3)1
0.327(1.93E-5)

0.275(5.37E-2)

DTLZ2

3
5
8

10

0.237(1.74E-3)%  0.213(1.77E-3)%

0.669(2.78E-2)

0.675(1.07E-1)

0.714(2.53E-3)

0.56(1.89E-2)
1.06(1.62E-2)t
1.42(9.76E-3)t
1.13(1.75E-3)t

0.528(8.98E-5)F
0.793(1.73E-4)}
0.457(1.73E-6)F

DTLZ3

3
5
8

—_

0

0.552(8.33E-2)

0.702(5.80E-1)%  0.498(7.69E-3)%

0.701(3.39E-3)
0.385(1.01E-2)

0.827(1.92E-2)
2.26(3.21e+00)

133.0(8.89e+03)

981.0(5.48e+05) T

0.298(8.37E-5)

0.709(3.62E-3)F
0.391(2.83E-3)

DTLZ4

3
5
8

—_

0

0.877(3.90E-2)
0.875(2.18E-2)
0.773(1.88E-1)

0.618(9.03E-2)

0.72(3.47E-2)}
0.866(2.92E-2)F
1.47(4.52E-3)F
1.23(4.61E-3)}

0.563(1.20E-2)
0.698(8.33E-2)
0.988(3.71E-1)T
0.684(1.12E-4)

DTLZ5

3
5
8

—_

0

0.336(6.22E-5)
0.226(8.72E-1)
0.756(3.11E-1)

0.581(1.17E-2)

0.392(5.13E-3)1
1.65(2.44E-1)t
1.43(2.89E-1)t
0.923(2.15E-1)t

0.328(1.20E-2)
0.36(3.38E-5)1
0.749(4.35E-3)
0.803(7.29E-2)F

DTLZ6

3
5
8
10

0.444(3.49E-2)
0.449(7.50E-1)
0.941(5.30E-1)

1.03(3.71E-1)

0.425(1.06E-3)

1.39(2.19E-2)
2.69(6.31E-1)T
4.64(1.58e+00)t
4.33(6.03E-1)t

0.383(1.48E-3)
0.798(2.75E-2)F
1.23(1.12E-4)F

1 denotes our proposed method significantly outperforms other peer algorithms according to the
Wilcoxon’s rank sum test at a 0.05 significance level;

1 denotes the corresponding peer algorithm outperforms our proposed algorithm.
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Table A8: The mean(std) of €(S) obtained by our proposed D-PBEMO algorithm in distillation

D-PBEMO-DTS

D-PBEMO-PBO

0.73(3.89E-3)F
0.939(4.45E-2)%
1.21(6.54E-3)t
0.231(2.66E-2)
0.211(4.04E-4)%

0.061(8.99E-5)F
0.174(3.00E-3)
0.879(3.97E-2)%

0.108(2.02E-5)t

2.32(5.82E-4)

1.72(1.21E-3)F
1.33(2.30E-3)

1.27(8.38E-3)
1.69(9.87E-5)

0.393(5.06E-2)%
2.04(9.56e+00)t
11.8(1.32e+03)+
8.97(1.29¢+02)t

2.1(3.80E-4)+
3.01(1.85E-4)+
0.571(4.80E-3)
0.269(8.92E-4)+

0.585(2.20E-2)F
1.15(9.99E-3)f
1.47(3.08E-3)F
1.16(1.88E-3)F

0.499(3.41E-3)F
0.699(3.95E-3)
1.21(4.87E-5)F
1.0(1.87E-4)%

0.86(1.66E-2)%
5.21(3.68e+01)t

428.0(2.75e+05)7
1170.0(4.15e+05)F

0.573(1.74E-4)%
0.672(6.73E-3)
0.798(7.85E-3)
0.609(1.78E-3)F

0.746(3.35E-2)F
1.05(1.94E-2)
1.49(8.32E-4)F
1.25(6.01E-4)t

0.578(1.03E-4)

1.02(6.60E-3)F
0.703(1.72E-4)%

0.404(8.62E-3)%
1.74(2.58E-1)F
1.54(3.07E-1)F
0.992(2.13E-1)F

0.348(4.73E-4)

0.78(1.82E-3)
1.04(2.90E-3)F

experiments.

PROBLEM m D-PBNSGA-II D-PBMOEA/D
ZDTI1 2 0.126(1.41E-3)
ZDT2 2 0.683(9.54E-2)
ZDT3 2 0.209(3.26E-3)
ZDT4 2 0.161(229E-2)  0.166(6.78E-3)
ZDT6 2 [JO052(2B0E) 0.134(4.59E-5)
WFG1 3 231(5.73E-4)i  2.37(3.19E-1)i
WFG3 3 17(117E-Di  1.15(1.66E-1)f
WFGS5 3 2.57(3.74E-1)

WFG7 3 2.19(3.78E-D)i  1.8(1.57e+00)%

3 0.143(2.05E-2)
5  0.56(8.51E-2)
DTLZ1 8  3.38(8.02e+01)
10 13.3(5.29¢+02)
3 0.416(2.08E-3)
5 0.669(2.72E-2)
DTLZ2 8  1.25(2.68E-2)
10 1.65(3.64E-1)
3 0.574(8.00E-2)
5 6.03(5.18¢+01)
DTLZ3 8  48.5(7.50e+03)
10 147(3.72E-1)
3 0.716(5.49E-2)
5  0.989(4.83E-2)f 0.684(2.42E-2)
DTLZ4 8  1.21(2.31E-2)
10 1.62(4.54E-1)
3 0.345(1.37E-4)
5 1.54(8.14E-1)
DTLZ5 8  1.69(3.34E-1)
10 23(3.47E-1)
3 1.54(7.80E-2)
5  899(8.03E-1)i  0.421(2.94E-3)
DTLZ6 8  9.57(5.51E-1)

10 10.5(2.09E-1)

1.61(2.54E-2)F
3.1(8.25E-1)

5.03(1.44e+00)t

4.75(6.14E-1)%

0.509(1.91E-3)}

0.801(9.81E-4)F
1.19(3.80E-4)F

T denotes our proposed method significantly outperforms other peer algorithms according to the
Wilcoxon’s rank sum test at a 0.05 significance level,
I denotes the corresponding peer algorithm outperforms our proposed algorithm.
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Table A9: The statistical comparison results of €*(S) obtained by D-PBEMO with different KL
threshold e.

PROBLEM m e=10"" e=10"% e=10"6
ZDT1 2 0.066(1.76E-3)
ZDT2 2 0.188(2.02E-3)  0.208(1.26E-3)
ZDT3 2 0.098(2.17E-3)7  0.073(1.79E-5)F
ZDT4 2 0.114(7.88E-3)7  0.058(2.90E-4)}
ZDT6 2 0.055(2.48E-6)  0.055(2.16E-5) |[NO0S4@S4ETHN
WFG1 3 236(3.17E-1)  2.25(4.02E-2)
WFG3 3 1.03(4.74E-2) 1.03(3.72E-2)
WFG5 3 3.7(1.90e+00) 3.29(1.17e+00)
WFG7 3 3.59(1.53e+00)  3.59(1.58¢+00)
3 0.194(3.11E-4)  0.182(7.28E-5)
5 0.318(3.99E-4)  0.313(4.33E-4)
DTLZ1 g 0.512(2.81E-4)  0.516(2.09E-4)
10 0.257(1.20E-3) 0.258(7.16E-4)
3 0211(2.04E-3)  0.213(1.77E-3)
5 [NOM42(@BYESR)N 0.507(4.02E-3)F  0.5(6.90E-3)%
DTLZ2 g 0.757(6.38E-3)T  0.714(2.53E-3)
10 0.569(1.29E-2)f _M
3 022(4.63E-3)  0.265(6.54E-3)
5  0.457(3.82E-3)  0.498(7.69E-3)
DTLZ3 g  0.775(8.16E-3)t 0.725(3.35E-3)
10 0.576(1.57E-2)7  0.385(1.01E-2)
3 0.645(1.16E-1)7  0.618(9.03E-2)
5 0.654(2.14E-2)t 0.666(2.29E-2)
DTLZ4 g  0.926(1.60E-2)t  0.851(1.17E-2)
10 0.663(1.57E-2)F  0.6(2.26E-2)
3
5
DTLZ5 3 0.721(1.12E-4)  0.724(1.46E-4)
10 0.581(1.17E-2)t  0.617(1.19E-2)}
3 0.42(138E-3)  0.425(1.06E-3)
5 0.339(1.11E-3) 0.341(1.53E-3)
DTLZ6 8  0.743(3.77E-4) 0.742(9.50E-5)
10 0.645(1.62E-2)  0.663(9.24E-3)

T denotes our proposed method with this ¢ setting significantly outperforms other settings
according to the Wilcoxon’s rank sum test at a 0.05 significance level.
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Table A10: Statistical comparison results of €(S) obtained by D-PBEMO with different ¢ settings.

PROBLEM | m |

e=10"1 e=10"2 e=10"%

ZDT1 2 | 0.113(6.44E-6)F  0.128(1.40E-3)
ZDT2 2 | 0.293(3.50E-3)  0.683(9.54E-2)
ZDT3 2 | 022(5.51E-4)f  0.209(3.26E-3)
ZDT4 2 0.166(6.78E-3)  0.127(3.47E-4)
ZDT6 2 | 0.139(1.16E-4)7  0.134(4.59E-5) |HOMB3E4E=DN
WFGI 3 237(3.19E-1)7  2.27(3.57E-2)
WFG3 3 | L.15(1.63E-1) 1.15(1.66E-1)
WFGS5 3 | 3.72(1.86e+00)t 3.51(1.61e+00)t
WFG7 3 | 3.6(1.51e+00)  3.6(1.57e+00)f
3 | 0.243(4.50E-4)T  0.243(2.05e+02)
5 | 0.394(3.04E-4)t  0.391(1.12E-4)
DTLZ1 8 | 0.561(3.85E-4)  0.56(2.00E-4)
10 | 0.318(249E-4)7  0.314(4.21E-4)
3 | 0.416(3.42E-3)  0.416(2.08E-3)
5 | 0.655(3.28E-3) 0.627(3.67E-3)
DTLZ2 | § | 0.929(7.71E-3)7  0.798(2.30E-3)
10 | 0.709(4.36E-3)} 0.58(3.64E-2)
3 | 045(1.13E-2)  0.447(1.06E-2)
5 | 0.686(4.82E-3)7  0.633(6.21E-3)
DTLZ3 | g8 | 0.93(5.40E-3)f 0.832(6.22E-3)
10 | 0.744(9.40E-3)7  0.565(4.12E-2)
3 | 0.753(5.75E-2)F  0.716(5.49E-2)
5 | 0.836(1.39E-2)1 0.758(1.52E-2)
DTLZ4 | 8 | 1.09(8.10E-3)f  0.935(1.03E-2)
10 | 0.829(1.24E-2)7  0.683(2.30E-2)
3 | 0.359(2.06E-4)t 0.347(1.14E-4)
5 | 0.301(9.21E-3)f 0.265(8.00E-4)
DTLZ5 | g | 0.83(2.45E-2)F 0.779(3.25E-3)1
10 | 0.964(4.45E-3) 0.991(1.12E-2)
3 0.489(1.64E-3)
5 | 0.458(3.48E-3)7 0.439(2.02E-3)
DTLZ6 | g 0.821(1.75E-2)%
10 1.08(7.47E-2)F  1.07(2.69E-2)

T denotes our proposed method with this ¢ setting significantly outperforms other settings according to the
Wilcoxon’s rank sum test at a 0.05 significance level.

Table A11: The statistical comparison results of ¢*(S) obtained by D-PBMOEA/D with different

number of subsets K (m = 2).

PROBLEM | m |

K=2 K=5 K =10

0.041(9.27E-6)
0.189(1.93E-3)
0.075(6.53E-5)

0.041(1.10E-5)
0.195(2.67E-3)
0.079(1.12E-4)+

0.062(7.32E-4)

0.075(3.28E-3)

NSRRI S I S )

T denotes our proposed method with this K setting significantly outperforms other settings according to the
Wilcoxon’s rank sum test at a 0.05 significance level.

Table A12: The statistical comparison results of £(S) obtained by D-PBMOEA/D with different

number of subsets K (m = 2).

PROBLEM | m |

0.112(2.38E-5)
0.283(2.13E-3)
0.208(1.00E-4)

0.112(1.52E-5)

0.283(1.73E-3)

0.121(5.99E-4)

0.206(3.72E-4)
0.144(2.85E-3)t
0.135(9.38E-6)t

NSRS S S S

+ denotes our proposed method with this K setting significantly outperforms other settings according to the
Wilcoxon’s rank sum test at a 0.05 significance level.
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Table A13: The statistical comparison results of €*(S) obtained by D-PBMOEA/D with different

subsets K (m = 3).

PROBLEM | m |

K=2

K=4 K=38 K=N

L WD L L) W W W W W W

1.808(1.94E-3)
0.907(2.87E-2)

0.212(2.31E-4)7

0.402(4.42E-3)F
0.741(7.07E-2)

0.417(6.82E-4)

1.817(1.52E-3)F
0.942(1.83E-2)

0.363(6.72E-3)F  0.224(2.41E-3)}

2.26(8.56E-4)t
0.913(3.05B-3)+
1.72(1.21E-3)
1.33(2.30E-3)
0.34(3.26E-3)+
0.56(1.89E-2)+
0.827(1.92E-2)+
0.72(3.47E-2)
0.392(5.13B-3)t
1.39(2.19E-2)+

1.708(3.87E-3)
1.324(1.63E-2)
0.187(2.68E-4)

1.716(5.24E-3)
1.369(1.00E-2)

0.262(2.68E-2)

0.717(6.11E-2)
0.313(1.39E-5)
0.418(1.13E-3)

0.313(1.06E-5)

+ denotes our proposed method with this K setting significantly outperforms other settings according to the
Wilcoxon’s rank sum test at a 0.05 significance level.

Table A14: The statistical comparison results of €(S) obtainted by D-PBMOEA/D with different K’

(m = 3).

PROBLEM | m |

K=2

K=4 K=8 K=N

WEFG1
WFG3
WEGS5
WFG7
DTLZ1
DTLZ2
DTLZ3
DTLZ4
DTLZ5
DTLZ6

L2 L L LW W W WWW

2.048(1.39E-3)
1.374(1.95E-2)F
2.628(8.61E-3)F

0.286(3.20E-4)
0.678(5.52E-3)}
0.67(2.42E-3)%
0.857(2.50E-2)
0.373(2.14E-4)}
0.503(1.14E-3)}

2.026(4.10E-3)  2.32(5.82E-4)}
1.914(3.05E-3)+
2.72(1.21E-3)t
2.63(2.30E-3)t
0.393(5.06E-2)t
0.585(2.20E-2)+
0.86(1.66E-2)+
0.746(3.35E-2)
0.404(8.62E-3)+
1.61(2.54E-2)F

1.299(2.68E-2)T

2.542(7.15E-1)
2.264(7.41E-1)

2.499(4.10E-1)
0.234(2.18E-4)+
0.417(3.00E-3)+
0.454(8.31E-3)+
0.775(3.55E-2)
0.342(2.98E-4)
0.471(2.55E-3)

+ denotes our proposed method with this K setting significantly outperforms other settings according to the
Wilcoxon’s rank sum test at a 0.05 significance level.

Table A15: The statistical comparison results of €*(S) obtainted by D-PBMOEA/D results with

different K (m = 5).

PROBLEM | m |

K=2

K=38 K =16 K=N

DTLZ1
DTLZ2
DTLZ3
DTLZ4
DTLZ5
DTLZ6

W

0.724(1.80E-2)
0.223(1.54E-6)

0.317(4.75E-4)T  0.329(6.42E-4)7  0.572(1.05E-1)7
0.606(8.00E-3)  0.492(4.14E-3)}
0.624(1.06E-2)T  0.498(6.88E-3)}

1.06(1.62E-2)F
2.26(3.21E+00)f
0.866(2.92E-2)F

1.65(2.44E-1)F

2.69(6.31E-1)t

0.684(3.20E-2)
0.223(1.62E-6)
0.343(1.65E-3)

0.333(1.19E-3)

+ denotes our proposed method with this K setting significantly outperforms other settings according to the
Wilcoxon’s rank sum test at a 0.05 significance level.

Table A16: The statistical comparison results of €(S) obtainted by D-PBMOEA/D with different

subsets K (m = 5).

PROBLEM | m | K=2 K=38 K=16 K=N
DTLZ1 5 | 0.418(1.77E-4)T 0.393(2.48E-4)7¥ 2.04(9.56E+00)t
DTLZ2 5 | 0.879(4.95E-3)T 0.627(2.72E-3)7 1.15(9.99E-3) 1
DTLZ3 5 | 0.878(4.22E-3)T  0.624(5.26E-3)7 5.21(3.68E+01)T
DTLZ4 5 | 0.942(7.57E-3)T  0.765(2.15E-2) 1.05(1.94E-2)
DTLZ5 5 0.4(1.88E-3)F 0.28(3.81E-4) 1.74(2.58E-1)t
DTLZ6 5 | 0.607(5.81E-3)T  0.428(3.25E-3)7 3.1(8.25E-1)t

T denotes our proposed method with this K setting significantly outperforms other settings according to the
Wilcoxon’s rank sum test at a 0.05 significance level.
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Table A17: The statistical comparison results of €*(S) obtained by D-PBMOEA/D with different K

(m = 8).
PROBLEM | m | K=2 K=38 K=16 K=N
DTLZ1 8 0.509(2.88E-4)1 0.516(2.53E-4)}  4.23(5.36E+01)f
DTLZ2 | 8 | 0.857(4.91E-3)t 0.755(L45E-2)  1.42(9.76E-3)}
DTLZ3 8 | 0.811(5.61E-3)T 0.708(6.81E-3) 133.0(8.89E+03)F
DTLZ4 8 | 0.926(9.45E-3)T  0.841(1.65E-2) 1.47(4.52E-3)
DTLZ5 | 8 0.717(327E-5)t  0.721(7.73E-5)7  1.43(2.89E-1)}
DTLZ6 8 0.732(3.54E-4)t  0.742(7.25E-4)t  4.64(1.58E+00)1

T denotes our proposed method with this K setting significantly outperforms other settings according to the
Wilcoxon’s rank sum test at a 0.05 significance level.

Table A18: The statistical comparison results of €(S) obtained by D-PBMOEA/D with different K
(m = 8).

PROBLEM | m | K=2 K =38 K =16 K=N
DTLZ1 8 | 0.58(1.52E-4)1  0.563(1.16E-4)t 11.8(1.32E+03)F
DTLZ2 8 | 1.101(3.59E-3)7 0.83(1.33E-2) 1.47(3.08E-3)1
DTLZ3 8 | 1.066(3.15E-3)T  0.831(4.91E-3)7 428.0(2.75E+05) 1
DTLZ4 8 | 1.184(7.36E-3)7  0.947(1.12E-2) 1.49(8.32E-4)F
DTLZ5 | 8 | 0.83(8.00E-4)t 0.758(1.43E-4)  1.54(3.07E-1)i
DTLZ6 8 0.9(2.89E-3) 0.802(9.58E-4) 5.03(1.44E+00)

+ denotes our proposed method with this K setting significantly outperforms other settings according to the
Wilcoxon’s rank sum test at a 0.05 significance level.

Table A19: The statistical comparison results of €*(S) obtained by D-PBMOEA/D with different K
(m = 10).

PROBLEM | m | K=2 K=6 K=24 K=N
DTLZ1 0.248(4.71E-4)7  0.244(6.34E-4)t  5.99(5.99¢+01)t
DTLZ2 0.537(2.58E-3)7  0.437(8.59E-3) 1.13(1.75E-3)t
DTLZ3 0.496(3.96E-3)1 0.488(1.17E-2)t 981.0(5.48e+05)F
DTLZ4 0.639(1.72E-2) 0.611(3.25E-2) 1.23(4.61E-3)}
DTLZ5 0.511(3.24E-4)T 0.597(1.40E-2)}  0.923(2.15E-1)}
DTLZ6 0.562(2.03E-3)1 0.659(1.43E-2)t 4.33(6.03E-1)T

T denotes our proposed method with this K setting significantly outperforms other settings according to the
Wilcoxon’s rank sum test at a 0.05 significance level.

Table A20: The statistical comparison results of €(S) obtained by D-PBMOEA/D with different K
(m = 10).
PROBLEM | m | K=2 K=6 K =24 K=N

DTLZ1 10 | 0.342(1.41E-4)t 0.323(5.62E-4) 8.97(1.29e+02)
DTLZ2 10 | 0.804(4.06E-3)f  0.567(4.54E-3) 1.16(1.88E-3)t
DTLZ3 10 | 0.791(3.31E-3)f  0.614(1.03E-2) 1170.0(4.15e+05)F
DTLZ4 10 | 0.934(2.92E-3)1  0.722(1.80E-2) 1.25(6.01E-4)t
DTLZ5 0.901(3.29E-3) 0.896(8.05E-3)1  0.992(2.13E-1)t
DTLZ6 0.981(5.44E-3)  1.008(1.94E-2) 4.75(6.14E-1)t

T denotes our proposed method with this K setting significantly outperforms other settings according to the
Wilcoxon’s rank sum test at a 0.05 significance level.
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Table A21: RNA experiment settings.

RNA EternaID Target Structure Reference Point 1  Reference Point 2 Sample Solution n
1 1074756 ((((-.))). (—6.3,0)7 (—7.1,0.2)T GAUAAAAUAUCA 12
2 20111 () (—9.1,0)7 (—13.8,0.125)7  GGGGGGAAAAACCCCC 16
3 997382 ((w)(() (—4,0)T (~8.9,0.6)7 CUGAAAAGAGUGAGAGC 17
48250 () (—12,0)7 (-24,023)7  AAAUSDOAALGAA 2%
5 121172 (e )((oee)))) (—9,0)7 (177,037 oA aaooe 30
T ()0 (~24,0)" (-31020)7  AGGACUCACUGUAAAAA 34
8 007301 (o)) (o)) (o)) ((0) (~13,0)7 (~28,0.57)7 fégéiiggéﬁégéﬁﬁli&j 35
9 15819 LI e (~15,0)7 (—38,0.58)7 A ARG 36
008670 (DD CBI0T  (—B0IDT  hemtoaseAvastIue 36

The column reference point 1 lists our first session experiment (fa = 0).
The column reference point 2 lists reference points in the second-session (f2 € (0, 1)).
The sample solution is the possible sequence for the given target structure provided by benchmark.

Table A22: The mean(std) of €*(S) comparing our proposed method with peer algorithms on inverse
RNA design problems given reference point 1

RNA D-PBNSGA-II D-PBMOEA/D I-MOEA/D-PLVF I-NSGA2/LTR IEMO/D
1 0.289(0.0) 0.679(0.27) 0.971(0.73)F 0.35(0.05) 0.605(0.21)
2 0.33(0.01) 1.02(1.11) 1.31(1.09)F 1.342(1.51)F 1.943(2.13)1
3 2.454(11.6) 7.89(3.39) 7.102(13.05) 1.332(0.19) 1.819(2.62)
4 4.514(17.76) 2.052(2.08) 1.612(1.62) 1.848(0.86) 2.96(2.05)
5 2.871(4.43) 5.497(21.22) 7.663(14.46)F 7.557(31.47)  6.951(11.98)F
6 1.764(4.51) 4.878(11.11) 5.699(21.21)t 7.656(12.38)1  4.1(10.83)F
7 4.522(7.7) 6.956(11.14) 6.51(16.64) 4.216(12.95) | 5.284(13.19)
8 6.604(26.97)  12.114(23.74) 13.638(28.74) 5.945(15.62) [ 3.959(15.97)
9 1.445(1.73) 3.656(5.75) 4.506(10.72)F 4.424(14.0)t  6.731(40.42)F
10 3.988(11.25)  8.506(13.14) 3.86(10.51) 4.988(20.48)  7.128(23.01)

1 denotes our proposed method significantly outperforms other peer algorithms according to the
Wilcoxon’s rank sum test at a 0.05 significance level;
I denotes the corresponding peer algorithm outperforms our proposed algorithm.

Table A23: The mean(std) of €(S) of our proposed method with peer algorithms on inverse RNA
design problems given reference point 1

RNA D-PBNSGA-II D-PBMOEA/D I-MOEA/D-PLVF I-NSGA2/LTR IEMO/D

1 0.35(0.05) 0.685(0.26) 1.063(0.65)  0.357(0.03)F  0.605(0.2D)f
2 0.33(0.01) 1.259(1.14) 1.832(1.04)f 1.501(1.6)F  1.945(2.13)%
3 2454(11.6)  8.667(2.27) 9.409(2.68) 15697(039)70  3.234(8.49)

4 4514(17.76)  2.569(3.85) 1.758(1.35) 1.849(0.86) = 3.226(2.22)

5 2871@A3) W 6.894(15.14)  9.261(5.33)F  8.439(22.87)F  7.206(12.81)F
6 1.764(4.51) | 5372(10.74)  6.451(19.45%F  9.077(8.67)F  4.833(8.18)F
7 4522077y 7.226(17.14)  9.602(10.75)  [ARI6AZ95)W 6.579(10.64)
8 6.604(2697) 12.775(24.08)  14.764(25.17)  7.105(13.47)  7.131(14.81)
9 1.46(1.74) 4.94(5.79) 4965(10.91)F  5.332(11.64)F 7.876(34.82)t
10 | 4.001(11.16)  9.077(17.27) 4.057(9.73) 5.014(20.4)  7.133(22.96)

1 denotes our proposed method significantly outperforms other peer algorithms according to the
Wilcoxon’s rank sum test at a 0.05 significance level,
1 denotes the corresponding peer algorithm outperforms our proposed algorithm.
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Table A24: The mean(std) of €*(S) comparing our proposed method with peer algorithms on inverse
RNA design problems given reference point 2

RNA D-PBNSGA-II D-PBMOEA/D I-MOEA/D-PLVF I-NSGA2/LTR IEMO/D
1 0.459(0.07)  0.469(0.09) 0.333(0.09) 0.821(0.06) 1.614(1.33)
2 0.752(0.54)  II0:74(0:24) 2.112(L1DT  3.143(0.82)F  4.131(1.38)f
3 0.409(0.11) | 0.064(0.0) 2.0952.54)F  5.037(2.93)F  6.343(5.02)F
4 1.459(3.0) 1.72(2.1) 4.25(5.64)F 3.702(14.69)  9.43(14.85)t
5 2247(2.19) [N0'84(0%65) 728(13.67)F  5.405(23.99)F  5.934(12.8)F
6 1.846(2.53) 3.91(2.5) 3.592(10.88)F  7.571(1921)F  7.94(14.85)%
7 2.612(4.65) [WI518(1565) 3.601(6.84)  8.531(31.14)F  10.78(33.49)%
8 2.1(2.57) 1.388(0.99)  4.953(31.37)  7.202(50.66)t  9.016(23.62)F
9 5.559(25.5) | 4.071(4.5) 4276(17.19)  8.706(28.49)t  13.123(31.61)t
10 4251950  7.42(2.38) 8.94(13.94)+ 7.089(16.7)  15.29(49.85)%

1 denotes our proposed method significantly outperforms other peer algorithms according to the
Wilcoxon’s rank sum test at a 0.05 significance level,
I denotes the corresponding peer algorithm outperforms our proposed algorithm.

Table A25: The mean(std) of €(S) of our proposed method with peer algorithms on inverse RNA
design problems given reference point 2

RNA D-PBNSGA-II D-PBMOEA/D I-MOEA/D-PLVF I-NSGA2/LTR IEMO/D
1 0.459(0.07)  0.523(0.07) 0.425(0.07) 0.821(0.06) 1.614(1.33)
2 0.753(0.54) O745(022)W  2.295(1.22)7  3.143(0.82)F  4.165(1.37)t
3 04090 0.688(0.03)  3.402(129)F  5.072(2.92)F  6.874(2.45)%
4 1.462(3.0) 2.51(4.3) 4393(5.65)F  3.797(14.2)t  9.436(14.79)%
5 2247(2.19) | 2918(1.27)  8.126(12.68)F  5.535(23.02)f  7.108(15.5)t
6 1.846(2.53)  4.442(3.9)  3.851(1L.13)F  8347(24.1)t  8.001(14.62)t
7 2.616(4.64) | 4.066(5.7) 3.944(639)  8.924(26.74)F  11.35(31.91)%
8 2.1412.47)  3.988(2.57)  9.281(1221)f  7.267(49.92)  10.736(28.62)%
9 5.724(24.65)  5.729(7.45) NAT0L(1573) 8.736(28.2)  14.447(50.17)
10 27202000 7477(23)  8.954(13.95)f  7.345(13.88)  15.295(49.86)%

1 denotes our proposed method significantly outperforms other peer algorithms according to the
Wilcoxon’s rank sum test at a 0.05 significance level;
I denotes the corresponding peer algorithm outperforms our proposed algorithm.

Table A26: The difference between native and predicted protein in energy

ID | Type | Bound dDFIRE Rosetta RWplus
1K36 Native 431.51 -52.84 293.70  -5059.39
Predicted | 431.75 -41.66 402.33  -3990.52

1ZDD Native 297.18 -74.02 -27.73  -4604.18
Predicted | 328.84 -63.03 63.03 -3986.78

OMTT Native 269.76 -39.51 -10.82  -3313.84
Predicted | 276.12 -22.98 21047  -2111.19

IPTK Native 379.04  -104.15 -11.29  -6140.81
Predicted | 413.47 -91.21 184.17  -3399.93

Table A27: The mean(std) of RMSD comparing our propsoed emthod with peer algorithms on PSP
problems.

ID ‘ D-PBNSGA-II D-PBMOEA/D I-MOEA/D-PLVF  I-NSGA2-LTR IEMO/D
1K36 | 583.29(117.08) [ 302.82(138.59) 682.23(182.63)  597.19(284.91)  610.62(402.31)
1ZDD | 446.88(542.33) | 360.25(17.73)  623.14(394.14)  450.23(582.19)  488.28(518.42)
2M7T 350.51(8.95) 477.56(76.93)  671.45(372.01)  721.73(502.31) 823.46(1023.54)
3P7K | 719.90(1202.92) © 152.53(7.45) 663.29(802.99)  692.31(823.13)  818.93(923.87)
3V1A | 687.07(497.33) | 584.43(28.34)  887.68(391.74)  791.13(304.72)  823.28(528.87)
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RNA  Target Structure D-PBNSGA-II D-PBMOEA/D I-MOEA /D-PLVF I-NSGA-II/LTR IEMO/D
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Figure A14: The comparison results of D-PBEMO against the other three stat-of-the-art PBEMO
algorithms on inverse RNA design problems. In particular, the target structure is a sample of possible
solution represented in blue color while the predicted one obtained by different optimization
algorithms are highlighted in red color. In this graph, the reference point is set as ¢ = 1. The closer
o is to 1, the better performance achieved by the corresponding algorithm. When the o share the
same biggest value, the smaller M F'E the better the performance is.
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RNA  Target Structure D-PBNSGA-II D-PBMOEA/D I-MOEA /D-PLVF I-NSGA-II/LTR IEMO/D
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Figure A15: The comparison results of D-PBEMO against the other three state-of-the-art PBEMO
algorithms on inverse RNA design problems. In particular, the target structure is a sample of possible
solution represented in blue color while the predicted one obtained by different optimization
algorithms are highlighted in red color. In this graph, the reference point is set as 0 = 1. The closer
o is to 1, the better performance achieved by the corresponding algorithm. When the o share the
same biggest value, the smaller M F'E the better the performance is.
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Figure A16: The population distribution of D-PBEMO and peer algorithms running on PSP problems
(m = 4).
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* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: This paper includes theoretical results in Appendix [B.I] [B.Zhnd All
theorems, formulas, and proofs in the paper are numbered and cross-referenced. All
assumptions are clearly stated or referenced in the statement of any theorems.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The steps of our proposed algorithms are described step by step. The repro-
ducibility of experiments can be accomplished in various ways.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: This paper includes experiments requiring code. Code link is provided
in Appendix [C|

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The vital experimental settings are presented in the core of the paper, Section[d]
And the full details can be referenced in

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experiment results are accompanied by statistical significance tests. The
statistical significance tests are introduced in[D.3] The significance level settings are also
included.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: This paper doesn’t indicate the type of compute wokers CPU or GPU, internal
cluster, or cloud provider, including relevant memory and storage.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The authors make sure to preserve anonymity.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper is foundational research and not tied to particular applications, let
alone deployments.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper, are properly credited and are the license and terms of use explicitly mentioned and
properly respected.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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