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Abstract

We propose DailyQA, an automatically up-
dated dynamic dataset that updates questions
weekly and contains answers to questions on
any given date. DailyQA utilizes daily updates
from Wikipedia revision logs to implement a
fully automated pipeline of data filtering, query
generation synthesis, quality checking, answer
extraction, and query classification. The bench-
mark requires large language models (LLMs)
to process and answer questions involving fast-
changing factual data and covering multiple
domains. We evaluate several open-source
and closed-source LLMs using different RAG
pipelines with web search augmentation. We
compare the ability of different models to pro-
cess time-sensitive web information and find
that rerank of web retrieval results is critical.
Our results indicate that LLMs still face sig-
nificant challenges in handling frequently up-
dated information, suggesting that DailyQA
benchmarking provides valuable insights into
the direction of progress for LLMs and RAG
systems.

1 Introduction

Large language models (LLMs) has demonstrated
its wide range of capabilities in the natural lan-
guage processing (NLP) domain (Devlin, 2018;
Brown et al., 2020) and is extending its influence
to more and more domains (Radford et al., 2021;
Ramesh et al., 2021; Luo et al., 2022; Singhal et al.,
2025; Salinas et al., 2020). However, the world
is changing fastly, and the static knowledge in the
memory of LLMs is usually not updated in a timely
manner (Dhingra et al., 2021). A popular approach
to this issue is to use retrieval-augmented genera-
tion (RAG) (Lewis et al., 2020) techniques to pro-
vide the language model with external knowledge,
allowing the model to solve problems using in-text
learning methods. However, this approach often
relies on external retrievers based on keyword or
semantic matching (Robertson and Zaragoza, 2009;
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Figure 1: A example for DailyQA. The answer to “Le-
Bron James’ career total points" can change every day.
For each query in DailyQA, we provide an answer on
each day.

Karpukhin et al., 2020; Khattab and Zaharia, 2020;
Chatterjee et al., 2024; Guo et al., 2024; McDon-
ald et al., 2018). For time-sensitive queries, highly
ranked documents may contain misleading informa-
tion because they do not fulfill the time constraints,
thus limiting the capabilities of the RAG system.
So we design a time-sensitive query dataset based
on realistic changes to measure the model’s abil-
ity to adapt to rapidly changing information under
time constraints.

Time-sensitive queries have been explored for a
long time (Kanhabua and Ngrvéag, 2012; Yang et al.,
2024b; Gade and Jetcheva, 2024). MRAG (Siyue
et al., 2024) added temporal perturbations to the
existing datasets TIMEQA (Chen et al., 2021)
and SITUATEDQA (Zhang and Choi, 2021) to
build datasets with temporal information. UnSeen-
TimeQA (Uddin et al., 2024), in order to test the
model’s adherence to temporal information, con-
structed a virtual dataset. However, they are both
static datasets that do not reflect real-time changes
in the real world, and thus do not reflect the model’s
ability to adapt to realistic information. Fresh-
LLMs (Vu et al., 2023) manually annotated about
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Figure 2: Overview of our DailyQA dataset construction pipeline, which includes filtration and process of the raw
data (Wiki revision logs), question generation, quality check, answer extraction, and query classification modules. In
the quality check module, we check the correctness and descriptiveness of the queries. In the classification module,
we classify queries based on their update frequency and domains

600 pieces of data and periodically published up-
dated answers. They can dynamically update the
answers, but the queries are static and small in num-
ber, so the scope of real-world knowledge involved
is limited.

To investigate the capability of LLMs to adapt to
complex and changing real-world knowledge, we
propose a new benchmark, DailyQA. This work
focuses on constructing a daily updated benchmark
that contain the latest changes in real-world knowl-
edge with an update frequency of days. As shown
in Figure 1, each query in DailyQA is provided
with an answer on each day. Specifically, we ana-
lyze the daily revision records of wiki pages, com-
paring the page versions before and after the revi-
sion and focusing on the changes to the infobox,
which tends to contain concise factual information
with little redundancy, and then construct the query-
answer dataset using the revisions as the golden
document. We constructed a stereo measure set by
building query data that is updated weekly and cor-
responding answers that are updated daily. Queries
can reflect changes in reality over the span of a
week, and paired with the answer to that question
on any given day, the time-sensitive nature of llm
can be effectively measured. We designed a fully
automated process of data filtering, query synthesis,
query quality checking, and answer extraction to
ensure the efficient update of the benchmark. In ex-
periments, we measured open-source models such
as llama, gwen, and deepseek- distill-qwen based

on web search augmentation. We also tested them
on the DailyQA dataset under a rearrangement that
takes into account both temporal and semantic, and
found that the performance improved. Our contri-
bution can be summarized as follows:

* We propose DailyQA, a benchmark that re-
sponds to changes in reality to measure the
adaptability and time sensitivity of LLMs.

* We evaluated several LLMs on DailyQA and
proposed an improved rag method for in-
context learning. Our experiments show that
this task remains challenging for LLMs.

* We analyze further the difficulties in the task
of dealing with rapidly changing real-world in-
formation, as well as the limitations to LLMs,
and then propose promising research issues.

2 Related Works

Time sensitive QA. There has been some work
focusing on building time-sensitive benckmarks.
MRAG (Siyue et al., 2024) builds a new bench-
mark on top of the existing dataset TIMEQA (Chen
et al., 2021) and SITUATEDQA (Zhang and Choi,
2021) with temporal perturbations. TSQA (Yang
et al., 2024b) builds an in-domain Time sensitive
dataset for nobel prize. UnSeenTimeQA (Uddin
et al., 2024) builds a fictitious, contamination-free
benchmark to measure the temporal reasoning abil-
ity of the model. However, the domains involved in



these works are restricted, and the document copus
they use is static. The scope of knowledge covered
by the copus is too small compared to the infor-
mation available on the web, which is not a good
measure of the adaptability of LLMs in the face
of complex and changing information on the Inter-
net. Therefore, we propose DailyQA based on wiki
pages covering six domains such as science and
technology, augmented with web retrieval, which
is used to measure the adaptability of LLMs in the
face of complex web documents.

Realtime QA. FreshLLMs (Vu et al., 2023)
manually annotates queries and publishes updated
answers weekly, and they create queries of the
fast change, slow change, never change, and false
promising types. RealTime QA (Kasai et al., 2022)
also generates queries using manual annotation,
and provides a platform to regularly publish queries
and evaluating systems. However, the data size of
the queries in the existing work is too small, which
leads to a restricted domain and knowledge bound-
ary. For example, FreshLL.Ms has a fixed query
set of 600 queries. RealTime QA updates about
30 queries per week. Such amount of data is too
little for reflecting changes in real world informa-
tion as well as for measuring and improving the
performance of LLMs. We designed an automatic
piepline to update the benchmark, which can up-
date about 3k queries data per week. And by using
our script, readers can easily get answers to queries
in the dataset on any given day.

3 DailyQA Benchmark

In this section, we introduce the DailyQA bench-
mark. In the following subsections, we will intro-
duce the design principles, the build pipeline, and
the data structures of DailyQA in turn.

3.1 Benchmark Design Principles

DailyQA focuses on evaluating the ability of large
language models to synthesize complex and chang-
ing real-world information. For this purpose, we
filter and extract valuable information from daily
revisions of wikipedia and use it to build a benchen-
mark that can be automatically updated at low cost.

To reflect the complex and changing reality, we
update the set of queries in the benchmark once a
week, and for each of these queries, we update its
answer every day. In the evaluation phase, we give
the query and specify the date, and require that the
LLMs, augmented by a web search, have to cor-

rectly answer the answer for the corresponding date.
This task is challenging and rewarding. Documents
obtained through web search may be misleading
because they contain information that is too old
or too new, which challenges both the reranker
and the LLMs. This task is valuable because in
real-world scenarios, users might care about fac-
tual information about a specific day, for example,
"What is LeBron James’ career score as of January
31, 20257

3.2 DailyQA Build Pipeline

In this section, we describe the pipeline for building
the DailyQA dataset, which includes the following
parts: wiki data collection and process, query gen-
eration and quality check, and answer extraction.

3.2.1 Wiki Data Collection and Processing

Each time we update the query dataset, we extract
all records within a week from the revision records
of the wiki and filter them step by step in a rule-
based approach. First, we only consider revisions
to the main wiki page and ignore revisions to other
namespaces. Second, we focus only on revisions
in the wiki infoboxes, ignoring changes to other
contents. As shown in the Appendix A, this is be-
cause wiki infoboxes tend to be well structured and
purify factual information with little redundancy
compared to the main text. Third, we process the
infobox into python’s dictionary format, where the
content of each block in the infobox corresponds to
the value of the dictionary one by one. We further
filter based on key and value, that is, we remove
keys of setting type such as “color1” and values of
filename type such as ending with “.png”. For mul-
tiple changes to the same page (identified by title),
we keep only the last one. We identify changes in
terms of key values as the smallest unit, and for
multiple changes in a single revision, we keep only
one randomly to ensure the diversity of the query
set.

After the three steps above, we filtered out in-
fobox data that has recently been changed, has
good background information (wiki body content),
and is well-structured. We store the extracted value
(the filted change), the complete infobox, the title,
the url, and the first paragraph of the body text in
the wiki page as the extracted data units.

3.2.2 Query Generation and Quality Check

We use a LLM to automatically generate queries.
We require the big model to generate a query with
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Figure 3: The number of answer changes relative to the
previous day. For example, on the line with a start date
of 2025/01/12, the “+1” position on the horizontal axis
indicates that in the corresponding dataset, the answers
for 2025/01/13 was changed by about 1,200 relative to
the previous day.

the extracted value in a data unit as the answer, and
the infobox, the title, and the first paragraph of the
body as the background information. The prompt
we use is in Appendix B. In this way, we fully
describe the context in the query, making the query
as precise as possible. At the same time, we map
the answer to the value of a block of the infobox,
making it easy to extract and update the answer.

In the quality checking stage, we ensure both
correctness and descriptiveness of the queries. The
correctness of a query means that the query should
be able to be answered accurately when sufficient
information is provided. The descriptiveness of a
query means that the query should be able to locate
the context of the problem. The descriptiveness of
a query means that the query should clearly present
the background of the problem, without relying on
the background information provided to the LLM.
To check the correctness, we provide the original
wiki title, the first paragraph of the body, and the
infobox in the data unit as references, and ask the
IIm to answer the question based on them. We treat
the query as a valid one if the sub match metric
between the model answer and the ground truth
is 1. To check the descriptiveness, we use duck-
duckgo search api to get the top 10 results and keep
only the queries that can successfully retrieve the
corresponding wiki pages.

After the above process, through automatic
query generation and quality checking, we auto-
matically obtain a set of correct and descriptive
queries that reflect the changes of the reality.
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Figure 4: Percentage of queries with different answer
change times. For example, as shown in the left bar,
in the query dataset for 2025/01/12-2025/01/18, the
percentage of queries whose answer change once is
about 70%. Note that consistent with Figure 3, we count
answer changes over a three-week period that includes
the week before and after.

3.2.3 Answer Extraction

According to the above processes, the answer to the
question is set to the value of a certain block in the
infobox. Therefore, we only need to monitor the
corresponding page, the corresponding infobox and
the corresponding block every day to get its value
to get the answer updated every day. Specifically,
we can find the revision history of a page from
the wiki logs, and get the correct answer based on
the last revision before the requested date. This
approach makes it possible to get the answer to a
query in the dataset on any day at a very low cost.

3.2.4 C(lassification

In this section, we introduce the classification of
query types for QA datasets. We classify the
queries in two perspectives, including their update
frequency and domain.

Update frequency. We use the update frequency
to mark how often the answer to a query changes.
As shown in Figure 3, we statistic the day-by-day
variation of answers in the dataset for three up-
dates. Each line in the graph represents an update
of queries, for example, “W-2025-01-12” means
that this update corresponds to the week starting
from 2025-01-12. In the figure, we take the first
day of the corresponding week as the start date
(day O on the horizontal axis). We use the hori-
zontal axis to indicate the nth day relative to the
start date and use the vertical axis to represent the
number of changed answers on that day relative to
the previous day. We observe the changes in the
answers over a three-week time span and find that
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Figure 5: Distribution of the queries in different do-
mains. In the labels, "W-2025-01-12", for example,
means a query update corresponds to the week starting
from 2025-01-12.

the answers change a great deal on day 1-7, while
significantly smaller in the week before and after.
Since the query is based on the variation on day
1-7, this is as expected. We label queries that do
not change from day 8 as "infrequent_update" and
the others as "frequent_update".

Above we present the distribution of queries in
the dataset at a macro level, and below we will
present query-by-query statistics to make it easier
for readers to filter and use the parts of their interest.
We count the number of answer changes for each
query over a three-week period and present it in
Figure 3. It can be seen that the number of changes
of answers for most of the questions is in the range
of 0-1 times, and there are also frequent changes
of answers. When answers change infrequently,
the difficulty of the queries decreases significantly
because web documents tend to include less mis-
leading information. Readers can filter the dataset
and use the parts of interest according to their de-
sired difficulty of the task.

Domains. Our query set is based on the compre-
hensive Wikipedia, so it covers multiple fields. We
classify the query set by domain so as to provide
convenience for in-domain researches. We use a
LLM to classify queries into 7 classes by means of
zero-shot, including Science and Technology, Cul-
ture and Arts, Geography and Environment, Poli-
tics and Law, Business and Economics, Sports and
Entertainment, Others. In order to balance the dis-
tribution of queries across different domains, we set
the maximum number of queries in each domain in
each update to 750 and use non-repetitive random
sampling method to shrink the oversized query set.

The distribution of the data in the different classes
is shown in Figure 5. Readers are free to choose
the domains of their interest.

3.3 DailyQA Data Structure

After the above pipeline, the data structure of our
DailyQA is as follows:

* DailyQA adds a new query dataset every
week, which is based on factual informa-
tion about the latest changes in reality. Our
Pipeline automatically crawls the data, gener-
ates the query, and check the quality.

* Each query is paired with its update frequency,
domain, and golden document (i.e., a Wiki
page), which consists of the title, the url, the
first paragraph of the body, and a dictionary-
formatted infobox.

* Each query’s answer is updated daily, which
means it has a corresponding answer on any
given date. In fact, we provide a script for
extracting answers that helps users to obtain
answers for a given date easily and cheaply.

4 Experiments

4.1 Baselines

We measured the performance of the RAG system
on DailyQA with different web retrieval methods,
rag pipelines, and LLMs.

We use Search w/ Time and Search w/o Time to
denote different web search methods. The former
means that we add the required date to the query
and retrieve the query with the date it over the
web, while the latter means that we retrieve the
query without the date over the web. By comparing
these two methods, we found out the limitations of
solving DailyQA directly with the help of search
engines.

We compare several types of RAG pipelines. As
shown in Table 4, w/o Search means that we do
not rely on any information retrieved from the web
and only rely on the LLM to answer the questions.
Snippet means that we use the web snippet re-
trieved by the search engine as the reference, and
provide it to the LLM in the order of the web search
to help answer the questions. Doc means that we
obtain the html page based on the URLSs returned
from the web search, and extract the text of the
pages. We then provide them to LL.Ms in the or-
der of the web search to help answer the questions.



Search w/ Time

Seach w/o Time

LLM Pipeline SM  Rouge-L F1 Acc SM  Rouge-L F1 Acc
w/o Search  0.120 0.011 0.021 0.139 0.120 0.011 0.021 0.139
Snippet 0.242 0.159 0.185 0.249 0.263 0.200 0226  0.86
Qwen2.5-72B-Instruct  Doc 0.356 0.241 0.275 0364 0479 0.373 0410 0.492
Rerank 0.392 0.308 0.338 0.416 0.502 0.413 0446 0.513
Rerank-T 0.311 0.242 0.268 0.324 0.311 0.250 0.276  0.366
Qwen2.5-7B-Instruct Rerank 0.350 0.165 0.205 0.366 0.444 0.216 0.264 0.457
Qwen2.5-32B-Instruct 0.351 0.194 0.242  0.364 0.447 0.255 0.312 0.455
DSRD-Qwen-32B Rerank 0.363 0.101 0.155 0.379 0.433 0.122 0.181 0.452
gpt-4o-mini 0.381 0.209 0.252 0.403 0.484 0.268 0317 0.498

Table 1: Evaluation on DailyQA with different retrieval methods, RAG pipelines, and LLMs. Search w/ Time means
web searching queries with dates, and Search w/o Time means web searching raw queries. In the RAG pipeline, w/o
Search means no Web Retrieval Augmentation, Snippet means using the web-retrieved snippets as reference, Doc
means using documents crawled via URLs, Rerank means reranking the documents, Rerank-T means reranking the
documents based on relevance and time. The best results are in bold and the second-best are underlined.

Model SM1 SM2
Qwen2.5-72B-Instruct  0.302  0.693
Qwen2.5-32B-Instruct  0.269  0.681
DSRD-Qwen-32B 0.253 0.677
gpt-40-mini 0.291 0.688

Table 2: SM of the LLMs on frequent_update (SM1) and
infrequent_update (SM2) queries. We use the pipeline
of Rerank and Search w/o Time for all the LLMs.

Model SM Acc
Qwen2.5-72B-Instruct  0.466  0.482
Qwen2.5-32B-Instruct  0.445  0.458
DSRD-Qwen-32B 0.434 0.449
gpt-4o0-mini 0.477 0.489
preplexity.ai 0.471 0.485

Table 3: Performance of different LLMs on the

DailiyQA dataset in the Science and Technology do-
main. Except prelexxity.ai, we use the pipeline of
Rerank and Search w/o Time for all the LLMs. For
perplexity.ai, we provide queries with the specified date
and require the service to search for and answer the
queries autonomously.

Rerank denotes that based on the documents of the
html pages, we chunk and rerank them, and then
provide them to LLMs in the order of reranking.
Rerank-T means reranking documents based on
relevance and time. Based on the "Rerank" pipeline
above, we further rerank the chunks with the up-
date time. Specifically, based on the topk document
chunks from "rerank", we prioritize the documents
whose modification date is before the query date
and closer to the query date. By this heuristic ap-
proach, we try to provide assistance to LLM in
identifying the correct reference documents in the

rerank phase.

As shown in Table 4, we evaluated different
kinds and sizes of LLMs. Qwen-2.5 (Yang et al.,
2024a) series is a set of powerful large language
models developed by Qwen that showcase ad-
vanced capabilities in natural language understand-
ing and generation. We use Qwen-2.5-72B-Instruct
as the base model to evaluate the performance of
different rag pipelines. We use the qwen2.5 se-
ries of models to evaluate the impact of model
scale. For closed-source models, we measured the
performance of gpt-4o-mini (Achiam et al., 2023).
Deepseek-rl (Guo et al., 2025) is the latest and
one of the state-of-the-art LLLMs for for universal
large models. For cost reasons, we measured the
performance DeepSeek-R1-Distill-Qwen-32B in-
stead of Deepseek-r1. We use “DSRD-Qwen-32B”
to represent the DeepSeek-R1-Distill-Qwen-32B
model.

4.2 Metrics

We use the rule metrics and the model evaluation
metrics. For the rule metrics, we use subset match
(SM), Rouge-L, and F1. The value of subset match
is 1 if the correct answer is in the prediction and
0 otherwise. Forthe model evaluation metrics, we
design methods that require LLMs to determine the
accuracy (Acc) of the predicted answers. Specif-
ically, we asked the LLM to score the similarity
of the model-generated results to the standard an-
swers, with 5 being completely similar and 1 being
completely irrelevant. We computed four and five
as correct, i.e., Acc of one, and computed the others
as Acc of zero.



Model ST CA GE PL BE SE Ot

Qwen2.5-72B-Instruct  0.466 0.541 0.560 0.580 0.421 0.442 0.474
Qwen2.5-32B-Instruct  0.445 0.517 0.532 0.561 0372 0413 0425
DSRD-Qwen-32B 0434 0470 0501 0497 0315 0408 0.348
gpt-4o0-mini 0477 0512 0538 0548 0394 0.442 0447

Table 4: SM of the LLMs on DailyQA in seven domains, including Science and Technology (ST), Culture and
Arts (CA), Geography and Environment (GE), Politics and Law (PL), Business and Economics (BE), Sports and

Entertainment (SE), Others (Ot).

4.3 Implementation Details

In the dataset construction phase, we use the py-
wikibot packet to download and process Wiki logs,
and we use Qwen-72B-Instruct to generate queries.
In the evaluation phase, we use the api of duck-
duckgo as the web search engine, and we use the
trafilatura toolkit to extract the main text in the html.
In retrieval enhancement, we uniformly use top 12
snippets, documents or chunks as the reference and
use bge-v2-m3 as the reranker. We evaluate on the
query update corresponds to the week starting from
2025-01-12, specify the query date as 2025-01-19.
We use gpt-4o for the model evaluation.

5 Results

51

For Qwen2.5-72B-Instruct, web retrieval is nec-
essary on DailyQA and reranking the raw web-
retrieved documents can effectively improve per-
formance. As shown in Table 4, the results show
that the model without the web search performs
substantially worse than the other methods. This
is consistent with our expectations since DailyQA
is constructed based on fresh information. Using
the original web text is more helpful than using
snippets from the search engine, and reranking the
raw web-retrieved documents instead of the web
retrieval order further improves performance. This
suggests that in order to solve this task, we need to
keep digging deeper and pay attention to the details
of the retrieved content, rather than relying only
on summaries. This challenges the information in-
tegration capabilities of LLLMs and the design of
RAG pipelines.

Increasing the scale of the model helps a lot
in the metrics of Rouge-L and F1 on DailyQA.
The results for different sizes of Qwen2.5 models
in the Table 4 show that increasing the model scale
leads to a weak improvement in SM and ACC,
and a significant improvement in Rouge-L. and
F1. This means that as the model scale increases,

Main Results

the model tends to be able to answer questions
in shorter words, which reflects that the model’s
grasp of the question is increasing. Increasing the
scale of LLMs enhances the ability to process time-
sensitive realistic documents. It confirms the chal-
lenges of DailyQA for LLMs and also illustrates
the ability of LLMs to find the required details in
complex web references.

Qwen2.5-72B-Instruct works best on Dai-
IyQA on all the metrics. We compared several
open-source and closed-source models and found
that Qwen2.5-72B-Instruct perform best. It out-
performs over models on all the metrics. Notably,
Qwen?2.5-32B-Instruct outperforms DSRD-Qwen-
32B on most metrics. DSRD-Qwen-32B, which
has been validated to have stronger inference, does
not perform as well as the same-sized Qwen?2.5-
32B-Instruct on this benchmark. This shows that its
capability to extract document details is degraded,
as well as the possibility of more serious hallu-
cination problems. The results suggest that our
benchmark is complementary to the LLM evalua-
tion, in the dimension different from the reasoning
ability, thus helping to measure LLM’s ability more
comprehensively.

Our preliminary attempts to integrate time in-
formation in the RAG pipeline does not result in
a performance improvement. Specifying the date
in the web retrieval module and adding time infor-
mation to the rerank both have a negative effect on
the performance. As shown in Table 4, the perfor-
mance of Search w/o Time is weakly bertter than
that of Search w/ Time, and the performance of
Rerank is better than that of Rerank-T. This shows
that Adding time descriptions directly to the query
or rerank the chunks based on time did not result
in an improvement. The reason may be that the
search engine is not able to accurately understand
the intent and process the complex queries so as
to return the correct document. This suggests a
challenge in calling the search engine more accu-
rately when dealing with time-sensitive real-world



problems. Precise retrieval through agentic RAG
may be a promising approach in the future.

All models perform better on infrequent up-
date queries than on frequent update queries.
As shown in Table 2, We analyze the accuracy
of the model on problems with different frequen-
cies of change. The results show thar all mod-
els have lower accuracy on the frequent update
queries. They are more difficult because documents
retrieved from the website tend to include more mis-
leading information, which challenges the ability
of LLMs to reason and make temporal judgments.
Qwen2.5-72B-Instruct performs best on frequent
changed queries, which shows that it has the best
ability to process documents, synthesize informa-
tion and extract details among the models evaluated.
Notice that the gap in model performance is larger
on frequent updated quries than on infrequent up-
date quries. This suggests that frequently updated
queries are more difficult and that there is more
potential for the model to improve on such queries.

DailyQA is a challenge for existing web re-
trieval augmented LLM services. To measure the
difficulty of queries in DailyQA, we measured the
it on perplexity.ai and compared it with our meth-
ods. As shown in Table 3, perplexity’s accuracy
on the dataset is comparable to that of our rerank
method and there are still about half of the queries
that the model cannot answer correctly. This shows
that DailyQA benchmark is still a challenge for
existing industry solutions.

5.2 Results in Multiple Domains

In order to introduce DailyQA in more detail and
to judge the difficulty of the queries in different
domains, we measure the accuracy of the models
in different domains. The difficulty of the ques-
tions can be seen to vary from one area to another.
All the models are relatively more accurate in the
domains of Culture and Arts (CA), Geography and
Environment (GE), Politics and Law (PL), while
they are relatively less accurate within other do-
mains. This is because content in these fields tends
to be updated infrequently, while in other fields
such as Sports and Entertainment (SE), questions
like “What is LeBron James’ career total points?”
tend to be updated frequently, thus posing a greater
challenge.

We find that different series of models have their
own areas of specialization. Although Qwen2.5-
72B-Instruct has the best overall performance, it
does not achieve the best results in all domains.

Gpt-40-mini performs better than Qwen2.5-72B-
Instruct in Science and Technology (ST) domain.
This implies that due to the different training data
and methods, the LLLMs may have their own good
and bad areas. This provides motivation for build-
ing multi-model collaborative agents to solve cross-
domain problems.

5.3 Analyse of Challenges

By measuring the performance of the open-source
and closed-source LLMs on our benchmark, we
can evaluate the ability of these LLMs to process
time-sensitive web information. The challenge of
this task is mainly twofold.

First, web information is complex and diverse,
and it is worth exploring how to fully utilize search
engines to obtain the needed information. As
shown in Table 4, the modification of adding times-
tamps by rules may not achieve the expected results,
so invoking search engines by issuing queries with
the help of LLMs may be a promising direction.

Second, the information in the related documents
is time-sensitive. Although the reranked docu-
ments have similar semantics with queries, they
are likely to contain information that does not meet
the time requirement and cause misleading. We
have explored methods to rank web pages based
on their modification date but it did not result in
improvements, possibly because the modification
time of a web page is not equivalent to the effective
time of the information, and many web pages lack
the information of the modification time. There-
fore, comprehensively analyzing the retrieved doc-
uments and obtaining time information based on
content may be a promising direction.

6 Conclusions

We propose DailyQA, a benchmark reflecting
changes in reality, to measure LLMs’ adaptability
and time sensitivity to factual information. We per-
form the experiments using both open-source and
closed-source models and the results show that this
task remains a challenge for existing solutions. We
further analyze the difficulties in the task of dealing
with rapidly changing real-world information, as
well as the limitations to LLLMs. We expect that by
solving the queries in DailyQA, the capabilities of
LLMs can be further refined and released.



Limitations

Our benchmark is intended to evaluate the LLMs’
ability to process Internet information, and does
not focus on the LLMs’ logical reasoning abil-
ity. Therefore, our dataset contains only one-hop
queries and does not include multi-hop queries or
false-premising queries.

Due to the limited resources, we did not evaluate
the state-of-the-art LLMs such as gpt-ol, deepseek-
rl, etc. We leave the evaluations on these models
for future work.

Affected by the diversity of web page structures,
in our implementation, we failed to get the infor-
mation of the update time for a portion of the web
page , so this may degrade the performance of our
Rerank-T pipeline.
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A An Infobox Example

Battle of Chakdara Parsed structure
Part of Siege of Malakand (

"conflict": "Battle of Chakdara",
"partof™: "Siege of Malakand",

"caption™: "The Signal tower overlooking
Chakdara fort in 1897",

"date": "26 July \u2013 2 August 1897 (1
week)",

"place": "Chakdara, British India",

"result": "British Victory",

The Signal tower overlooking Chakdara fort in 1897
Date 26 July — 2 August 1897 (1 week)
Location Chakdara, British India

Result British Victory

Figure 6: An example of an infobox from

a

wikipedia page (left), and its processed data struc-
ture (right). The infobox is from the wikipedi

https://en.wikipedia.org/wiki/Battle_of _Chakdara.

As shown in Figure 6, we introduce An exampl

€

of an infobox from a wikipedia page, and its pro-
cessed data structure. We focus only on the infobox
structure in the wikipedia page in data processing,
and process it into a python dictionarywith the help
of the pywikibot tool, which facilitates the infor-
mation extraction and the understanding of LLMs

in the query generation process.

B Prompts

B.1 Prompt for Query Generation

Based on the given wiki infobox, ask a question whose
answer is the value [{{value}}] in the infobox.

The key of the value in the infobox is [{{name} } ].

The infobox is [ { {infobox} }].

The infobox is from a wiki page with title [{{title} } ] and
url [{{url}}].

When asking the question, summarize the background of
the question according to the following paragraph and the
above infobox to clarify the question.

The background to the question is [ { {first paragraph}}]|
The question needs to fulfill the following requirements:
1. when answering the question according to the text
[{{infobox} }], the answer is [{{value} }].

2. I will additionally set the background time of the
question, so do not include a time restriction (such as on
January 1, 2015), in the generated question.

Output the question directly, don't output the answer,
don't explain your output, don't output anything else.

The question is:

Figure 7: Prompt for Query Generation
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B.2 Prompt for RAG

This is the retrieval augmented generation scenarios
where you need to answer questions based on the
references.

Note that the information in the references is time-
sensitive, and your answer should match the time
requirements in the query.

The reference document is as follows: [{{reference}}].
You need to answer the user's question using the original
text of the reference without any modification,
generalization or summarization.

Answer the questions directly without outputing analysis
or additional descriptions.

Question: [{{query}}]

Answer:"

Figure 8: Prompt for RAG

C Examples for Generated Queries

What is the total number of Spanish speakers, including
SE those with limited capacity and students learning the
language?
CA How many accolades did the film "Oppenheimer" win?
GE What is the elevation of Turah, Montana, in feet?

Who was the victim of the child-on-child murder that
PL took place in Walton, Liverpool, England, and how old
was he?

What was the production period for the Foton View
BE Kuaiyun, a variant of the Foton View series of light
commercial vans?

SE How many caps has Mario Pasali¢ made for Atalanta since
joining the club in 2020?

Ot How many children did Edward Fairfax Neild Sr. have?

Figure 9: Examples for generated queries in different
domains, including Science and Technology (ST), Cul-
ture and Arts (CA), Geography and Environment (GE),
Politics and Law (PL), Business and Economics (BE),
Sports and Entertainment (SE), Others (Ot).
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