
Published as a conference paper at ICLR 2025

FACILITATING MULTI-TURN FUNCTION CALLING FOR
LLMS VIA COMPOSITIONAL INSTRUCTION TUNING

Mingyang Chen1∗, Haoze Sun1∗, Tianpeng Li1∗, Fan Yang1, Hao Liang2, Keer Lu2,
Bin Cui2, Wentao Zhang2†, Zenan Zhou1†, Weipeng Chen1

1Baichuan Inc., 2 Peking University
{chenmingyang, sunhaoze, litianpeng, zhouzenan}@baichuan-inc.com
wentao.zhang@pku.edu.cn

ABSTRACT

Large Language Models (LLMs) have exhibited significant potential in perform-
ing diverse tasks, including the ability to call functions or use external tools to
enhance their performance. While current research on function calling by LLMs
primarily focuses on single-turn interactions, this paper addresses the overlooked
necessity for LLMs to engage in multi-turn function calling—critical for handling
compositional, real-world queries that require planning with functions but not only
use functions. To facilitate this, we introduce an approach, BUTTON, which gen-
erates synthetic compositional instruction tuning data via bottom-up instruction
construction and top-down trajectory generation. In the bottom-up phase, we gen-
erate simple atomic tasks based on real-world scenarios and build compositional
tasks using heuristic strategies based on atomic tasks. Corresponding function def-
initions are then synthesized for these compositional tasks. The top-down phase
features a multi-agent environment where interactions among simulated humans,
assistants, and tools are utilized to gather multi-turn function calling trajectories.
This approach ensures task compositionality and allows for effective function and
trajectory generation by examining atomic tasks within compositional tasks. We
produce a dataset BUTTONInstruct comprising 8k data points and demonstrate
its effectiveness through extensive experiments across various LLMs 1.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across various
tasks (OpenAI, 2023; Dubey et al., 2024). Beyond generating human-like text, recent studies have
shown that LLMs can also call functions (i.e., use external tools) to perform specific actions or op-
erations (Qin et al., 2023; Patil et al., 2023; Mu et al., 2024; Liu et al., 2024b). This ability enhances
LLM performance, such as retrieving information from external knowledge bases to reduce hallu-
cinations (Schick et al., 2023; Gao et al., 2023; Zhao et al., 2024; Wang et al., 2024c). Moreover,
LLM-based agents can interact with numerous external APIs through function calls, providing stan-
dardized interfaces that increase their utility and versatility in real-world applications (Chen & Li,
2024; Wang et al., 2024a; Zeng et al., 2024).

Existing research on aligning LLMs for function calling predominantly focuses on a single-turn
approach, primarily constructing instruction data to teach and evaluate them on selecting appropriate
functions and providing the correct arguments (Patil et al., 2023; Liu et al., 2024b). While it is
important for LLMs to learn how to understand and use functions, these studies often overlook the
crucial ability to plan with functions. Many real-world user queries are complex and cannot be
resolved in a single step. For example, “List the flight schedule from London to Edinburgh” may be
a single-step task since simply retrieving exact information can complete it, while “Book me the first
flight from London to Edinburgh” requires calling multiple functions sequentially: first retrieving
the flight schedule and finding the first one, then booking a ticket for that flight. Real-world complex

∗Equal Contribution
†Corresponding Author
1The data is available at https://github.com/PKU-Baichuan-MLSystemLab/BUTTON

1

https://github.com/PKU-Baichuan-MLSystemLab/BUTTON

Published as a conference paper at ICLR 2025

tasks are inherently compositional (Press et al., 2023; Hayati et al., 2024; Hu et al., 2024), requiring
LLMs not only to invoke functions but also to decompose these tasks into manageable steps and plan
the sequence of function calls. Therefore, in this study, we focus on constructing an instruction-
tuning (Ouyang et al., 2022; Longpre et al., 2023; Lin et al., 2024) dataset where the inputs are
complex compositional queries and the outputs are their decompositions into multi-turn function
calls, addressing real-world scenarios of function calling for LLMs via Compositional Instruction
Tuning.

However, acquiring such data from existing sources is unrealistic. First, selecting and identifying
instructions in a compositional manner is challenging (Hayati et al., 2024; Hu et al., 2024), and
finding instructions paired with their corresponding functions is even more difficult (Shen et al.,
2023; Schick et al., 2023; Patil et al., 2023). Additionally, we need a “solution” in the form of labeled
multi-turn function calls that align with the compositional instructions based on the given functions.
All these factors make it difficult to obtain such data without extensive manual annotation. Recently,
synthetic data has emerged as a promising solution to the lack of manually curated data, with data
being created through advanced generative LLMs using tailored processes and simulations (Liu
et al., 2024a). Compared to synthetic data in general domains (Xu et al., 2023; Lou et al., 2023;
Xu et al., 2024a), data in our scenarios must consider the following challenges: 1) How to ensure
the compositionality of generated instructions so that they are complex, reasonable and solvable; 2)
How to ensure the compatibility of an instruction with its functions; 3) How to simulate high-quality
multi-turn function calling trajectories without human supervision.

To address these challenges, we propose BUTTON, a “Bottom-Up Then Top-dOwN” pipeline for
generating synthetic compositional instruction tuning data to enhance the multi-turn function call-
ing abilities of LLMs. In the “Bottom-Up” phase, we begin by generating atomic tasks from general
real-world scenarios. These tasks are designed to be simple, clear, and executable in a single step
without the need for planning. Compositional tasks are constructed based on atomic tasks using two
heuristic strategies: Sequential Composition and Parallel-then-Sequential Composition. Although
straightforward, these two composition strategies, combined with the entire pipeline, can generate
diverse compositional instructions. Then, corresponding functions are generated based on com-
positional tasks with the conscious of their atomic tasks. During “Top-Down” phase, we set up a
multi-agent environment where the human, assistant and tools are simulated by generative LLMs
steered by specifically curated system prompts, where tool agents are simulated according to pre-
vious generated function definitions. The trajectory of multi-turn function calling, initiated by a
user and involving interactions between an assistant and tools, is collected based on this simulated
environment. Finally, the collected trajectories, along with their corresponding function definitions,
are filled into a predefined prompt template to serve as instruction tuning data for LLMs. The
bottom-up procedure, rather than generating complex tasks directly, ensures compositionality of
instructions (challenge 1). Generating functions with an awareness of the atomic tasks within com-
positional tasks makes these functions more general and suitable for fine-grained sub-tasks, rather
than being monolithic (challenge 2). Using multi-agents to simulate the trajectories enhances their
quality, and examining the sub-tasks for compositional tasks also guides the agents toward effective
decomposition and planning with functions (challenge 3). Based on BUTTON, we collected a com-
positional instruction tuning dataset called BUTTONInstruct, consisting of 8k high-quality data
points labeled with multi-turn function call trajectories. We demonstrate that LLMs fine-tuned with
BUTTONInstruct show improved performance on multi-turn function calling benchmarks.

2 METHOD

In this section, we introduce the details of our method for constructing compositional instruction-
tuning data for multi-turn function calling tasks. This framework consists of two stages: 1) bottom-
up instruction construction, and 2) top-down trajectory generation. We refer to this framework as
the “Bottom-Up Then Top-dOwN” pipeline, denoted as BUTTON.

During the bottom-up instruction construction phase, we begin by gathering a variety of real-world
scenarios. Drawing from these scenarios, we proceed to construct a series of atomic tasks, each as
simple as possible and capable of being completed in one step. Compositional tasks will be evolved
from such atomic tasks. Lastly, for each compositional task, we further generate function definitions
that are likely to be called in this task. The term “bottom-up” signifies our approach of constructing

2

Published as a conference paper at ICLR 2025

Who is the author of the
book “The Great Gatsby”?

When was the author
of this book born?

When was the author of “The Great Gatsby” born?

{
 "name": “get_author”,
 "description":,
 "parameters":,
 "required":,
 "responses":,
}

{
 "name": “search_birthday”,
 "description":,
 "parameters":,
 "required":,
 "responses":,
}

Atomic Task

Compositional
Task

Functions Multi-Agent
Setup

Trajectory
Generation

Assistant
Agent

Tool
Agent

User
Agent

Call Function

Function ResultsAnswer

Query

User

Assistant

Tool

Hi, I want to know when was the author
of “The Great Gatsby” was born.

First, I need to know who is the author
of this book. <call>get_author(The
Great Gatsby) </call>

Assistant This book is written by Scott
Fitzgerald. Then I need to find out
when he was born.
<call>search_birthday(Scott
Fitzgerald)</call>

Scott Fitzgerald

24 Sept. 1896Tool

Assistant The author of “The Great Gatsby” was
born on September 24, 1896.
<final>September 24, 1896</final>

Generate a
 subsequent task

Bottom-Up Instruction Construction Top-Down Trajectory Generation

Figure 1: Overview of our bottom-up then top-down pipeline.

comprehensive compositional tasks with their corresponding functions, starting from the foundation
of simple atomic tasks, which can be shown in the left part of Figure 1.

During the top-down trajectory generation phase, we collect multi-turn function calling interaction
trajectories for compositional tasks and functions that were constructed earlier. This step simulates
the usage process of functions in each task, providing supervision data that guides the LLMs in
learning how to call functions in multi-turn manners. The term “top-down” indicates that from a
compositional task with corresponding functions, we simulate and gather the interaction trajectories
that demonstrate the breakdown of complex tasks and the invocation of corresponding functions in
a multi-turn manner, as depicted in the right part of Figure 1. In essence, the bottom-up instruction
construction is a process of composition, while the top-down trajectory generation is a process of
decomposition.

Definitions We begin by collecting real-world scenarios C = {ci} and transforming them into
atomic tasks A = {ai}. For compositional tasks requiring multiple function calls, we generate
related atomic tasks from a defined atomic task ai, forming a sub-task set Si. This set is used to
compose a compositional task ci, represented as C = {(ci,Si)}. Functions are then constructed
based on these tasks, forming instruction tuples I = {(ci,Fi,Si)}, where Fi are a set of functions
for task ci. These functions are defined by their descriptions, allowing us to simulate interactions
without actual implementations. The task breakdown Si is retained to enhance multi-agent inter-
action for trajectory generation, without being disclosed in the final data. After obtaining I, we
generate user, assistant, and tool interactions, resulting in data D = {(Fi, ti)}, where ti is the col-
lected trajectory. These function definitions and trajectories are integrated into a prompt template
for instruction-tuning data.

2.1 BOTTOM-UP INSTRUCTION CONSTRUCTION

In this section, we detail the procedures for constructing instructions using a bottom-up approach.
The process begins with simple scenarios, from which we generate tasks at the atomic level. These
atom tasks are then evolved to create more complex, composite tasks along with their corresponding
functions.

Scenario Collection To ensure our generated tasks are grounded in everyday experiences and
not meaningless, we first extract a series of real-world scenarios from existing datasets that focus
on function calling for LLMs (glaiveai, 2023; Qin et al., 2023). Such scenarios can be a concise
overview, like “book a flight” or “ordering meals”. We then conduct a deduplication operation on
the collected scenarios. This involves using sentence embeddings to calculate scenario similarities,
and setting a specific threshold to filter out similar ones (Xiao et al., 2023). Furthermore, to expand
our scenario collection, we also attempt to generate new scenarios from existing ones by altering

3

Published as a conference paper at ICLR 2025

Table 1: Examples of compositional task construction.

Sequential Composition
Initial Atomic Task: Who is author of the book “The Great Gatsby”?
Subsequent Task: When was the author of this book born?
Composition Task: When was the author of the book “The Great Gatsby” born?

Parallel-then-Sequential Composition
Initial Atomic Task: Give me the flight schedule from London to Edinburgh today.
Parallel Task: Find the every hour weather forecast in Edinburgh today.
Subsequent Task: What is the weather condition when the first flight arrives?
Composition Task: I am in London, and I want to know the weather condition when the

first flight arrives in Edinburgh today.

their actions or subjects. Details of seed data for scenario extraction, prompts for extracting and
expanding scenarios can be found in Appendix A.1.

Atomic Task Construction Based on the collected scenarios, we construct atomic tasks, each
of which can be considered as a straightforward problem, query or instruction. We anticipate that
these atomic tasks should be simple, clear, and don’t need complex planning for human to solve.
Such atomic tasks are able to serve as atomic units for constructing complex compositional tasks.
In designing the prompts for transforming collected scenarios into atomic tasks, we focus on the
following three aspects:

• Reasonable: The atomic task should be realistic, reasonable, and representative of tasks fre-
quently encountered in the real world.

• Self-contained: The atomic task should be solvable based on the information it provides. It must
contain sufficient details and information necessary for calling functions.

• Function-agnostic: During the articulation of the atomic task, we do not consider the specific
functions that can be employed to solve this task. The task should not mention any specific
function or solution.

Note that despite having numerous descriptions of our anticipated atomic tasks, we do not pro-
vide a strict definition of atomic tasks, nor of the following compositional tasks. We use specific
prompts and the powerful instruction-following capabilities of cutting-edge LLMs to ensure that the
generated data aligns with our general expectations. The carefully crafted prompt can be found in
Appendix A.2.

Compositional Task Construction To enhance the capability of multi-turn function calling for
LLMs, it is essential to construct compositional tasks that require multiple interactions to be re-
solved. Starting with the atomic tasks created in the previous step, we develop compositional tasks
using two heuristic strategies: “Sequential Composition” and “Parallel-then-Sequential Composi-
tion”. The principle behind sequential composition is to start with an atomic task and generate a
subsequent task that needs to be solved based on the result of the first, combining them into a new
compositional task. For parallel-then-sequential composition, we begin by generating a task that
can be solved in parallel with the atomic task. Then, a subsequent task is generated based on the
results of the first two tasks, and they are all composed together. Examples can be found in Table
1. Prompts for implementing these two strategies can be found in Appendix A.3. Although these
two heuristic strategies seem simple, they do not compromise the diversity of the dataset collected
using our method. For instance, parallel function calls are not limited to the first turn; multiple
functions may be generated for a single atomic task in subsequent function generations. Details on
the data diversity can be found in Sec. 2.3. To ensure the quality of the generated compositional
tasks, we filter out any that are inconsistent with their original atomic tasks. The filtering criterion
is as follows: since the quality of atomic tasks is more controllable, we filter compositional tasks
by checking whether each one can be completed by its atomic sub-tasks. This allows us to filter out
low-quality compositional tasks. The task filtering prompt can be found in Appendix A.3.

4

Published as a conference paper at ICLR 2025

Function Generation After constructing the compositional tasks, we generate functions that are
likely to be called in these tasks. This differs from most previous works, which first collect func-
tions and then generate tasks based on these collected functions (Patil et al., 2023; Liu et al., 2024b).
Our task-generation procedure is function-agnostic, which we believe allows for the construction of
more realistic tasks, rather than those based solely on specific functions. Using the aforementioned
methods, we have constructed a series of compositional tasks for which we know the corresponding
sub-tasks (i.e., the breakdown of the complex compositional task). These task breakdowns can be
used as hints for function generation. This represents the advantage of our bottom-up instruction
construction method, where we can examine the decomposition of the compositional task and gen-
erate corresponding functions. During the generation of function definitions, we mainly focus on
the following points:

• Descriptive: The name and description of the function should be illustrative to aid in distinguish-
ing different functions. The input arguments and output returns should also be clear since we not
only use these definitions to but also use them to simulate corresponding functions.

• General: The function should possess a level of generality that enables its use for future tasks as
well. In the real world, a function is more likely to be constructed for a frequently encountered
atomic task rather than a highly specific one. For instance, a function get weather(city) is
more likely to be utilized than get weather in london().

• Consistency: As we need to generate multi-turn function calling interaction trajectories in later
steps, the input arguments and output results of these functions should maintain consistency. For
example, if two functions will be called sequentially, the output of the first should either align
with or constitute a part of the input for the second function, regardless of the varying parameter
terminologies.

The generated function definitions include five main fields: name, description, parameters, re-
sponses, and required. The name indicates the function name, while description details its usage
and capabilities. Parameters and responses cover the input and output, including the type and de-
scription of each argument. The required field lists necessary input parameters. We allow flexibility
in mapping sub-tasks to functions; a sub-task may require zero, one, or multiple functions. If a sub-
task involves logic, comparison, set operations, or calculations manageable by language models, no
function is needed. For more details on the format and prompts, see Appendix A.4.

2.2 TOP-DOWN TRAJECTORY GENERATION

After obtaining the compositional tasks and their corresponding functions through the bottom-up
instruction construction method, we create multi-turn function calling interaction trajectories. These
trajectories simulate how LLMs use these functions and serve as supervision data, teaching LLMs
to perform multi-turn function calls.

Multi-agent Setup How to effectively simulate the multi-turn function calling interaction pro-
cess is the key to collecting high-quality interaction trajectories. In our framework, we set up a
multi-agent environment in which each agent simulates a specific role during the multi-turn func-
tion calling interactions, as shown in the right part of Figure 1. We design three types of agents
to simulate the interaction process: the user, the assistant, and the tool. The user agent initiates
the interaction and provides the query to the assistant agent based on a specific compositional task.
The assistant agent decomposes the task into sub-tasks and calls the corresponding functions to
address these sub-tasks. The tool agent simulates the specific implementations of a function. It’s
important to note that a tool agent simulates a specific function based on its definition. We do not
implement the actual functionality of the function as we merely require reasonable feedback from
the tool agents to advance the interaction. Specifically, the assistant agent is aware of the available
tools, compositional tasks, and the task breakdown. Since our compositional tasks are constructed
in a bottom-up manner, the breakdown of these tasks naturally comprises their atomic components.
For each function, we establish a tool agent based on its definitions. The behavior of the agents is
steered by their system prompts, and the details of system prompts are listed in Appendix A.5.

Interaction Trajectory Collection. After setting up the multi-agent environments, given a spe-
cific compositional task and corresponding functions, we tailor prompts for each agent. The inter-
action trajectory begins with the user agent. The assistant agent reviews the task, decides which

5

Published as a conference paper at ICLR 2025

32 54 6 7
#Turn in One Trajectory

0

500
1000
1500
2000
2500
3000

Fr
eq

ue
nc

y

(a) Frequency of #Turn

42 31 5 6
#FC in One Trajectory

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

(b) Frequency of #FC

1 2 3 4 5 6
Turn of Assistant

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Av
er

ag
e

#F
C

(c) Average #FC per Turn

Figure 2: Statistic investigation on our collected data BUTTONInstruct.

functions to call, and determines the function parameters. The assistant’s response includes: first,
observations and thoughts in free text, similar to the ReAct (Yao et al., 2023) format; second, a
specified function call. This function call is parsed as an action to invoke the corresponding tool
agent and obtain simulated function call results. Finally, when the assistant has the final answer to
the user’s question, it invokes the function that provides the final response to the user.

2.3 DATASET COLLECTION VIA BUTTON

BUTTONInstruct Based on the aforementioned pipeline, we leverage the cutting-edge LLM,
GPT-4o2, to generate data at each step of bottom-up instruction construction, progressing from sim-
ple scenarios to compositional tasks and functions, and conducting trajectory generation as agents.
We ultimately collect 8,000 multi-turn function calling data points, BUTTONInstruct, each con-
taining several entries, including content with roles such as ‘system’, ‘user’, ‘assistant’, and ‘tool’.
The available functions for each user question are listed in corresponding system prompt. More
examples of finally generated data can be found in Appendix B.1.

Parallel Function Calling Furthermore, in our collected data, we consider scenarios involving
parallel function calling. If multiple functions can be called independently, they can be executed in
parallel. The effectiveness of this parallel calling is discussed in Section 3.3. To control the behavior
of conducting parallel calling, we use different system prompts to guide whether parallel calling
should be executed. Details on how to construct data for aligning LLMs with the corresponding
calling behaviors can be found in Appendix B.2.

Data Diversity To demonstrate the diversity of the collected BUTTONInstruct, we analyzed
the distribution of the total number of assistant turns (#Turn), as well as the number of function
calls (#FC) throughout the entire trajectory and at each step. Figure 2 presents key statistics of our
dataset. In Figure 2(a), the frequency distribution of the total number of turns shows that most data
points involve three or more turns of assistant responses. We plotted the distribution of the total
number of function calls for each trajectory in Figure 2(b) and found that most data points contain
more than two function calls. By plotting the average number of function calls per turn in Figure
2(c), we observed that every turn averages more than one function call. These findings indicate the
diversity in our collected data and demonstrate that, even with simple heuristic strategies to generate
compositional tasks from atomic tasks, the final collected data are diverse across different aspects.
Furthermore, more details about the distribution of the functions in the BUTTONInstruct are
provided in Appendix B.3.

3 EXPERIMENTS

To evaluate the effectiveness of our multi-turn function calling data BUTTONInstruct collected
via our proposed BUTTON pipeline, we train two series of open-source LLMs of different sizes:
Llama3-8B, Llama3-70B (Dubey et al., 2024), Qwen2-7B, and Qwen2-72B (Yang et al., 2024a).
We denote models that have been instruction-tuned using BUTTONInstruct with the suffix ‘-
BUTTON’. In our experiments, we primarily focus on the following questions: 1) Q1: Can our

2gpt-4o-2024-05-13 from https://platform.openai.com/docs/models/gpt-4o

6

https://platform.openai.com/docs/models/gpt-4o

Published as a conference paper at ICLR 2025

proposed BUTTON approach enhance multi-turn function calling abilities compared to existing
instruction-tuned models designed for general purposes? 2) Q2: Are the bottom-up and top-down
procedures effective and necessary? 3) Q3: What is the influence of data size and parallel calling on
model performance?

3.1 EXPERIMENTS SETUP

Benchmarks. We evaluate performance using two benchmarks, GTA and Tool-Query.
GTA (Wang et al., 2024b), a benchmark for General Tool Agents, consists of 229 human-crafted
queries designed to reflect real-world tasks. The queries span a total of 14 real-world deployed tools
(i.e., functions) across the perception, operation, logic, and creation categories. Each query is ac-
companied by one or two authentic image files and the LLM is tasked with solving the queries based
on the multimodal context and user queries. The tasks in this benchmark require multiple steps to
solve and necessitate LLMs to reason about suitable tools and plan the solution steps. More details
and examples about this benchmark can be found in Appendix B of Wang et al. (2024b). Tool-Query
(Ma et al., 2024) is a tool-using environment in the domains of weather, movies, and academia. It
consists of 60 tasks requiring complex multi-round interactions with corresponding tools. There are
18, 14, and 7 tools (i.e., functions) in the weather, movie, and academia environments respectively,
which are developed by corresponding real-world APIs and databases. This benchmark not only
contains annotated final answers but also intermediate subgoals, which makes it easier to evaluate
the process of function calling during multi-turn interactions. Tasks are also labeled as hard or easy
based on the number of subgoals, with a count of 4 in this benchmark. More details and examples
of Tool-Query can be found in Appendix F.4.1 of Ma et al. (2024).
Evaluation Metrics. For each benchmark, we follow their original evaluation strategies and met-
rics. For GTA, there are two modes and nine metrics. In the Step-by-Step Mode, the model is
provided with steps 1 to n from a set of human-labeled function calling chains, and it is tasked with
predicting the function call in the n+ 1 step. This demonstrates performance in a fine-grained way.
In the End-to-End Mode, the model initiates its function calling process based solely on the user’s
question and proceeds until it arrives at the answer. This reflects the performance of the model in
real-world applications. Four metrics are used during the step-by-step mode evaluation: Instruction
Accuracy (Inst.) is the accuracy of executing without errors, which indicates that the model knows
how to follow the instruction to conduct a function call; Tool-selection Accuracy (Tool.) and Argu-
ment Accuracy (Arg.) denote the accuracy of selecting tools and predicting arguments respectively;
Summary Accuracy (Summ.) denotes the model’s ability to summarize and derive the answer based
on all previous steps. During end-to-end mode, we show the F1 scores of tool selection on percep-
tion (P.), operation (O.), logic (L.), and creativity (C.) tasks, and the final answer accuracy (Ans.).
The final answer accuracy is only calculated solely on queries with pure text answers, excluding
image generation queries. For Tool-Query, Grounding Accuracy (G.A.) is used to denote the accu-
racy of generating valid, executable function calls. Process Rate is used to evaluate the completion
proportion of subgoals during the handling of complex user queries and the subgoals are labeled in
this dataset. Furthermore, Success Rate is the accuracy of the final answer. More details of metric
calculation can be found in Appendix C.1.
Baselines. We showcase the performance on cutting-edge API-based LLMs, including GPT-4o,
GPT-4-Turbo, and GPT-3.5-Turbo. Furthermore, since our collected data BUTTONInstruct is
adapted for tuning the Llama3 and Qwen2 base models, we also use their original instruction-tuned
versions as baselines, including Llama3-8B-Instruct, Llama3-70B-Instruct, Qwen2-7B-Instruct, and
Qwen2-72B-Instruct (Dubey et al., 2024; Yang et al., 2024a).
Implementation. We conduct full-parameter supervised fine-tuning for all base models, with a
maximum sequence length of 8,192. The models are trained on 4×8 NVIDIA H800 GPUs. In addi-
tion, we randomly select 100,000 general instruction tuning data from OpenHermes-2.5 (Teknium,
2023) and mix them with BUTTONInstruct to align the models’ basic instruction-following ca-
pabilities. For implementation details, please refer to Appendix C.2.

3.2 MAIN RESULTS

As shown in Table 2 and Table 3, LLMs tuned with compositional instruction tuning data constructed
by our proposed BUTTON method perform better than their corresponding original instructed ver-
sions. For smaller models, the improvements are significant. For example, we improved the an-

7

Published as a conference paper at ICLR 2025

swer accuracy of Llama3-8B from 1.4% to 30.5%. The low performance of Llama3-8B-Instruct on
this metric is consistent with the findings in the original benchmark paper. Notably, the results of
Llama3-80B-BUTTON and Qwen2-72B-BUTTON are comparable to GPT-4o, demonstrating the
effectiveness of the data collected through our proposed data collection pipeline.

Table 2: Main results(%) on GTA. Accuracy of Inst., Tool., Arg., and Summ.. F1 score of P., O.,
L., and C.. Ans. is the final answer accuracy. Bold numbers highlight better performance between
the original instruction model and our tuned versions, while underlined numbers denote the best
performance across all models.

Model Step-by-Step Mode End-to-End Mode
Inst. Tool. Arg. Summ. P. O. L. C. Ans.

GPT-4o 90.0 70.3 38.6 72.9 76.4 88.2 84.8 90.0 46.0
GPT-4-Turbo 84.6 60.6 34.3 73.5 51.8 87.7 61.8 86.1 30.6
GPT-3.5-Turbo 64.8 33.1 22.4 66.2 60.2 48.4 69.0 95.8 18.3

Llama3-8B-Instruct 70.9 23.6 2.2 42.9 23.5 18.5 23.6 24.6 1.4
Llama3-8B-BUTTON 90.7 63.4 32.3 65.6 84.2 76.5 73.5 88.9 30.5
Qwen2-7B-Instruct 59.1 28.5 3.9 54.8 39.1 65.4 56.1 72.7 13.1
Qwen2-7B-BUTTON 89.4 62.5 30.7 63.0 80.3 83.5 82.6 89.2 27.3
Llama3-70B-Instruct 75.2 46.7 22.2 68.4 67.9 83.8 71.0 95.9 40.1
Llama3-70B-BUTTON 96.4 73.6 38.1 70.5 84.9 96.2 89.5 96.1 43.5
Qwen2-72B-Instruct 73.4 49.2 17.9 73.9 46.5 67.5 46.7 64.3 27.3
Qwen2-72B-BUTTON 91.9 69.3 38.1 71.5 85.0 87.4 86.7 91.4 45.7

For Tool-Query, LLMs tuned with our data BUTTONInstruct demonstrate improved perfor-
mance across various metrics. We observe that even though the grounding accuracy for both the
original instruction models and those tuned with our dataset is quite high (near or above 95%), our
models achieve better process and success rates. This suggests that the challenge lies not only in
using functions correctly but also in effectively planning with them. Overall, from the main results
from GTA and Tool-Query, we can conclude that BUTTONInstruct can align LLMs with better
ability on multi-turn function calling, and BUTTON is effective on such tasks.

Table 3: Main results(%) on Tool-Query. G.A. indicate grounding accuracy. Process Rate and Suc-
cess Rate are presented for Easy, Hard and ALL test samples. Bold numbers highlight better per-
formance between the original instruction model and our tuned versions, while underlined numbers
denote the best performance across all models.

Model G.A. Process Rate Success Rate
Easy Hard All Easy Hard All

GPT-4o 92.3 83.2 70.6 76.5 50.0 31.3 40.0
GPT-4-Turbo 95.4 80.7 78.9 79.8 50.0 34.4 41.7
GPT-3.5-Turbo 93.6 54.9 43.2 48.7 3.6 9.4 6.7

Llama3-8B-Instruct 96.7 55.1 42.0 48.1 10.7 0.0 5.0
Llama3-8B-BUTTON 97.4 72.9 54.8 63.2 50.0 21.9 35.0
Qwen2-7B-Instruct 97.0 66.7 46.8 56.0 32.1 15.6 23.3
Qwen2-7B-BUTTON 95.5 69.5 59.0 63.9 42.9 15.6 28.3
Llama3-70B-Instruct 95.6 80.8 61.5 70.5 42.9 21.9 31.7
Llama3-70B-BUTTON 94.0 85.2 77.2 80.9 71.4 46.9 58.3
Qwen2-72B-Instruct 95.8 83.7 72.2 77.6 50.0 34.4 41.7
Qwen2-72B-BUTTON 98.4 85.5 77.0 81.0 71.4 46.9 58.3

8

Published as a conference paper at ICLR 2025

3.3 FURTHER ANALYSIS

Success Rate (Llama3-8B)

Process Rate (Llama3-8B)

Success Rate (Llama3-70B)

Process Rate (Llama3-70B)

Metrics on Tool-Query

20

30

40

50

60

70

80

Pe
rfo

rm
an

ce
 (%

)

Ablation Settings
w/o Buttom-Up
w/o Top-Down
w/ BUTTON

Figure 3: Performance comparison in ablation set-
tings for metrics Tool-Query.

Ablation Study To evaluate the effectiveness
of the “bottom-up instruction construction” and
“top-down trajectory generation” procedures in
BUTTON respectively, we conduct an ablation
study by simplifying these two procedures into
single direct generation steps using one prompt
with generative LLMs, instead of our curated
prompts and procedures. Specifically, to sim-
plify the bottom-up procedure, we instruct gen-
erative LLMs to directly generate a composi-
tional complex task based on a given scenario.
As a result, no sub-tasks are revealed for the
subsequent function generation and trajectory
generation steps. To reduce the top-down pro-
cedure, we do not set up the multi-agent envi-
ronment. Instead, we use a monolithic prompt
that instructs the LLMs to act as the user, as-
sistant, and tools, generating trajectories based
on previously constructed tasks with functions.
Refer to Appendix C.3 for details of prompts.
The results of the ablation study on Tool-Query
are shown in Figure 3. We perform a compari-
son using the aforementioned two ablation set-
tings (i.e., w/o Buttom-Up and w/o Top-Down),
and the default setting (i.e., w/ BUTTON) on
Llama3-8B and Llama3-70B. By calculating the relative performance degradation, we found that the
smaller model was influenced more, with average relative degradations on process rate and success
rate of 16.1%, and that decline for Llama3-70B is 6.4%. The average relative success rate decline
across both model sizes and ablation settings is 15.0%, while the process rate decline is 7.5%. This
suggests that models tuned without BUTTON can partially execute correct functions contributing to
the process rate, but their limited planning ability prevents them from effectively achieving the final
answer, leading to a greater decline in the success rate.

Table 4: Results(%) on Tool-Query with Llama3-
8B tuned with varying data sizes.

#Data Process Rate Success Rate
Easy Hard All Easy Hard All

2,000 67.5 46.9 56.5 35.7 9.4 21.7
4,000 73.1 45.8 58.5 50.0 12.5 30.0
6,000 74.6 51.5 62.3 46.4 15.6 30.0
8,000 72.9 54.8 63.2 50.0 21.9 35.0
AGR 13.5 32.8 18.4 2.7 5.5 3.8

Data Scaling In this section, we investigate
the influence of data size on compositional in-
struction tuning data constructed by BUTTON.
We vary the data size from 2,000 to 8,000 and
tune Llama3-8B with the corresponding data.
As shown in Table 4, we present the results on
Tool-Query with varying data sizes. By cal-
culating the average growth rate (AGR), we
found that as the data size increases, the process
rate and success rate increase accordingly, with
AGRs of 13.5% and 2.7%, respectively. Fur-
thermore, we found that the improvement on
hard samples is greater than on easy samples,

indicating that our constructed data can effectively enhance performance on multi-turn function
calling as the data size increases, particularly for tasks that require more turns of function calling.

Efficiency on Parallel Calling As described in Section 2.3, we have mentioned that our tuned
model can conduct parallel function calling when multiple functions can be called independently
within a single turn. This capability can significantly enhance performance when operating un-
der restricted step conditions. By turning off the parallel calling ability by changing the system
prompt, we found that performance on different metrics is affected. For example, the success rate
of Llama3-8B-BUTTON on Tool-Query decreases from 35.0% to 28.3%, and the process rate de-
creases from 63.2% to 58.7%. This indicates the effectiveness of parallel calling and our proposed
BUTTON method. More cases about comparisons of parallel calling can be found in Appendix C.4.

9

Published as a conference paper at ICLR 2025

4 RELATED WORK

Synthetic Data Data has been a critical driving force behind the success of large language models
(LLMs). Recent advancements in these models owe much to the availability of large-scale, diverse,
and high-quality datasets (Dubey et al., 2024). However, obtaining such datasets is both resource-
intensive and expensive, posing significant challenges to researchers and practitioners (Xu et al.,
2023; 2024a; Luo et al., 2023; Yang et al., 2024b). To address these limitations, generating syn-
thetic data has emerged as a promising alternative for creating scalable and high-quality datasets.
Researchers have explored various techniques to improve the quality, diversity, and utility of syn-
thetic data across different domains (Liu et al., 2024a; Wang et al., 2024d; Wei et al., 2023; Lou et al.,
2023; Yang et al., 2023; 2024c). Recent studies have also focused on synthetic data for complex and
compositional instructions. Chain-of-Instruct (Hayati et al., 2024) proposed a pipeline for building
instructions composed of subtasks, allowing LLMs to solve compositional tasks step-by-step in an
explainable manner. Sequential Instruction Tuning (Hu et al., 2024) introduced a data construction
pipeline for automatic instruction augmentation, where intermediate tasks are seeded from a single-
task instruction. However, existing works do not focus on constructing compositional instructions
for multi-turn function calling tasks, where identifying, invoking, and planning with functions are
all necessary.

Function Calling The ability to call functions or use tools effectively has become a significant
aspect of instruction-tuning large language models (LLMs) (Wang et al., 2024a; Zeng et al., 2024;
Shen et al., 2023; Xu et al., 2024b). This functionality is crucial as it enhances the models’ ability to
tackle complex tasks by enabling modular, structured, and interactive workflows (Qiao et al., 2024;
Shen et al., 2024). Such capabilities expand the potential of LLMs beyond language generation, em-
powering them to dynamically address practical challenges that require integrating computational
or domain-specific tools. Recent efforts have focused on creating and curating datasets to enhance
LLMs’ function-calling competencies. Patil et al. (2023) collected APIs from repositories such as
TorchHub, TensorHub, and HuggingFace, subsequently generating synthetic user prompts for each
API using the Self-Instruct framework (Wang et al., 2023). Similarly, Qin et al. (2023) expanded
upon this work by incorporating additional API data from RapidAPI. They generated diverse in-
struction datasets involving a variety of function-calling contexts, covering numerous interaction
scenarios. However, these approaches face significant challenges: many API descriptions are un-
clear, and a considerable number of API calls fail due to availability issues or runtime errors (Guo
et al., 2024), complicating the generation of accurate solution path annotations using LLMs. To
address some of these challenges, Liu et al. (2024b) proposed APIGen, a multi-stage pipeline for
generating diverse datasets tailored to function-calling tasks. This method employs a rigorous verifi-
cation process to improve data quality but is limited in scope, focusing predominantly on single-turn
function-calling scenarios.

5 CONCLUSION

In this work, we address the importance of multi-turn function calling in the field of LLMs by fo-
cusing on their ability to plan with functions, rather than merely use them. We introduce BUTTON,
a novel “bottom-up then top-down” pipeline for generating synthetic compositional instruction tun-
ing data. This approach effectively tackles the challenges of ensuring compositionality of tasks,
generating compatible function, and high-quality multi-turn function calling trajectories without hu-
man supervision via the curated prompts and procedures during the pipeline. Our methodology,
which includes the generation of atomic tasks, compositional task construction, function generation,
and a multi-agent simulation environment, has resulted in the creation of BUTTONInstruct, a
dataset of 8,000 high-quality data points labeled with multi-turn function call trajectories. The ef-
fectiveness of this approach is demonstrated by the improved performance of LLMs fine-tuned with
BUTTONInstruct on multi-turn function calling benchmarks. However, although our method
has been empirically proven effective through experiments and analysis, the quality of the data cur-
rently relies on our prompts and procedures, with no additional verification steps applied. In future
work, we will implement more curated data verification or filtering stages to enhance the quality of
the synthetic data. Furthermore, we may focus on extending the pipeline to align LLMs with more
real-world applications, including embodied AI, where tool use, complex reasoning, and planning
need to be integrated to complete more complex tasks.

10

Published as a conference paper at ICLR 2025

REFERENCES

Wei Chen and Zhiyuan Li. Octopus v4: Graph of language models. CoRR, abs/2404.19296, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu
Guo, Meng Wang, and Haofen Wang. Retrieval-augmented generation for large language models:
A survey. CoRR, abs/2312.10997, 2023.

glaiveai. glaive-function-calling-v2. https://huggingface.co/datasets/glaiveai/
glaive-function-calling-v2, 2023.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on tool learning
of large language models. In ACL (Findings), pp. 11143–11156. Association for Computational
Linguistics, 2024.

Shirley Anugrah Hayati, Taehee Jung, Tristan Bodding-Long, Sudipta Kar, Abhinav Sethy, Joo-
Kyung Kim, and Dongyeop Kang. Chain-of-instructions: Compositional instruction tuning on
large language models. CoRR, abs/2402.11532, 2024.

Hanxu Hu, Pinzhen Chen, and Edoardo M. Ponti. Fine-tuning large language models with sequential
instructions. CoRR, abs/2403.07794, 2024.

Mingan Lin, Fan Yang, Yanjun Shen, Haoze Sun, Tianpeng Li, Tao Zhang, Chenzheng Zhu, Tao
Zhang, Miao Zheng, Xu Li, Yijie Zhou, Mingyang Chen, Yanzhao Qin, Youquan Li, Hao Liang,
Fei Li, Yadong Li, Mang Wang, Guosheng Dong, Kun Fang, Jianhua Xu, Bin Cui, Wentao Zhang,
Zenan Zhou, and Weipeng Chen. Baichuan alignment technical report. CoRR, abs/2410.14940,
2024.

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe Zhang, Jinmeng Rao, Steven Zheng, Daiyi
Peng, Diyi Yang, Denny Zhou, and Andrew M. Dai. Best practices and lessons learned on syn-
thetic data for language models. CoRR, abs/2404.07503, 2024a.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
Yao, Zhiwei Liu, Yihao Feng, et al. Apigen: Automated pipeline for generating verifiable and
diverse function-calling datasets. arXiv preprint arXiv:2406.18518, 2024b.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. The flan collection: Designing data and methods for effective
instruction tuning. arXiv preprint arXiv:2301.13688, 2023.

Renze Lou, Kai Zhang, Jian Xie, Yuxuan Sun, Janice Ahn, Hanzi Xu, Yu Su, and Wenpeng
Yin. MUFFIN: curating multi-faceted instructions for improving instruction-following. CoRR,
abs/2312.02436, 2023.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qing-
wei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning
for large language models via reinforced evol-instruct. CoRR, abs/2308.09583, 2023.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Ling-
peng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn LLM
agents. CoRR, abs/2401.13178, 2024.

Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng
Dai, Yu Qiao, and Ping Luo. Embodiedgpt: Vision-language pre-training via embodied chain of
thought. Advances in Neural Information Processing Systems, 36, 2024.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023.

11

https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2
https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2

Published as a conference paper at ICLR 2025

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In NeurIPS, 2022.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. In EMNLP (Findings), pp. 5687–
5711. Association for Computational Linguistics, 2023.

Shuofei Qiao, Runnan Fang, Zhisong Qiu, Xiaobin Wang, Ningyu Zhang, Yong Jiang, Pengjun
Xie, Fei Huang, and Huajun Chen. Benchmarking agentic workflow generation. CoRR,
abs/2410.07869, 2024.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. In NeurIPS, 2023.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugging-
gpt: Solving AI tasks with chatgpt and its friends in hugging face. In NeurIPS, 2023.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng
Li, and Yueting Zhuang. Taskbench: Benchmarking large language models for task automation.
In NeurIPS, 2024.

Teknium. Openhermes 2.5: An open dataset of synthetic data for generalist llm assistants, 2023.
URL https://huggingface.co/datasets/teknium/OpenHermes-2.5.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
Trans. Mach. Learn. Res., 2024, 2024a.

Jize Wang, Zerun Ma, Yining Li, Songyang Zhang, Cailian Chen, Kai Chen, and Xinyi Le. GTA: A
benchmark for general tool agents. CoRR, abs/2407.08713, 2024b.

Junjie Wang, Mingyang Chen, Binbin Hu, Dan Yang, Ziqi Liu, Yue Shen, Peng Wei, Zhiqiang
Zhang, Jinjie Gu, Jun Zhou, Jeff Z. Pan, Wen Zhang, and Huajun Chen. Learning to plan for
retrieval-augmented large language models from knowledge graphs. In EMNLP (Findings), pp.
7813–7835. Association for Computational Linguistics, 2024c.

Yifei Wang, Jizhe Zhang, and Yisen Wang. Do generated data always help contrastive learning?
CoRR, abs/2403.12448, 2024d.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
In ACL (1), pp. 13484–13508. Association for Computational Linguistics, 2023.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source code
is all you need. CoRR, abs/2312.02120, 2023.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s trans-
formers: State-of-the-art natural language processing. CoRR, abs/1910.03771, 2019.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to
advance general chinese embedding, 2023.

12

https://huggingface.co/datasets/teknium/OpenHermes-2.5

Published as a conference paper at ICLR 2025

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qing-
wei Lin, and Daxin Jiang. Wizardlm: Empowering large pre-trained language models to follow
complex instructions. In ICLR. OpenReview.net, 2024a.

Canwen Xu, Daya Guo, Nan Duan, and Julian J. McAuley. Baize: An open-source chat model with
parameter-efficient tuning on self-chat data. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pp.
6268–6278, 2023.

Yiheng Xu, Hongjin Su, Chen Xing, Boyu Mi, Qian Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao
Liu, Tianbao Xie, Zhoujun Cheng, Siheng Zhao, Lingpeng Kong, Bailin Wang, Caiming Xiong,
and Tao Yu. Lemur: Harmonizing natural language and code for language agents. In ICLR.
OpenReview.net, 2024b.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024a.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu
Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong
Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. CoRR, abs/2412.15115,
2024b.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
pert model via self-improvement. CoRR, abs/2409.12122, 2024c.

Dongjie Yang, Ruifeng Yuan, Yuantao Fan, Yifei Yang, Zili Wang, Shusen Wang, and Hai Zhao.
Refgpt: Dialogue generation of gpt, by gpt, and for GPT. In Findings of the Association for
Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, pp. 2511–2535.
Association for Computational Linguistics, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In ICLR. OpenReview.net, 2023.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttun-
ing: Enabling generalized agent abilities for llms. In ACL (Findings), pp. 3053–3077. Association
for Computational Linguistics, 2024.

Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren Wang, Yunteng Geng, Fangcheng Fu, Ling
Yang, Wentao Zhang, and Bin Cui. Retrieval-augmented generation for ai-generated content: A
survey. arXiv preprint arXiv:2402.19473, 2024.

13

Published as a conference paper at ICLR 2025

A PROMPT DETAILS

A.1 SCENARIO COLLECTION

In our work, the seed data for scenario extraction is derived from glaive-function-calling-v2
(glaiveai, 2023) and ToolLLama datasets (Qin et al., 2023).

Here are prompts for extracting and expanding scenarios. The placeholders {conversation}
and {scenario} are used to fill in a conversation for extracting a scenario and a scenario for being
modified, respectively.

Prompt for Extracting Scenarios

Please analyze the conversation below between a user and an
assistant bot and identify the general life scenario it
represents. Provide a concise overview of the scenario type,
such as ’booking flights’ or ’ordering meals’. Avoid
mentioning specific details like numbers or items. Your
response should be a description of the scenario without
additional commentary, and should not exceed 10 words.

Conversation:
{conversation}

Concise Overview of the Scenario:

Prompt for Expanding Scenarios

Based on the provided daily scenario, creatively generate a new
and entirely different scenario. The new scenario must meet
the following requirements:

1. You may alter the action or subject of the original scenario.
2. The new scenario should differ substantially from the

original.
3. Ensure the new scenario is realistic and feasible within a

daily life context.
4. Retain the same format as the original scenario.
5. Limit your response to 10 words and present the new scenario

in a single sentence.

Original Scenario:
{scen}

Modified Scenario:

A.2 ATOMIC TASK CONSTRUCTION

Here is the prompt for generating an atomic task from a scenario. The placeholder {scenario}
will be substituted with a collected scenario when generating a specific task.

Prompt for Atomic Task Construction

You are training a model that can take a user’s task description
or query, and available functions as input, and generate a

sequence of function calls to accomplish the task. Currently,
you are generating basic atom tasks. Given a general life

14

Published as a conference paper at ICLR 2025

scenario as the context, please generate a basic atom task
that can be accomplished in one step.

Requirements of the task:
1. The task should be a reasonable real life task based on the

given scenario, and can be accomplished in one step.
2. If you mention some information, criteria or constraints in

the task, please give the details of these information,
criteria or constraints. Do not assume the model has access
to your personal information or prior knowledge, and it does
not have chance to ask you for clarification.

3. Please give enough details and make the task description as
specific as possible, so the model can make deterministic
function calls with deterministic arguments. Do not include
any ambiguous or vague information.

4. Do not mention specific tools or functions in the task
description, and do not propose solutions, hints, or project
outcomes.

5. Limit the task description to 30 words, and avoid using
adjectives and ambiguous words.

Given Scenario:
{scenario}

Please give your response in one line directly, without any
extra notation or format:

A.3 COMPOSITIONAL TASK CONSTRUCTION

Following two prompts are used for constructing compositional tasks from atomic tasks, including
sequential composition and parallel-then-sequential composition strategies.

Prompt for Sequential Composition

You are training a model that can take a user’s task description
or query, and available functions as input, and generate a

sequence of function calls to accomplish the task. Currently,
you are generating complex tasks for model training. Given a
task, you need to add a subsequent task for this given task

to make a more complex task.

The requirements for the subsequent task are as follows:
1. The subsequent task should use the output of the given task

as input.
2. The subsequent can only be conducted after the given task has

been completed.
3. The subsequent task and the given task can form a new

compositional task, and composing them can make a more
complex multi-step task.

Examples:
Given Task: Give me a list of all the pets.
Subsequent Task: What is the most common kind of pet in the

list?
Composition Task: Check the most common kind of pet in the

list of all the pets.

15

Published as a conference paper at ICLR 2025

Given Task: Who is author of the book "The Great Gatsby"?
Subsequent Task: When was the author of this book born?
Composition Task: When was the author of the book "The Great

Gatsby" born.

Given Task: Give me the flight schedule from London to
Edinburgh today.

Subsequent Task: Which fight has the shortest duration?
Composition Task: Give me the flight from London to

Edinburgh with the shortest duration according to the flight
schedule today.

Given Task: Retrieve the headlines of the news today from
BBC.

Subsequent Task: What is the sentiment of the news
respectively?

Composition Task: What is the sentiment of each headline in
today’s news from BBC?

Given Task: Which team won the World Cup in 2018?
Subsequent Task: What is the team’s captain?
Composition Task: Who is the captain of the team that won

the World Cup in 2018.

Here is the given task, please give your response following
the above format:

Given Task: {task}

Prompt for Parallel-then-Sequential Composition

You are training a model that can take a user’s task description
or query, and available functions as input, and generate a

sequence of function calls to accomplish the task. Currently,
you are generating complex tasks for model training. Given a
task, you need to add a paralle task and a subsequent task

for this given task to make a more complex task.

The requirements for the parallel task are as follows:
1. The parallel task should be related to the given task, and

the input should independent of the output of the given task.
2. The parallel task can conduct at the same time as the given

task, and they can be independent of each other.
3. The output of the given task and the parallel task can be

used together to conduct a subsequent task.

The requierments for the subsequent task are as follows:
1. The subsequent task should use the output of the given task

and generate parallel task as input.
2. The subsequent can only be conducted after the given task and

the parallel task have been completed.
3. The subsequent task, the given task and the parallel task can

form a new compositional task, and composing them can make a
more complex multi-step task.

Examples:
Given Task: Give me a list of all the pets.

16

Published as a conference paper at ICLR 2025

Parallel Task: Find available pet food currently in the
store.

Subsequent Task: Check if the pet food is suitable for the
pets in the list.

Composition Task: Check if the pet food is suitable for the
pets in the list of all the pets.

Given Task: When was the author of the book "The Great
Gatsby" born.

Parallel Task: Find the publication date of the book "The
Great Gatsby".

Subsequent Task: When the book was published, how long had
it been since the author was born?

Composition Task: How old was the author of the book "The
Great Gatsby" when the book was published?

Given Task: Give me the flight schedule from London to
Edinburgh today.

Parallel Task: Find the every hour weather forecast in
Edinburgh today.

Subsequent Task: What is the weather condition when the
first flight arrives?

Composition Task: I am in London, and I want to know the
weather condition when the first flight arrives in Edinburgh
today.

Given Task: What is the sentiment of each headline in today’
s news from BBC?

Parallel Task: Find the sentiment of each headline in today’
s news from CNN.

Subsequent Task: Which news source has more positive news
today?

Composition Task: Compare the sentiment of each headline in
today’s news from BBC and CNN, and check which news source
has more positive news.

Given Task: Who is the captain of the team that won the
World Cup in 2018?

Parallel Task: Who is the coach of the team that won the
World Cup in 2018?

Subsequent Task: Are the captain and the coach from the same
country?

Composition Task: Check if the captain and the coach of the
team that won the World Cup in 2018 are from the same country
.

Here is the given task, please give your response following
the above format:

Given Task: {task}

The following is the prompt for filtering compositional tasks, and the key idea is to verify the con-
sistency between a compositional task and its atomic sub-tasks.

Prompt for Filtering Compositional Tasks

You are an expert in task decomposition. Currently, you are
given a compositional task and its potential task breakdown.

17

Published as a conference paper at ICLR 2025

Please check if the sub-tasks can be used to complete the
compositional task.

Compositional task:
{task}

Potential task breakdown:
{sub_tasks}

Please check if the sub-tasks can be used to complete the
compositional task. You should first give your analysis and
thinking, and finally give your conclusion (yes or no)
enclosed in <ans>, for example, <ans>yes</ans> or <ans>no</
ans>:

A.4 FUNCTION GENERATION

Prompt for Function Generation

You are training a model that can take a user’s task description
or query, and available functions as input, and generate a

sequence of function calls to accomplish the task. Currently,
you are generating the training data for this model.

Given a compositional task and its task breakdown, please
generate corresponding aviliable functions that can be used
to accomplish each sub-task, and finally the compositional
task can be accomplished by calling these functions
sequentially.

Requirements for the functions:
1. The functions must possess a succinct, comprehensible name

and description.
2. The functions should not tailored for a current task, are to

be used for other future tasks as well, hence the design of
APIs should be sufficiently generalized.

3. Avoid the recurrence of the task or its components in the
function description and name, offering a generic perspective
that can be employed across different contexts.

4. Make every function sufficiently granular and independent,
avoiding the conflation of multiple tasks within a single
function and avert creating monolithic APIs.

5. Consistency in terms of parameters and returns from each
function is critical. For instance, if two functions are
called sequentially, the output of the first should either
align with or constitute a part of the input for the second
function, irrespective of varying parameter terminologies.

Requirements for the number of functions:
1. One sub-task may need zero, one or multiple functions to

complete it.
2. If a sub-task is about logic, comparision, set operation or

calculation, which can be solved by large language models,
then no function is needed for this sub-task, just leave the
func_list of this sub-task empty.

Compositional task:

18

Published as a conference paper at ICLR 2025

{task}

Task breakdown:
{sub_task}

Response format:
‘‘‘json
[
{

"sub_task": "a sub task from the task breakdown",
"func_list": [

{
"name": "<function name>",
"description": "<function usage description>",
"parameters": {

"<param1>": {
"type": "<can be string, number, boolean,

object, array, enum and anyOf>",
"description": "<param1 description>",
... <more keys if needed>

},
... <more parameters if needed>

},
"required": "<array of required parameters, maybe

not all parameters above are required>"
"responses": {

"<res1>" {
"type": "<value1 type>",
"description": "<value1 description>"

},
"<res2>": {

"type": "<value2 type>",
"description": "<value2 description>"

}
}

},
{
... <more functions if needed>
}

]
}
... <more sub tasks and corresponding functions if needed>
]
‘‘‘

Please respond following the format above:

A.5 MULTI-AGENT

System Prompt for User Agent

Assume that you are a human interacting with an AI assistant.
You need to engage in a meaningful conversation while always
remembering to demonstrate human-like behaviour. Avoid
inquiring if the AI assistant requires assistance, as this
contradicts your human role. Your main objective is to
sustain a conversation as a typical user would.

19

Published as a conference paper at ICLR 2025

Currently, your goal is to complete a predefined task, and you
are seeking the AI assistant for this purpose.

Task
{task}

During this conversation, you should take on an active role and
explore the AI assistant’s capability to solve problems \

within the **Task** using a series of function (tool) calls. You
should adhere to the following guidelines:

1. Your task involves a complex task requiring multiple steps to
complete. In your initial question to the AI assistant, you

should provide a detailed explanation of the task, including
necessary information (such as potential data) that might be
needed to solve the problem. However, you should withhold
specific solution steps (e.g., avoid sequential terms like "
firstly," "secondly") and not dictate which functions (tools)
the AI should use - that is for the AI to determine.

2. Remember, during this multi-turn dialogue, you are portraying
the role of a human user. Your questions and responses

should reflect this human aspect. All your outputs should
enclose within "<human>" tag, for example, "<human> ... </
human>".

System Prompt for Assistant Agent

You are simulating the role of an expert in using functions (i.e
., tools) to solve users’ tasks. You already possess
knowledge on how to decompose the task into subtasks and
understand which tools to use for their resolution.

Subtasks
{sub_task}

Available Functions for Subtasks
{subtask_func}

Please use the tools provided above to answer the question posed
by "<human>". You must try as much as possible to use these

tools, instead of directly answering the question using your
prior knowledge.

Your response must obey the following format:
Observation: Carefully observe the user "<human>"’s question as

well as the output of the function call (often enclosed
within the "<func_return>" tag). Be sure to check for any
errors in previous outputs, as they may not always be
accurate. Enclose your observation within the "<observation>"
tag.

Thought: After observing and combining the previously listed
steps, give detailed and clear thoughts, reasonings, or
reflections, and according to the plan decide the next step.
Note: When you believe the task to be complete, you may use ’
final_answer’ to provide a detailed summary of the results to

20

Published as a conference paper at ICLR 2025

give to the user. Enclose your thoughts within the "<thought
>" tag.

Function Call: Name and arguments of the function call. The
function name must be same as its name in above function list
, and the arguments must obey the format required by the
function. Enclose the function call within the "<func_call>"
tag. If possible, you can call multiple functions in parallel
, be sure the functions called parallelly are independent of
each other.

Example 1 (regular function call):
<observation> User has provided two numbers - 15 and 25. </

observation>
<thought> Based on user’s request, we need to find the greatest

common divisor of these two numbers. We can use the function
’find_greatest_common_divisor’ to solve this problem. </
thought>

<func_call>[
{

"name": "find_greatest_common_divisor",
"arguments": {"num1": 15, "num2": 25}

}
]</func_call>

Example 2 (parallel function call):
<observation> User wants to know the weather in two cities - New

York and London. </observation>
<thought> We can use the function ’get_weather’ to find the

weather in New York and London. And the call to this function
can be done in parallel. </thought>

<func_call>[
{

"name": "get_weather",
"arguments": {"city": "New York"}

},
{

"name": "get_weather",
"arguments": {"city": "London"}

}
]</func_call>

Example 3 (call final_answer):
<observation> find_greatest_common_divisor returns the result

"5". </observation>
<thought> The result returned by the function call, along with

the information collected previously, is sufficient to answer
the user’s question, therefore we now use ’final_answer’ to

provide the user with the answer. </thought>
<function_call>[
{

"name": "final_answer",
"arguments": {"final_answer": "5"}

}
]</function_call>

Furthermore, when the user "<human>" raises a question, you need
to provide a structured plan to solve the question (’

structured’ means that the plan needs to include steps in

21

Published as a conference paper at ICLR 2025

sequential order, such as Step 1, 2, 3, etc., or logic
processes that include loops and decision branches). The
contents of the plan can be placed in the first round
response’s <thought>, and try as much as possible to follow
this plan in every subsequent function call. However, as
necessary, you may also modify the relevant plans according
to the result of the function call.

System Prompt for Tool Agent

You are simulating a computer system with powerful computational
capabilities and a complete setup. You possess ample

external prior knowledge, allowing you to run any arbitrary
function and execute calls to produce results, and you never
make errors. Give a following function, you should simulate
the operation of a computer system program as closely as
possible.

Function
{function}

Given a function call, you should execute the function and
provide the results in JSON format. Your response should
directly provide the results in JSON format, should not
contain irrelevant information, and must enclose within "<
func_return>" tag.

Example of function return:
<func_call>
{

"name": "get_weather",
"arguments": {"city": "New York"}

}

<func_return>
{

"temperature": "25C",
}
</func_return>

B DATA COLLECTION

B.1 EXAMPLE OF COLLECTED DATA

Collected Data Example 1

System:
You are an expert in using functions (i.e., tools) to solve

users’ tasks. The functions available for you to use are
detailed below:

<tool>[
{

"name": "get_current_timestamp",
"description": "Fetches the current timestamp from the

device.",
"parameters": {},

22

Published as a conference paper at ICLR 2025

"required": []
},
{

"name": "get_humidity_reading",
"description": "Fetches the current humidity reading

from a device.",
"parameters": {

"device_id": {
"type": "string",
"description": "The ID of the device."

}
},
"required": [

"device_id"
]

},
{

"name": "log_data_to_database",
"description": "Logs data to a server’s database.",
"parameters": {

"server_id": {
"type": "string",
"description": "The ID of the server."

},
"data": {

"type": "object",
"description": "The data to be logged.",
"properties": {

"message": {
"type": "string",
"description": "The status update

message."
},
"timestamp": {

"type": "string",
"description": "The current timestamp."

},
"temperature": {

"type": "number",
"description": "The current temperature

reading."
},
"humidity": {

"type": "number",
"description": "The current humidity

reading."
}

},
"required": [

"message",
"timestamp",
"temperature",
"humidity"

]
}

},
"required": [

"server_id",

23

Published as a conference paper at ICLR 2025

"data"
]

},
{

"name": "send_message_to_server",
"description": "Sends a message from a device to a

server.",
"parameters": {

"device_id": {
"type": "string",
"description": "The ID of the device sending the

message."
},
"server_id": {

"type": "string",
"description": "The ID of the server receiving

the message."
},
"message": {

"type": "string",
"description": "The message to be sent."

}
},
"required": [

"device_id",
"server_id",
"message"

]
},
{

"name": "get_temperature_reading",
"description": "Fetches the current temperature reading

from a device.",
"parameters": {

"device_id": {
"type": "string",
"description": "The ID of the device."

}
},
"required": [

"device_id"
]

}
]</tool>

In your response, you need first provide your observation and
thought on the user’s task, the current situation, and what
you plan to do next. After your thinking, you can do
following two things:

Function Call: For fountion calling, you need to provide the
function name and its arguments. The function name must be

same as its name in above function list, and the arguments
must obey the format required by the function. Enclose the
function call within the tag "<call></call>". If possible,
you can call multiple functions in parallel, be sure the
functions called parallelly are independent of each other.

Final Answer: When you believe the task is complete, you may
use ’final_answer’ to provide a detailed summary of the

24

Published as a conference paper at ICLR 2025

results to give to the user, enclose the final answer within
the tag "<final></final>".

User:
Hi, I need to send a status update from DeviceA to ServerB. This

update should include the current timestamp. Additionally, I
want to log this status update along with the current

temperature and humidity readings in the database on ServerB.
Could you help me with this?

Assistant:
The user wants to send a status update from DeviceA to ServerB

including the current timestamp, and then log this status
along with the current temperature and humidity readings on
ServerB’s database. To achieve this task, we will follow
these steps:

1. Send a status update message from DeviceA to ServerB
including the device’s current timestamp.
- Fetch the current timestamp from DeviceA.
- Send the status update message with the timestamp to

ServerB.
2. Get the current temperature and humidity readings from

DeviceA.
3. Log the status update message along with the temperature and

humidity readings on ServerB’s database.

We can perform steps 1 and 2 in parallel since they are
independent of each other. Once we have the required data, we
will proceed to step 3.

<call>[
{

"name": "get_current_timestamp",
"arguments": {}

},
{

"name": "get_temperature_reading",
"arguments": {

"device_id": "DeviceA"
}

},
{

"name": "get_humidity_reading",
"arguments": {

"device_id": "DeviceA"
}

}
]</call>

Tool:
[

{
"name": "get_current_timestamp",
"arguments": {},
"results": {

"timestamp": "2023-10-03T14:22:00Z"
}

},
{

25

Published as a conference paper at ICLR 2025

"name": "get_temperature_reading",
"arguments": {

"device_id": "DeviceA"
},
"results": {

"temperature": 22.5
}

},
{

"name": "get_humidity_reading",
"arguments": {

"device_id": "DeviceA"
},
"results": {

"humidity": 45.3
}

}
]

Assistant:
We have successfully fetched the current timestamp, temperature,

and humidity readings from DeviceA. The details are as
follows:

- Timestamp: 2023-10-03T14:22:00Z
- Temperature: 22.5C
- Humidity: 45.3% Now, we need to send a status update message

from DeviceA to ServerB including the timestamp. After that,
we will log the status update along with the temperature and
humidity readings in ServerB’s database.

<call>[
{

"name": "send_message_to_server",
"arguments": {

"device_id": "DeviceA",
"server_id": "ServerB",
"message": "Status update at 2023-10-03T14:22:00Z"

}
}

]</call>

Tool:
[

{
"name": "send_message_to_server",
"arguments": {

"device_id": "DeviceA",
"server_id": "ServerB",
"message": "Status update at 2023-10-03T14:22:00Z"

},
"results": {

"status": "Message delivered successfully"
}

}
]

Assistant:
The status update message was successfully delivered from

DeviceA to ServerB. The message content was: "Status update

26

Published as a conference paper at ICLR 2025

at 2023-10-03T14:22:00Z". Now, we need to log this status
update message along with the temperature and humidity
readings in ServerB’s database. We will use the following
data:

- Message: "Status update at 2023-10-03T14:22:00Z"
- Timestamp: 2023-10-03T14:22:00Z
- Temperature: 22.5C
- Humidity: 45.3%
<call>[

{
"name": "log_data_to_database",
"arguments": {

"server_id": "ServerB",
"data": {

"message": "Status update at 2023-10-03T14:22:00
Z",

"timestamp": "2023-10-03T14:22:00Z",
"temperature": 22.5,
"humidity": 45.3

}
}

}
]</call>

Tool:
[

{
"name": "log_data_to_database",
"arguments": {

"server_id": "ServerB",
"data": {

"message": "Status update at 2023-10-03T14:22:00
Z",

"timestamp": "2023-10-03T14:22:00Z",
"temperature": 22.5,
"humidity": 45.3

}
},
"results": {

"log_status": "Data logged successfully on server
ServerB"

}
}

]

Assistant:
The status update message along with the temperature and

humidity readings was successfully logged in ServerB’s
database. The task has been completed successfully. A status
update message was sent from DeviceA to ServerB including the
current timestamp, and the data was logged on ServerB’s

database along with the current temperature and humidity
readings.

<final>The status update message including the current timestamp
was successfully sent from DeviceA to ServerB, and the data

was logged in ServerB’s database along with the temperature
(22.5C) and humidity (45.3%) readings.</final>

27

Published as a conference paper at ICLR 2025

B.2 PARALLEL FUNCTION CALLING

We use different system prompts to guide the behavior of whether to conduct parallel calling or
not. We demonstrate both the system prompt allowing parallel calling and the one prohibiting it.
The only difference is the instruction at the end of **Function Call**. For enabling parallel
calling, we use: “If possible, you can call multiple functions in parallel. Be sure the functions called
in parallel are independent of each other”. For disabling parallel calling, we use: “You should call
one function at a time and wait for the response before calling the next function”. These instructions
help distinguish between turning parallel calling on or off. {func list} is the placeholder for the
function definition list in JSON format.

To align LLMs with the correct behavior regarding parallel calling, we implement a 50% probability
of turning off parallel calling during trajectory generation for compositional tasks where sub-tasks
can be executed in parallel. Since we generate compositional tasks from the bottom up, we in-
herently know the sub-tasks involved. We fill these trajectories into prompts that prohibit parallel
calling. For the other 50% of compositional tasks, where sub-tasks can be executed in parallel, we
use system prompts that encourage parallel calling. We also configure trajectories conducted by
compositional instructions, where sub-tasks cannot be done in parallel, to use the system prompt
that enables parallel calling with a probability of 50%. Finally, the constructed data with the de-
signed prompts can effectively align LLMs to either conduct parallel calling or not, according to the
corresponding system prompts. In our work, the accuracy of the parallel calling behavior is not the
focus, and we plan to address it in future work.

System Prompt Enabling Parallel Calling

You are an expert in using functions (i.e., tools) to solve
users’ tasks. The functions available for you to use are
detailed below:

<tool>{func_list}</tool>

In your response, you need first provide your observation and
thought on the user’s task, the current situation, and what
you plan to do next. After your thinking, you can do
following three things:

Function Call: For fountion calling, you need to provide the
function name and its arguments. The function name must be

same as its name in above function list, and the arguments
must obey the format required by the function. Enclose the
function call within the tag "<call></call>". If possible,
you can call multiple functions in parallel, be sure the
functions called in parallel are independent of each other.

Final Answer: When you believe the task is complete, you may
use ’final_answer’ to provide a detailed summary of the

results to give to the user, enclose the final answer within
the tag "<final></final>".

System Prompt Disabling Parallel Calling

You are an expert in using functions (i.e., tools) to solve
users’ tasks. The functions available for you to use are
detailed below:

<tool>{func_list}</tool>

In your response, you need first provide your observation and
thought on the user’s task, the current situation, and what
you plan to do next. After your thinking, you can do
following three things:

28

Published as a conference paper at ICLR 2025

Function Call: For fountion calling, you need to provide the
function name and its arguments. The function name must be

same as its name in above function list, and the arguments
must obey the format required by the function. Enclose the
function call within the tag "<call></call>". You should call
one function at a time, and wait for the response before

calling the next function.
Final Answer: When you believe the task is complete, you may

use ’final_answer’ to provide a detailed summary of the
results to give to the user, enclose the final answer within
the tag "<final></final>".

B.3 FUNCTION DISTRIBUTION

We show a sunburst chart of the distribution of generated functions in our proposed
BUTTONInstruct in Figure 4, where the inner circle and outer circle represent the first and sec-
ond words in a function name, respectively. It shows the diversity of our synthesized data, and the
distribution of these functions is also consistent with our daily tasks.

get
calculate

send

se
a
rc
h

m
e
a
s
u
re

fi
n
d

fe
t
c
h

a
d
d

fi
lte
r

check

create

set

extract

select

generate

current

w
ea
th
er

re
c
ip
e

n
u
tr
it
io
n
a
l

a
v
a
il
a
b
le

p
r
o
d
u
c
t

t
o
p

it
e
m

la
t
e
s
t

s
o
il

e
v
e
n
t

in
g
r
e
d
ie
n
t

p
la
n
t

u
s
e
r

lo
c
a
l

b
o
o
k

a
v
e
ra
g
e

n
e
x
t

s
to
re

n
e
a
rb
y

n
e
a
re
s
t

m
a
rk
e
t

total

average
calories
monthly
distance

email

no
tifi
ca
tio
n

re
ci
pe

re
c
ip
e
s

h
o
te
ls

o
n
li
n
e

in
g
re
d
ie
n
t

s
o
il

n
e
a
r
e
s
t

n
e
a
r
b
y

a
v
a
ila
b
le

la
t
e
s
t

p
r
o
d
u
c
t

r
e
c
ip
e

e
v
e
n
t

r
e
c
e
n
t

in
g
r
e
d
ie
n
t
s

e
m
a
il

ite
m

in
g
re
d
ie
n
t

b
y

ite
m
s

re
c
ip
e
s

p
la
n
ts

e
m
a
il

item

availability

event

calendar

email

oven

text

ingredients

product

random

−0.02

0

0.02

0.04

0.06

Freq.

Figure 4: Distribution of the generated functions in BUTTONInstruct.

C EXPERIMENTS

C.1 EVALUATION METRICS

For metric calculation for GTA and Tool-Query, we follow the methodologies outlined in their orig-
inal papers with slight modifications. Specifically, during the end-to-end evaluation mode in GTA,
the MathOCR functionality is implemented using the Mathpix API (https://mathpix.com/). How-
ever, since this API requires a subscription and we needed to conduct numerous pilot experiments
and analyses, we did not evaluate questions on end-to-end mode that would invoke this API. The

29

Published as a conference paper at ICLR 2025

number of test samples excluding these questions is 209. For Tool-Query, we refined the metric
calculation by comparing the final answer with the ground truth. The original implementation was
based on exact match; however, such strategies can overlook many successful answers. For example,
consider the question “Which paper has received more citations: ‘Stability and Risk Bounds of Iter-
ative Hard Thresholding’ or ‘Compressive Wideband Spectrum Sensing and Signal Recovery With
Unknown Multipath Channels’?”, models may finished with “The paper ‘Stability and Risk Bounds
of Iterative Hard Thresholding’ has received more citations (5) compared to ‘Compressive Wide-
band Spectrum Sensing and Signal Recovery With Unknown Multipath Channels’ (2)”. However,
the ground truth answer is labeled as “Stability and Risk Bounds of Iterative Hard Thresholding”,
and exact match strategies may incorrectly label this answer as unsuccessful. Thus, we refined
the metric strategy to check if the final answer is present in the model output. Note that all these
modifications are applied to all models, including baselines, ensuring that the comparison between
baselines and models is fair.

C.2 IMPLEMENTATION

All instruction-tuning training is performed on 4×8 NVIDIA H800 GPUs, using the training frame-
work based on HuggingFace Transformers (Wolf et al., 2019). We use the corresponding instruction
format for Llama and Qwen models. To enhance training efficiency, we pack short instances into
longer ones and apply flash attention. During model training, we optimize the loss only on the re-
sponse content from assistant roles. We use a learning rate of 2e-5 with cosine decay and a batch size
of 64 for all models. For Llama3-8B and Qwen2-7B, we train for five epochs, and for Llama3-70B
and Qwen2-72B, we train for two epochs.

C.3 PROMPTS FOR ABLATION STUDY

Here is the monolithic prompt for the ‘w/o Bottom-Up Setting’ in the ablation study. The place-
holders {scen} represents the given scenario. This prompt is used to generate compositional tasks
directly, without our proposed bottom-up process.

Monolithic Task Construction Prompt for the w/o Bottom-Up Setting

You are training a model that can take a user’s task description
or query, and available functions as input, and generate a

sequence of function calls to accomplish the task. Currently,
you are generating the training data for this model. Given a
general life scenario as the context, please first generate

a task.

Requirements for each task:
1. The task should be accomplishable by calling multiple

functions with multiple and no more than 7 steps (i.e., turns
).

2. If you mention some information, criteria or constraints in
the task, please give the details of these information,
criteria or constraints. Do not assume the model has access
to your personal information or prior knowledge, and it does
not have chance to ask you for clarification.

3, Please give enough details and make the task description as
specific as possible, so the model can make deterministic
function calls with deterministic arguments. Do not include
any ambiguous or vague information.

4. Do not mention specific tools or functions in the task
description, and do not propose solutions, hints, or project
outcomes.

5. Limit the task description to 30 words, and avoid using
adjectives and ambiguous words.

30

Published as a conference paper at ICLR 2025

Given scenario:
{scen}

Please respond a task directly following the requirements
above in one line:

Here are the monolithic prompts for the ’w/o Top-Down Setting’ in the ablation study. The two
prompts are used for tasks with or without parallel function calling, respectively. The placeholders
{task}, {sub task}, and {subtask func} represent a specific generated task, its sub-tasks,
and the corresponding generated functions for the sub-tasks.

Monolithic Trajectory Generation Prompt for the w/o Top-Down Setting (Non-parallel)

You are labeling data for training an AI assistant that can
solve a complex compositional task by using tools in a multi-
turn manner. Given a complex compositional task, its
potential subtasks and the available tools (i.e., functions)
to solve these subtasks, you should generate synthetic data
about the trajectory of solving the task by using tools in a
multi-turn manner.

Task
{task}

Subtasks
{sub_task}

Available Functions for Sub-tasks
{subtask_func}

During trajectory generation, you should simulate three roles:
1. human: ask questions to the assistant
2. assistant: answer the questions of human by leveraging the

tools
3. tool: execute the functions and return the results to the

assistant

The requirements for the human are:
The human need give the initial question to the AI assistant

based on the given task, and should provide a detailed
explanation of the task, including necessary information (
such as potential data) that might be needed to solve the
problem. However, you should withhold specific solution steps
(e.g., avoid sequential terms like "firstly," "secondly")

and not dictate which functions (tools) the AI should use -
that is for the AI to determine.

The requirements for the assistant are:
1. The assistant should use the tools provided above to answer

the question posed by human. It must try as much as possible
to use these tools, instead of directly answering the
question using your prior knowledge.

2. The format must obey the following format:
a) Observation. Carefully observe the human’s question as

well as the output of the tool call. Be sure to check for
any errors in previous outputs, as they may not always

be accurate. Enclose your observation within the "<
observation>" tag.

31

Published as a conference paper at ICLR 2025

b) Thought. Give detailed and clear thoughts, reasoning, or
reflections, and according to the plan decide the next
step. Enclose your thoughts within the "<thought>" tag.

c) Function call. Give the name and arguments of the
function call. The function name must be same as its name
in above function list, and the arguments must obey the

format required by the function. The function call should
enclosed within the "<func_call>" tag. Note: When you

believe the task to be complete, you may use ’
final_answer’ to provide a detailed summary of the
results to give to the user.

The requirements for the tool are:
1. You should simulate the operation of a computer system

program as closely as possible. Your response should directly
provide the results in JSON format, should not contain

irrelevant information.
2. You should also provide the response in the format of JSON

including name, arguments and results.

Example:
<role>Human</role>
Hi, I want to know when was the author of "The Great Gatsby" was

born.
<role>Assistant</role>
<observation>The user has provided a book name "The Great Gatsby

" and wants to know the author’s birthdate.</observation>
<thought>We can use the function ’get_book_author’ to find the

author of the book and the ’get_author_info’ to find the
birthdate of the author.</thought>

<func_call>[
{

"name": "get_book_author",
"arguments": {"book_name": "The Great Gatsby"}

}
]</func_call>
<role>Tool</role>
[{

"name": "get_book_author",
"arguments": {"book_name": "The Great Gatsby"},
"results": {"name": "F. Scott Fitzgerald"}

}]
<role>Assistant</role>
<observation>The function ’get_book_author’ returns the author

of the book "The Great Gatsby" is F. Scott Fitzgerald.</
observation>

<thought>Now we can use the function ’get_author_info’ to find
the birthdate of the author.</thought>

<func_call>[
{

"name": "get_author_info",
"arguments": {{"name": "F. Scott Fitzgerald"}}

}
]</func_call>
<role>Tool</role>
[{

"name": "get_author_info",
"arguments": {"name": "F. Scott Fitzgerald"}

32

Published as a conference paper at ICLR 2025

"results": {"birthdate": "September 24, 1896"}
}]
<role>Assistant</role>
<observation>The function ’get_author_info’ returns the

birthdate of the author "F. Scott Fitzgerald" is September
24, 1896.</observation>

<thought>The result returned by the function call, along with
the information collected previously, is sufficient to answer
the user’s question, therefore we now use ’final_answer’ to

provide the user with the answer.</thought>
<func_call>[
{

"name": "final_answer",
"arguments": {"final_answer": "F. Scott Fitzgerald was born

on September 24, 1896."}
}
]</func_call>

You need only generate the trajectory in the above format,
without any other explanation or comments.

Monolithic Trajectory Generation Prompt for the w/o Top-Down Setting (Parallel)

You are labeling data for training an AI assistant that can
solve a complex compositional task by using tools in a multi-
turn manner. Given a complex compositional task, its
potential subtasks and the available tools (i.e., functions)
to solve these subtasks, you should generate synthetic data
about the trajectory of solving the task by using tools in a
multi-turn manner.

Task
{task}

Subtasks
{sub_task}

Available Functions for Subtasks
{subtask_func}

During trajectory generation, you should simulate three roles:
1. human: ask questions to the assistant
2. assistant: answer the questions of human by leveraging the

tools
3. tool: execute the functions and return the results to the

assistant

The requirements for the human are:
The human need give the initial question to the AI assistant

based on the given task, and should provide a detailed
explanation of the task, including necessary information (
such as potential data) that might be needed to solve the
problem. However, you should withhold specific solution steps
(e.g., avoid sequential terms like "firstly," "secondly")

and not dictate which functions (tools) the AI should use -
that is for the AI to determine.

33

Published as a conference paper at ICLR 2025

The requirements for the assistant are:
1. The assistant should use the tools provided above to answer

the question posed by human. It must try as much as possible
to use these tools, instead of directly answering the
question using your prior knowledge.

2. The format must obey the following format:
- a) Observation. Carefully observe the human’s question as

well as the output of the tool call. Be sure to check for
any errors in previous outputs, as they may not always

be accurate. Enclose your observation within the "<
observation>" tag.

- b) Thought. Give detailed and clear thoughts, reasonings,
or reflections, and according to the plan decide the next
step. Enclose your thoughts within the "<thought>" tag.

- c) Function call. Give the name and arguments of the
function call. The function name must be same as its name
in above function list, and the arguments must obey the

format required by the function. The function call should
enclosed within the "<func_call>" tag. If possible, you

can call multiple functions in parallel, be sure the
functions called parallelly are independent of each other
. Note: When you believe the task to be complete, you may
use ’final_answer’ to provide a detailed summary of the

results to give to the user.

The requirements for the tool are:
1. You should simulate the operation of a computer system

program as closely as possible. Your response should directly
provide the results in JSON format, should not contain

irrelevant information.
2. You should also provide the response in the format of JSON

including name, arguments and results.

Example 1:
<role>Human</role>
Hi, I want to know when was the author of "The Great Gatsby" was

born.
<role>Assistant</role>
<observation>The user has provided a book name "The Great Gatsby

" and wants to know the author’s birthdate.</observation>
<thought>We can use the function ’get_book_author’ to find the

author of the book and the ’get_author_info’ to find the
birthdate of the author.</thought>

<func_call>[
{

"name": "get_book_author",
"arguments": {"book_name": "The Great Gatsby"}

}
]</func_call>
<role>Tool</role>
[{

"name": "get_book_author",
"arguments": {"book_name": "The Great Gatsby"},
"results": {"name": "F. Scott Fitzgerald"}

}]
<role>Assistant</role>

34

Published as a conference paper at ICLR 2025

<observation>The function ’get_book_author’ returns the author
of the book "The Great Gatsby" is F. Scott Fitzgerald.</
observation>

<thought>Now we can use the function ’get_author_info’ to find
the birthdate of the author.</thought>

<func_call>[
{

"name": "get_author_info",
"arguments": {"name": "F. Scott Fitzgerald"}

}
]</func_call>
<role>Tool</role>
[{

"name": "get_author_info",
"arguments": {"name": "F. Scott Fitzgerald"}
"results": {"birthdate": "September 24, 1896"}

}]
<role>Assistant</role>
<observation>The function ’get_author_info’ returns the

birthdate of the author "F. Scott Fitzgerald" is September
24, 1896.</observation>

<thought>The result returned by the function call, along with
the information collected previously, \

is sufficient to answer the user’s question, therefore we now
use ’final_answer’ to provide the user with the answer.</
thought>

<func_call>[
{

"name": "final_answer",
"arguments": {{"final_answer": "F. Scott Fitzgerald was born

on September 24, 1896."}}
}
]</func_call>

Example 2:
<role>Human</role>
What is the age when the author of "The Great Gatsby" published

the book.
<role>Assistant</role>
<observation>The user mention the book "The Great Gatsby" and

wants to know the how old the author was when he published
the book.</observation>

<thought>We can use the function ’get_book_author’ to find the
author of the book and the ’get_book_publish_date’ to find
the publish date of the book, such two function can be used
in parallel.</thought>

<func_call>[
{

"name": "get_book_author",
"arguments": {"book_name": "The Great Gatsby"}

},
{

"name": "get_book_publish_date",
"arguments": {"book_name": "The Great Gatsby"}

}
]</func_call>
<role>Tool</role>
[{

35

Published as a conference paper at ICLR 2025

"name": "get_book_author",
"arguments": {"book_name": "The Great Gatsby"},
"results": {"name": "F. Scott Fitzgerald"}

},
{

"name": "get_book_publish_date",
"arguments": {"book_name": "The Great Gatsby"},
"results": {"publish_date": "April 10, 1925"}

}]
<role>Assistant</role>
<observation>The function ’get_book_author’ returns the author

of the book "The Great Gatsby" is F. Scott Fitzgerald, and
the function ’get_book_publish_date’ returns the publish date
of the book "The Great Gatsby" is April 10, 1925.</

observation>
<thought>To determine the age of the author when the book was

published, we need to calculate the difference between the
publish date and the author’s birthdate, so we need to use
the function ’get_author_info’ to get the birthdate of the
author.</thought>

<func_call>[
{

"name": "get_author_info",
"arguments": {"name": "F. Scott Fitzgerald"}

}
]</func_call>
<role>Tool</role>
[{

"name": "get_author_info",
"arguments": {"name": "F. Scott Fitzgerald"},
"results": {"birthdate": "September 24, 1896"}

}]
<role>Assistant</role>
<observation>The function ’get_author_info’ returns the

birthdate of the author "F. Scott Fitzgerald" is September
24, 1896.</observation>

<thought>Previously, we have got the publish date of the book "
The Great Gatsby" is April 10, 1925, so we can infer that the
author was 28 years old when he published the book.</thought

>
<func_call>[
{

"name": "final_answer",
"arguments": {"final_answer": "F. Scott Fitzgerald was 28

years old when he published "The Great Gatsby"."}
}
]</func_call>

You need only generate the trajectory in the above format,
without any other explanation or comments.

C.4 CASES ON PARALLEL CALLING

We present two cases of conducting Llama3-70B-BUTTON on Tool-Query. In both cases, the func-
tions authorEdgeCheck and paperNodeCheck are called in parallel where appropriate. This
parallel calling effectively reduces the number of turns during the multi-turn function calling pro-
cedure. For example, in case 2, with parallel calling, the language model only requires 6 steps

36

Published as a conference paper at ICLR 2025

(including providing the final answer) to complete the task. Without parallel calling, 2 of these steps
would expand to 4 steps each, resulting in a total of 12 steps.

Parallel Calling Case 1

User: Who has the most collaborations with Lazhar Labiod in the
DBLP citation network?

Assistant: To answer this question, we need to follow these
steps:

1. Load the AuthorNet.
2. List the first-order neighbors (collaborators) of Lazhar

Labiod.
3. Determine which collaborator has the most collaborations with

Lazhar Labiod.

Let’s start by loading the AuthorNet.
<call>[

{
"name": "loadAuthorNet",
"arguments": {}

}
]</call>

Tool: AuthorNet is loaded.

Assistant: AuthorNet is loaded successfully. Next, we need to
list the first-order neighbors (collaborators) of Lazhar
Labiod.

<call>[
{

"name": "neighbourCheck",
"arguments": {

"graph": "AuthorNet",
"node": "Lazhar Labiod"

}
}

]</call>

Tool: [’Mohamed Nadif’, ’Chakib Fettal’]

Assistant: The collaborators of Lazhar Labiod are Mohamed Nadif
and Chakib Fettal. Now, we need to determine which of these
collaborators has the most collaborations with Lazhar Labiod.
We can do this by checking the number of co-authored papers

between Lazhar Labiod and each of his collaborators.
<call>[

{
"name": "authorEdgeCheck",
"arguments": {

"node1": "Lazhar Labiod",
"node2": "Mohamed Nadif"

}
},
{

"name": "authorEdgeCheck",
"arguments": {

"node1": "Lazhar Labiod",

37

Published as a conference paper at ICLR 2025

"node2": "Chakib Fettal"
}

}
]</call>

Tool: [{’collaborative_papers’: [’TensorClus: A python library
for tensor (Co)-clustering’, ’Efficient Graph Convolution for
Joint Node Representation Learning and Clustering’]}", "{’

collaborative_papers’: [’Efficient Graph Convolution for
Joint Node Representation Learning and Clustering’]}]

Assistant: Lazhar Labiod has co-authored 2 papers with Mohamed
Nadif and 1 paper with Chakib Fettal. Based on the number of
co-authored papers, Mohamed Nadif has the most collaborations
with Lazhar Labiod. Now, I will provide the final answer to

the user.
<final>Mohamed Nadif has the most collaborations with Lazhar

Labiod, with a total of 2 co-authored papers.</final>

Parallel Calling Case 2

User: How many citations do papers co-authored by Florian
Kirchbuchner and Fadi Boutros have in the DBLP citation
network? Please give me a numerical value as an answer.

Assistant: To answer this question, we need to follow these
steps:

1. Load the AuthorNet.
2. Check the collaboration relationship between Florian

Kirchbuchner and Fadi Boutros.
3. Count the total number of citations of the papers they co-

authored.

Let’s start by loading the AuthorNet.
<call>[

{
"name": "loadAuthorNet",
"arguments": {}

}
]</call>

Tool: AuthorNet is loaded.

Assistant: AuthorNet is loaded successfully. Next, we need to
check the collaboration relationship between Florian
Kirchbuchner and Fadi Boutros to get the list of papers they
co-authored.

<call>[
{

"name": "authorEdgeCheck",
"arguments": {

"node1": "Florian Kirchbuchner",
"node2": "Fadi Boutros"

}
}

]</call>

38

Published as a conference paper at ICLR 2025

Tool: {’collaborative_papers’: [’PocketNet: Extreme Lightweight
Face Recognition Network Using Neural Architecture Search and
Multistep Knowledge Distillation’, ’ElasticFace: Elastic

Margin Loss for Deep Face Recognition.’, ’Template-Driven
Knowledge Distillation for Compact and Accurate Periocular
Biometrics Deep-Learning Models’, ’Self-restrained triplet
loss for accurate masked face recognition’]}

Assistant: The papers co-authored by Florian Kirchbuchner and
Fadi Boutros are:

1. PocketNet: Extreme Lightweight Face Recognition Network Using
Neural Architecture Search and Multistep Knowledge

Distillation
2. ElasticFace: Elastic Margin Loss for Deep Face Recognition.
3. Template-Driven Knowledge Distillation for Compact and

Accurate Periocular Biometrics Deep-Learning Models
4. Self-restrained triplet loss for accurate masked face

recognition

We need to find the total number of citations for these papers.
To find the total number of citations for these papers, we
will check the citation count for each paper individually and
then sum them up.

<call>[
{

"name": "paperNodeCheck",
"arguments": {

"node": "PocketNet: Extreme Lightweight Face
Recognition Network Using Neural Architecture
Search and Multistep Knowledge Distillation"

}
},
{

"name": "paperNodeCheck",
"arguments": {

"node": "ElasticFace: Elastic Margin Loss for Deep
Face Recognition."

}
},
{

"name": "paperNodeCheck",
"arguments": {

"node": "Template-Driven Knowledge Distillation for
Compact and Accurate Periocular Biometrics Deep-
Learning Models"

}
},
{

"name": "paperNodeCheck",
"arguments": {

"node": "Self-restrained triplet loss for accurate
masked face recognition"

}
}

]</call>

39

Published as a conference paper at ICLR 2025

Tool: [’Please load the PaperNet first.’, ’Please load the
PaperNet first.’, ’Please load the PaperNet first.’, ’Please
load the PaperNet first.’]

Assistant: The system requires PaperNet to be loaded before
checking the details of individual papers. We need to load
PaperNet first before proceeding to check the citation counts
of the papers.

<call>[
{

"name": "loadPaperNet",
"arguments": {}

}
]</call>

Tool: PaperNet is loaded.

Assistant: PaperNet is loaded successfully. Now that PaperNet is
loaded, we can proceed to check the citation counts for each
of the papers co-authored by Florian Kirchbuchner and Fadi

Boutros.
<call>[

{
"name": "paperNodeCheck",
"arguments": {

"node": "PocketNet: Extreme Lightweight Face
Recognition Network Using Neural Architecture
Search and Multistep Knowledge Distillation"

}
},
{

"name": "paperNodeCheck",
"arguments": {

"node": "ElasticFace: Elastic Margin Loss for Deep
Face Recognition."

}
},
{

"name": "paperNodeCheck",
"arguments": {

"node": "Template-Driven Knowledge Distillation for
Compact and Accurate Periocular Biometrics Deep-
Learning Models"

}
},
{

"name": "paperNodeCheck",
"arguments": {

"node": "Self-restrained triplet loss for accurate
masked face recognition"

}
}

]</call>

Tool: {’authors’: [’Fadi Boutros’, ’Naser Damer’, ’Florian
Kirchbuchner’, ’Arjan Kuijper’], ’year’: 2022, ’venue’: ’IEEE
ACCESS’, ’n_citation’: 0, ’keywords’: [’Computer

architecture’, ’Microprocessors’, ’Training’, ’Task analysis

40

Published as a conference paper at ICLR 2025

’, ’Network architecture’, ’Computational modeling’, ’
Architecture’, ’Computer vision’, ’deep learning’, ’face
recognition’], ’doc_type’: ’Journal’}", "{’authors’: [’Fadi
Boutros’, ’Naser Damer’, ’Florian Kirchbuchner’, ’Arjan
Kuijper’], ’year’: 2022, ’venue’: ’IEEE Conference on
Computer Vision and Pattern Recognition’, ’n_citation’: 43, ’
keywords’: [], ’doc_type’: ’Conference’}", "{’authors’: [’
Fadi Boutros’, ’Naser Damer’, ’Florian Kirchbuchner’, ’Arjan
Kuijper’], ’year’: 2022, ’venue’: ’SENSORS’, ’n_citation’: 0,
’keywords’: [’biometrics’, ’knowledge distillation’, ’

periocular verification’], ’doc_type’: ’Journal’}", "{’
authors’: [’Fadi Boutros’, ’Naser Damer’, ’Florian
Kirchbuchner’, ’Arjan Kuijper’], ’year’: 2022, ’venue’: ’
Pattern Recognition’, ’n_citation’: 8, ’keywords’: [’COVID
-19’, ’Biometric recognition’, ’Identity verification’, ’
Masked face recognition’], ’doc_type’: ’Journal’}

Assistant: The citation counts for the papers co-authored by
Florian Kirchbuchner and Fadi Boutros are as follows:

1. PocketNet: Extreme Lightweight Face Recognition Network Using
Neural Architecture Search and Multistep Knowledge

Distillation - 0 citations
2. ElasticFace: Elastic Margin Loss for Deep Face Recognition. -

43 citations
3. Template-Driven Knowledge Distillation for Compact and

Accurate Periocular Biometrics Deep-Learning Models - 0
citations

4. Self-restrained triplet loss for accurate masked face
recognition - 8 citations

The total number of citations is the sum of these counts. The
total number of citations for the papers co-authored by
Florian Kirchbuchner and Fadi Boutros is \(0 + 43 + 0 + 8 =
51\). I will now provide the final answer.

<final>The total number of citations for the papers co-authored
by Florian Kirchbuchner and Fadi Boutros is 51.</final>

41

	Introduction
	Method
	Bottom-Up Instruction Construction
	Top-Down Trajectory Generation
	Dataset Collection via BUTTON

	Experiments
	Experiments Setup
	Main Results
	Further Analysis

	Related Work
	Conclusion
	Prompt Details
	Scenario Collection
	Atomic Task Construction
	Compositional Task Construction
	Function Generation
	Multi-Agent

	Data Collection
	Example of Collected Data
	Parallel Function Calling
	Function Distribution

	Experiments
	Evaluation Metrics
	Implementation
	Prompts for Ablation Study
	Cases on Parallel Calling

