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ABSTRACT

Large language models (LLMs) have significantly advanced natural language un-
derstanding and demonstrated strong problem-solving abilities. Despite these suc-
cesses, most LLMs still struggle with solving mathematical problems due to the
intricate reasoning required. This paper investigates the mathematical problem-
solving capabilities of LLMs using the newly developed “MathOdyssey” dataset.
The dataset includes diverse mathematical problems at high school and university
levels, created by experts from notable institutions to rigorously test LLMs in ad-
vanced problem-solving scenarios and cover a wider range of subject areas. By
providing the MathOdyssey dataset as a resource to the AI community, we aim
to contribute to the understanding and improvement of AI capabilities in complex
mathematical problem-solving. We conduct benchmarking on open-source mod-
els, such as Llama-3, and closed-source models from the GPT series and Gemini
models. Our results indicate that while LLMs perform well on routine and mod-
erately difficult tasks, they face significant challenges with Olympiad-level prob-
lems and complex university-level questions. Our analysis shows a narrowing
performance gap between open-source and closed-source models, yet substantial
challenges remain, particularly with the most demanding problems. This study
highlights the ongoing need for research to enhance the mathematical reasoning
of LLMs. The dataset, results, and evaluation code are publicly available 1.

1 INTRODUCTION

Large language models (LLMs) have demonstrated exceptional proficiency in mastering human
language and handling mathematical problems, including typical routine math problems (OpenAI,
2023; Touvron et al., 2023; Reid et al., 2024). In recent years, several benchmarks related to math-
ematics have been proposed, such as the GSM8K dataset (Cobbe et al., 2021), the MATH dataset
(Hendrycks et al., 2021b) and so on. Recent LLMs and prompting approaches have addressed these
problems with notable success (OpenAI, 2023; Touvron et al., 2023). For instance, GPT-4, using
advanced prompting techniques (OpenAI, 2023), has achieved more than a 90% success rate on
GSM8K and 80% on MATH. These achievements indicate that LLMs possess remarkable capabili-
ties in mathematical reasoning.

The quest to improve LLMs’ mathematical problem-solving abilities is not just a demonstration of
technological advancement but a crucial step toward developing more general and capable artificial
intelligence systems. On the one hand, this endeavor requires datasets that accurately measure and
challenge the AI’s mathematical reasoning beyond basic problems. Although their performance is
high on datasets like GSM8K (Cobbe et al., 2021), it remains uncertain how well they handle more
complex mathematical challenges, such as those found in university-level courses and competitive
high school mathematics. Performance may diminish significantly in these areas. This gap high-
lights the ongoing need for enhanced mathematical reasoning capabilities in AI, a critical area for
assessing cognitive abilities akin to human intelligence. Moreover, a significant obstacle is that
many existing datasets might have been included in the training phases of these models, potentially
skewing performance metrics. Prominent examples include STEM-Q (Drori et al., 2023), GSM8K

1https://anonymous.4open.science/r/mathodyssey-C587/
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Olympiad-level
Problem: Let S = {1, 2, · · · 2024}, if the set of any n pairwise prime numbers in S has at
least one prime number, the minimum value of n is .
Answer: 16.
Reasoning: Taking the 15 numbers 1, 22, 32, ..., 432. They violate the condition. Further-
more, since S does not contain any non-prime numbers with a minimum prime factor of at
least 47 (because 472 > 2024). Set 1 aside, there are only 14 types of non-prime numbers in
S, classified by its minimum prime factor. Applying the Pigeonhole Principle, we conclude
that n = 16.

High School
Problem: What are the solutions of the quadratic equation 15x2 = 2x+ 8.

A) {−4

3
,−3

2
} B) {−4

5
,
2

3
} C) {−3

2
,
4

5
} D) {−2

3
,
4

5
}

Answer: D
Reasoning: First move all terms to one side: 15x2 − 2x − 8 = 0. Then factor into (5x −
4)(3x + 2) = 0. Setting 5x − 4 to zero results in a solution of x = 4

5 and setting 3x + 2 to
zero results in a solution of x = − 2

3 .
University-level

Problem: Find the limit

lim
x→1

f(2x2 + x− 3)− f(0)

x− 1

given f ′(1) = 2 and f ′(0) = −1.
Answer: −5.
Reasoning: Let g(x) = 2x2 + x − 3. Since g(1) = 0, the desired limit equals
lim
x→1

f(g(x))−f(g(1))
x−1 . By the definition of the derivative and the chain rule and noting that

g′(1) = 5, we have

lim
x→1

f(g(x))− f(g(1))

x− 1
= f ′(g(1))g′(1) = f ′(0)g′(1) = (−1)(5) = −5.

Table 1: MathOdyssey dataset examples. We demonstrate three distinct levels to challenge various
aspects of mathematical knowledge: Olympiad-level, High School, and University-level mathemat-
ics. Each example consists of three parts: the problem, the answer, and the reasoning. Note that both
GPT-4 Turbo and Llama-3-70B are unable to solve the first Olympiad-level example. See Appendix
A for the LLMs’ solutions.

(Cobbe et al., 2021), and the MATH dataset (Hendrycks et al., 2021b), which may no longer provide
a true test of an LLM’s mathematical capabilities. On the other hand, high-quality, expert-crafted
original problems are scarce. For instance, a study by OpenAI (Davis & Aaronson, 2023) included
only 105 such problems in high school and university-level science and math.

To directly address these challenges, we introduce the “MathOdyssey” dataset, a rigorously cu-
rated collection of 387 mathematical problems for evaluating the general mathematical capacities of
LLMs. See examples in Table 1. The MathOdyssey dataset features a spectrum of questions from
Olympiad-level competitions, advanced high school curricula, and university-level mathematics.
Mathematics professionals, including high-school educators, researchers, and university professors.
The key distinction of our dataset is its expert-driven creation, which minimizes the risk of data
contamination.

Furthermore, we open-source the MathOdyssey dataset to facilitate its use in evaluating other LLMs.
The dataset has not been used for training by LLMs. We explore its utility in benchmarking the
advanced mathematical reasoning abilities of LLMs. By ensuring the originality and confidentiality
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of the questions, we maintain the integrity and fairness of the assessments, providing a reliable tool
for advancing research into artificial general intelligence.

Our contributions are as follows:

• We introduce a new mathematical challenge that provides different levels of mathematical
problems and covers a wider range of subject areas.

• We open source the MathOdyssey benchmark dataset, a meticulously curated collection of
mathematical problems spanning various domains and levels, complete with natural lan-
guage solutions. This dataset is specifically designed to probe the reasoning abilities of
LLMs, offering a unique tool for assessing AI performance in complex mathematical rea-
soning. Each question has an objective answer serving as ‘ground-truth’, allowing for
objective evaluation on the LLM outputs. In particular, the Open-Answer problems em-
phasize the importance of detailed reasoning and solution.

• We conduct a comprehensive benchmark analysis using our dataset on both open-source
and closed-source LLMs. Our findings reveal that while closed-source models currently
lead, open-source models are rapidly catching up, highlighting the competitive landscape
of LLM capabilities in mathematical problem-solving.

2 RELATED WORK

Large Language Models for Mathematics. Applying large language models (LLMs) to mathe-
matical problems has led to significant strides, though solving such problems remains challenging
due to the need for highly complex and symbolic multi-step reasoning capabilities. Both GPT-3.5
and GPT-4 (OpenAI, 2023) have shown promising reasoning abilities for complex mathematical
tasks, such as those in the MATH dataset (Hendrycks et al., 2021a). However, the performance
of open-source models, like Llama-1 and Llama-2 (Touvron et al., 2023), is still far from satisfac-
tory in this domain. To enhance the mathematical problem-solving abilities of LLMs, prompt-based
methods have also been developed (Wei et al., 2022; Wang et al., 2022; Zhou et al., 2022). These
methods aim to improve reasoning and accuracy by guiding the models through structured prompts
that help in breaking down complex problems into manageable steps.

Mathematical Evaluation for Large Language Models. Evaluating the mathematical capacity
of large language models (LLMs) is crucial. Benchmarks such as GSM8K (Cobbe et al., 2021),
which targets middle-school level mathematics, and MATH (Hendrycks et al., 2021a), which fo-
cuses on high-school math competitions, have been widely used. For university-level problems,
datasets like ProofNet (Azerbayev et al., 2023a) and OCWCourses (Lewkowycz et al., 2022) are
prominent. Additionally, MiniF2F (Zheng et al., 2022) and AlphaGeometry (Trinh et al., 2024) pro-
vide Olympiad-level problems, while the SAT dataset (Azerbayev et al., 2023b) includes problems
from the College Board SAT examination. These datasets have limitations, particularly at the under-
graduate level and above, where they fall short in addressing graduate-level and competition-level
difficulties (Frieder et al., 2024). To address this gap, we introduce the MathOdyssey dataset, a
diverse collection of mathematical problems designed to serve as a rigorous benchmark for assess-
ing both open-source and closed-source models. Table 2 highlights the properties of MathOdyssey
compared to relevant benchmarks, emphasizing the different levels and the diversity of subject ar-
eas and question types in our benchmark. This dataset spans a spectrum of difficulty levels, from
high school to advanced university mathematics, highlighting the evolving capabilities and ongoing
challenges in LLM mathematical problem-solving.

3 MATHODYSSEY

To evaluate the mathematical reasoning abilities of LLMs, we create the MathOdyssey dataset, a
rigorously curated collection designed by professionals from both universities and high schools. To
ensure comprehensive evaluation and promote transparency, we have made the entire MathOdyssey
dataset and benchmarking code publicly available. This allows other researchers to replicate our
study, compare methods, and explore new approaches using the dataset.

3
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Dataset Year Description # of Test
GSM8k (Cobbe et al., 2021) 2021 8.5k middle-school level math word problems 1k
MATH (Hendrycks et al., 2021b) 2021 12.5k high-school math competitions 5k
OCWCourses (Lewkowycz et al., 2022) 2022 University-level, MIT’s OpenCourseWare 272
MiniF2F (Zheng et al., 2022) 2023 Olympiad-level 488
SAT (Azerbayev et al., 2023b) 2023 Figureless questions from SAT 32
ProofNet (Azerbayev et al., 2023a) 2023 University-level, proofs 371
AlphaGeometry (Trinh et al., 2024) 2024 Olympiad Geometry only 30
MathOdyssey (this work) 2024 High School, University-level, Olympiad-level 387

Table 2: Comparison of existing evaluation datasets for testing AI in mathematics. These datasets are
limited, especially in the availability of high-quality, expert-crafted original problems with varying
difficulty levels.

3.1 DATA COLLECTION

Design Principle. The motivation behind the design of the MathOdyssey dataset is to establish
a new benchmark representing the pinnacle of human intellectual achievement, encouraging re-
searchers to push the boundaries of LLMs’ mathematical reasoning capabilities. To realize this
vision, we have curated challenges that epitomize comprehensive levels of math problems. Specifi-
cally, our benchmark includes:

• Inclusion of diverse levels of math problems: Ensuring a comprehensive understanding
and catering to various proficiency levels promotes a well-rounded mastery of mathemati-
cal concepts and problem-solving skills. This dataset offers a range of problems, starting
from basic concepts and gradually increasing in difficulty to cover advanced topics. This
allows for a thorough evaluation of AI capabilities across various levels of high school and
university mathematics.

• Inclusion of different subject area problems: Enhancing LLMs’ mathematical proficiency
by exposing them to a wide range of concepts and techniques, from foundational arithmetic
to advanced topics such as algebra, number theory, geometry, combinatorics, and calculus.
These diverse subject areas help identify LLMs’ strengths and areas for improvement, en-
couraging the development of critical mathematical reasoning, problem-solving skills, and
a deeper appreciation for the interconnected nature of mathematics. By integrating vari-
ous mathematical disciplines, researchers can create a more engaging and comprehensive
learning environment that prepares LLMs for complex real-world challenges in mathemat-
ics.

• Provision of objective answers and detailed solutions: The objective answers serve as
‘ground-truth’, allowing for objective evaluation of the LLM outputs. In particular, the
Open-Answer problems emphasize the importance of detailed reasoning and solution.
Given the varying difficulty and subject areas of these problems, which may exceed com-
prehension without a specialized background in mathematics, each problem is accompa-
nied by expertly crafted solutions detailing the reasoning steps involved. These solutions
are useful for evaluation and can enhance the assessment of LLMs’ reasoning processes.

Human professionals. The dataset was created by human professionals to ensure high quality.
Experts developed a wide range of mathematical problems for the MathOdyssey dataset, featuring
a spectrum of questions from Olympiad-level competitions, advanced high school curricula, and
university-level mathematics. Mathematics professionals, including high-school educators, univer-
sity professors, and researchers, crafted these problems. Their involvement ensures the dataset not
only supports advanced AGI research but also fosters necessary interdisciplinary collaboration.

A typical problem in the MathOdyssey dataset comprises three components: the problem, the an-
swer, and the reasoning, as detailed in Table 1. The problems are original and not sourced from
previous datasets or textbooks. Each problem is accompanied by an answer and a detailed solution
that explains the reasoning process used to derive the answer. After creation, the problems undergo
independent review by a separate team of researchers with expertise in mathematics. This team
assesses the problems and their solutions, eliminating any ambiguous or redundant responses to
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Algebra – Olympiad-level – 21.19% (82)

Statistics – University-level – 4.39% (17)
Probability – University-level – 5.43% (21)

Differential Equations – University-level – 3.62% (14)

Number Theory – Olympiad-level – 1.03% (4)

Calculus and Analysis – University-level 
– 6.20% (24)

Linear Algebra and Abstract Algebra
– University-level – 6.46% (25)

Pre-Calculus – High School – 14.21% (55)

Geometry – High School – 3.62% (14)

Geometry – Olympiad-level – 6.46% (25)

Combinatorics – Olympiad-level – 9.56% (37)

Algebra – High School – 17.83% (69)

Figure 1: Mathematical problems across educational levels. We curate and categorize problems by
difficulty and subject area.

enhance the set’s validity and reliability. This rigorous process guarantees the quality and depend-
ability of the final problem set.

3.2 DATASET ANALYSIS

To understand the properties of the MathOdyssey dataset, we analyze the questions and answers.
Specifically, we explore (i) the difficulty of questions based on the type of reasoning required to
answer them, (ii) the subject areas of the problems, and (iii) the diversity of answer types.

Difficulty of questions. In the MathOdyssey dataset, each category is designed to evaluate differ-
ent facets of mathematical reasoning and problem-solving capabilities, ranging from fundamental
high school concepts to complex university-level theories, as summarized in Figure 1. This diverse
dataset is structured into three distinct levels to challenge various aspects of mathematical knowl-
edge:

• Olympiad-level: It tests advanced problem-solving skills with questions in Algebra, Num-
ber Theory, Geometry, and Combinatorics.

• High School: Broadening the scope, this category includes problems in Algebra, Geome-
try, and Pre-Calculus, covering a comprehensive range of high school math concepts.

• University-level: Catering to higher education, this segment offers challenges in Lin-
ear and Abstract Algebra, Calculus and Analysis, Differential Equations, Probability, and
Statistics, suitable for university students.

The MathOdyssey dataset categorizes mathematical problems across different educational levels,
helping to understand the distribution and scope of problems included in the dataset. For Olympiad-
level Competition, the categories and their respective percentages are Algebra (21.19%), Number
Theory (1.03%), Geometry (6.46%), and Combinatorics (9.56%), totaling 38.24%. For High School
Mathematics, the categories are Algebra (17.83%), Geometry (3.62%), and Pre-Calculus (14.21%),
totaling 35.66%. For University-level, the categories are Linear and Abstract Algebra (6.46%),
Calculus and Analysis (6.20%), Differential Equations (3.62%), Probability (5.43%), and Statistics
(4.39%), totaling 26.10%. Three subject areas, Differential Equations, Probability, and Statistics,
only appear at the University level.

Subject areas of the problems. The problems encompass a wide range of topics, including Al-
gebra, Number Theory, Geometry, Combinatorics, Pre-Calculus, Linear and Abstract Algebra, Cal-
culus and Analysis, Differential Equations, Probability, and Statistics, as shown in Figure 1. The
MathOdyssey dataset encompasses a wide range of subject areas, providing a comprehensive testing
ground for the mathematical reasoning and problem-solving capabilities of large language models

5
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Answer Types

True-False (16) Open-Answer
(244)

Multiple-Choice
(127)

Open-Answer: Let S = {1, 2, · · · 2024}, if the set of any n 
pairwise prime numbers in S has at least one prime number, 
the minimum value of n is ____________.

Multi-Choice: Find the solution of 4(3y − 5) = 2(7y + 3)
A) − 13
B) − 4 
C) 11/2 
D) 13

True-False: A sample of 30 observations yields a sample 
mean of 50. Assume the population standard deviation is 
known to be 10. When testing the hypothesis that the 
population mean is 45 at the 5% significance level, should we 
accept the hypothesis?

Examples

Figure 2: There are three answer-types: True-False questions, Multiple-Choice questions and Open-
Answer questions.

(LLMs). Algebra problems constitute 21.19% from Olympiad-level Competition and 17.83% from
High School Mathematics, making them the most represented areas in the dataset. In contrast,
Number Theory problems, with only 1.03% from Olympiad-level Competition, have the lowest rep-
resentation. Pre-Calculus problems, accounting for 14.21% of High School Mathematics, play a
significant role in preparing students for more advanced calculus topics. Other subject areas, includ-
ing Calculus and Analysis, Linear and Abstract Algebra, Differential Equations, Probability, and
Statistics, each contribute around 4% to 8% to the dataset. See Appendix B for examples that help
better understand the reasoning required to answer the questions.

Diversity of answer types. The MathOdyssey dataset includes a variety of answer types, provid-
ing a comprehensive assessment of the mathematical reasoning and problem-solving capabilities of
large language models (LLMs). The distribution of answer types is shown in Figure 2, and it is cat-
egorized into three main types: True-False questions, Multiple-Choice questions, and Open-Answer
questions. The distribution of answer types in the MathOdyssey dataset is designed to provide a
well-rounded evaluation of LLMs’ mathematical capabilities. With 62.8% of the questions being
open-answer, the dataset emphasizes the importance of detailed reasoning and solution generation.
Multiple-choice questions, making up 33.1%, help assess the models’ ability to choose correct an-
swers from given options, while true-false questions, at 4.1%, provide a quick check of fundamental
understanding. This diverse mix of answer types ensures that LLMs are tested on various aspects of
mathematical problem-solving, from basic validation to complex reasoning and solution generation,
requiring an understanding of the concepts.

4 EXPERIMENTS

Our goal is to provide a comprehensive standardized dataset to evaluate LLMs on mathematical rea-
soning. By comparing different models, our benchmarks highlight their strengths and weaknesses.

4.1 MODELS

We evaluate both open-source and closed-source LLMs. The models tested include GPT-4 o1-
preview, GPT-4 Turbo, GPT-4, GPT-3.5 Turbo, Gemini models, Claude 3, and Llama-3-70B. All
models are tested using chain-of-thought reasoning (Wei et al., 2022). See Appendix C for details
of the baselines and prompts.

6
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4.2 MODEL EVALUATION

A key advantage of the MathOdyssey data is that every question has an objective answer, so that
it is straightforward to check the correctness by code. Such objective answers avoid subjective
judgments from humans, making the evaluation consistent and reliable.

We use GPT-4 to assist in evaluating model accuracy, particularly for open-answer questions. The
metric measures the similarity between the predicted and ground truth answers. In the MathOdyssey
dataset, various types of questions and answers are included. We employ a prompt-based method to
provide scores for evaluation, considering the following criteria:

• Mathematical Equivalence: Verify answers based on mathematical equivalence using ad-
vanced tools like symbolic computation software to confirm the equivalence of different
algebraic or symbolic expressions.

• Scoring: Assign a score of ‘1’ for answers that match or are equivalent to the provided
solution (exact value, choice label, or correctly rounded numerical approximation). Assign
a score of ‘0’ for incorrect answers without providing explanatory feedback.

• Handling Multiple Choices: Consider the answer correct if the student correctly identifies
the choice that matches the solution. Also, treat the corresponding choice as correct if the
student provides the exact value that aligns with the problem’s context.

• Numerical Equivalence: Accept numerical answers that are correct to at least two decimal
places or more, depending on the required precision.

• Symbolic and Algebraic Identities: Recognize and accept equivalent algebraic forms as
correct, such as standard mathematical identities.

• Trigonometric and Logarithmic Forms: Accept equivalent trigonometric and logarithmic
expressions, acknowledging transformations that change the form but not the value.

• Comprehensive Evaluation: Encourage the use of computational tools for checking equiv-
alence in cases where expressions are too complex for straightforward visual inspection.

See Appendix D for the requirements and prompts used in the evaluation method. We have also
made our evaluation code accessible to the public via our GitHub repository, including not only the
code but also detailed documentation and usage examples.

4.3 RESULTS AND ANALYSIS

We first report the performance on our mathematical benchmarks, as shown in Table 3. Our ob-
servations indicate that the benchmark is challenging for these models, with overall performance
below 60% except for GPT-4 o1-preview.2 The recent GPT-4 o1-preview achieves the highest over-
all performance at 65.12%, demonstrating that incorporating chain-of-thought learning significantly
enhances capabilities. The Gemini Math-Specialized 1.5 Pro also performs well, ranking second
with a score of 55.8%, suggesting that specialized training can further improve specific skill areas.
GPT-4 Turbo achieves 49.35%, followed by Gemini 1.5 Pro at 45.0%, and Claude 3 Opus at 40.6%,
all showing competitive performance. For closed-source models (specifically the GPT series) and
state-of-the-art open-source models such as Llama-3, the results show that the selected open-source
models not only surpass the performance of GPT-3.5 but are also approaching the capabilities of
earlier versions of GPT-4.

When comparing different levels of mathematical problems for GPT models, we observe that High
School mathematics is the easiest category for all models, with GPT-4 models scoring above 70%.
Olympiad-level problems are the most difficult, with all models scoring below 11% except for GPT-4
o1-preview. Similar trends are seen for Llama-3-70B, with their performance in the Olympiad-level
category being even lower, at less than 9%.

Furthermore, closed-source models, particularly the GPT-4 o1-preview and GPT-4 Turbo, exhibit
stronger performance in high school and university-level math, highlighting ongoing advancements

2Advanced prompting methods using GPT-4 models in the contest have achieved performance improve-
ments between 60% and 70%.
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Model Olympiad-level High School University-Level Overall
GPT-4 o1-preview 45.27% 79.71% 74.26% 65.12%
GPT-4 Turbo 10.81% 84.06% 58.42% 49.35%
GPT-4 5.41% 85.51% 44.55% 44.19%
GPT-3.5 Turbo 3.38% 39.13% 16.83% 19.64%
Gemini

-1.5 Pro - - - 45.0 %
-Math-Specialized 1.5 Pro - - - 55.8 %

Claude 3 Opus - - - 40.6 %
Llama-3-70B 8.78% 73.19% 24.75% 35.92%

Table 3: Results for different LLMs. The performance of Gemini 1.5 Pro and Claude 3 Opus are
quoted from the Gemini 1.5 report (Reid et al., 2024). Both GPT-4-Turbo and Gemini 1.5 Pro
outperform the other models. For GPT-4-Turbo, we use results based on gpt-4-turbo-2024-04-09.
For GPT-4, we use results based on gpt-4-0125. For GPT-3.5 Turbo, we use results based on gpt-
3.5-turbo-0125.

Category GPT-4 o1-preview GPT-4 Turbo GPT-3.5 Turbo Llama3-70b
Olympiad-level:
Algebra 51.22% 12.20% 3.66% 9.76%
Number Theory 75.00% 0.00% 0.00% 0.00%
Geometry 56.00% 4.00% 8.00% 4.00%
Combinatorics 21.62% 13.51% 0.00% 10.81%

High School Mathematics:
Algebra 81.16% 85.51% 39.13% 78.26%
Geometry 92.86% 85.71% 50.00% 85.71%
Pre-Calculus 74.47% 80.85% 34.04% 68.09%

University-level:
Differential Equations 71.43% 64.29% 35.71% 64.29%
Linear & Abstract Algebra 92.00% 72.00% 12.00% 20.00%
Calculus & Analysis 79.17% 70.83% 16.67% 33.33%
Probability 52.38% 23.81% 0.00% 0.00%
Statistics 70.59% 58.82% 29.41% 17.65%

Table 4: Results for different LLMs across various subject areas. Note that the results are used for
evaluating the LLMs by direct comparison and may be improved with different prompting methods.

in their development. This data underscores the rapid progression of closed-source models in han-
dling increasingly difficult mathematical questions over time. The performance gap between the
previous closed-source model, GPT-4 Turbo, and the open-source Llama-3 for difficult mathemat-
ical problems is notably narrow. However, the gap between recent closed-source model GPT-4
o1-preview becomes larger. For instance, except that GPT-4 o1-preview achieves 45.27%, GPT-4
Turbo achieves an overall accuracy of 10.81% in the Olympiad-level mathematics, while Llama-3
achieves 8.78%. This demonstrates that both models, despite notable progress, still face significant
challenges in solving these complex problems. However, for other difficulty levels, the gap becomes
larger. For example, GPT-4 Turbo achieves 84.06% in high school mathematics, while Llama-3-70B
scores only 73.19%, a difference of more than 10%.

Table 4 presents the performance of various LLMs across different subject areas. GPT-4 o1-preview
consistently outperforms others, particularly excelling in Olympiad-level subjects such as Algebra,
Number Theory, Geometry, and Combinatorics, as well as university-level subjects like Differential
Equations, Linear & Abstract Algebra, Calculus & Analysis, and Statistics. GPT-4 Turbo follows
with the second-best performance. GPT-3.5 Turbo demonstrates steady but lower performance com-
pared to GPT-4 Turbo. Llama-3-70B performs better than GPT-3.5 Turbo in some areas, notably
High School Mathematics, including Algebra and Geometry. However, it struggles in university-
level subjects like Linear & Abstract Algebra, Calculus & Analysis, and Probability when compared
to GPT-4 o1-preview and GPT-4 Turbo.
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5 CONCLUSION

We introduce MathOdyssey, a dataset for assessing LLMs’ mathematical problem-solving skills.
Our dataset, evaluation methods, and code are openly available. We have shown that while LLMs,
both open-source like Llama-3, and closed-source such as the GPT series, demonstrate proficiency
in routine and moderately difficult mathematics, they struggle significantly with complex Olympiad-
level problems. Additionally, we have revealed promising developments; open-source models are
beginning to approach the performance levels of earlier GPT-3.5 iterations. Despite this progress,
performance on the most challenging questions remains low, highlighting a clear gap that future
advancements need to address.

Ultimately, our research underscores the ongoing journey towards achieving human-like mathemat-
ical reasoning in AI, with the MathOdyssey dataset serving as a benchmark for catalysing future
developments. We are optimistic that continued research will progressively bridge the existing ca-
pability gap. In the future, expanding the MathOdyssey dataset to include a wider range of problem
types and enhancing metrics to better capture deep mathematical reasoning can yield further insights
into LLM capabilities.

Limitation. While the MathOdyssey dataset includes a variety of problems across different levels
of mathematics, the questions may not cover all types of mathematical reasoning or problem-solving
approaches. This limitation could affect how well the dataset generalizes to other forms of mathe-
matical challenges not represented in your collection.

Future. To address generalizability limitations, future work involves expanding the dataset to in-
clude a wider range of mathematical topics and problem types, including those that require visual
representations, proofs, or interactive problem-solving.

DATA COPYRIGHT AND ETHICS STATEMENT

The MathOdyssey dataset comprises a range of problems from Olympiad-level competitions, ad-
vanced high school curricula, and university-level mathematics, created by mathematics profession-
als, including high school educators, researchers, and university professors. We retain the copyright
for these problems and are pleased to distribute the dataset under the “CC BY-SA 4.0” license.

REPRODUCIBILITY STATEMENT

The dataset, results, and evaluation code are publicly available at
https://anonymous.4open.science/r/mathodyssey-C587/.
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A MATHODYSSEY DATASET EXAMPLES AND SOLUTIONS

Olympiad-level Problem. Let S = {1, 2, · · · 2024}, if the set of any n pairwise prime numbers in
S has at least one prime number, the minimum value of n is .
Answer: 16
Reasoning: Taking the 15 numbers 1, 22, 32, ..., 432 violates the condition. Furthermore, since S
does not contain any non-prime numbers with a minimum prime factor of at least 47, there are only
14 types of non-prime numbers in S, excluding 1. Applying the Pigeonhole Principle, we conclude
that n = 16.
GPT-4 Turbo’s Solution: Answer: 307
Reasoning: The minimum number of elements required such that any subset of these elements
from the set S = {1, 2, ..., 2024} containing pairwise prime numbers includes at least one prime
number is 307. This is based on the count of prime numbers up to 2024 (approximately 306) and
the application of the Pigeonhole Principle, which dictates that selecting more numbers than there
are primes forces the inclusion of a prime number or a violation of the pairwise prime condition.

High School Problem. What are the solutions of the quadratic equation 15x2 = 2x+ 8?

A) {−4

3
,−3

2
} B) {−4

5
,
2

3
} C) {−3

2
,
4

5
} D) {−2

3
,
4

5
}

Answer: D
Reasoning: First move all terms to one side: 15x2−2x−8 = 0. Then factor into (5x−4)(3x+2) =
0. Setting 5x−4 to zero results in a solution of x = 4

5 and setting 3x+2 to zero results in a solution
of x = − 2

3 .
GPT-4 Turbo’s Solution: Answer: D
Reasoning: The quadratic equation was first rearranged to standard form, coefficients were iden-
tified, and the quadratic formula was applied to find the solutions. The solutions were verified by
substituting back into the original equation.

University-level Problem. Find the limit

lim
x→1

f(2x2 + x− 3)− f(0)

x− 1

given f ′(1) = 2 and f ′(0) = −1.
Answer: −5
Reasoning: Let g(x) = 2x2 + x− 3. Since g(1) = 0, the desired limit equals lim

x→1

f(g(x))−f(g(1))
x−1 .

By the definition of the derivative and the chain rule and noting that g′(1) = 5, we have

lim
x→1

f(g(x))− f(g(1))

x− 1
= f ′(g(1))g′(1) = f ′(0)g′(1) = (−1)(5) = −5.

GPT-4 Turbo’s Solution: Answer: −5
Reasoning: The limit was calculated by interpreting it as the derivative of a composed function,
applying the chain rule, and substituting the given derivative values.

B MATHODYSSEY DIFFERENT SUBJECT AREAS

Table 5 presents MathOdyssey examples spanning various subject areas. These encompass Algebra,
Number Theory, Geometry, Combinatorics, Pre-Calculus, Linear and Abstract Algebra, Calculus
and Analysis, Differential Equations, as well as Probability and Statistics.

C BASELINES AND PROMPTS

Figure 3 depicts the prompt utilized for guiding Language Models (LLMs) in solving mathematical
problems within our experimental framework. This prompt distinctly outlines the system’s role as a
math professor, delineating task specifications and the anticipated output format for tackling intricate
mathematical challenges.
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Subject Area Example
Algebra Let S = {1, 2, · · · 2024}, if the set of any n pairwise prime num-

bers in S has at least one prime number, the minimum value of
n is .

Number Theory A natural number whose last four digits are 2022 and is divisible
by 2003 has a minimum value of .

Geometry In a cube ABCD − A1B1C1D1, AA1 = 1, E, F are the mid-
points of edges CC1, DD1, then the area of the cross-section
obtained by the plane AEF intersecting the circumscribed sphere
of the cube is .

Combinatorics If three points are randomly chosen from the vertices of a regular
17-sided polygon, what is the probability that the chosen points
form an acute-angled triangle?

Pre-Calculus In △ABC,AB = 10 cm,∠B = 90◦, and ∠C = 60◦. Deter-
mine the length of BC.

A) 10 cm B) 10
√
3 cm C)

10
√
3

3
cm D) 20 cm

Linear and Abstract Algebra Find the solution [x1, x2, x3] to the following equations{
x1 + 3x2 + 3x3 = 16,
3x1 + x2 + 3x3 = 14,
3x1 + 3x2 + x3 = 12.

Calculus and Analysis Evaluate the following limit:

lim
n→∞

(√
n2 + 2n− 1−

√
n2 + 3

)
.

Differential Equations Consider the differential equation dy
dx = xy. Find the value of

y(
√
2) given that y(0) = 2.

Probability Suppose that A, B, and C are mutually independent events and
that P (A) = 0.2, P (B) = 0.5, and P (C) = 0.8. Find the
probability that exactly two of the three events occur.

Statistics Given the data set {3, 7, 7, 2, 5}, calculate the sample mean µ
and the sample standard deviation σ. Present the answer as
[µ, σ].

Table 5: Examples of different subject areas.

D EVALUATION

Figure 4 depicts the prompt employed during the evaluation of large language models in our exper-
iments. This prompt defines the system’s role as a math teacher, providing both assessment criteria
and the expected output format for grading mathematical problems.
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You are now assuming the role of a math professor. Your task is to assist the user by solving 

complex mathematical problems in a detailed and step-by-step manner.

## Task Requirements:

1. **Detailed Problem Analysis**: Start by analyzing the given problem. Identify and articulate 

the key mathematical concepts and techniques needed to solve the problem.

2. **Step-by-Step Solution**: Decompose the problem into manageable steps. Solve each step 

sequentially, ensuring logical progression and coherence in your approach.

3. **Theoretical Justification**: For each step, provide a clear explanation of the mathematical 

theories or principles applied. Justify your choice of method and demonstrate how it applies to the 

specific problem at hand.

4. **Calculation Verification**: After solving each step, verify your calculations. Explain any 

checks or balances you use to ensure the accuracy of your computations.

5. **Error Checking and Assumptions**: State any assumptions made during the solution 

process. Discuss potential errors or alternative methods that could impact the solution.

6. **Conclusive Summary**: Conclude with a summary of how the steps tie together and confirm 

the solution's validity.

## Expected Output Format:

Present your final answer and the complete solution process in a JSON format. This should 

include:

    - A `float` value or a mathematical algebraic expression for the answer.

    - Detailed reasoning for each step of the solution.

Your output should be formatted as a JSON object enclosed in Markdown code blocks tagged 

with 'json'. For example:

```json

{{

 "reasoning": "<detailed solution process>”,

 "answer": "<answer>"

}}

```

Ensure that all task requirements are meticulously followed in your response.

Figure 3: Mathematical problem-solving prompts employed by LLMs.
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Assume the role of a math teacher tasked with evaluating student responses against the provided 
solutions, which may include exact values, multiple-choice answers, or numerical approximations. 
The question is provided as: {question}, the correct answer is provided as: {true}.

## Evaluation Criteria:
1. **Mathematical Equivalence**: Evaluate answers based on deep mathematical equivalence, 
not just numerical accuracy. Use advanced tools or techniques to verify if different algebraic or 
symbolic expressions are equivalent. Tools like symbolic computation software (e.g., Wolfram 
Alpha, SymPy) should be used to confirm equivalences such as \\( \\frac{{\\sqrt{{6}}-
\\sqrt{{2}}}}{{2}} \\) being equivalent to \\( \\sqrt{{2 - \\sqrt{{3}}}} \\).
2. **Scoring**: Assign a score of '1' for any answer that matches or is equivalent to the provided 
solution, whether it is an exact value, a choice label (e.g., A, B, C), or a correctly rounded 
numerical approximation. Assign a score of '0' for incorrect answers. Do not provide any 
explanatory feedback in your evaluation.
3. **Handling Multiple Choices**: If the solution provided is a choice (e.g., A, B, C, D, E, F) and 
the student identifies this choice correctly, treat it as correct. If the solution is an exact value and 
the student provides the corresponding choice that reflects this value correctly according to the 
problem's context, also treat it as correct.
4. **Numerical Equivalence**: Treat numerical answers as equivalent if they are correct to at 
least two decimal places or more, depending on the precision provided in the solution. For 
instance, both 0.913 and 0.91 should be accepted if the solution is accurate within two decimal 
places.
5. **Symbolic and Algebraic Identities**: Recognize and accept equivalent algebraic forms, such 
as \\( \\sin^2(x) + \\cos^2(x) = 1 \\) or \\( e^{{i\\pi}} + 1 = 0 \\), as correct.
6. **Trigonometric and Logarithmic Forms**: Accept equivalent trigonometric and logarithmic 
expressions, acknowledging identities and transformations that might alter the form but not the 
value.
7. **Comprehensive Evaluation**: Encourage the use of computational tools to check for 
equivalence in cases where expressions are too complex for straightforward visual inspection.

## Expected Output Format:
Present your final answer with a score of '1' or '0' only. Do not include any additional information 
or feedback in your response.

Please evaluate the student's response with precision, utilizing computational resources as 
necessary to ensure accurate and fair grading.

Figure 4: Evaluation prompts.
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