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ABSTRACT

Graph neural networks (GNNs) have emerged as a powerful tool for modeling
graph-structured data, demonstrating remarkable success in many real-world ap-
plications such as complex biological network analysis, neuroscientific analysis,
and social network analysis. However, existing GNNs often struggle with het-
erophilic graphs, where connected nodes tend to have dissimilar features or labels.
While numerous methods have been proposed to address this challenge, they pri-
marily focus on architectural designs without directly targeting the root cause of
the heterophily problem. These approaches still perform even worse than the sim-
plest MLPs on challenging heterophilic datasets. For instance, our experiments
show that 21 latest GNNs still fall behind the MLP on the ACTOR dataset. This
critical challenge calls for an innovative approach to addressing graph heterophily
beyond architectural designs. To bridge this gap, we propose and study a new
and unexplored paradigm: directly increasing the graph homophily via a carefully
designed graph transformation. In this work, we present a simple yet effective
framework called GRAph homoPHIly boosTEr (GRAPHITE) to address graph
heterophily. To the best of our knowledge, this work is the first method that ex-
plicitly transforms the graph to directly improve the graph homophily. Stemmed
from the exact definition of homophily, our proposed GRAPHITE creates feature
nodes to facilitate homophilic message passing between nodes that share similar
features. Furthermore, we both theoretically and empirically show that our pro-
posed GRAPHITE significantly increases the homophily of originally heterophilic
graphs, with only a slight increase in the graph size. Extensive experiments on
challenging datasets demonstrate that our proposed GRAPHITE significantly out-
performs state-of-the-art methods on heterophilic graphs while achieving compa-
rable accuracy with state-of-the-art methods on homophilic graphs. Furthermore,
our proposed graph transformation alone can already enhance the performance of
homophilic GNNs on heterophilic graphs, even though they were not originally
designed for heterophilic graphs. We will release our code upon the publication
of this paper.

1 INTRODUCTION

Graph neural networks (GNNs) have emerged as a powerful class of models for learning on topo-
logically structured data. Their ability to incorporate graph topology and node-level attributes has
enabled them to achieve state-of-the-art results in a wide range of applications. These include pro-
tein function prediction, where GNNs model complex biological networks (You et al., 2021; Réau
et al., 2023); neuroscientific analysis, where they are used to model brain networks (Li et al., 2023a);
and social network analysis, where they help uncover patterns among users (Li et al., 2023b).

A critical challenge that many GNNs are faced with is that real-world networks can exhibit het-
erophily, where connected nodes tend to have dissimilar features or labels. Examples include
protein–protein interaction networks where different types of proteins interact (Zhu et al., 2020),
or online marketplace networks where buyers connect with sellers rather than other buyers (Pan-
dit et al., 2007). Standard GNN architectures (Kipf & Welling, 2016; Wu et al., 2019; Veličković
et al., 2017; Hamilton et al., 2017; Chen et al., 2020; Abu-El-Haija et al., 2019), with their heavy
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Figure 1: Overview of our proposed GRAPHITE. The added feature nodes can facilitate homophilic
message passing. For instance, feature node x1 facilitates homophilic message passing between
nodes v1, v2, and feature node x2 facilitates homophilic message passing among nodes v3, v4, v5.

reliance on neighborhood aggregation, often struggle with heterophilous graphs since aggregating
features from dissimilar neighbors can dilute or distort node representations. Existing methods
for heterophilic graphs mainly focus on designing new GNN architectures as workarounds for het-
erophilic graphs, such as separating ego and neighbor embeddings (Zhu et al., 2020), incorporating
higher-order information with learnable weights (Chien et al., 2020), and adaptive self-gating to
leverage both low- and high-frequency signals (Bo et al., 2021). More recent solutions introduce
frequency-based filtering to handle both homophily and heterophily or leverage adaptive residual
connections to further enhance flexibility (Xu et al., 2023; Xu et al.; Yan et al., 2024).

Despite plenty of architectural advances, many GNNs still perform even worse than the simplest
multi-layer perceptrons (MLPs) on challenging heterophilic graphs. For instance, Table 1 shows
that 21 latest GNNs still fall behind the MLP on the ACTOR dataset. This critical challenge calls for
an innovative approach to addressing graph heterophily beyond architectural designs.

To bridge this gap, we propose and study a new and unexplored paradigm: directly increasing the
graph homophily via a carefully designed graph transformation. In this work, we present a simple yet
effective framework called GRAph homoPHIly boosTEr (GRAPHITE) to address graph heterophily.
To the best of our knowledge, this work is the first method that explicitly transforms the graph to
directly improve the graph homophily.

Our key idea is rooted in the exact definition of homophily and heterophily. In a ho-
mophilic/heterophilic graph, nodes that share similar features are more/less likely to be adjacent,
respectively. Therefore, a natural idea to increase the graph homophily is to create “shortcut” con-
nections between nodes with similar features so as to facilitate homophilic message passing. How-
ever, naı̈vely adding mutual connections between such node pairs can drastically increase the number
of edges. To reduce the number of “shortcut” edges, we propose to connect such node pairs indi-
rectly instead. In particular, we introduce feature nodes as “hubs” and connect graph nodes to their
corresponding feature nodes. We further theoretically show that our proposed method can provably
enhance the homophily of originally heterophilic graphs without increasing the graph size much.

Our main contributions are summarized as follows:

• New paradigm. We propose and study a new and unexplored paradigm: directly increasing
the graph homophily via graph transformation. This paper is the first work on this paradigm
to the best of our knowledge.

• Proposed method. We propose a simple yet effective method called GRAPHITE, which
creates feature nodes as “shortcuts” to facilitate homophilic message passing between
nodes with similar features.

• Theoretical guarantees. We theoretically show that GRAPHITE can provably enhance
the homophily of originally heterophilic graphs with only a slight increase in size.

• Empirical performance. Extensive experiments on challenging datasets demonstrate the
effectiveness of our proposed GRAPHITE. GRAPHITE significantly outperforms state-of-
the-art methods on heterophilic graphs while achieving comparable accuracy with state-
of-the-art methods on homophilic graphs. Furthermore, our proposed graph transformation
alone can already enhance the performance of homophilic GNNs on heterophilic graphs.
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Figure 2: Our proposed GRAPHITE significantly increases the homophily of originally heterophilic
graphs. We report two latest homophily metrics: feature homophily Jin et al. (2022) and adjusted
homophily Platonov et al. (2024).

2 PRELIMINARIES

2.1 NOTATION

An undirected graph with discrete node features can be represented as a triple G = (V, E ,X), where
V = {v1, . . . , v|V|} denotes the node set, E ⊆ V × V denotes the edge set, X ∈ {0, 1}V×X is a
binary node feature matrix representing discrete node features, and X = {1, . . . , |X |} is the feature
set containing all the discrete node features. In addition to that, each graph node vi ∈ V has a node
label yvi ∈ Y , where Y is the label set with C = |Y| classes.

2.2 PROBLEM DEFINITION

In this paper, we study two key problems: (i) how to transform a graph to increase its homophily
and (ii) how to perform node classification on a heterophilic graph datasets. Formally, we introduce
the problem definitions as follows.

Problem 1 (Boosting Graph Homophily). Given a highly heterophilic graph, transform the graph
to increase its homophily. Input: a heterophilic graph G. Output: a transformed graph G∗ with
higher homophily.

Problem 2 (Semi-supervised Node Classification on a Heterophilic Graph). Given a heterophilic
graph and a set of labelled nodes, train a model to predict the labels of unlabelled nodes. Input: (i)
a heterophilic graph G = (V, E ,X); (ii) a labelled node set VL ⊂ V whose node labels [yvi ]vi∈VL

are available. Output: the predicted labels of unlabeled nodes V \ VL.

3 PROPOSED METHOD: GRAPHITE

In this section, we propose a simple yet effective graph transformation method called GRAph
homoPHIly boosTEr (GRAPHITE) that can efficiently increase the homophily of a graph. In Sec-
tion 3.1, we will introduce the motivation of our proposed GRAPHITE. First, we will present the
design of our proposed method GRAPHITE. Then, we will describe the neural architecture of our
proposed method. Due to the page limit, proofs of theoretical results are deferred to the appendix.

3.1 MOTIVATION

Graph heterophily is a ubiquitous challenge in graph-based machine learning. On a highly het-
erophilic graph, many neighboring nodes exhibit dissimilar features or belong to different classes.
As a result, graph heterophily limits the effectiveness of GNN message passing, as standard aggre-
gation schemes might fail to capture meaningful patterns in heterophilic neighbors.

Existing methods for heterophilic graphs mainly focus on designing workarounds such as new archi-
tectures or learning paradigms for heterophilic graphs, including adaptive message passing, higher-
order neighborhoods, or alternative propagation mechanisms that leverage both local and global
graph structures.
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In contrast to existing workaround methods, we propose a new method that aims to directly increase
the homophily of the graph via a specially designed graph transformation. To the best of our knowl-
edge, this work is the first method that explicitly transforms the graph to improve the homophily of
the graph.

Our idea is rooted in the exact definition of homophily and heterophily. In a heterophilic graph,
nodes that share similar features are more likely to be non-adjacent. However, in a homophilic
graph, nodes that share similar features should be more likely to be neighbors. Therefore, a natural
idea to increase the homophily of the graph is to create “shortcut” connections between nodes with
similar features, which will facilitate homophilic message passing between them.

Before we introduce the proposed method, let’s consider the following naı̈ve approach to imple-
menting the aforementioned idea: For each pair of nodes vi, vj ∈ V , if they share at least a feature
(i.e., ∥X[vi, :]∧X[vj , :]∥∞ > 0), we add a “shortcut” edge (vi, vj) between them. Let’s call this ap-
proach the naı̈ve homophily booster (NHB). The following Theorem 1 shows that NHB can indeed
increase the homophily of the graph under mild and realistic assumptions.
Theorem 1 (Naı̈ve homophily booster). Given a heterophilic graph G = (V, E ,X), let E† denote
the set of edges after adding the NHB “shortcut” edges, and let G† := (V, E†,X) denote the graph
transformed by NHB. Under mild and realistic assumptions in Appendix D.1, we have

hom(G†) > hom(G), (1)

|E†| − |E| ≤ O(|V|2). (2)

However, Equation (2) also shows that NHB is extremely inefficient despite its effectiveness in
increasing homophily. For instance, even if the graph has only 2,000 nodes, NHB can add as many
as 1,999,000 “shortcut” edges. The plenty of “shortcut” edges can drastically slow down the training
and the inference process of GNNs. Hence, this naı̈ve approach is computationally impractical for
GNNs. To address this computational challenge, we will instead propose an efficient homophily
booster via a more careful design of “shortcut” edges.

3.2 EFFICIENT GRAPH HOMOPHILY BOOSTER

To address the computational inefficiency of the motivating naı̈ve approach above, we propose
an efficient, simple yet effective graph transformation method called GRAph homoPHIly boosTEr
(GRAPHITE) in this subsection.

Note that the large number of NHB “shortcut” edges is because NHB directly connects nodes with
similar features. Since there are O(|V|2) node pairs in a graph, then the total number of added NHB
“shortcut” edges can be as large as O(|V|2).
To reduce the number of “shortcut” edges, we propose to connect such node pairs indirectly instead.
In particular, if we can create a few auxiliary “hub” nodes so that all such node pairs are indirectly
connected through the “hub” nodes, then we will be able to significantly reduce the number of
“shortcut” edges at only a small price of adding a few “hub” nodes. Therefore, we need to develop
an appropriate design of the “hub” nodes.

Graph transformation. Following the aforementioned motivation, we propose to create a feature
node xk for each feature k to serve as the “hub” nodes. Let VX denote the set of feature nodes:

VX := {xk : k ∈ X}. (3)

To distinguish feature nodes VX from nodes V in the original graph, we call V graph nodes from
now on. For each graph node vi ∈ V , if graph node vi has feature k (i.e., X[vi, k] = 1), we add an
edge (vi, xk) to connect the graph node vi and the feature node xk ∈ VX , and we call it a feature
edge. Let EX denote the set of feature edges:

EX := {(vi, xk) : vi ∈ V, xk ∈ VX , X[vi, k] = 1} ⊆ V × VX .

To distinguish feature edges EX from the original edges E , we call E graph edges from now on.

Finally, we define the transformed graph G∗ = (V∗, E∗,X∗) as follows. The nodes V∗ of the
transformed graph G∗ are the original graph nodes V and the added feature nodes VX : V∗ := V∪VX .
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The edges E∗ of the transformed graph G∗ are the original graph edges E and the added feature edges
EX : E∗ := E ∪ EX . We can also equivalently define the edges of the transformed graph G∗ by its
adjacency matrix. Let A denote the adjacency matrix of the original graph G. Then, the adjacency
matrix A∗ of the transformed graph G∗ can be expressed in a block matrix form:

A∗ =

[
A X

XT 0

]
. (4)

It remains to define node features X∗ ∈ RV∗×X of the transformed graph. For each graph node
vi ∈ V , we use its original features as its node features:X∗[vi, :] := X[vi, :]. For each feature node
xk ∈ VX , we define its node feature as the average feature vector among the graph nodes vi that are
connected to feature node xk:

X∗[xk, :] :=
1

|EX ∩ (V × {xk})|
∑

vi:(vi,xk)∈EX

X[vi, :]. (5)

Our proposed graph transformation GRAPHITE is illustrated in Figure 1. In this example,
{v1, v2, v3, v4, v5} are the graph nodes, where v1, v2 belong to one class, and v3, v4, v5 belong to
the other class. Our proposed GRAPHITE adds feature nodes x1, x2, x3 to the graph. We can see
that feature node x1 facilitates homophilic message passing between v1, v2, and that feature node
x2 facilitates homophilic message passing among v3, v4, v5.

Theoretical guarantees. The transformed graph G∗ enjoys a few theoretical guarantees. First,
an important property of the feature edges is that every pair of nodes that share features can be
connected through feature edges within two hops, as formally stated in Observation 2. This ensures
that nodes with similar features are close to each other on the transformed graph G∗, facilitating
homophilic message passing.
Observation 2 (Two-hop indirect connection). For each pair of nodes u, v ∈ V , if they share at
least a feature (i.e., ∥X[vi, :] ∧ X[vj , :]∥∞ > 0), then vi and vj are two-hop neighbors on the
transformed graph G∗.

Furthermore, we theoretically show that our proposed graph transformation GRAPHITE can in-
crease the homophily of the graph without increasing the size of the graph much, as formally stated
in Theorem 3.
Theorem 3 (Efficient homophily booster). Given a heterophilic graph G = (V, E ,X), let G∗ :=
(V∗, E∗,X∗) denote the graph transformed by our proposed GRAPHITE. Under mild and realistic
assumptions in Appendix D.1, we have

hom(G∗) > hom(G), (6)
|V∗| ≤ O(|V|), |E∗| ≤ O(|E|). (7)

The effectiveness of our proposed GRAPHITE is also empirically validated in Section 4.3. As
shown in Figure 2, our proposed GRAPHITE significantly increases the homophily of originally
heterophilic graph.

3.3 NEURAL ARCHITECTURE

The transformed graph G∗ can be readily fed into existing GNNs to boost their performance, even
when the GNNs were originally designed for homophilic graphs, as demonstrated in Table 3. Mean-
while, to maximize the GNN performance on the transformed graph G∗, we introduce a GNN archi-
tecture specially designed for the transformed graph in this subsection.

To help the GNN distinguish graph nodes V from feature nodes VX , we use different edge weights
for different edges. As a reference weight, suppose that graph edges E have weight wE := 1. Let
wX > 0 denote the weight of feature edges EX . Following GCN Kipf & Welling (2016), we also
use self-loops in GNN message passing; let w0 > 0 denote the weight of self-loops.

Let du denote the weighted degree of each node u ∈ V∗. Specifically, for each graph node vi ∈ V ,

dvi := w0 +
∑

(vi,vj)∈E

wE +
∑

(vi,xk)∈EX

wX ; (8)
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and for each feature node xk ∈ VX ,

dxk
:= w0 +

∑
(vi,xk)∈EX

wX . (9)

Inspired by FAGCN Bo et al. (2021), we use a self-gating mechanism in GNN aggregation. For each
node u ∈ V∗, let hu ∈ Rm denote the embedding of node u before GNN aggregation, where m is
the embedding dimensionality. Then, the self-gating score αu,u′ between two nodes u, u′ ∈ V∗ is
defined as

αu,u′ := tanh
(aT(hu ∥ hu′) + b

τ

)
. (10)

where ∥ denotes the concatenation operation, a ∈ R2m and b ∈ R are learnable parameters, and
τ > 0 is a temperature hyperparameter.

Next, we describe our aggregation mechanism. For each node u ∈ V∗, let h′
u ∈ Rm denote the

embedding of node u after GNN aggregation. For each graph node vi ∈ V , we define

h′
vi :=

w0αvi,vi√
dvi

√
dvi

hvi +
∑

(vi,vj)∈E

αvi,vj√
dvi

√
dvj

hvj

+
∑

(vi,xj)∈EX

wXαvi,xk√
dvi

√
dxk

hxk
; (11)

and for each feature node xk ∈ VX , we define

h′
xk

:=
w0αxk,xk√
dxk

√
dxk

hxk
+

∑
(vi,xk)∈EX

wXαvi,xk√
dvi

√
dxk

hvi . (12)

Furthermore, we add a multi-layer perceptron (MLP) with residual connections after each GNN
aggregation. We use the GELU activation function Hendrycks & Gimpel (2016).

4 EXPERIMENTS

We conduct extensive experiments on both heterophilic and homophilic datasets to answer the fol-
lowing research questions:

RQ1: How does the proposed framework GRAPHITE compare with state-of-the-art methods?

RQ2: How much improvement can the proposed graph transformation achieve in the graph
homophily?

RQ3: Can the proposed graph transformation alone enhance the performance of existing ho-
mophilic GNNs?

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate GRAPHITE and various baseline methods across six real-world datasets. The
dataset statistics are summarized in Appendix B (Table 4). The reported homophily is the adjusted
homophily introduced in Platonov et al. (2024), which exhibits more desirable properties compared
to traditional edge/node homophily. We leverage adjusted homophily to categorize the datasets into
two groups: heterophilic and homophilic. Please see the appendix for dataset descriptions.

Training and evaluation. To benchmark GRAPHITE and compare it with the baseline methods,
we use node classification tasks with performance measured by classification accuracy on Actor,
Chameleon-Filtered (Chameleon-F), Squirrel-Filtered (Squirrel-F), Cora, and CiteSeer and by ROC-
AUC on Minesweeper following Platonov et al. (2023). For all baseline methods, we use the hy-
perparameters provided by the authors. For the evaluation of Actor, Chameleon-F and Squirrel-F,
we generate 10 random splits with a ratio of 48%/32%/20% as the training/validation/test set, re-
spectively, following Gu et al. (2024). For the evaluation of Minesweeper, we directly utilize the 10
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Table 1: Comparison with existing methods. GRAPHITE significantly outperforms state-of-the-art
methods on heterophilic graphs while achieving comparable accuracy with state-of-the-art methods
on homophilic graphs. Best results are marked in bold, and second best results are underlined.

Method Heterophilic Graphs Homophilic Graphs
ACTOR SQUIRREL-F CHAMELEON-F MINESWEEPER CORA CITESEER

MLP 35.04± 1.53 33.91± 1.55 38.44± 5.14 50.99± 1.47 75.45± 1.88 71.53± 0.70

ChebNet 34.40± 1.18 31.75± 3.42 34.30± 4.33 91.60± 0.44 81.58± 5.09 65.18± 8.37
GCN 30.21± 0.86 35.57± 1.86 40.06± 4.38 72.32± 0.93 87.50± 1.68 75.77± 0.96
SGC 29.26± 1.41 38.27± 2.16 41.40± 4.91 72.11± 0.95 88.05± 2.08 75.80± 1.75
GAT 28.86± 0.99 32.74± 3.02 40.11± 2.80 87.59± 1.35 87.11± 1.48 76.43± 1.31
GraphSAGE 34.95± 1.06 34.43± 2.68 39.33± 4.53 90.54± 0.66 87.90± 1.73 76.43± 1.19
GIN 28.29± 1.45 39.51± 2.83 40.17± 4.76 75.89± 2.09 85.65± 2.26 72.55± 1.78
APPNP 33.68± 1.26 33.75± 2.31 37.93± 4.33 67.36± 1.08 87.59± 1.68 75.90± 0.91
GCNII 34.78± 1.50 35.93± 2.87 41.56± 2.74 88.42± 0.85 87.20± 1.56 73.84± 0.91
GATv2 28.87± 1.39 32.49± 2.51 39.72± 6.60 88.85± 1.16 87.66± 1.52 76.59± 1.19
MixHop 35.40± 1.34 30.43± 2.33 37.93± 3.87 89.68± 0.57 84.53± 1.53 76.11± 0.83
TAGCN 34.92± 1.19 33.33± 2.37 41.01± 3.77 91.54± 0.56 88.38± 1.95 76.49± 1.41
DAGNN 33.15± 1.14 34.72± 2.55 38.94± 3.53 67.87± 1.26 88.27± 1.53 75.81± 0.90
JKNet 28.63± 0.94 40.81± 2.60 40.39± 4.85 81.00± 0.92 86.24± 0.85 73.11± 1.82
Virtual Node 30.71± 0.82 38.00± 2.28 41.45± 5.46 72.36± 0.98 87.24± 2.00 69.80± 6.89

H2GCN 34.20± 1.47 34.02± 3.15 40.89± 3.13 87.08± 0.82 76.89± 2.25 75.87± 1.02
FAGCN 36.18± 1.52 36.52± 1.72 39.83± 3.93 84.69± 2.05 88.66± 2.11 76.82± 1.48
OrderedGNN 35.64± 0.98 32.70± 2.42 38.38± 3.65 91.01± 0.50 84.81± 1.67 74.10± 1.62
GloGNN 19.80± 2.61 28.72± 2.63 40.17± 4.66 53.42± 1.47 73.02± 2.98 72.46± 2.09
GGCN 32.76± 1.39 35.06± 5.65 34.08± 3.44 84.76± 1.84 86.39± 1.93 75.36± 1.99
GPRGNN 35.42± 1.33 34.97± 2.83 40.50± 4.55 83.94± 0.98 88.86± 1.42 76.49± 1.00
ALT 33.10± 1.38 37.28± 1.49 39.61± 3.36 89.06± 0.64 88.82± 2.02 76.88± 1.20

NodeFormer 29.26± 2.31 24.29± 2.60 34.92± 4.08 77.71± 3.50 87.44± 1.37 75.20± 1.27
SGFormer 25.89± 0.80 34.54± 2.96 42.79± 4.06 52.06± 0.50 86.24± 1.58 70.74± 1.25
DIFFormer 26.31± 1.19 33.17± 2.84 39.16± 4.10 69.25± 0.93 86.61± 3.04 76.65± 1.52

GRAPHITE (Ours) 37.69± 1.57 43.06± 2.89 45.08± 4.04 94.78± 0.41 88.23± 1.65 76.41± 1.57

random splits provided by the original paper Platonov et al. (2023). For the evaluation of Cora and
CiteSeer, we follow Luan et al. (2021); Chien et al. (2020) to randomly generate 10 random splits
with a ratio of 60%/20%/20% as the training/validation/test set, respectively. For each experiment,
we report the mean and the standard deviation of the performance metric across the corresponding
10 random splits. Please see the appendix for additional experimental settings.

4.2 MAIN RESULTS

To answer RQ1, we compare the proposed method GRAPHITE with 25 state-of-the-art methods on
six heterophilic and homophilic graphs. The results are shown in Table 1.

As shown in Table 1, GRAPHITE achieves significant performance gains (p-value<0.1) over
prior state-of-the-art GNN methods on heterophilic graphs while maintaining competitive accu-
racy on homophilic graphs. Specifically, GRAPHITE outperforms the best baseline methods by
4.17%, 5.23%, 5.35% and 3.47% on ACTOR, SQUIRREL-F, CHEMELEON-F and MINESWEEPER,
respectively. While some existing models perform well on individual datasets, they often strug-
gle on others, highlighting their insufficient consistency. In contrast, GRAPHITE demonstrates the
best results across all four heterophilic benchmarks. Another interesting observation is that while
GRAPHITE is built upon FAGCN Bo et al. (2021), it significantly surpasses FAGCN, demonstrating
the effectiveness of the beneficial effect of graph transformation and feature edges.

Discussion. It is worth noting that most of the baseline methods cannot achieve better results com-
pared to MLP on ACTOR, which can be explained by the fact that these methods typically treat
node features and graph structure as joint input without explicitly decoupling them. The weak struc-
tural homophily exhibited by ACTOR makes typical GNNs fail to capture important feature signals,
reinforcing the importance of our graph transformation strategy that boosts feature homophily sig-
nificantly. For SQUIRREL-F, we find that JKNet is the best among baselines. This observation
reveals that structure information is very important within SQUIRREL-F since JKNet aggregates
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feature knowledge from multi-hop neighbors to learn structure-aware representation. This finding
also explains the success of GRAPHITE since the useful multi-hop information in SQUIRREL-F can
be propagated even more efficiently through the constructed feature edges.

As another example, SGFormer performs the best on CHAMELEON-F among baseline methods.
We argue that CHAMELEON-F needs a considerable amount of global messages and graph trans-
formers are experts at capturing this type of information. Compared with NodeFormer and DIF-
Former, SGFormer is the most advanced graph transformer utilizing simplified graph attention that
strikes a good balance between global structural information and feature signal, preventing the over-
globalizing issue Xing et al. (2024). Similarly, GRAPHITE transforms the original graph into a
form that facilitates global message exchange by the introduction of feature edges. As a final re-
mark, although GRAPHITE is designed specifically to deal with heterophilic datasets, GRAPHITE
still maintains competitive accuracy on homophilic datasets (CORA and CITESEER), achieving re-
sults that are on par with the best existing methods.

4.3 HOMOPHILY ANALYSIS

Table 2: Relative improvement ratio of fea-
ture homophily and adjusted homophily across
datasets. Larger values represent more significant
homophily boost after applying GRAPHITE. See
Figure 2 for visualization.

Dataset ∆H feature(G) ∆Hadj(G)
ACTOR 2.79 28.67
SQUIRREL-F 10.61 3.15
CHAMELEON-F 18.39 5.02
MINESWEEPER 1.41 11.23

To answer RQ2, we conduct a homophily anal-
ysis across heterophilic datasets under two ho-
mophily metrics: feature homophily and ad-
justed homophily, whose formal definition can
be found in Appendix C. As shown in Figure 2,
we can observe a significant boost in both two
homophilily metrics after applying GRAPHITE
across heterophilic datasets. The relative im-
provement ratio is presented in Table 2, where
∆H ·(G) is the ratio between the corresponding
homophily metric computed on original graph
and the graph after applying GRAPHITE.

Discussion. Overall, GRAPHITE effectively
boosts both homophily metrics across all het-
erophilic datasets. Specifically, Squirrel-F and Chameleon-F demonstrate significant boosts in terms
of feature homophily. This is mainly because their discrete features directly correspond to specific
topics and each feature edge will contribute much higher feature similarity than usual edges. On
the other hand, Actor and Minesweeper showcase much higher adjusted homophily after apply-
ing GRAPHITE. For Actor, this favorable behavior can be attributed to the high correlation between
page co-occurrences and node labels; while for Minesweeper, the sum of label-specific node degrees
(defined in Equation (14)) increases much due to the transformation performed by GRAPHITE.

Baseline methods. In our experiments, we consider a wide range of GNN baselines, including MLP
(structure-agnostic), homophilic GNNs, heterophilic GNNs, and Graph Transformers. The full list
is shown in Appendix B.2.

Table 3: Effectiveness of the proposed graph transformation. GRAPHITE transformed graphs alone
can already enhance the performance of homophilic GNNs.

Dataset ACTOR MINESWEEPER
+GRAPHITE? ✗ ✓ ✗ ✓

GCN 30.21± 0.86 34.83± 1.28 72.32± 0.93 75.38± 1.56
GAT 28.86± 0.99 32.09± 1.35 87.59± 1.35 88.66± 0.88
GraphSAGE 34.95± 1.06 35.09± 1.06 90.54± 0.66 90.85± 0.67
JKNet 28.63± 0.94 35.96± 1.40 81.00± 0.92 85.56± 2.59
GIN 28.29± 1.45 33.75± 1.83 75.89± 2.09 87.07± 1.71

4.4 ABLATION STUDIES

To further demonstrate the effectiveness of our proposed graph transformation GRAPHITE and
answer RQ3, we compare the performance of homophilic GNNs on the original graph and that
on the transformed graph. In this experiment, we use two larger-scale datasets, ACTOR and
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MINESWEEPER, and five representative homophilic GNNs, GCN, GAT, GraphSAGE, JKNet, and
GIN. The results are presented in Table 3.

From Table 3, we can see that our proposed GRAPHITE consistently improves the performance of
the five representative homophilic GNNs on both datasets, even though these GNNs are not specially
designed for modeling feature nodes. For example, the accuracy of GAT on ACTOR is enhanced
from 30.21% to 34.83%, which is a relative improvement of 15.29%. The results demonstrate
that our proposed graph transformation GRAPHITE can significantly enhance the performance of
homophilic GNNs on originally heterophilic graphs, echoing the fact that our proposed graph trans-
formation can significantly increase the graph homophily.

5 RELATED WORK

Heterophily. A substantial body of research has explored the challenges of heterophily in graph
neural networks (GNNs). Many early approaches sought to improve information aggregation,
such as MixHop Abu-El-Haija et al. (2019), which mixes different-hop neighborhood features,
and GPRGNN Chien et al. (2020), which employs generalized PageRank propagation for adaptive
message passing. Other methods focus on explicit heterophilic adaptations, such as H2GCN Zhu
et al. (2020), which separates ego- and neighbor-embeddings, and FAGCN Bo et al. (2021), which
learns optimal representations via frequency-adaptive filtering. Additional works, including Or-
deredGNN Song et al. (2023), GloGNN Li et al. (2022), and GGCN Yan et al. (2022), leverage
structural ordering, global context, and edge corrections, respectively, to enhance performance on
heterophilic graphs. Recent advances explore alternative formulations, such as component-wise sig-
nal decomposition (ALT Xu et al. (2023)) and adaptive residual mechanisms Xu et al.; Yan et al.
(2024) for greater flexibility. Beyond architectural innovations, rigorous benchmarking efforts Lim
et al. (2021); Zhu et al. (2024); Platonov et al. (2023) have been introduced to standardize evalua-
tions and assess generalization across diverse graph properties. A broader synthesis of heterophilic
GNN techniques can be found in recent surveys Zheng et al. (2022); Zhu et al. (2023); Luan et al.
(2024); Gong et al. (2024).

Over-squashing. A problem related to heterophily is over-squashing. The over-squashing problem
in Message Passing Neural Networks (MPNNs) arises when long-range information is exponen-
tially compressed, preventing effective dissemination across the graph Alon & Yahav (2020); Shi
et al. (2023b). A primary research direction addresses this issue by identifying topological bot-
tlenecks and modifying graph connectivity. Topping et al. (2021) established an initial framework
linking oversquashing to graph Ricci curvature, demonstrating that negatively curved edges act as
bottlenecks. Building on this idea, subsequent works have developed rewiring strategies inspired by
curvature-based principles Nguyen et al. (2023); Shi et al. (2023a). Beyond curvature, Black et al.
(2023) introduced a perspective using effective resistance. Another line of research leverages spec-
tral methods to counteract over-squashing, with notable approaches including spectral gaps Arnaiz-
Rodrı́guez et al. (2022), expander graph constructions Deac et al. (2022), and first-order spectral
rewiring Karhadkar et al. (2022). More recently, Di Giovanni et al. (2023) provided a comprehen-
sive analysis of the factors contributing to oversquashing. Additional solutions explore advanced
rewiring strategies and novel message-passing paradigms Barbero et al. (2023); Qian et al. (2023);
Behrouz & Hashemi (2024).

6 CONCLUSION

In this paper, we propose GRAPHITE, a simple yet efficient framework to address the heterophily
issue in node classification. By introducing feature nodes that connect to graph nodes with corre-
sponding discrete features, we can solve the heterophily issue by increasing the graph homophily
ratio. Through theoretical analysis and empirical study, we validate that GRAPHITE can indeed
effectively increase the graph homophily. Our extensive experiments demonstrate that GRAPHITE
consistently outperforms state-of-the-art methods, achieving significant performance gains on het-
erophilic graph datasets and comparable performance on homophilic graph datasets. An interesting
future direction would be extending the proposed graph transformation to general graphs with con-
tinuous node features.
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Ethics Statement. Our study is based entirely on publicly available graph datasets commonly
used in the GNN literature and does not involve private or sensitive information. We develop a
graph transformation framework that explicitly increases graph homophily to enable more effective
message passing. To ensure methodological soundness and reproducibility, we provide both theoret-
ical analyses and extensive empirical evaluations across heterophilic datasets. The future release of
code and data splits is intended solely for academic research to advance the understanding of graph
machine learning and to support future work on graph neural networks, and are not designed for
sensitive or high-stakes applications.

Reproducibility Statement. We include the conceptual framework, transformation steps, method
details and evaluation setup in the paper and appendix. To ensure reproducibility, we will release
the full implementation and code scripts upon acceptance for verification.
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addressing oversquashing in gnns. arXiv preprint arXiv:2210.11790, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Gaotang Li, Marlena Duda, Xiang Zhang, Danai Koutra, and Yujun Yan. Interpretable sparsification
of brain graphs: Better practices and effective designs for graph neural networks. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1223–
1234, 2023a.

Ting-Wei Li, Ruizhong Qiu, and Hanghang Tong. Model-free graph data selection under distribution
shift, 2025.

Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
Finding global homophily in graph neural networks when meeting heterophily. In International
Conference on Machine Learning, pp. 13242–13256. PMLR, 2022.

Xiao Li, Li Sun, Mengjie Ling, and Yan Peng. A survey of graph neural network based recommen-
dation in social networks. Neurocomputing, 549:126441, 2023b.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34:20887–20902, 2021.

Xiao Lin, Zhining Liu, Dongqi Fu, Ruizhong Qiu, and Hanghang Tong. BackTime: Backdoor
attacks on multivariate time series forecasting. In Advances in Neural Information Processing
Systems, volume 37, 2024.

Xiao Lin, Zhining Liu, Ze Yang, Gaotang Li, Ruizhong Qiu, Shuke Wang, Hui Liu, Haotian Li,
Sumit Keswani, Vishwa Pardeshi, et al. Moralise: A structured benchmark for moral alignment
in visual language models, 2025.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lihui Liu, Zihao Wang, Ruizhong Qiu, Yikun Ban, Eunice Chan, Yangqiu Song, Jingrui He, and
Hanghang Tong. Logic query of thoughts: Guiding large language models to answer complex
logic queries with knowledge graphs, 2024a.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
338–348, 2020.

Zhining Liu, Zhichen Zeng, Ruizhong Qiu, Hyunsik Yoo, David Zhou, Zhe Xu, Yada Zhu, Kommy
Weldemariam, Jingrui He, and Hanghang Tong. Topological augmentation for class-imbalanced
node classification, 2023.

Zhining Liu, Ruizhong Qiu, Zhichen Zeng, Hyunsik Yoo, David Zhou, Zhe Xu, Yada Zhu, Kommy
Weldemariam, Jingrui He, and Hanghang Tong. Class-imbalanced graph learning without class
rebalancing. In Proceedings of the 41st International Conference on Machine Learning, 2024b.

Zhining Liu, Ruizhong Qiu, Zhichen Zeng, Yada Zhu, Hendrik Hamann, and Hanghang Tong. AIM:
Attributing, interpreting, mitigating data unfairness. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 2014–2025, 2024c.

Zhining Liu, Ze Yang, Xiao Lin, Ruizhong Qiu, Tianxin Wei, Yada Zhu, Hendrik Hamann, Jin-
grui He, and Hanghang Tong. Breaking silos: Adaptive model fusion unlocks better time series
forecasting. In Proceedings of the 42nd International Conference on Machine Learning, 2025.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Is heterophily a real nightmare for graph neural networks to do node
classification? arXiv preprint arXiv:2109.05641, 2021.

Sitao Luan, Chenqing Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang, Minkai Xu,
Xiao-Wen Chang, Doina Precup, Rex Ying, et al. The heterophilic graph learning hand-
book: Benchmarks, models, theoretical analysis, applications and challenges. arXiv preprint
arXiv:2407.09618, 2024.

Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh
Nguyen. Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In In-
ternational Conference on Machine Learning, pp. 25956–25979. PMLR, 2023.

Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Faloutsos. Netprobe: a fast and
scalable system for fraud detection in online auction networks. In Proceedings of the 16th inter-
national conference on World Wide Web, pp. 201–210, 2007.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of gnns under heterophily: Are we really making progress? arXiv
preprint arXiv:2302.11640, 2023.

Oleg Platonov, Denis Kuznedelev, Artem Babenko, and Liudmila Prokhorenkova. Characterizing
graph datasets for node classification: Homophily-heterophily dichotomy and beyond. Advances
in Neural Information Processing Systems, 36, 2024.

Chendi Qian, Andrei Manolache, Kareem Ahmed, Zhe Zeng, Guy Van den Broeck, Mathias Niepert,
and Christopher Morris. Probabilistically rewired message-passing neural networks. arXiv
preprint arXiv:2310.02156, 2023.

Ruizhong Qiu and Hanghang Tong. Gradient compressed sensing: A query-efficient gradient esti-
mator for high-dimensional zeroth-order optimization. In Proceedings of the 41st International
Conference on Machine Learning, 2024.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A differentiable meta solver for combina-
torial optimization problems. In Advances in Neural Information Processing Systems, volume 35,
pp. 25531–25546, 2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Ruizhong Qiu, Dingsu Wang, Lei Ying, H Vincent Poor, Yifang Zhang, and Hanghang Tong. Re-
constructing graph diffusion history from a single snapshot. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1978–1988, 2023.

Ruizhong Qiu, Jun-Gi Jang, Xiao Lin, Lihui Liu, and Hanghang Tong. TUCKET: A tensor time
series data structure for efficient and accurate factor analysis over time ranges. Proceedings of the
VLDB Endowment, 17(13), 2024.

Ruizhong Qiu, Gaotang Li, Tianxin Wei, Jingrui He, and Hanghang Tong. Saffron-1: Safety infer-
ence scaling, 2025a.

Ruizhong Qiu, Zhe Xu, Wenxuan Bao, and Hanghang Tong. Ask, and it shall be given: On the Tur-
ing completeness of prompting. In 13th International Conference on Learning Representations,
2025b.

Ruizhong Qiu, Weiliang Will Zeng, Hanghang Tong, James Ezick, and Christopher Lott. How
efficient is LLM-generated code? A rigorous & high-standard benchmark. In 13th International
Conference on Learning Representations, 2025c.
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A USE OF LARGE LANGUAGE MODELS

We made limited and controlled use of Large Language Models, e.g. ChatGPT, solely for stylistic
refinement and improving readability of the text. All scientific content, methodology, experiments,
and conclusions were fully conceived and validated by the authors. The LLM’s role was purely
editorial and does not constitute co-authorship.

B EXPERIMENTAL SETTINGS (CONT’D)

B.1 DATASETS (CONT’D)

For heterophilic group, we consider the following datasets, which are widely used as benchmarks
for studying graph learning methods under heterophilic settings.

• ACTOR Pei et al. (2020): Actor dataset is an actor-only induced subgraph of the film dataset
introduced by Tang et al. (2009). The nodes are actors and the edges denote co-occurrence
on the same Wikipedia page. The node features are keywords on the pages and we classify
nodes into five categories.

• SQUIRREL-F Platonov et al. (2023): Squirrel-Filtered (Squirrel-F) is a page-page dataset.
It is a subset of the Wiki dataset Rozemberczki et al. (2021) that focus on the topic related
to squirrel. Nodes are web pages and edges are mutual links between pages. The node
features are important keywords in the pages and we classify nodes into five categories in
terms of traffic of the webpage.

• CHAMELEON-F Platonov et al. (2023): Chameleon-Filtered (Chameleon-F) is a page-page
dataset. It is a subset of the Wiki dataset Rozemberczki et al. (2021) that focus on the topic
related to chameleon. Nodes are web pages and edges are mutual links between pages.
The node features are important keywords in the pages and we classify nodes into five
categories in terms of traffic of the webpage.

• MINESWEEPER Platonov et al. (2023): Minesweeper dataset is a synthetic dataset that sim-
ulates a Minesweeper game with 100x100 grid. Each node is connected to its neighboring
nodes where 20% nodes are selected as mines at random. Node features are numbers of
neighboring mines and the goal is to predict whether each test node is mine. These datasets
are widely used as benchmarks for studying graph learning methods under heterophilic
settings.

For the homophilic group, we consider the following datasets, which are standard homophilic net-
work benchmarks.

• CORA Sen et al. (2008) : Cora dataset is a citation network, where nodes represent sci-
entific papers in the machine learning field, and edges correspond to citation relationships
between these papers. Each node is associated with a set of features that describe the paper,
represented as a bag-of-words model. The task for this dataset is to classify each paper into
one of seven categories, reflecting the area of research the paper belongs to.

• CITESEER Sen et al. (2008): CiteSeer dataset is a citation network of scientific papers. It
consists of research papers as nodes, with citation links forming the edges between them.
Each node is associated with a set of features derived from the paper’s content, which is a
bag-of-words representation of the paper’s text. The task for this dataset is to classify each
paper into one of six categories, each representing a specific field of study.

B.2 BASELINE METHODS (CONT’D)

We briefly introduce GNN-based baseline methods as follows.

The first category is homophilic GNNs, which are originally designed under the homophily assump-
tion.
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Table 4: Summary of dataset statistics. We use four heterophilic graphs and two homophilic graphs.

Statistic Heterophilic Graphs Homophilic Graphs
ACTOR SQUIRREL-F CHAMELEON-F MINESWEEPER CORA CITESEER

# Nodes 7600 2223 890 10000 2708 3327
# Edges 33544 46998 8854 39402 5429 4732
# Features 931 2089 2325 7 1433 3703
# Classes 5 5 5 2 7 6
Homophily 0.0028 0.0086 0.0295 0.0094 0.7711 0.6707

• ChebNet Defferrard et al. (2016): Uses Chebyshev polynomials to approximate graph con-
volutions.

• GCN Kipf & Welling (2016): Employs a first-order Chebyshev approximation for spectral
graph convolutions.

• SGC Wu et al. (2019): Simplifies GCN by removing non-linearities and collapsing weight
matrices for efficiency.

• GAT Veličković et al. (2018): Introduces attention mechanisms to assign adaptive impor-
tance to edges.

• GraphSAGE Hamilton et al. (2017): Uses several aggregators for inductive graph learning.
• GIN Xu et al. (2018a): Employs sum-based aggregation to maximize graph structure ex-

pressiveness.
• APPNP Gasteiger et al. (2018): Combines personalized PageRank with neural propagation.
• GCNII Chen et al. (2020): Extends GCN with residual connections and identity mapping

for deep GNN training.
• GATv2 Brody et al. (2021): Enhances GAT with dynamic attention coefficients for flexible

neighbor weighting.
• MixHop Abu-El-Haija et al. (2019): Aggregates multi-hop neighborhood features by mix-

ing different powers of adjacency matrices.
• TAGCN Du et al. (2017): Introduces trainable polynomial filters for adaptive, multi-scale

feature extraction.
• DAGNN Liu et al. (2020): Uses dual attention to decouple message aggregation and trans-

formation, improving depth scalability.
• JKNet Xu et al. (2018b): Uses a jumping knowledge mechanism to combine features from

different layers adaptively. We default the backbone GNN model to GCN.
• Virtual Node Gilmer et al. (2017): Introduces an auxiliary global node to facilitate message

passing. We default the backbone GNN model to GCN.

The second category is heterophilic GNNs, which are designed for graphs where connected nodes
often have different labels.

• H2GCN Zhu et al. (2020): Enhances GNNs by ego-/neighbor-embedding seperation,
higher-order neighbors and intermediate representation combinations.

• FAGCN Bo et al. (2021): Uses frequency adaptive filtering to learn optimal graph repre-
sentations.

• OrderedGNN Song et al. (2023): Aligns the order to encode neighborhood information and
avoids feature mixing.

• GloGNN Li et al. (2022): Incorporates global structural information to enhance graph
learning beyond local neighborhoods.

• GGCN Yan et al. (2022): Utilizes structure/feature-based edge correction to combat over-
smoothing and heterophily.

• GPRGNN Chien et al. (2020): Introduces generalized PageRank propagation to capture the
graph structure.
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• ALT Xu et al. (2023): Decomposes graph into components, extracts signals from these
components and adaptively integrate these signals.

The last category is graph transformers, which adapt transformer architectures to graph data and
look beyond local neighborhood aggregation.

• NodeFormer Wu et al. (2022): Introduces all-pair message passing on layer-specific adap-
tive latent graphs, enabling global feature propagation with linear complexity.

• SGFormer Wu et al. (2024a): Develops a graph encoder backbone that efficiently computes
all-pair interactions with one-layer attentive propagation.

• DIFFormer Wu et al. (2023): Proposes an energy-constrained diffusion model, leading to
variants that are efficient and capable of capturing complex structures.

B.3 TRAINING & EVALUATION (CONT’D)

For our method, we use wX ∈ {0.01, 0.1, 0.6, 8}, w0 ∈ {0.1, 0.2, 0.3, 0.5, 1, 8}, τ ∈ {0.01, 0.1, 1},
and dropout rate 0.2. We use the GNN architecture described in the method section with 8 GNN lay-
ers with hidden dimensionality 512 and add a two-layer MLP after each GNN layer for heterophilic
graphs and use FAGCN for homophilic graphs. We use original node features as described in Sec-
tion 3.2, except that we use zeros as the features of graph nodes on Squirrel-F and that we normalize
the features of graph nodes on Cora and CiteSeer after computing the features of feature nodes. We
train the GNN with learning rate 0.00003 for 1000 steps using the Adam optimizer Kingma & Ba
(2014). Experiments were implemented in PyTorch 2.7.0 and Deep Graph Library (DGL) 2.4.0 and
were run on Intel Xeon CPU @ 2.20GHz with 96GB memory and NVIDIA Tesla V100 32GB GPU.

C DEFINITION OF HOMOPHILY METRICS

To measure to what extent GRAPHITE can boost graph homophily on heterophlic datasets, we
consider two popular homophily metrics: feature homophily Jin et al. (2022) and adjusted ho-
mophily Platonov et al. (2024). Formally, given a graph G,feature homophily H feature is defined
as follows:

H feature(G) := 1

|E|
∑

(vi,vj)∈E

sim(vi, vj), (13)

where sim(vi, vj) := cos(X[vi, :],X[vj , :]) is the cosine-similarity computed between features of
nodes vi, vj . This metric is a variant of the generalized edge homophily ratio Hedge proposed by Jin
et al. (2022), which measures the feature similarity between each of the connected node pairs in the
graph dataset. Then, the adjusted homophily (Hadj(G)) is defined as follows:

Hadj(G) :=
Hedge(G)−

∑C
k=1 D

2
c/(2|E|)2

1−
∑C

c=1 D
2
c/(2|E|)2

, (14)

where C denotes the number of classes and Hedge(G) is edge homophily, which is defined similarly
as Equation (13) with the similarity function sim(vi, vj) = 1{yvi

=yvj
}, and

Dc :=
∑

v:yv=c

deg(v) (15)

is the sum of node degrees with a specific node label c. Note that yvi stands for the node label of
graph node vi. Since we do not have node labels for the feature nodes when computing adjusted
homophily, we assign them “soft label”, which is a uniform probability distribution over classes,
obtained by aggregating the labels of its 1-hop neighbors.

D THEORETICAL ANALYSIS

D.1 ASSUMPTIONS

In this subsection, we introduce the assumptions of our theoretical analysis, which are mild and
realistic.
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Given a graph G = (V, E ,X) with E ≠ ∅ and X ∈ {0, 1}V×X , we define the feature similarity
metric as sim(vi, vj) := ∥X[vi, :] ∧ X[vj , :]∥∞ and use the feature homophily as the homophily
metric:

hom(G) := 1

|E|
∑

(vi,vj)∈E

sim(vi, vj). (16)

Furthermore, we assume that the original graph G is heterophilic. That is, we have hom(G) < 1
while there exists a pair of nodes, vi, vj ∈ V (vi ̸= vj), such that sim(vi, vj) > 0 but (vi, vj) /∈ E .

Besides that, we assume that the given graph G does not have too dense features. Formally, we
assume that |X | ≤ O(|V|) and that ∥X∥0 ≤ O(|E|). For the transformed graph G∗, we assume that
every feature is used: for any feature k ∈ X , there exists a graph node vi ∈ V such that X[vi, k] = 1.

D.2 TECHNICAL LEMMA

Here, we prove a technical lemma that we will use later.

Lemma 4. Let A,B ⊂ R be two nonempty, finite multisets with z′ > 1
|A|

∑
z∈A z for all z′ ∈ B.

Then,

1

|A ⊔ B|
∑

z∈A⊔B
z >

1

|A|
∑
z∈A

z.

Proof. To simplify notation, let

µ :=
1

|A|
∑
z∈A

z, (17)

∆ := minB − µ > 0. (18)

Then,

1

|A ⊔ B|
∑

z∈A⊔B
z − 1

|A|
∑
z∈A

z (19)

=
1

|A|+ |B|

(∑
z∈A

z +
∑
z∈B

z

)
− 1

|A|
∑
z∈A

z (20)

=
1

|A|+ |B|

(
|A| · 1

|A|
∑
z∈A

z +
∑
z∈B

z

)
− 1

|A|
∑
z∈A

z (21)

=
1

|A|+ |B|

(
|A| · µ+

∑
z∈B

z

)
− µ (22)

≥ 1

|A|+ |B|

(
|A| · µ+

∑
z∈B

minB
)
− µ (23)

=
1

|A|+ |B|
(
|A| · µ+ |B| ·minB

)
− µ (24)

=
1

|A|+ |B|
(
|B| ·minB − |B| · µ

)
(25)

=
|B|

|A|+ |B|
(minB − µ) (26)

=
|B|

|A|+ |B|
∆ > 0. (27)

It follows that
1

|A ⊔ B|
∑

z∈A⊔B
z >

1

|A|
∑
z∈A

z.
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D.3 PROOF OF THEOREM 1

Homophily. Since the original graph G is homophilic, then there exists a pair of nodes, vi, vj ∈ V
(vi ̸= vj), such that sim(vi, vj) = ∥X[vi, :] ∧X[vj , :]∥∞ > 0 but (vi, vj) /∈ E . According to the
definition of E†, we know that (vi, vj) ∈ E† \ E ̸= ∅, so E† \ E ̸= ∅.

Furthermore, for any (vi, vj) ∈ E† \ E , since sim(vi, vj) = ∥X[vi, :] ∧X[vj , :]∥∞ > 0, then there
exists a feature k ∈ X such that X[vi, k]∧X[vj , k] > 0. Since the feature matrix X is binary, then
we must have

X[vi, k] = 1, X[vj , k] = 1. (28)
It follows that

sim(vi, vj) = ∥X[vi, :] ∧X[vj , :]∥∞ (29)

= max
k′∈X

|X[vi, k
′] ∧X[vj , k

′]| (30)

≥ |X[vi, k] ∧X[vj , k]| (31)
= |1 ∧ 1| = 1. (32)

Since hom(G) < 1, then
sim(vi, vj) ≥ 1 > hom(G). (33)

Therefore, by Lemma 4 with
A := {{sim(vi, vj) : (vi, vj) ∈ E}}, (34)

B := {{sim(vi, vj) : (vi, vj) ∈ E† \ E}}, (35)
we have

hom(G†) =
1

|E†|
∑

(vi,vj)∈E†

sim(vi, vj) (36)

=
1

|E ⊔ (E† \ E)|
∑

(vi,vj)∈E⊔(E†\E)

sim(vi, vj) (37)

=
1

|A ⊔ B|
∑

z∈A⊔B
z (38)

>
1

|A|
∑
z∈A

z (39)

=
1

|E|
∑

(vi,vj)∈E

sim(vi, vj) (40)

= hom(G). (41)

Number of edges. Since there are |V| nodes in total, then the total number of node pairs is
(|V|

2

)
.

Recall that E† \ E is the set of added edges. It follows that

|E†| − |E| = |E† \ E| ≤
(
|V|
2

)
(42)

=
|V|(|V| − 1)

2
= O(|V|2). (43)

D.4 PROOF OF OBSERVATION 2

Since sim(vi, vj) = ∥X[vi, :] ∧ X[vj , :]∥∞ > 0, then there exists a feature k ∈ X such that
X[vi, k] ∧X[vj , k] > 0. Since the feature matrix X is binary, then we must have

X[vi, k] = 1, X[vj , k] = 1. (44)
This implies that (vi, xk) ∈ E∗ and that (vj , xk) ∈ E∗. Hence, there exists a length-2 path vi →
xk → vj connecting graph nodes vi and vj . Therefore, vi and vj are two-hop neighbors of each
other.
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D.5 PROOF OF THEOREM 3

Homophily. Since the original graph G is homophilic, then there exists a pair of nodes, vi, vj ∈ V
(vi ̸= vj), such that sim(vi, vj) = ∥X[vi, :]∧X[vj , :]∥∞ > 0 but (vi, vj) /∈ E . Since sim(vi, vj) =
∥X[vi, :] ∧ X[vj , :]∥∞ > 0, then there exists a feature k ∈ X such that X[vi, k] ∧ X[vj , k] > 0.
Since the feature matrix X is binary, then we must have

X[vi, k] = 1, X[vj , k] = 1. (45)

This implies that (vi, xk) ∈ E∗ \ E and that (vj , xk) ∈ E∗ \ E . Thus, E∗ \ E is nonempty.

Furthermore, for any feature node xk ∈ VX , since any feature edge (vi, xk) ∈ EX ensures
X[vi, k] = 1, then we have

X∗[xk, k] =
1

|EX ∩ (V × {xk})|
∑

vi:(vi,xk)∈EX

X[vi, k] (46)

=
1

|EX ∩ (V × {xk})|
∑

vi:(vi,xk)∈E

1 (47)

=
1

|EX ∩ (V × {xk})|
∑

vi:(vi,xk)∈E∩(V×{xk})

1 (48)

= 1. (49)

Finally, for any added feature edge (vi, xk) ∈ E∗ \ E = EX ,

sim(vi, xk) = ∥X[vi, :] ∧X[xk, :]∥∞ (50)

= max
k′∈X

|X[vi, k
′] ∧X[xk, k

′]| (51)

≥ |X[vi, k] ∧X[xk, k]| (52)
= |1 ∧ 1| = 1. (53)

Since hom(G) < 1, then

sim(vi, xk) ≥ 1 > hom(G). (54)

Therefore, by Lemma 4 with

A := {{sim(vi, vj) : (vi, vj) ∈ E}}, (55)
B := {{sim(vi, xk) : (vi, xk) ∈ EX }}, (56)

we have

hom(G∗) =
1

|E∗|
∑

(u,u′)∈E∗

sim(u, u′) (57)

=
1

|E ⊔ EX |
∑

(u,u′)∈E⊔EX

sim(u, u′) (58)

=
1

|A ⊔ B|
∑

z∈A⊔B
z (59)

>
1

|A|
∑
z∈A

z (60)

=
1

|E|
∑

(vi,vj)∈E

sim(vi, vj) (61)

= hom(G). (62)

Number of nodes. Since |X | ≤ O(|V|), then

|VX | = |X | ≤ O(V). (63)
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1218
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It follows that

|V∗| = |V|+ |VX | (64)
≤ |V|+O(|V|) (65)
= O(|V|). (66)

Number of edges. Since X is a binary matrix, then ∥X∥1 = ∥X∥0 ≤ O(|E|). Hence,

|EX | =
∑
vi∈V

∑
xk∈VX

1[(vi,xk)∈EX ] (67)

=
∑
vi∈V

∑
k∈X

1[(vi,xk)∈EX ] (68)

=
∑
vi∈V

∑
k∈X

1[X[vi,k]=1] (69)

=
∑
vi∈V

∑
k∈X

X[vi, k] (70)

=
∑
vi∈V

∑
k∈X

|X[vi, k]| (71)

= ∥X∥1 = ∥X∥0 ≤ O(|E|). (72)

It follows that

|E∗| = |E|+ |EX | (73)
≤ |E|+O(|E|) (74)
= O(|E|). (75)
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