

GRAPH HOMOPHILY BOOSTER: RETHINKING THE ROLE OF DISCRETE FEATURES ON HETEROPHILIC GRAPHS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Graph neural networks (GNNs) have emerged as a powerful tool for modeling
 014 graph-structured data, demonstrating remarkable success in many real-world ap-
 015 plications such as complex biological network analysis, neuroscientific analysis,
 016 and social network analysis. However, existing GNNs often struggle with het-
 017 erophilic graphs, where connected nodes tend to have dissimilar features or labels.
 018 While numerous methods have been proposed to address this challenge, they pri-
 019 marily focus on architectural designs without directly targeting the root cause of
 020 the heterophily problem. These approaches still perform even worse than the sim-
 021 plest MLPs on challenging heterophilic datasets. For instance, our experiments
 022 show that 21 latest GNNs still fall behind the MLP on the ACTOR dataset. This
 023 critical challenge calls for an innovative approach to addressing graph heterophily
 024 beyond architectural designs. To bridge this gap, we propose and study a new
 025 and unexplored paradigm: *directly* increasing the graph homophily via a carefully
 026 designed graph transformation. In this work, we present a simple yet effective
 027 framework called *GRApH homoPHilly boostEr* (GRAPHITE) to address graph
 028 heterophily. To the best of our knowledge, this work is the first method that ex-
 029 plicitly transforms the graph to directly improve the graph homophily. Stemmed
 030 from the exact definition of homophily, our proposed GRAPHITE creates *feature*
 031 *nodes* to facilitate homophilic message passing between nodes that share similar
 032 features. Furthermore, we both theoretically and empirically show that our pro-
 033 posed GRAPHITE significantly increases the homophily of originally heterophilic
 034 graphs, with only a slight increase in the graph size. Extensive experiments on
 035 challenging datasets demonstrate that our proposed GRAPHITE significantly out-
 036 performs state-of-the-art methods on heterophilic graphs while achieving compa-
 037 rable accuracy with state-of-the-art methods on homophilic graphs. Furthermore,
 038 our proposed graph transformation alone can already enhance the performance of
 039 homophilic GNNs on heterophilic graphs, even though they were not originally
 040 designed for heterophilic graphs. We will release our code upon the publication
 041 of this paper.

1 INTRODUCTION

043 Graph neural networks (GNNs) have emerged as a powerful class of models for learning on topo-
 044 logically structured data. Their ability to incorporate graph topology and node-level attributes has
 045 enabled them to achieve state-of-the-art results in a wide range of applications. These include pro-
 046 tein function prediction, where GNNs model complex biological networks (You et al., 2021; Réau
 047 et al., 2023); neuroscientific analysis, where they are used to model brain networks (Li et al., 2023a);
 048 and social network analysis, where they help uncover patterns among users (Li et al., 2023b).

049 A critical challenge that many GNNs are faced with is that real-world networks can exhibit het-
 050 erophily, where connected nodes tend to have dissimilar features or labels. Examples include
 051 protein–protein interaction networks where different types of proteins interact (Zhu et al., 2020),
 052 or online marketplace networks where buyers connect with sellers rather than other buyers (Pan-
 053 dit et al., 2007). Standard GNN architectures (Kipf & Welling, 2016; Wu et al., 2019; Veličković
 et al., 2017; Hamilton et al., 2017; Chen et al., 2020; Abu-El-Haija et al., 2019), with their heavy

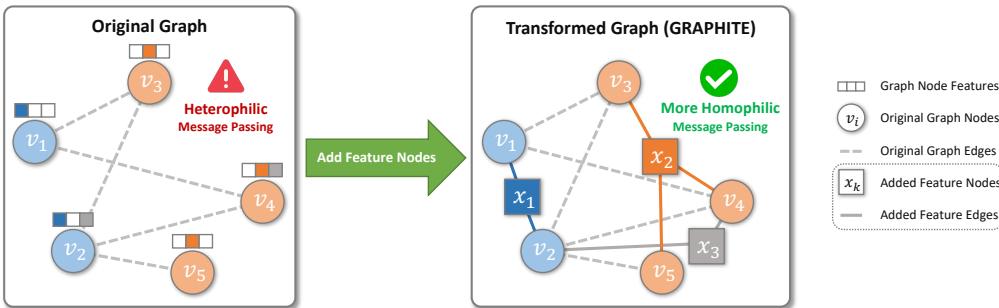


Figure 1: Overview of our proposed GRAPHITE. The added feature nodes can facilitate homophilic message passing. For instance, feature node x_1 facilitates homophilic message passing between nodes v_1, v_2 , and feature node x_2 facilitates homophilic message passing among nodes v_3, v_4, v_5 .

reliance on neighborhood aggregation, often struggle with heterophilous graphs since aggregating features from dissimilar neighbors can dilute or distort node representations. Existing methods for heterophilic graphs mainly focus on designing new GNN architectures as workarounds for heterophilic graphs, such as separating ego and neighbor embeddings (Zhu et al., 2020), incorporating higher-order information with learnable weights (Chien et al., 2020), and adaptive self-gating to leverage both low- and high-frequency signals (Bo et al., 2021). More recent solutions introduce frequency-based filtering to handle both homophily and heterophily or leverage adaptive residual connections to further enhance flexibility (Xu et al., 2023; Xu et al.; Yan et al., 2024).

Despite plenty of architectural advances, many GNNs still perform even worse than the simplest multi-layer perceptrons (MLPs) on challenging heterophilic graphs. For instance, Table 1 shows that 21 latest GNNs still fall behind the MLP on the ACTOR dataset. This critical challenge calls for an innovative approach to addressing graph heterophily beyond architectural designs.

To bridge this gap, we propose and study a new and unexplored paradigm: *directly* increasing the graph homophily via a carefully designed graph transformation. In this work, we present a simple yet effective framework called *GRAph homoPHily boosTER* (GRAPHITE) to address graph heterophily. To the best of our knowledge, this work is the first method that explicitly transforms the graph to directly improve the graph homophily.

Our key idea is rooted in the exact definition of homophily and heterophily. In a homophilic/heterophilic graph, nodes that share similar features are more/less likely to be adjacent, respectively. Therefore, a natural idea to increase the graph homophily is to create “shortcut” connections between nodes with similar features so as to facilitate homophilic message passing. However, naively adding mutual connections between such node pairs can drastically increase the number of edges. To reduce the number of “shortcut” edges, we propose to connect such node pairs *indirectly* instead. In particular, we introduce *feature nodes* as “hubs” and connect graph nodes to their corresponding feature nodes. We further theoretically show that our proposed method can provably enhance the homophily of originally heterophilic graphs without increasing the graph size much.

Our main contributions are summarized as follows:

- **New paradigm.** We propose and study a new and unexplored paradigm: *directly* increasing the graph homophily via graph transformation. This paper is the first work on this paradigm to the best of our knowledge.
- **Proposed method.** We propose a simple yet effective method called GRAPHITE, which creates feature nodes as “shortcuts” to facilitate homophilic message passing between nodes with similar features.
- **Theoretical guarantees.** We theoretically show that GRAPHITE can *provably* enhance the homophily of originally heterophilic graphs with only a *slight* increase in size.
- **Empirical performance.** Extensive experiments on challenging datasets demonstrate the effectiveness of our proposed GRAPHITE. GRAPHITE *significantly* outperforms state-of-the-art methods on heterophilic graphs while achieving *comparable* accuracy with state-of-the-art methods on homophilic graphs. Furthermore, our proposed graph transformation alone can already enhance the performance of homophilic GNNs on heterophilic graphs.

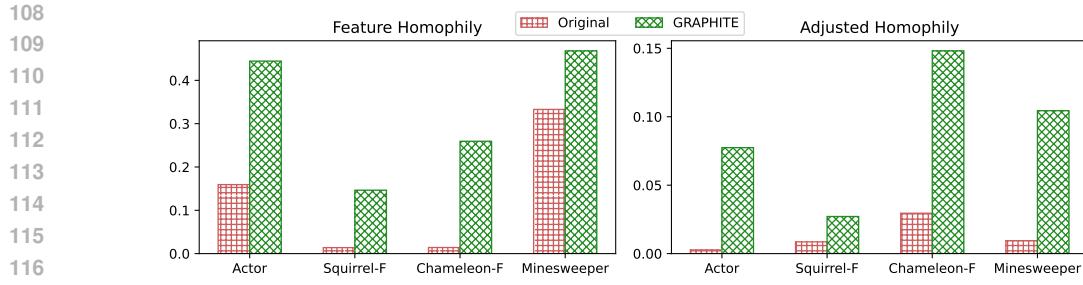


Figure 2: Our proposed GRAPHITE significantly increases the homophily of originally heterophilic graphs. We report two latest homophily metrics: *feature homophily* Jin et al. (2022) and *adjusted homophily* Platonov et al. (2024).

2 PRELIMINARIES

2.1 NOTATION

An undirected graph with discrete node features can be represented as a triple $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, where $\mathcal{V} = \{v_1, \dots, v_{|\mathcal{V}|}\}$ denotes the node set, $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ denotes the edge set, $\mathbf{X} \in \{0, 1\}^{\mathcal{V} \times \mathcal{X}}$ is a binary node feature matrix representing discrete node features, and $\mathcal{X} = \{1, \dots, |\mathcal{X}|\}$ is the feature set containing all the discrete node features. In addition to that, each graph node $v_i \in \mathcal{V}$ has a node label $y_{v_i} \in \mathcal{Y}$, where \mathcal{Y} is the label set with $C = |\mathcal{Y}|$ classes.

2.2 PROBLEM DEFINITION

In this paper, we study two key problems: (i) how to transform a graph to increase its homophily and (ii) how to perform node classification on a heterophilic graph datasets. Formally, we introduce the problem definitions as follows.

Problem 1 (Boosting Graph Homophily). *Given a highly heterophilic graph, transform the graph to increase its homophily. Input: a heterophilic graph \mathcal{G} . Output: a transformed graph \mathcal{G}^* with higher homophily.*

Problem 2 (Semi-supervised Node Classification on a Heterophilic Graph). *Given a heterophilic graph and a set of labelled nodes, train a model to predict the labels of unlabelled nodes. Input: (i) a heterophilic graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{X})$; (ii) a labelled node set $\mathcal{V}_L \subset \mathcal{V}$ whose node labels $[y_{v_i}]_{v_i \in \mathcal{V}_L}$ are available. Output: the predicted labels of unlabeled nodes $\mathcal{V} \setminus \mathcal{V}_L$.*

3 PROPOSED METHOD: GRAPHITE

In this section, we propose a simple yet effective graph transformation method called *GRApH homoPHilic boosTER* (GRAPHITE) that can efficiently increase the homophily of a graph. In Section 3.1, we will introduce the motivation of our proposed GRAPHITE. First, we will present the design of our proposed method GRAPHITE. Then, we will describe the neural architecture of our proposed method. Due to the page limit, proofs of theoretical results are deferred to the appendix.

3.1 MOTIVATION

Graph heterophily is a ubiquitous challenge in graph-based machine learning. On a highly heterophilic graph, many neighboring nodes exhibit dissimilar features or belong to different classes. As a result, graph heterophily limits the effectiveness of GNN message passing, as standard aggregation schemes might fail to capture meaningful patterns in heterophilic neighbors.

Existing methods for heterophilic graphs mainly focus on designing workarounds such as new architectures or learning paradigms for heterophilic graphs, including adaptive message passing, higher-order neighborhoods, or alternative propagation mechanisms that leverage both local and global graph structures.

162 In contrast to existing workaround methods, we propose a new method that aims to directly increase
 163 the homophily of the graph via a specially designed graph transformation. To the best of our knowl-
 164 edge, this work is the first method that explicitly transforms the graph to improve the homophily of
 165 the graph.

166 Our idea is rooted in the exact definition of homophily and heterophily. In a heterophilic graph,
 167 nodes that share similar features are more likely to be non-adjacent. However, in a homophilic
 168 graph, nodes that share similar features should be more likely to be neighbors. Therefore, a natural
 169 idea to increase the homophily of the graph is to create “shortcut” connections between nodes with
 170 similar features, which will facilitate homophilic message passing between them.

171 Before we introduce the proposed method, let’s consider the following naïve approach to imple-
 172 menting the aforementioned idea: For each pair of nodes $v_i, v_j \in \mathcal{V}$, if they share at least a feature
 173 (i.e., $\|\mathbf{X}[v_i, :] \wedge \mathbf{X}[v_j, :] \|_\infty > 0$), we add a “shortcut” edge (v_i, v_j) between them. Let’s call this ap-
 174 proach the *naïve homophily booster* (NHB). The following Theorem 1 shows that NHB can indeed
 175 increase the homophily of the graph under mild and realistic assumptions.

176 **Theorem 1** (Naïve homophily booster). *Given a heterophilic graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, let \mathcal{E}^\dagger denote
 177 the set of edges after adding the NHB “shortcut” edges, and let $\mathcal{G}^\dagger := (\mathcal{V}, \mathcal{E}^\dagger, \mathbf{X})$ denote the graph
 178 transformed by NHB. Under mild and realistic assumptions in Appendix D.1, we have*

$$\text{hom}(\mathcal{G}^\dagger) > \text{hom}(\mathcal{G}), \quad (1)$$

$$|\mathcal{E}^\dagger| - |\mathcal{E}| \leq O(|\mathcal{V}|^2). \quad (2)$$

183 However, Equation (2) also shows that NHB is extremely inefficient despite its effectiveness in
 184 increasing homophily. For instance, even if the graph has only 2,000 nodes, NHB can add as many
 185 as 1,999,000 “shortcut” edges. The plenty of “shortcut” edges can drastically slow down the training
 186 and the inference process of GNNs. Hence, this naïve approach is computationally impractical for
 187 GNNs. To address this computational challenge, we will instead propose an efficient homophily
 188 booster via a more careful design of “shortcut” edges.

190 3.2 EFFICIENT GRAPH HOMOPHILY BOOSTER

191 To address the computational inefficiency of the motivating naïve approach above, we propose
 192 an efficient, simple yet effective graph transformation method called *GRApH homoPHilly boosTER*
 193 (GRAPHITE) in this subsection.

195 Note that the large number of NHB “shortcut” edges is because NHB *directly* connects nodes with
 196 similar features. Since there are $O(|\mathcal{V}|^2)$ node pairs in a graph, then the total number of added NHB
 197 “shortcut” edges can be as large as $O(|\mathcal{V}|^2)$.

198 To reduce the number of “shortcut” edges, we propose to connect such node pairs *indirectly* instead.
 199 In particular, if we can create a few auxiliary “hub” nodes so that all such node pairs are *indirectly*
 200 connected through the “hub” nodes, then we will be able to significantly reduce the number of
 201 “shortcut” edges at only a small price of adding a few “hub” nodes. Therefore, we need to develop
 202 an appropriate design of the “hub” nodes.

203 **Graph transformation.** Following the aforementioned motivation, we propose to create a *feature*
 204 *node* x_k for each feature k to serve as the “hub” nodes. Let $\mathcal{V}_\mathcal{X}$ denote the set of feature nodes:

$$\mathcal{V}_\mathcal{X} := \{x_k : k \in \mathcal{X}\}. \quad (3)$$

207 To distinguish feature nodes $\mathcal{V}_\mathcal{X}$ from nodes \mathcal{V} in the original graph, we call \mathcal{V} *graph nodes* from
 208 now on. For each graph node $v_i \in \mathcal{V}$, if graph node v_i has feature k (i.e., $\mathbf{X}[v_i, k] = 1$), we add an
 209 edge (v_i, x_k) to connect the graph node v_i and the feature node $x_k \in \mathcal{V}_\mathcal{X}$, and we call it a *feature*
 210 *edge*. Let $\mathcal{E}_\mathcal{X}$ denote the set of feature edges:

$$\mathcal{E}_\mathcal{X} := \{(v_i, x_k) : v_i \in \mathcal{V}, x_k \in \mathcal{V}_\mathcal{X}, \mathbf{X}[v_i, k] = 1\} \subseteq \mathcal{V} \times \mathcal{V}_\mathcal{X}.$$

213 To distinguish feature edges $\mathcal{E}_\mathcal{X}$ from the original edges \mathcal{E} , we call \mathcal{E} *graph edges* from now on.

215 Finally, we define the transformed graph $\mathcal{G}^* = (\mathcal{V}^*, \mathcal{E}^*, \mathbf{X}^*)$ as follows. The nodes \mathcal{V}^* of the
 216 transformed graph \mathcal{G}^* are the original graph nodes \mathcal{V} and the added feature nodes $\mathcal{V}_\mathcal{X}$: $\mathcal{V}^* := \mathcal{V} \cup \mathcal{V}_\mathcal{X}$.

The edges \mathcal{E}^* of the transformed graph \mathcal{G}^* are the original graph edges \mathcal{E} and the added feature edges $\mathcal{E}_{\mathcal{X}}$: $\mathcal{E}^* := \mathcal{E} \cup \mathcal{E}_{\mathcal{X}}$. We can also equivalently define the edges of the transformed graph \mathcal{G}^* by its adjacency matrix. Let \mathbf{A} denote the adjacency matrix of the original graph \mathcal{G} . Then, the adjacency matrix \mathbf{A}^* of the transformed graph \mathcal{G}^* can be expressed in a block matrix form:

$$\mathbf{A}^* = \begin{bmatrix} \mathbf{A} & \mathbf{X} \\ \mathbf{X}^T & \mathbf{0} \end{bmatrix}. \quad (4)$$

It remains to define node features $\mathbf{X}^* \in \mathbb{R}^{\mathcal{V}^* \times \mathcal{X}}$ of the transformed graph. For each graph node $v_i \in \mathcal{V}$, we use its original features as its node features: $\mathbf{X}^*[v_i, :] := \mathbf{X}[v_i, :]$. For each feature node $x_k \in \mathcal{V}_{\mathcal{X}}$, we define its node feature as the average feature vector among the graph nodes v_i that are connected to feature node x_k :

$$\mathbf{X}^*[x_k, :] := \frac{1}{|\mathcal{E}_{\mathcal{X}} \cap (\mathcal{V} \times \{x_k\})|} \sum_{v_i:(v_i,x_k) \in \mathcal{E}_{\mathcal{X}}} \mathbf{X}[v_i, :]. \quad (5)$$

Our proposed graph transformation GRAPHITE is illustrated in Figure 1. In this example, $\{v_1, v_2, v_3, v_4, v_5\}$ are the graph nodes, where v_1, v_2 belong to one class, and v_3, v_4, v_5 belong to the other class. Our proposed GRAPHITE adds feature nodes x_1, x_2, x_3 to the graph. We can see that feature node x_1 facilitates homophilic message passing between v_1, v_2 , and that feature node x_2 facilitates homophilic message passing among v_3, v_4, v_5 .

Theoretical guarantees. The transformed graph \mathcal{G}^* enjoys a few theoretical guarantees. First, an important property of the feature edges is that every pair of nodes that share features can be connected through feature edges within two hops, as formally stated in Observation 2. This ensures that nodes with similar features are close to each other on the transformed graph \mathcal{G}^* , facilitating homophilic message passing.

Observation 2 (Two-hop indirect connection). *For each pair of nodes $u, v \in \mathcal{V}$, if they share at least a feature (i.e., $\|\mathbf{X}[v_i, :] \wedge \mathbf{X}[v_j, :]\|_{\infty} > 0$), then v_i and v_j are two-hop neighbors on the transformed graph \mathcal{G}^* .*

Furthermore, we theoretically show that our proposed graph transformation GRAPHITE can increase the homophily of the graph without increasing the size of the graph much, as formally stated in Theorem 3.

Theorem 3 (Efficient homophily booster). *Given a heterophilic graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, let $\mathcal{G}^* := (\mathcal{V}^*, \mathcal{E}^*, \mathbf{X}^*)$ denote the graph transformed by our proposed GRAPHITE. Under mild and realistic assumptions in Appendix D.1, we have*

$$\text{hom}(\mathcal{G}^*) > \text{hom}(\mathcal{G}), \quad (6)$$

$$|\mathcal{V}^*| \leq O(|\mathcal{V}|), \quad |\mathcal{E}^*| \leq O(|\mathcal{E}|). \quad (7)$$

The effectiveness of our proposed GRAPHITE is also empirically validated in Section 4.3. As shown in Figure 2, our proposed GRAPHITE significantly increases the homophily of originally heterophilic graph.

3.3 NEURAL ARCHITECTURE

The transformed graph \mathcal{G}^* can be readily fed into existing GNNs to boost their performance, even when the GNNs were originally designed for homophilic graphs, as demonstrated in Table 3. Meanwhile, to maximize the GNN performance on the transformed graph \mathcal{G}^* , we introduce a GNN architecture specially designed for the transformed graph in this subsection.

To help the GNN distinguish graph nodes \mathcal{V} from feature nodes $\mathcal{V}_{\mathcal{X}}$, we use different edge weights for different edges. As a reference weight, suppose that graph edges \mathcal{E} have weight $w_{\mathcal{E}} := 1$. Let $w_{\mathcal{X}} > 0$ denote the weight of feature edges $\mathcal{E}_{\mathcal{X}}$. Following GCN Kipf & Welling (2016), we also use self-loops in GNN message passing; let $w_0 > 0$ denote the weight of self-loops.

Let d_u denote the weighted degree of each node $u \in \mathcal{V}^*$. Specifically, for each graph node $v_i \in \mathcal{V}$,

$$d_{v_i} := w_0 + \sum_{(v_i, v_j) \in \mathcal{E}} w_{\mathcal{E}} + \sum_{(v_i, x_k) \in \mathcal{E}_{\mathcal{X}}} w_{\mathcal{X}}; \quad (8)$$

270 and for each feature node $x_k \in \mathcal{V}_{\mathcal{X}}$,

$$272 \quad d_{x_k} := w_0 + \sum_{(v_i, x_k) \in \mathcal{E}_{\mathcal{X}}} w_{\mathcal{X}}. \quad (9)$$

275 Inspired by FAGCN Bo et al. (2021), we use a self-gating mechanism in GNN aggregation. For each
276 node $u \in \mathcal{V}^*$, let $\mathbf{h}_u \in \mathbb{R}^m$ denote the embedding of node u before GNN aggregation, where m is
277 the embedding dimensionality. Then, the self-gating score $\alpha_{u, u'}$ between two nodes $u, u' \in \mathcal{V}^*$ is
278 defined as

$$279 \quad \alpha_{u, u'} := \tanh\left(\frac{\mathbf{a}^T(\mathbf{h}_u \| \mathbf{h}_{u'}) + b}{\tau}\right). \quad (10)$$

281 where $\|$ denotes the concatenation operation, $\mathbf{a} \in \mathbb{R}^{2m}$ and $b \in \mathbb{R}$ are learnable parameters, and
282 $\tau > 0$ is a temperature hyperparameter.

284 Next, we describe our aggregation mechanism. For each node $u \in \mathcal{V}^*$, let $\mathbf{h}'_u \in \mathbb{R}^m$ denote the
285 embedding of node u after GNN aggregation. For each graph node $v_i \in \mathcal{V}$, we define

$$286 \quad \mathbf{h}'_{v_i} := \frac{w_0 \alpha_{v_i, v_i}}{\sqrt{d_{v_i}} \sqrt{d_{v_i}}} \mathbf{h}_{v_i} + \sum_{(v_i, v_j) \in \mathcal{E}} \frac{\alpha_{v_i, v_j}}{\sqrt{d_{v_i}} \sqrt{d_{v_j}}} \mathbf{h}_{v_j} \\ 287 \quad + \sum_{(v_i, x_j) \in \mathcal{E}_{\mathcal{X}}} \frac{w_{\mathcal{X}} \alpha_{v_i, x_k}}{\sqrt{d_{v_i}} \sqrt{d_{x_k}}} \mathbf{h}_{x_k}; \quad (11)$$

292 and for each feature node $x_k \in \mathcal{V}_{\mathcal{X}}$, we define

$$293 \quad \mathbf{h}'_{x_k} := \frac{w_0 \alpha_{x_k, x_k}}{\sqrt{d_{x_k}} \sqrt{d_{x_k}}} \mathbf{h}_{x_k} + \sum_{(v_i, x_k) \in \mathcal{E}_{\mathcal{X}}} \frac{w_{\mathcal{X}} \alpha_{v_i, x_k}}{\sqrt{d_{v_i}} \sqrt{d_{x_k}}} \mathbf{h}_{v_i}. \quad (12)$$

296 Furthermore, we add a multi-layer perceptron (MLP) with residual connections after each GNN
297 aggregation. We use the GELU activation function Hendrycks & Gimpel (2016).

299 4 EXPERIMENTS

301 We conduct extensive experiments on both heterophilic and homophilic datasets to answer the fol-
302 lowing research questions:

304 **RQ1:** How does the proposed framework GRAPHITE compare with state-of-the-art methods?

306 **RQ2:** How much improvement can the proposed graph transformation achieve in the graph
307 homophily?

308 **RQ3:** Can the proposed graph transformation alone enhance the performance of existing ho-
309 mophilic GNNs?

310 4.1 EXPERIMENTAL SETTINGS

312 **Datasets.** We evaluate GRAPHITE and various baseline methods across six real-world datasets. The
313 dataset statistics are summarized in Appendix B (Table 4). The reported homophily is the *adjusted*
314 *homophily* introduced in Platonov et al. (2024), which exhibits more desirable properties compared
315 to traditional edge/node homophily. We leverage *adjusted homophily* to categorize the datasets into
316 two groups: *heterophilic* and *homophilic*. Please see the appendix for dataset descriptions.

318 **Training and evaluation.** To benchmark GRAPHITE and compare it with the baseline methods,
319 we use *node classification* tasks with performance measured by classification accuracy on Actor,
320 Chameleon-Filtered (Chameleon-F), Squirrel-Filtered (Squirrel-F), Cora, and CiteSeer and by ROC-
321 AUC on Minesweeper following Platonov et al. (2023). For all baseline methods, we use the hy-
322 perparameters provided by the authors. For the evaluation of Actor, Chameleon-F and Squirrel-F,
323 we generate 10 random splits with a ratio of 48%/32%/20% as the training/validation/test set, re-
spectively, following Gu et al. (2024). For the evaluation of Minesweeper, we directly utilize the 10

324
 325 Table 1: Comparison with existing methods. GRAPHITE *significantly* outperforms state-of-the-art
 326 methods on heterophilic graphs while achieving *comparable* accuracy with state-of-the-art methods
 327 on homophilic graphs. Best results are marked in **bold**, and second best results are underlined.

328 329 Method	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 180			

378 feature knowledge from multi-hop neighbors to learn structure-aware representation. This finding
 379 also explains the success of GRAPHITE since the useful multi-hop information in SQUIRREL-F can
 380 be propagated even more efficiently through the constructed *feature edges*.
 381

382 As another example, SGFormer performs the best on CHAMELEON-F among baseline methods.
 383 We argue that CHAMELEON-F needs a considerable amount of global messages and graph trans-
 384 formers are experts at capturing this type of information. Compared with NodeFormer and DIF-
 385 Former, SGFormer is the most advanced graph transformer utilizing simplified graph attention that
 386 strikes a good balance between global structural information and feature signal, preventing the over-
 387 globalizing issue Xing et al. (2024). Similarly, GRAPHITE transforms the original graph into a
 388 form that facilitates global message exchange by the introduction of *feature edges*. As a final re-
 389 mark, although GRAPHITE is designed specifically to deal with heterophilic datasets, GRAPHITE
 390 still maintains competitive accuracy on homophilic datasets (CORA and CITESEER), achieving re-
 391 sults that are on par with the best existing methods.
 392

393 4.3 HOMOPHILY ANALYSIS

394 To answer RQ2, we conduct a homophily anal-
 395 ysis across heterophilic datasets under two ho-
 396 mophily metrics: *feature homophily* and *ad-
 397 justed homophily*, whose formal definition can
 398 be found in Appendix C. As shown in Figure 2,
 399 we can observe a significant boost in both two
 400 homophily metrics after applying GRAPHITE
 401 across heterophilic datasets. The relative im-
 402 provement ratio is presented in Table 2, where
 403 $\Delta H^*(\mathcal{G})$ is the ratio between the corresponding
 404 homophily metric computed on original graph
 405 and the graph after applying GRAPHITE.

406 **Discussion.** Overall, GRAPHITE effectively
 407 boosts both homophily metrics across all het-
 408 erophilic datasets. Specifically, Squirrel-F and Chameleon-F demonstrate significant boosts in terms
 409 of *feature homophily*. This is mainly because their discrete features directly correspond to specific
 410 topics and each feature edge will contribute much higher feature similarity than usual edges. On
 411 the other hand, Actor and Minesweeper showcase much higher *adjusted homophily* after apply-
 412 ing GRAPHITE. For Actor, this favorable behavior can be attributed to the high correlation between
 413 page co-occurrences and node labels; while for Minesweeper, the sum of label-specific node degrees
 414 (defined in Equation (14)) increases much due to the transformation performed by GRAPHITE.

415 **Baseline methods.** In our experiments, we consider a wide range of GNN baselines, including MLP
 416 (structure-agnostic), homophilic GNNs, heterophilic GNNs, and Graph Transformers. The full list
 417 is shown in Appendix B.2.

418 Table 3: Effectiveness of the proposed graph transformation. GRAPHITE transformed graphs alone
 419 can already enhance the performance of homophilic GNNs.
 420

421 Dataset 422 +GRAPHITE?	423 ACTOR		424 MINESWEEPER	
	425 \times	426 \checkmark	427 \times	428 \checkmark
429 GCN	30.21 ± 0.86	34.83 ± 1.28	72.32 ± 0.93	75.38 ± 1.56
430 GAT	28.86 ± 0.99	32.09 ± 1.35	87.59 ± 1.35	88.66 ± 0.88
431 GraphSAGE	34.95 ± 1.06	35.09 ± 1.06	90.54 ± 0.66	90.85 ± 0.67
432 JKNet	28.63 ± 0.94	35.96 ± 1.40	81.00 ± 0.92	85.56 ± 2.59
433 GIN	28.29 ± 1.45	33.75 ± 1.83	75.89 ± 2.09	87.07 ± 1.71

434 4.4 ABLATION STUDIES

435 To further demonstrate the effectiveness of our proposed graph transformation GRAPHITE and
 436 answer RQ3, we compare the performance of homophilic GNNs on the original graph and that
 437 on the transformed graph. In this experiment, we use two larger-scale datasets, ACTOR and

432 MINESWEEPER, and five representative homophilic GNNs, GCN, GAT, GraphSAGE, JKNet, and
 433 GIN. The results are presented in Table 3.

434 From Table 3, we can see that our proposed GRAPHITE consistently improves the performance of
 435 the five representative homophilic GNNs on both datasets, even though these GNNs are not specially
 436 designed for modeling feature nodes. For example, the accuracy of GAT on ACTOR is enhanced
 437 from 30.21% to 34.83%, which is a relative improvement of 15.29%. The results demonstrate
 438 that our proposed graph transformation GRAPHITE can significantly enhance the performance of
 439 homophilic GNNs on originally heterophilic graphs, echoing the fact that our proposed graph trans-
 440 formation can significantly increase the graph homophily.

441

442 5 RELATED WORK

443

444 **Heterophily.** A substantial body of research has explored the challenges of heterophily in graph
 445 neural networks (GNNs). Many early approaches sought to improve information aggregation,
 446 such as MixHop Abu-El-Haija et al. (2019), which mixes different-hop neighborhood features,
 447 and GPRGNN Chien et al. (2020), which employs generalized PageRank propagation for adaptive
 448 message passing. Other methods focus on explicit heterophilic adaptations, such as H2GCN Zhu
 449 et al. (2020), which separates ego- and neighbor-embeddings, and FAGCN Bo et al. (2021), which
 450 learns optimal representations via frequency-adaptive filtering. Additional works, including Or-
 451 deredGNN Song et al. (2023), GloGNN Li et al. (2022), and GGCN Yan et al. (2022), leverage
 452 structural ordering, global context, and edge corrections, respectively, to enhance performance on
 453 heterophilic graphs. Recent advances explore alternative formulations, such as component-wise sig-
 454 nal decomposition (ALT Xu et al. (2023)) and adaptive residual mechanisms Xu et al.; Yan et al.
 455 (2024) for greater flexibility. Beyond architectural innovations, rigorous benchmarking efforts Lim
 456 et al. (2021); Zhu et al. (2024); Platonov et al. (2023) have been introduced to standardize evalua-
 457 tions and assess generalization across diverse graph properties. A broader synthesis of heterophilic
 458 GNN techniques can be found in recent surveys Zheng et al. (2022); Zhu et al. (2023); Luan et al.
 459 (2024); Gong et al. (2024).

460

461 **Over-squashing.** A problem related to heterophily is over-squashing. The over-squashing problem
 462 in Message Passing Neural Networks (MPNNs) arises when long-range information is exponen-
 463 tially compressed, preventing effective dissemination across the graph Alon & Yahav (2020); Shi
 464 et al. (2023b). A primary research direction addresses this issue by identifying topological bot-
 465 tlenecks and modifying graph connectivity. Topping et al. (2021) established an initial framework
 466 linking oversquashing to graph Ricci curvature, demonstrating that negatively curved edges act as
 467 bottlenecks. Building on this idea, subsequent works have developed rewiring strategies inspired by
 468 curvature-based principles Nguyen et al. (2023); Shi et al. (2023a). Beyond curvature, Black et al.
 469 (2023) introduced a perspective using effective resistance. Another line of research leverages spec-
 470 tral methods to counteract over-squashing, with notable approaches including spectral gaps Arnaiz-
 471 Rodríguez et al. (2022), expander graph constructions Deac et al. (2022), and first-order spectral
 472 rewiring Karhadkar et al. (2022). More recently, Di Giovanni et al. (2023) provided a comprehen-
 473 sive analysis of the factors contributing to oversquashing. Additional solutions explore advanced
 474 rewiring strategies and novel message-passing paradigms Barbero et al. (2023); Qian et al. (2023);
 Behrouz & Hashemi (2024).

475

476

6 CONCLUSION

477

478 In this paper, we propose GRAPHITE, a simple yet efficient framework to address the heterophily
 479 issue in node classification. By introducing feature nodes that connect to graph nodes with corre-
 480 sponding discrete features, we can solve the heterophily issue by increasing the graph homophily
 481 ratio. Through theoretical analysis and empirical study, we validate that GRAPHITE can indeed
 482 effectively increase the graph homophily. Our extensive experiments demonstrate that GRAPHITE
 483 consistently outperforms state-of-the-art methods, achieving significant performance gains on het-
 484 erophilic graph datasets and comparable performance on homophilic graph datasets. An interesting
 485 future direction would be extending the proposed graph transformation to general graphs with con-
 tinuous node features.

486 **Ethics Statement.** Our study is based entirely on publicly available graph datasets commonly
487 used in the GNN literature and does not involve private or sensitive information. We develop a
488 graph transformation framework that explicitly increases graph homophily to enable more effective
489 message passing. To ensure methodological soundness and reproducibility, we provide both theoretical
490 analyses and extensive empirical evaluations across heterophilic datasets. The future release of
491 code and data splits is intended solely for academic research to advance the understanding of graph
492 machine learning and to support future work on graph neural networks, and are not designed for
493 sensitive or high-stakes applications.

494 **Reproducibility Statement.** We include the conceptual framework, transformation steps, method
495 details and evaluation setup in the paper and appendix. To ensure reproducibility, we will release
496 the full implementation and code scripts upon acceptance for verification.

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
543 Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
544 architectures via sparsified neighborhood mixing. In *international conference on machine learning*, pp. 21–29. PMLR, 2019.

545

546 Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
547 *arXiv preprint arXiv:2006.05205*, 2020.

548

549 Adrián Arnaiz-Rodríguez, Ahmed Begga, Francisco Escolano, and Nuria Oliver. Diffwire: Inductive
550 graph rewiring via the lov\’asz bound. *arXiv preprint arXiv:2206.07369*, 2022.

551

552 Wenzuan Bao, Ruxi Deng, Ruizhong Qiu, Tianxin Wei, Hanghang Tong, and Jingrui He. Latte: Col-
553 laborative test-time adaptation of vision-language models in federated learning. In *Proceedings
of the IEEE/CVF International Conference on Computer Vision*, 2025.

554

555 Federico Barbero, Ameya Velingker, Amin Saberi, Michael Bronstein, and Francesco Di Giovanni.
556 Locality-aware graph-rewiring in gnns. *arXiv preprint arXiv:2310.01668*, 2023.

557

558 Ali Behrouz and Farnoosh Hashemi. Graph mamba: Towards learning on graphs with state space
559 models. In *Proceedings of the 30th ACM SIGKDD conference on knowledge discovery and data
mining*, pp. 119–130, 2024.

560

561 Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in
562 gnns through the lens of effective resistance. In *International Conference on Machine Learning*,
563 pp. 2528–2547. PMLR, 2023.

564

565 Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
566 convolutional networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35,
567 pp. 3950–3957, 2021.

568

569 Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? *arXiv
preprint arXiv:2105.14491*, 2021.

570

571 Eunice Chan, Zhining Liu, Ruizhong Qiu, Yuheng Zhang, Ross Maciejewski, and Hanghang Tong.
572 Group fairness via group consensus. In *The 2024 ACM Conference on Fairness, Accountability,
and Transparency*, pp. 1788–1808, 2024.

573

574 Lingjie Chen, Ruizhong Qiu, Siyu Yuan, Zhining Liu, Tianxin Wei, Hyunsik Yoo, Zhichen Zeng,
575 Deqing Yang, and Hanghang Tong. WAPITI: A watermark for finetuned open-source LLMs,
576 2024.

577

578 Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
579 convolutional networks. In *International conference on machine learning*, pp. 1725–1735. PMLR,
580 2020.

581

582 Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
583 graph neural network. *arXiv preprint arXiv:2006.07988*, 2020.

584

585 Andreea Deac, Marc Lackenby, and Petar Veličković. Expander graph propagation. In *Learning on
Graphs Conference*, pp. 38–1. PMLR, 2022.

586

587 Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
588 graphs with fast localized spectral filtering. *Advances in neural information processing systems*,
29, 2016.

589

590 Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
591 Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
592 and topology. In *International Conference on Machine Learning*, pp. 7865–7885. PMLR, 2023.

593

Jian Du, Shanghang Zhang, Guanhong Wu, José MF Moura, and Soummya Kar. Topology adaptive
graph convolutional networks. *arXiv preprint arXiv:1710.10370*, 2017.

594 Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
 595 Graph neural networks meet personalized pagerank. *arXiv preprint arXiv:1810.05997*, 2018.
 596

597 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
 598 message passing for quantum chemistry. In *International conference on machine learning*, pp.
 599 1263–1272. PMLR, 2017.

600 Chenghua Gong, Yao Cheng, Jianxiang Yu, Can Xu, Caihua Shan, Siqiang Luo, and Xiang Li. A
 601 survey on learning from graphs with heterophily: Recent advances and future directions. *arXiv*
 602 *preprint arXiv:2401.09769*, 2024.

603 Ming Gu, Zhuonan Zheng, Sheng Zhou, Meihan Liu, Jiawei Chen, Tanyu Qiao, Liangcheng Li,
 604 and Jiajun Bu. Universal inceptive gnns by eliminating the smoothness-generalization dilemma.
 605 *arXiv preprint arXiv:2412.09805*, 2024.

606 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 607 In *Advances in Neural Information Processing Systems*, volume 30, 2017.

608 Xinyu He, Jian Kang, Ruizhong Qiu, Fei Wang, Jose Sepulveda, and Hanghang Tong. On the
 609 sensitivity of individual fairness: Measures and robust algorithms. In *Proceedings of the 33rd*
 610 *ACM International Conference on Information and Knowledge Management*, pp. 829–838, 2024.

611 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units. *arXiv preprint arXiv:1606.08415*,
 612 2016.

613 Di Jin, Rui Wang, Meng Ge, Dongxiao He, Xiang Li, Wei Lin, and Weixiong Zhang. Raw-gnn:
 614 Random walk aggregation based graph neural network. In *31st International Joint Conference on*
 615 *Artificial Intelligence, IJCAI 2022*, pp. 2108–2114. International Joint Conferences on Artificial
 616 Intelligence, 2022.

617 Kedar Karhadkar, Pradeep Kr Banerjee, and Guido Montúfar. Fosr: First-order spectral rewiring for
 618 addressing oversquashing in gnns. *arXiv preprint arXiv:2210.11790*, 2022.

619 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 620 *arXiv:1412.6980*, 2014.

621 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
 622 works. *arXiv preprint arXiv:1609.02907*, 2016.

623 Gaotang Li, Marlena Duda, Xiang Zhang, Danai Koutra, and Yujun Yan. Interpretable sparsification
 624 of brain graphs: Better practices and effective designs for graph neural networks. In *Proceedings*
 625 *of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 1223–
 626 1234, 2023a.

627 Ting-Wei Li, Ruizhong Qiu, and Hanghang Tong. Model-free graph data selection under distribution
 628 shift, 2025.

629 Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
 630 Finding global homophily in graph neural networks when meeting heterophily. In *International*
 631 *Conference on Machine Learning*, pp. 13242–13256. PMLR, 2022.

632 Xiao Li, Li Sun, Mengjie Ling, and Yan Peng. A survey of graph neural network based recommen-
 633 dation in social networks. *Neurocomputing*, 549:126441, 2023b.

634 Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
 635 Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
 636 simple methods. *Advances in Neural Information Processing Systems*, 34:20887–20902, 2021.

637 Xiao Lin, Zhining Liu, Dongqi Fu, Ruizhong Qiu, and Hanghang Tong. BackTime: Backdoor
 638 attacks on multivariate time series forecasting. In *Advances in Neural Information Processing*
 639 *Systems*, volume 37, 2024.

640 Xiao Lin, Zhining Liu, Ze Yang, Gaotang Li, Ruizhong Qiu, Shuke Wang, Hui Liu, Haotian Li,
 641 Sumit Keswani, Vishwa Pardeshi, et al. Moralise: A structured benchmark for moral alignment
 642 in visual language models, 2025.

648 Lihui Liu, Zihao Wang, Ruizhong Qiu, Yikun Ban, Eunice Chan, Yangqiu Song, Jingrui He, and
 649 Hanghang Tong. Logic query of thoughts: Guiding large language models to answer complex
 650 logic queries with knowledge graphs, 2024a.

651

652 Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In *Proceedings*
 653 *of the 26th ACM SIGKDD international conference on knowledge discovery & data mining*, pp.
 654 338–348, 2020.

655 Zhining Liu, Zhichen Zeng, Ruizhong Qiu, Hyunsik Yoo, David Zhou, Zhe Xu, Yada Zhu, Kommy
 656 Weldemariam, Jingrui He, and Hanghang Tong. Topological augmentation for class-imbalanced
 657 node classification, 2023.

658 Zhining Liu, Ruizhong Qiu, Zhichen Zeng, Hyunsik Yoo, David Zhou, Zhe Xu, Yada Zhu, Kommy
 659 Weldemariam, Jingrui He, and Hanghang Tong. Class-imbalanced graph learning without class
 660 rebalancing. In *Proceedings of the 41st International Conference on Machine Learning*, 2024b.

661 Zhining Liu, Ruizhong Qiu, Zhichen Zeng, Yada Zhu, Hendrik Hamann, and Hanghang Tong. AIM:
 662 Attributing, interpreting, mitigating data unfairness. In *Proceedings of the 30th ACM SIGKDD*
 663 *Conference on Knowledge Discovery and Data Mining*, pp. 2014–2025, 2024c.

664 Zhining Liu, Ze Yang, Xiao Lin, Ruizhong Qiu, Tianxin Wei, Yada Zhu, Hendrik Hamann, Jin-
 665 grui He, and Hanghang Tong. Breaking silos: Adaptive model fusion unlocks better time series
 666 forecasting. In *Proceedings of the 42nd International Conference on Machine Learning*, 2025.

667 Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
 668 Chang, and Doina Precup. Is heterophily a real nightmare for graph neural networks to do node
 669 classification? *arXiv preprint arXiv:2109.05641*, 2021.

670 Sitao Luan, Chenqing Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang, Minkai Xu,
 671 Xiao-Wen Chang, Doina Precup, Rex Ying, et al. The heterophilic graph learning hand-
 672 book: Benchmarks, models, theoretical analysis, applications and challenges. *arXiv preprint*
 673 *arXiv:2407.09618*, 2024.

674 Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh
 675 Nguyen. Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In *International*
 676 *Conference on Machine Learning*, pp. 25956–25979. PMLR, 2023.

677 Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Faloutsos. Netprobe: a fast and
 678 scalable system for fraud detection in online auction networks. In *Proceedings of the 16th international*
 679 *conference on World Wide Web*, pp. 201–210, 2007.

680 Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
 681 graph convolutional networks. *arXiv preprint arXiv:2002.05287*, 2020.

682 Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
 683 A critical look at the evaluation of gnns under heterophily: Are we really making progress? *arXiv*
 684 *preprint arXiv:2302.11640*, 2023.

685 Oleg Platonov, Denis Kuznedelev, Artem Babenko, and Liudmila Prokhorenkova. Characterizing
 686 graph datasets for node classification: Homophily-heterophily dichotomy and beyond. *Advances*
 687 *in Neural Information Processing Systems*, 36, 2024.

688 Chendi Qian, Andrei Manolache, Kareem Ahmed, Zhe Zeng, Guy Van den Broeck, Mathias Niepert,
 689 and Christopher Morris. Probabilistically rewired message-passing neural networks. *arXiv*
 690 *preprint arXiv:2310.02156*, 2023.

691 Ruizhong Qiu and Hanghang Tong. Gradient compressed sensing: A query-efficient gradient esti-
 692 mator for high-dimensional zeroth-order optimization. In *Proceedings of the 41st International*
 693 *Conference on Machine Learning*, 2024.

694 Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A differentiable meta solver for combi-
 695 *natorial optimization problems. In Advances in Neural Information Processing Systems*, volume 35,
 696 pp. 25531–25546, 2022.

702 Ruizhong Qiu, Dingsu Wang, Lei Ying, H Vincent Poor, Yifang Zhang, and Hanghang Tong. Re-
 703 constructing graph diffusion history from a single snapshot. In *Proceedings of the 29th ACM*
 704 *SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 1978–1988, 2023.

705 Ruizhong Qiu, Jun-Gi Jang, Xiao Lin, Lihui Liu, and Hanghang Tong. TUCKET: A tensor time
 706 series data structure for efficient and accurate factor analysis over time ranges. *Proceedings of the*
 707 *VLDB Endowment*, 17(13), 2024.

708 Ruizhong Qiu, Gaotang Li, Tianxin Wei, Jingrui He, and Hanghang Tong. Saffron-1: Safety infer-
 709 ence scaling, 2025a.

710 Ruizhong Qiu, Zhe Xu, Wenxuan Bao, and Hanghang Tong. Ask, and it shall be given: On the Tur-
 711 ing completeness of prompting. In *13th International Conference on Learning Representations*,
 712 2025b.

713 Ruizhong Qiu, Weiliang Will Zeng, Hanghang Tong, James Ezick, and Christopher Lott. How
 714 efficient is LLM-generated code? A rigorous & high-standard benchmark. In *13th International*
 715 *Conference on Learning Representations*, 2025c.

716 Manon Réau, Nicolas Renaud, Li C Xue, and Alexandre MJJ Bonvin. Deeprank-gnn: a graph neural
 717 network framework to learn patterns in protein–protein interfaces. *Bioinformatics*, 39(1):btac759,
 718 2023.

719 Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. *Journal*
 720 *of Complex Networks*, 9(2):cnab014, 2021.

721 Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
 722 Collective classification in network data. *AI magazine*, 29(3):93–93, 2008.

723 Dai Shi, Yi Guo, Zhiqi Shao, and Junbin Gao. How curvature enhance the adaptation power of
 724 framelet gcns. *arXiv preprint arXiv:2307.09768*, 2023a.

725 Dai Shi, Andi Han, Lequan Lin, Yi Guo, and Junbin Gao. Exposition on over-squashing problem on
 726 gnns: Current methods, benchmarks and challenges. *arXiv preprint arXiv:2311.07073*, 2023b.

727 Yunchong Song, Chenghu Zhou, Xinbing Wang, and Zhouhan Lin. Ordered gnn: Ordering message
 728 passing to deal with heterophily and over-smoothing. *arXiv preprint arXiv:2302.01524*, 2023.

729 Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks.
 730 In *Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and*
 731 *data mining*, pp. 807–816, 2009.

732 Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
 733 Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. *arXiv preprint*
 734 *arXiv:2111.14522*, 2021.

735 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
 736 Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.

737 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 738 Bengio. Graph attention networks. In *International Conference on Learning Representations*,
 739 2018.

740 Dingsu Wang, Yuchen Yan, Ruizhong Qiu, Yada Zhu, Kaiyu Guan, Andrew Margenot, and Hang-
 741 hang Tong. Networked time series imputation via position-aware graph enhanced variational
 742 autoencoders. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery*
 743 *and Data Mining*, pp. 2256–2268, 2023.

744 Tianxin Wei, Ruizhong Qiu, Yifan Chen, Yunzhe Qi, Jiacheng Lin, Wenju Xu, Sreyashi Nag, Ruirui
 745 Li, Hanqing Lu, Zhengyang Wang, Chen Luo, Hui Liu, Suhang Wang, Jingrui He, Qi He, and
 746 Xianfeng Tang. Robust watermarking for diffusion models: A unified multi-dimensional recipe,
 747 2024.

756 Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying graph convolutional networks. In *International conference on machine learning*, pp. 757 6861–6871. PMLR, 2019.

759

760 Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph 761 structure learning transformer for node classification. *Advances in Neural Information Processing 762 Systems*, 35:27387–27401, 2022.

763 Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. Dif- 764 former: Scalable (graph) transformers induced by energy constrained diffusion. *arXiv preprint 765 arXiv:2301.09474*, 2023.

766

767 Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, and 768 Junchi Yan. Simplifying and empowering transformers for large-graph representations. *Advances 769 in Neural Information Processing Systems*, 36, 2024a.

770 Ziwei Wu, Lecheng Zheng, Yuancheng Yu, Ruizhong Qiu, John Birge, and Jingrui He. Fair anomaly 771 detection for imbalanced groups, 2024b.

772

773 Yujie Xing, Xiao Wang, Yibo Li, Hai Huang, and Chuan Shi. Less is more: on the over-globalizing 774 problem in graph transformers. *arXiv preprint arXiv:2405.01102*, 2024.

775

776 Haobo Xu, Yuchen Yan, Dingsu Wang, Zhe Xu, Zhichen Zeng, Tarek F Abdelzaher, Jiawei Han, 777 and Hanghang Tong. Slog: An inductive spectral graph neural network beyond polynomial filter. 778 In *Forty-first International Conference on Machine Learning*.

779

780 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural 781 networks? In *International Conference on Learning Representations*, 2018a.

782

783 Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie 784 Jegelka. Representation learning on graphs with jumping knowledge networks. In *International 785 conference on machine learning*, pp. 5453–5462. PMLR, 2018b.

786

787 Zhe Xu, Yuzhong Chen, Qinghai Zhou, Yuhang Wu, Menghai Pan, Hao Yang, and Hanghang Tong. 788 Node classification beyond homophily: Towards a general solution. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 2862–2873, 2023.

789

790 Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng, 791 Mahashweta Das, and Hanghang Tong. Discrete-state continuous-time diffusion for graph genera- 792 tion. In *Advances in Neural Information Processing Systems*, volume 37, 2024.

793

794 Yuchen Yan, Yuzhong Chen, Huiyuan Chen, Minghua Xu, Mahashweta Das, Hao Yang, and Hang- 795 hang Tong. From trainable negative depth to edge heterophily in graphs. *Advances in Neural 796 Information Processing Systems*, 36, 2024.

797

798 Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the 799 same coin: Heterophily and oversmoothing in graph convolutional neural networks. In *2022 IEEE 800 International Conference on Data Mining (ICDM)*, pp. 1287–1292. IEEE, 2022.

801

802 Hyunsik Yoo, Zhichen Zeng, Jian Kang, Ruizhong Qiu, David Zhou, Zhining Liu, Fei Wang, Charlie 803 Xu, Eunice Chan, and Hanghang Tong. Ensuring user-side fairness in dynamic recommender 804 systems. In *Proceedings of the ACM on Web Conference 2024*, pp. 3667–3678, 2024.

805

806 Hyunsik Yoo, SeongKu Kang, Ruizhong Qiu, Charlie Xu, Fei Wang, and Hanghang Tong. Embrac- 807 ing plasticity: Balancing stability and plasticity in continual recommender systems. In *Proceed- 808 ings of the 48th International ACM SIGIR Conference on Research and Development in Infor- 809 mation Retrieval*, 2025a.

810

811 Hyunsik Yoo, Ruizhong Qiu, Charlie Xu, Fei Wang, and Hanghang Tong. Generalizable recom- 812 mender system during temporal popularity distribution shifts. In *Proceedings of the 31st ACM 813 SIGKDD Conference on Knowledge Discovery and Data Mining*, 2025b.

810 Ronghui You, Shuwei Yao, Hiroshi Mamitsuka, and Shanfeng Zhu. Deepgraphgo: graph neural net-
 811 work for large-scale, multispecies protein function prediction. *Bioinformatics*, 37(Supplement_1):
 812 i262–i271, 2021.

813

814 Zhichen Zeng, Ruizhong Qiu, Zhe Xu, Zhining Liu, Yuchen Yan, Tianxin Wei, Lei Ying, Jingrui
 815 He, and Hanghang Tong. Graph mixup on approximate Gromov–Wasserstein geodesics. In
 816 *Proceedings of the 41st International Conference on Machine Learning*, 2024.

817

818 Zhichen Zeng, Ruizhong Qiu, Wenxuan Bao, Tianxin Wei, Xiao Lin, Yuchen Yan, Tarek F. Abdelza-
 819 her, Jiawei Han, and Hanghang Tong. Pave your own path: Graph gradual domain adaptation on
 820 fused Gromov–Wasserstein geodesics, 2025.

821

822 Xin Zheng, Yi Wang, Yixin Liu, Ming Li, Miao Zhang, Di Jin, Philip S Yu, and Shirui Pan. Graph
 823 neural networks for graphs with heterophily: A survey. *arXiv preprint arXiv:2202.07082*, 2022.

824

825 Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
 826 homophily in graph neural networks: Current limitations and effective designs. *Advances in
 827 neural information processing systems*, 33:7793–7804, 2020.

828

829 Jiong Zhu, Yujun Yan, Mark Heimann, Lingxiao Zhao, Leman Akoglu, and Danai Koutra. Het-
 830 erophily and graph neural networks: Past, present and future. *IEEE Data Engineering Bulletin*,
 831 2023.

832

833 Jiong Zhu, Gaotang Li, Yao-An Yang, Jing Zhu, Xuehao Cui, and Danai Koutra. On the im-
 834 pact of feature heterophily on link prediction with graph neural networks. *arXiv preprint
 835 arXiv:2409.17475*, 2024.

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **A USE OF LARGE LANGUAGE MODELS**
865866 We made limited and controlled use of Large Language Models, e.g. ChatGPT, solely for stylistic
867 refinement and improving readability of the text. All scientific content, methodology, experiments,
868 and conclusions were fully conceived and validated by the authors. The LLM's role was purely
869 editorial and does not constitute co-authorship.
870871 **B EXPERIMENTAL SETTINGS (CONT'D)**
872873 **B.1 DATASETS (CONT'D)**
874875 For heterophilic group, we consider the following datasets, which are widely used as benchmarks
876 for studying graph learning methods under heterophilic settings.
877878

- 879 • ACTOR Pei et al. (2020): Actor dataset is an actor-only induced subgraph of the film dataset
880 introduced by Tang et al. (2009). The nodes are actors and the edges denote co-occurrence
881 on the same Wikipedia page. The node features are keywords on the pages and we classify
882 nodes into five categories.
- 883 • SQUIRREL-F Platonov et al. (2023): Squirrel-Filtered (Squirrel-F) is a page-page dataset.
884 It is a subset of the Wiki dataset Rozemberczki et al. (2021) that focus on the topic related
885 to squirrel. Nodes are web pages and edges are mutual links between pages. The node
886 features are important keywords in the pages and we classify nodes into five categories in
887 terms of traffic of the webpage.
- 888 • CHAMELEON-F Platonov et al. (2023): Chameleon-Filtered (Chameleon-F) is a page-page
889 dataset. It is a subset of the Wiki dataset Rozemberczki et al. (2021) that focus on the topic
890 related to chameleon. Nodes are web pages and edges are mutual links between pages.
891 The node features are important keywords in the pages and we classify nodes into five
892 categories in terms of traffic of the webpage.
- 893 • MINESWEEPER Platonov et al. (2023): Minesweeper dataset is a synthetic dataset that sim-
894 ulates a Minesweeper game with 100x100 grid. Each node is connected to its neighboring
895 nodes where 20% nodes are selected as mines at random. Node features are numbers of
896 neighboring mines and the goal is to predict whether each test node is mine. These datasets
897 are widely used as benchmarks for studying graph learning methods under heterophilic
898 settings.

899 For the homophilic group, we consider the following datasets, which are standard homophilic net-
900 work benchmarks.
901902

- 903 • CORA Sen et al. (2008) : Cora dataset is a citation network, where nodes represent sci-
904 entific papers in the machine learning field, and edges correspond to citation relationships
905 between these papers. Each node is associated with a set of features that describe the paper,
906 represented as a bag-of-words model. The task for this dataset is to classify each paper into
907 one of seven categories, reflecting the area of research the paper belongs to.
- 908 • CITESEER Sen et al. (2008): CiteSeer dataset is a citation network of scientific papers. It
909 consists of research papers as nodes, with citation links forming the edges between them.
910 Each node is associated with a set of features derived from the paper's content, which is a
911 bag-of-words representation of the paper's text. The task for this dataset is to classify each
912 paper into one of six categories, each representing a specific field of study.

913 **B.2 BASELINE METHODS (CONT'D)**
914915 We briefly introduce GNN-based baseline methods as follows.
916917 The first category is *homophilic GNNs*, which are originally designed under the homophily assump-
918 tion.

918 Table 4: Summary of dataset statistics. We use four heterophilic graphs and two homophilic graphs.
919

920 921 Statistic	922 923 924 925 926 Heterophilic Graphs				927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 Homophilic Graphs	
	922 923 924 925 926 ACTOR	922 923 924 925 926 SQUIRREL-F	922 923 924 925 926 CHAMELEON-F	922 923 924 925 926 MINESWEEPER	922 923 924 925 926 CORA	922 923 924 925 926 CITESEER
# Nodes	7600	2223	890	10000	2708	3327
# Edges	33544	46998	8854	39402	5429	4732
# Features	931	2089	2325	7	1433	3703
# Classes	5	5	5	2	7	6
Homophily	0.0028	0.0086	0.0295	0.0094	0.7711	0.6707

- ChebNet Defferrard et al. (2016): Uses Chebyshev polynomials to approximate graph convolutions.
- GCN Kipf & Welling (2016): Employs a first-order Chebyshev approximation for spectral graph convolutions.
- SGC Wu et al. (2019): Simplifies GCN by removing non-linearities and collapsing weight matrices for efficiency.
- GAT Veličković et al. (2018): Introduces attention mechanisms to assign adaptive importance to edges.
- GraphSAGE Hamilton et al. (2017): Uses several aggregators for inductive graph learning.
- GIN Xu et al. (2018a): Employs sum-based aggregation to maximize graph structure expressiveness.
- APPNP Gasteiger et al. (2018): Combines personalized PageRank with neural propagation.
- GCNII Chen et al. (2020): Extends GCN with residual connections and identity mapping for deep GNN training.
- GATv2 Brody et al. (2021): Enhances GAT with dynamic attention coefficients for flexible neighbor weighting.
- MixHop Abu-El-Haija et al. (2019): Aggregates multi-hop neighborhood features by mixing different powers of adjacency matrices.
- TAGCN Du et al. (2017): Introduces trainable polynomial filters for adaptive, multi-scale feature extraction.
- DAGNN Liu et al. (2020): Uses dual attention to decouple message aggregation and transformation, improving depth scalability.
- JKNet Xu et al. (2018b): Uses a jumping knowledge mechanism to combine features from different layers adaptively. We default the backbone GNN model to GCN.
- Virtual Node Gilmer et al. (2017): Introduces an auxiliary global node to facilitate message passing. We default the backbone GNN model to GCN.

957 The second category is *heterophilic GNNs*, which are designed for graphs where connected nodes
958 often have different labels.

- H2GCN Zhu et al. (2020): Enhances GNNs by ego-/neighbor-embedding separation, higher-order neighbors and intermediate representation combinations.
- FAGCN Bo et al. (2021): Uses frequency adaptive filtering to learn optimal graph representations.
- OrderedGNN Song et al. (2023): Aligns the order to encode neighborhood information and avoids feature mixing.
- GloGNN Li et al. (2022): Incorporates global structural information to enhance graph learning beyond local neighborhoods.
- GGCN Yan et al. (2022): Utilizes structure/feature-based edge correction to combat over-smoothing and heterophily.
- GPRGNN Chien et al. (2020): Introduces generalized PageRank propagation to capture the graph structure.

972 • ALT Xu et al. (2023): Decomposes graph into components, extracts signals from these
 973 components and adaptively integrate these signals.
 974

975 The last category is *graph transformers*, which adapt transformer architectures to graph data and
 976 look beyond local neighborhood aggregation.

977 • NodeFormer Wu et al. (2022): Introduces all-pair message passing on layer-specific adap-
 978 tive latent graphs, enabling global feature propagation with linear complexity.
 979 • SGFormer Wu et al. (2024a): Develops a graph encoder backbone that efficiently computes
 980 all-pair interactions with one-layer attentive propagation.
 981 • DIFFFormer Wu et al. (2023): Proposes an energy-constrained diffusion model, leading to
 982 variants that are efficient and capable of capturing complex structures.
 983

984 **B.3 TRAINING & EVALUATION (CONT'D)**

985 For our method, we use $w_{\mathcal{X}} \in \{0.01, 0.1, 0.6, 8\}$, $w_0 \in \{0.1, 0.2, 0.3, 0.5, 1, 8\}$, $\tau \in \{0.01, 0.1, 1\}$,
 986 and dropout rate 0.2. We use the GNN architecture described in the method section with 8 GNN layers
 987 with hidden dimensionality 512 and add a two-layer MLP after each GNN layer for heterophilic
 988 graphs and use FAGCN for homophilic graphs. We use original node features as described in Sec-
 989 tion 3.2, except that we use zeros as the features of graph nodes on Squirrel-F and that we normalize
 990 the features of graph nodes on Cora and CiteSeer after computing the features of feature nodes. We
 991 train the GNN with learning rate 0.00003 for 1000 steps using the Adam optimizer Kingma & Ba
 992 (2014). Experiments were implemented in PyTorch 2.7.0 and Deep Graph Library (DGL) 2.4.0 and
 993 were run on Intel Xeon CPU @ 2.20GHz with 96GB memory and NVIDIA Tesla V100 32GB GPU.
 994

995 **C DEFINITION OF HOMOPHILY METRICS**

996 To measure to what extent GRAPHITE can boost graph homophily on heterophilic datasets, we
 997 consider two popular homophily metrics: *feature homophily* Jin et al. (2022) and *adjusted ho-
 1000 mophily* Platonov et al. (2024). Formally, given a graph \mathcal{G} , *feature homophily* H^{feature} is defined
 1001 as follows:

$$H^{\text{feature}}(\mathcal{G}) := \frac{1}{|\mathcal{E}|} \sum_{(v_i, v_j) \in \mathcal{E}} \text{sim}(v_i, v_j), \quad (13)$$

1002 where $\text{sim}(v_i, v_j) := \cos(\mathbf{X}[v_i, :], \mathbf{X}[v_j, :])$ is the cosine-similarity computed between features of
 1003 nodes v_i, v_j . This metric is a variant of the *generalized edge homophily ratio* H^{edge} proposed by Jin
 1004 et al. (2022), which measures the feature similarity between each of the connected node pairs in the
 1005 graph dataset. Then, the *adjusted homophily* ($H^{\text{adj}}(\mathcal{G})$) is defined as follows:

$$H^{\text{adj}}(\mathcal{G}) := \frac{H^{\text{edge}}(\mathcal{G}) - \sum_{c=1}^C D_c^2 / (2|\mathcal{E}|)^2}{1 - \sum_{c=1}^C D_c^2 / (2|\mathcal{E}|)^2}, \quad (14)$$

1006 where C denotes the number of classes and $H^{\text{edge}}(\mathcal{G})$ is *edge homophily*, which is defined similarly
 1007 as Equation (13) with the similarity function $\text{sim}(v_i, v_j) = \mathbf{1}_{\{y_{v_i} = y_{v_j}\}}$, and
 1008

$$D_c := \sum_{v: y_v = c} \deg(v) \quad (15)$$

1009 is the sum of node degrees with a specific node label c . Note that y_{v_i} stands for the node label of
 1010 graph node v_i . Since we do not have node labels for the *feature nodes* when computing *adjusted
 1011 homophily*, we assign them “soft label”, which is a uniform probability distribution over classes,
 1012 obtained by aggregating the labels of its 1-hop neighbors.

1013 **D THEORETICAL ANALYSIS**

1014 **D.1 ASSUMPTIONS**

1015 In this subsection, we introduce the assumptions of our theoretical analysis, which are mild and
 1016 realistic.

Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{X})$ with $\mathcal{E} \neq \emptyset$ and $\mathbf{X} \in \{0, 1\}^{\mathcal{V} \times \mathcal{X}}$, we define the feature similarity metric as $\text{sim}(v_i, v_j) := \|\mathbf{X}[v_i, :] \wedge \mathbf{X}[v_j, :]\|_\infty$ and use the feature homophily as the homophily metric:

$$\text{hom}(\mathcal{G}) := \frac{1}{|\mathcal{E}|} \sum_{(v_i, v_j) \in \mathcal{E}} \text{sim}(v_i, v_j). \quad (16)$$

Furthermore, we assume that the original graph \mathcal{G} is heterophilic. That is, we have $\text{hom}(\mathcal{G}) < 1$ while there exists a pair of nodes, $v_i, v_j \in \mathcal{V}$ ($v_i \neq v_j$), such that $\text{sim}(v_i, v_j) > 0$ but $(v_i, v_j) \notin \mathcal{E}$.

Besides that, we assume that the given graph \mathcal{G} does not have too dense features. Formally, we assume that $|\mathcal{X}| \leq O(|\mathcal{V}|)$ and that $\|\mathbf{X}\|_0 \leq O(|\mathcal{E}|)$. For the transformed graph \mathcal{G}^* , we assume that every feature is used: for any feature $k \in \mathcal{X}$, there exists a graph node $v_i \in \mathcal{V}$ such that $\mathbf{X}[v_i, k] = 1$.

D.2 TECHNICAL LEMMA

Here, we prove a technical lemma that we will use later.

Lemma 4. *Let $\mathcal{A}, \mathcal{B} \subset \mathbb{R}$ be two nonempty, finite multisets with $z' > \frac{1}{|\mathcal{A}|} \sum_{z \in \mathcal{A}} z$ for all $z' \in \mathcal{B}$. Then,*

$$\frac{1}{|\mathcal{A} \sqcup \mathcal{B}|} \sum_{z \in \mathcal{A} \sqcup \mathcal{B}} z > \frac{1}{|\mathcal{A}|} \sum_{z \in \mathcal{A}} z.$$

Proof. To simplify notation, let

$$\mu := \frac{1}{|\mathcal{A}|} \sum_{z \in \mathcal{A}} z, \quad (17)$$

$$\Delta := \min \mathcal{B} - \mu > 0. \quad (18)$$

Then,

$$\frac{1}{|\mathcal{A} \sqcup \mathcal{B}|} \sum_{z \in \mathcal{A} \sqcup \mathcal{B}} z - \frac{1}{|\mathcal{A}|} \sum_{z \in \mathcal{A}} z \quad (19)$$

$$= \frac{1}{|\mathcal{A}| + |\mathcal{B}|} \left(\sum_{z \in \mathcal{A}} z + \sum_{z \in \mathcal{B}} z \right) - \frac{1}{|\mathcal{A}|} \sum_{z \in \mathcal{A}} z \quad (20)$$

$$= \frac{1}{|\mathcal{A}| + |\mathcal{B}|} \left(|\mathcal{A}| \cdot \frac{1}{|\mathcal{A}|} \sum_{z \in \mathcal{A}} z + \sum_{z \in \mathcal{B}} z \right) - \frac{1}{|\mathcal{A}|} \sum_{z \in \mathcal{A}} z \quad (21)$$

$$= \frac{1}{|\mathcal{A}| + |\mathcal{B}|} \left(|\mathcal{A}| \cdot \mu + \sum_{z \in \mathcal{B}} z \right) - \mu \quad (22)$$

$$\geq \frac{1}{|\mathcal{A}| + |\mathcal{B}|} \left(|\mathcal{A}| \cdot \mu + \sum_{z \in \mathcal{B}} \min \mathcal{B} \right) - \mu \quad (23)$$

$$= \frac{1}{|\mathcal{A}| + |\mathcal{B}|} (|\mathcal{A}| \cdot \mu + |\mathcal{B}| \cdot \min \mathcal{B}) - \mu \quad (24)$$

$$= \frac{1}{|\mathcal{A}| + |\mathcal{B}|} (|\mathcal{B}| \cdot \min \mathcal{B} - |\mathcal{B}| \cdot \mu) \quad (25)$$

$$= \frac{|\mathcal{B}|}{|\mathcal{A}| + |\mathcal{B}|} (\min \mathcal{B} - \mu) \quad (26)$$

$$= \frac{|\mathcal{B}|}{|\mathcal{A}| + |\mathcal{B}|} \Delta > 0. \quad (27)$$

It follows that

$$\frac{1}{|\mathcal{A} \sqcup \mathcal{B}|} \sum_{z \in \mathcal{A} \sqcup \mathcal{B}} z > \frac{1}{|\mathcal{A}|} \sum_{z \in \mathcal{A}} z. \quad \square$$

1080 D.3 PROOF OF THEOREM 1
1081

1082 **Homophily.** Since the original graph \mathcal{G} is homophilic, then there exists a pair of nodes, $v_i, v_j \in \mathcal{V}$
1083 ($v_i \neq v_j$), such that $\text{sim}(v_i, v_j) = \|\mathbf{X}[v_i, :] \wedge \mathbf{X}[v_j, :] \|_\infty > 0$ but $(v_i, v_j) \notin \mathcal{E}$. According to the
1084 definition of \mathcal{E}^\dagger , we know that $(v_i, v_j) \in \mathcal{E}^\dagger \setminus \mathcal{E} \neq \emptyset$, so $\mathcal{E}^\dagger \setminus \mathcal{E} \neq \emptyset$.
1085

1086 Furthermore, for any $(v_i, v_j) \in \mathcal{E}^\dagger \setminus \mathcal{E}$, since $\text{sim}(v_i, v_j) = \|\mathbf{X}[v_i, :] \wedge \mathbf{X}[v_j, :] \|_\infty > 0$, then there
1087 exists a feature $k \in \mathcal{X}$ such that $\mathbf{X}[v_i, k] \wedge \mathbf{X}[v_j, k] > 0$. Since the feature matrix \mathbf{X} is binary, then
1088 we must have

$$1089 \mathbf{X}[v_i, k] = 1, \quad \mathbf{X}[v_j, k] = 1. \quad (28)$$

1090 It follows that

$$1091 \text{sim}(v_i, v_j) = \|\mathbf{X}[v_i, :] \wedge \mathbf{X}[v_j, :] \|_\infty \quad (29)$$

$$1092 = \max_{k' \in \mathcal{X}} |\mathbf{X}[v_i, k'] \wedge \mathbf{X}[v_j, k']| \quad (30)$$

$$1093 \geq |\mathbf{X}[v_i, k] \wedge \mathbf{X}[v_j, k]| \quad (31)$$

$$1094 = |1 \wedge 1| = 1. \quad (32)$$

1095 Since $\text{hom}(\mathcal{G}) < 1$, then

$$1096 \text{sim}(v_i, v_j) \geq 1 > \text{hom}(\mathcal{G}). \quad (33)$$

1097 Therefore, by Lemma 4 with

$$1098 \mathcal{A} := \{\text{sim}(v_i, v_j) : (v_i, v_j) \in \mathcal{E}\}, \quad (34)$$

$$1099 \mathcal{B} := \{\text{sim}(v_i, v_j) : (v_i, v_j) \in \mathcal{E}^\dagger \setminus \mathcal{E}\}, \quad (35)$$

1100 we have

$$1101 \text{hom}(\mathcal{G}^\dagger) = \frac{1}{|\mathcal{E}^\dagger|} \sum_{(v_i, v_j) \in \mathcal{E}^\dagger} \text{sim}(v_i, v_j) \quad (36)$$

$$1102 = \frac{1}{|\mathcal{E} \sqcup (\mathcal{E}^\dagger \setminus \mathcal{E})|} \sum_{(v_i, v_j) \in \mathcal{E} \sqcup (\mathcal{E}^\dagger \setminus \mathcal{E})} \text{sim}(v_i, v_j) \quad (37)$$

$$1103 = \frac{1}{|\mathcal{A} \sqcup \mathcal{B}|} \sum_{z \in \mathcal{A} \sqcup \mathcal{B}} z \quad (38)$$

$$1104 > \frac{1}{|\mathcal{A}|} \sum_{z \in \mathcal{A}} z \quad (39)$$

$$1105 = \frac{1}{|\mathcal{E}|} \sum_{(v_i, v_j) \in \mathcal{E}} \text{sim}(v_i, v_j) \quad (40)$$

$$1106 = \text{hom}(\mathcal{G}). \quad (41)$$

1107
1108
1109 **Number of edges.** Since there are $|\mathcal{V}|$ nodes in total, then the total number of node pairs is $\binom{|\mathcal{V}|}{2}$.
1110 Recall that $\mathcal{E}^\dagger \setminus \mathcal{E}$ is the set of added edges. It follows that

$$1111 |\mathcal{E}^\dagger| - |\mathcal{E}| = |\mathcal{E}^\dagger \setminus \mathcal{E}| \leq \binom{|\mathcal{V}|}{2} \quad (42)$$

$$1112 = \frac{|\mathcal{V}|(|\mathcal{V}| - 1)}{2} = O(|\mathcal{V}|^2). \quad (43)$$

1113 D.4 PROOF OF OBSERVATION 2

1114 Since $\text{sim}(v_i, v_j) = \|\mathbf{X}[v_i, :] \wedge \mathbf{X}[v_j, :] \|_\infty > 0$, then there exists a feature $k \in \mathcal{X}$ such that
1115 $\mathbf{X}[v_i, k] \wedge \mathbf{X}[v_j, k] > 0$. Since the feature matrix \mathbf{X} is binary, then we must have

$$1116 \mathbf{X}[v_i, k] = 1, \quad \mathbf{X}[v_j, k] = 1. \quad (44)$$

1117 This implies that $(v_i, x_k) \in \mathcal{E}^*$ and that $(v_j, x_k) \in \mathcal{E}^*$. Hence, there exists a length-2 path $v_i \rightarrow$
1118 $x_k \rightarrow v_j$ connecting graph nodes v_i and v_j . Therefore, v_i and v_j are two-hop neighbors of each
1119 other.

1134 D.5 PROOF OF THEOREM 3
1135

1136 **Homophily.** Since the original graph \mathcal{G} is homophilic, then there exists a pair of nodes, $v_i, v_j \in \mathcal{V}$
1137 ($v_i \neq v_j$), such that $\text{sim}(v_i, v_j) = \|\mathbf{X}[v_i, :] \wedge \mathbf{X}[v_j, :] \|_\infty > 0$ but $(v_i, v_j) \notin \mathcal{E}$. Since $\text{sim}(v_i, v_j) =$
1138 $\|\mathbf{X}[v_i, :] \wedge \mathbf{X}[v_j, :] \|_\infty > 0$, then there exists a feature $k \in \mathcal{X}$ such that $\mathbf{X}[v_i, k] \wedge \mathbf{X}[v_j, k] > 0$.
1139 Since the feature matrix \mathbf{X} is binary, then we must have

$$1140 \quad \mathbf{X}[v_i, k] = 1, \quad \mathbf{X}[v_j, k] = 1. \quad (45)$$

1141 This implies that $(v_i, x_k) \in \mathcal{E}^* \setminus \mathcal{E}$ and that $(v_j, x_k) \in \mathcal{E}^* \setminus \mathcal{E}$. Thus, $\mathcal{E}^* \setminus \mathcal{E}$ is nonempty.

1142 Furthermore, for any feature node $x_k \in \mathcal{V}_\mathcal{X}$, since any feature edge $(v_i, x_k) \in \mathcal{E}_\mathcal{X}$ ensures
1143 $\mathbf{X}[v_i, k] = 1$, then we have

$$1144 \quad \mathbf{X}^*[x_k, k] = \frac{1}{|\mathcal{E}_\mathcal{X} \cap (\mathcal{V} \times \{x_k\})|} \sum_{v_i: (v_i, x_k) \in \mathcal{E}_\mathcal{X}} \mathbf{X}[v_i, k] \quad (46)$$

$$1145 \quad = \frac{1}{|\mathcal{E}_\mathcal{X} \cap (\mathcal{V} \times \{x_k\})|} \sum_{v_i: (v_i, x_k) \in \mathcal{E}} 1 \quad (47)$$

$$1146 \quad = \frac{1}{|\mathcal{E}_\mathcal{X} \cap (\mathcal{V} \times \{x_k\})|} \sum_{v_i: (v_i, x_k) \in \mathcal{E} \cap (\mathcal{V} \times \{x_k\})} 1 \quad (48)$$

$$1147 \quad = 1. \quad (49)$$

1148 Finally, for any added feature edge $(v_i, x_k) \in \mathcal{E}^* \setminus \mathcal{E} = \mathcal{E}_\mathcal{X}$,

$$1149 \quad \text{sim}(v_i, x_k) = \|\mathbf{X}[v_i, :] \wedge \mathbf{X}[x_k, :] \|_\infty \quad (50)$$

$$1150 \quad = \max_{k' \in \mathcal{X}} |\mathbf{X}[v_i, k'] \wedge \mathbf{X}[x_k, k']| \quad (51)$$

$$1151 \quad \geq |\mathbf{X}[v_i, k] \wedge \mathbf{X}[x_k, k]| \quad (52)$$

$$1152 \quad = |1 \wedge 1| = 1. \quad (53)$$

1153 Since $\text{hom}(\mathcal{G}) < 1$, then

$$1154 \quad \text{sim}(v_i, x_k) \geq 1 > \text{hom}(\mathcal{G}). \quad (54)$$

1155 Therefore, by Lemma 4 with

$$1156 \quad \mathcal{A} := \{\text{sim}(v_i, v_j) : (v_i, v_j) \in \mathcal{E}\}, \quad (55)$$

$$1157 \quad \mathcal{B} := \{\text{sim}(v_i, x_k) : (v_i, x_k) \in \mathcal{E}_\mathcal{X}\}, \quad (56)$$

1158 we have

$$1159 \quad \text{hom}(\mathcal{G}^*) = \frac{1}{|\mathcal{E}^*|} \sum_{(u, u') \in \mathcal{E}^*} \text{sim}(u, u') \quad (57)$$

$$1160 \quad = \frac{1}{|\mathcal{E} \sqcup \mathcal{E}_\mathcal{X}|} \sum_{(u, u') \in \mathcal{E} \sqcup \mathcal{E}_\mathcal{X}} \text{sim}(u, u') \quad (58)$$

$$1161 \quad = \frac{1}{|\mathcal{A} \sqcup \mathcal{B}|} \sum_{z \in \mathcal{A} \sqcup \mathcal{B}} z \quad (59)$$

$$1162 \quad > \frac{1}{|\mathcal{A}|} \sum_{z \in \mathcal{A}} z \quad (60)$$

$$1163 \quad = \frac{1}{|\mathcal{E}|} \sum_{(v_i, v_j) \in \mathcal{E}} \text{sim}(v_i, v_j) \quad (61)$$

$$1164 \quad = \text{hom}(\mathcal{G}). \quad (62)$$

1165 **Number of nodes.** Since $|\mathcal{X}| \leq O(|\mathcal{V}|)$, then

$$1166 \quad |\mathcal{V}_\mathcal{X}| = |\mathcal{X}| \leq O(|\mathcal{V}|). \quad (63)$$

1188 It follows that
 1189

$$|\mathcal{V}^*| = |\mathcal{V}| + |\mathcal{V}_\mathcal{X}| \quad (64)$$

$$\leq |\mathcal{V}| + O(|\mathcal{V}|) \quad (65)$$

$$= O(|\mathcal{V}|). \quad (66)$$

1193

1194 **Number of edges.** Since \mathbf{X} is a binary matrix, then $\|\mathbf{X}\|_1 = \|\mathbf{X}\|_0 \leq O(|\mathcal{E}|)$. Hence,
 1195

$$|\mathcal{E}_\mathcal{X}| = \sum_{v_i \in \mathcal{V}} \sum_{x_k \in \mathcal{V}_\mathcal{X}} 1_{[(v_i, x_k) \in \mathcal{E}_\mathcal{X}]} \quad (67)$$

$$= \sum_{v_i \in \mathcal{V}} \sum_{k \in \mathcal{X}} 1_{[(v_i, x_k) \in \mathcal{E}_\mathcal{X}]} \quad (68)$$

$$= \sum_{v_i \in \mathcal{V}} \sum_{k \in \mathcal{X}} 1_{[\mathbf{X}[v_i, k] = 1]} \quad (69)$$

$$= \sum_{v_i \in \mathcal{V}} \sum_{k \in \mathcal{X}} \mathbf{X}[v_i, k] \quad (70)$$

$$= \sum_{v_i \in \mathcal{V}} \sum_{k \in \mathcal{X}} |\mathbf{X}[v_i, k]| \quad (71)$$

$$= \|\mathbf{X}\|_1 = \|\mathbf{X}\|_0 \leq O(|\mathcal{E}|). \quad (72)$$

1209 It follows that
 1210

$$|\mathcal{E}^*| = |\mathcal{E}| + |\mathcal{E}_\mathcal{X}| \quad (73)$$

$$\leq |\mathcal{E}| + O(|\mathcal{E}|) \quad (74)$$

$$= O(|\mathcal{E}|). \quad (75)$$

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241