
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRAPH HOMOPHILY BOOSTER: RETHINKING THE
ROLE OF DISCRETE FEATURES ON HETEROPHILIC
GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) have emerged as a powerful tool for modeling
graph-structured data, demonstrating remarkable success in many real-world ap-
plications such as complex biological network analysis, neuroscientific analysis,
and social network analysis. However, existing GNNs often struggle with het-
erophilic graphs, where connected nodes tend to have dissimilar features or labels.
While numerous methods have been proposed to address this challenge, they pri-
marily focus on architectural designs without directly targeting the root cause of
the heterophily problem. These approaches still perform even worse than the sim-
plest MLPs on challenging heterophilic datasets. For instance, our experiments
show that 21 latest GNNs still fall behind the MLP on the ACTOR dataset. This
critical challenge calls for an innovative approach to addressing graph heterophily
beyond architectural designs. To bridge this gap, we propose and study a new
and unexplored paradigm: directly increasing the graph homophily via a carefully
designed graph transformation. In this work, we present a simple yet effective
framework called GRAph homoPHIly boosTEr (GRAPHITE) to address graph
heterophily. To the best of our knowledge, this work is the first method that ex-
plicitly transforms the graph to directly improve the graph homophily. Stemmed
from the exact definition of homophily, our proposed GRAPHITE creates feature
nodes to facilitate homophilic message passing between nodes that share similar
features. Furthermore, we both theoretically and empirically show that our pro-
posed GRAPHITE significantly increases the homophily of originally heterophilic
graphs, with only a slight increase in the graph size. Extensive experiments on
challenging datasets demonstrate that our proposed GRAPHITE significantly out-
performs state-of-the-art methods on heterophilic graphs while achieving compa-
rable accuracy with state-of-the-art methods on homophilic graphs. Furthermore,
our proposed graph transformation alone can already enhance the performance of
homophilic GNNs on heterophilic graphs, even though they were not originally
designed for heterophilic graphs. We will release our code upon the publication
of this paper.

1 INTRODUCTION

Graph neural networks (GNNs) have emerged as a powerful class of models for learning on topo-
logically structured data. Their ability to incorporate graph topology and node-level attributes has
enabled them to achieve state-of-the-art results in a wide range of applications. These include pro-
tein function prediction, where GNNs model complex biological networks (You et al., 2021; Réau
et al., 2023); neuroscientific analysis, where they are used to model brain networks (Li et al., 2023a);
and social network analysis, where they help uncover patterns among users (Li et al., 2023b).

A critical challenge that many GNNs are faced with is that real-world networks can exhibit het-
erophily, where connected nodes tend to have dissimilar features or labels. Examples include
protein–protein interaction networks where different types of proteins interact (Zhu et al., 2020),
or online marketplace networks where buyers connect with sellers rather than other buyers (Pan-
dit et al., 2007). Standard GNN architectures (Kipf & Welling, 2016; Wu et al., 2019; Veličković
et al., 2017; Hamilton et al., 2017; Chen et al., 2020; Abu-El-Haija et al., 2019), with their heavy

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Original Graph

𝑣!

𝑣"

𝑣#

𝑣$

𝑣%

Heterophilic
Message Passing

Transformed Graph (GRAPHITE)

𝑥!

𝑣"

𝑣#

𝑣$

𝑥"
𝑣!

𝑣%
𝑥#

More Homophilic
Message Passing

Add Feature Nodes Original Graph Edges

Original Graph Nodes𝑣!

𝑥" Added Feature Nodes

Added Feature Edges

Graph Node Features

Figure 1: Overview of our proposed GRAPHITE. The added feature nodes can facilitate homophilic
message passing. For instance, feature node x1 facilitates homophilic message passing between
nodes v1, v2, and feature node x2 facilitates homophilic message passing among nodes v3, v4, v5.

reliance on neighborhood aggregation, often struggle with heterophilous graphs since aggregating
features from dissimilar neighbors can dilute or distort node representations. Existing methods
for heterophilic graphs mainly focus on designing new GNN architectures as workarounds for het-
erophilic graphs, such as separating ego and neighbor embeddings (Zhu et al., 2020), incorporating
higher-order information with learnable weights (Chien et al., 2020), and adaptive self-gating to
leverage both low- and high-frequency signals (Bo et al., 2021). More recent solutions introduce
frequency-based filtering to handle both homophily and heterophily or leverage adaptive residual
connections to further enhance flexibility (Xu et al., 2023; Xu et al.; Yan et al., 2024).

Despite plenty of architectural advances, many GNNs still perform even worse than the simplest
multi-layer perceptrons (MLPs) on challenging heterophilic graphs. For instance, Table 1 shows
that 21 latest GNNs still fall behind the MLP on the ACTOR dataset. This critical challenge calls for
an innovative approach to addressing graph heterophily beyond architectural designs.

To bridge this gap, we propose and study a new and unexplored paradigm: directly increasing the
graph homophily via a carefully designed graph transformation. In this work, we present a simple yet
effective framework called GRAph homoPHIly boosTEr (GRAPHITE) to address graph heterophily.
To the best of our knowledge, this work is the first method that explicitly transforms the graph to
directly improve the graph homophily.

Our key idea is rooted in the exact definition of homophily and heterophily. In a ho-
mophilic/heterophilic graph, nodes that share similar features are more/less likely to be adjacent,
respectively. Therefore, a natural idea to increase the graph homophily is to create “shortcut” con-
nections between nodes with similar features so as to facilitate homophilic message passing. How-
ever, naı̈vely adding mutual connections between such node pairs can drastically increase the number
of edges. To reduce the number of “shortcut” edges, we propose to connect such node pairs indi-
rectly instead. In particular, we introduce feature nodes as “hubs” and connect graph nodes to their
corresponding feature nodes. We further theoretically show that our proposed method can provably
enhance the homophily of originally heterophilic graphs without increasing the graph size much.

Our main contributions are summarized as follows:

• New paradigm. We propose and study a new and unexplored paradigm: directly increasing
the graph homophily via graph transformation. This paper is the first work on this paradigm
to the best of our knowledge.

• Proposed method. We propose a simple yet effective method called GRAPHITE, which
creates feature nodes as “shortcuts” to facilitate homophilic message passing between
nodes with similar features.

• Theoretical guarantees. We theoretically show that GRAPHITE can provably enhance
the homophily of originally heterophilic graphs with only a slight increase in size.

• Empirical performance. Extensive experiments on challenging datasets demonstrate the
effectiveness of our proposed GRAPHITE. GRAPHITE significantly outperforms state-of-
the-art methods on heterophilic graphs while achieving comparable accuracy with state-
of-the-art methods on homophilic graphs. Furthermore, our proposed graph transformation
alone can already enhance the performance of homophilic GNNs on heterophilic graphs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Actor Squirrel-F Chameleon-F Minesweeper
0.0

0.1

0.2

0.3

0.4

Feature Homophily

Actor Squirrel-F Chameleon-F Minesweeper
0.00

0.05

0.10

0.15
Adjusted HomophilyOriginal GRAPHITE

Figure 2: Our proposed GRAPHITE significantly increases the homophily of originally heterophilic
graphs. We report two latest homophily metrics: feature homophily Jin et al. (2022) and adjusted
homophily Platonov et al. (2024).

2 PRELIMINARIES

2.1 NOTATION

An undirected graph with discrete node features can be represented as a triple G = (V, E ,X), where
V = {v1, . . . , v|V|} denotes the node set, E ⊆ V × V denotes the edge set, X ∈ {0, 1}V×X is a
binary node feature matrix representing discrete node features, and X = {1, . . . , |X |} is the feature
set containing all the discrete node features. In addition to that, each graph node vi ∈ V has a node
label yvi ∈ Y , where Y is the label set with C = |Y| classes.

2.2 PROBLEM DEFINITION

In this paper, we study two key problems: (i) how to transform a graph to increase its homophily
and (ii) how to perform node classification on a heterophilic graph datasets. Formally, we introduce
the problem definitions as follows.

Problem 1 (Boosting Graph Homophily). Given a highly heterophilic graph, transform the graph
to increase its homophily. Input: a heterophilic graph G. Output: a transformed graph G∗ with
higher homophily.

Problem 2 (Semi-supervised Node Classification on a Heterophilic Graph). Given a heterophilic
graph and a set of labelled nodes, train a model to predict the labels of unlabelled nodes. Input: (i)
a heterophilic graph G = (V, E ,X); (ii) a labelled node set VL ⊂ V whose node labels [yvi]vi∈VL

are available. Output: the predicted labels of unlabeled nodes V \ VL.

3 PROPOSED METHOD: GRAPHITE

In this section, we propose a simple yet effective graph transformation method called GRAph
homoPHIly boosTEr (GRAPHITE) that can efficiently increase the homophily of a graph. In Sec-
tion 3.1, we will introduce the motivation of our proposed GRAPHITE. First, we will present the
design of our proposed method GRAPHITE. Then, we will describe the neural architecture of our
proposed method. Due to the page limit, proofs of theoretical results are deferred to the appendix.

3.1 MOTIVATION

Graph heterophily is a ubiquitous challenge in graph-based machine learning. On a highly het-
erophilic graph, many neighboring nodes exhibit dissimilar features or belong to different classes.
As a result, graph heterophily limits the effectiveness of GNN message passing, as standard aggre-
gation schemes might fail to capture meaningful patterns in heterophilic neighbors.

Existing methods for heterophilic graphs mainly focus on designing workarounds such as new archi-
tectures or learning paradigms for heterophilic graphs, including adaptive message passing, higher-
order neighborhoods, or alternative propagation mechanisms that leverage both local and global
graph structures.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In contrast to existing workaround methods, we propose a new method that aims to directly increase
the homophily of the graph via a specially designed graph transformation. To the best of our knowl-
edge, this work is the first method that explicitly transforms the graph to improve the homophily of
the graph.

Our idea is rooted in the exact definition of homophily and heterophily. In a heterophilic graph,
nodes that share similar features are more likely to be non-adjacent. However, in a homophilic
graph, nodes that share similar features should be more likely to be neighbors. Therefore, a natural
idea to increase the homophily of the graph is to create “shortcut” connections between nodes with
similar features, which will facilitate homophilic message passing between them.

Before we introduce the proposed method, let’s consider the following naı̈ve approach to imple-
menting the aforementioned idea: For each pair of nodes vi, vj ∈ V , if they share at least a feature
(i.e., ∥X[vi, :]∧X[vj , :]∥∞ > 0), we add a “shortcut” edge (vi, vj) between them. Let’s call this ap-
proach the naı̈ve homophily booster (NHB). The following Theorem 1 shows that NHB can indeed
increase the homophily of the graph under mild and realistic assumptions.
Theorem 1 (Naı̈ve homophily booster). Given a heterophilic graph G = (V, E ,X), let E† denote
the set of edges after adding the NHB “shortcut” edges, and let G† := (V, E†,X) denote the graph
transformed by NHB. Under mild and realistic assumptions in Appendix D.1, we have

hom(G†) > hom(G), (1)

|E†| − |E| ≤ O(|V|2). (2)

However, Equation (2) also shows that NHB is extremely inefficient despite its effectiveness in
increasing homophily. For instance, even if the graph has only 2,000 nodes, NHB can add as many
as 1,999,000 “shortcut” edges. The plenty of “shortcut” edges can drastically slow down the training
and the inference process of GNNs. Hence, this naı̈ve approach is computationally impractical for
GNNs. To address this computational challenge, we will instead propose an efficient homophily
booster via a more careful design of “shortcut” edges.

3.2 EFFICIENT GRAPH HOMOPHILY BOOSTER

To address the computational inefficiency of the motivating naı̈ve approach above, we propose
an efficient, simple yet effective graph transformation method called GRAph homoPHIly boosTEr
(GRAPHITE) in this subsection.

Note that the large number of NHB “shortcut” edges is because NHB directly connects nodes with
similar features. Since there are O(|V|2) node pairs in a graph, then the total number of added NHB
“shortcut” edges can be as large as O(|V|2).
To reduce the number of “shortcut” edges, we propose to connect such node pairs indirectly instead.
In particular, if we can create a few auxiliary “hub” nodes so that all such node pairs are indirectly
connected through the “hub” nodes, then we will be able to significantly reduce the number of
“shortcut” edges at only a small price of adding a few “hub” nodes. Therefore, we need to develop
an appropriate design of the “hub” nodes.

Graph transformation. Following the aforementioned motivation, we propose to create a feature
node xk for each feature k to serve as the “hub” nodes. Let VX denote the set of feature nodes:

VX := {xk : k ∈ X}. (3)

To distinguish feature nodes VX from nodes V in the original graph, we call V graph nodes from
now on. For each graph node vi ∈ V , if graph node vi has feature k (i.e., X[vi, k] = 1), we add an
edge (vi, xk) to connect the graph node vi and the feature node xk ∈ VX , and we call it a feature
edge. Let EX denote the set of feature edges:

EX := {(vi, xk) : vi ∈ V, xk ∈ VX , X[vi, k] = 1} ⊆ V × VX .

To distinguish feature edges EX from the original edges E , we call E graph edges from now on.

Finally, we define the transformed graph G∗ = (V∗, E∗,X∗) as follows. The nodes V∗ of the
transformed graph G∗ are the original graph nodes V and the added feature nodes VX : V∗ := V∪VX .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The edges E∗ of the transformed graph G∗ are the original graph edges E and the added feature edges
EX : E∗ := E ∪ EX . We can also equivalently define the edges of the transformed graph G∗ by its
adjacency matrix. Let A denote the adjacency matrix of the original graph G. Then, the adjacency
matrix A∗ of the transformed graph G∗ can be expressed in a block matrix form:

A∗ =

[
A X

XT 0

]
. (4)

It remains to define node features X∗ ∈ RV∗×X of the transformed graph. For each graph node
vi ∈ V , we use its original features as its node features:X∗[vi, :] := X[vi, :]. For each feature node
xk ∈ VX , we define its node feature as the average feature vector among the graph nodes vi that are
connected to feature node xk:

X∗[xk, :] :=
1

|EX ∩ (V × {xk})|
∑

vi:(vi,xk)∈EX

X[vi, :]. (5)

Our proposed graph transformation GRAPHITE is illustrated in Figure 1. In this example,
{v1, v2, v3, v4, v5} are the graph nodes, where v1, v2 belong to one class, and v3, v4, v5 belong to
the other class. Our proposed GRAPHITE adds feature nodes x1, x2, x3 to the graph. We can see
that feature node x1 facilitates homophilic message passing between v1, v2, and that feature node
x2 facilitates homophilic message passing among v3, v4, v5.

Theoretical guarantees. The transformed graph G∗ enjoys a few theoretical guarantees. First,
an important property of the feature edges is that every pair of nodes that share features can be
connected through feature edges within two hops, as formally stated in Observation 2. This ensures
that nodes with similar features are close to each other on the transformed graph G∗, facilitating
homophilic message passing.
Observation 2 (Two-hop indirect connection). For each pair of nodes u, v ∈ V , if they share at
least a feature (i.e., ∥X[vi, :] ∧ X[vj , :]∥∞ > 0), then vi and vj are two-hop neighbors on the
transformed graph G∗.

Furthermore, we theoretically show that our proposed graph transformation GRAPHITE can in-
crease the homophily of the graph without increasing the size of the graph much, as formally stated
in Theorem 3.
Theorem 3 (Efficient homophily booster). Given a heterophilic graph G = (V, E ,X), let G∗ :=
(V∗, E∗,X∗) denote the graph transformed by our proposed GRAPHITE. Under mild and realistic
assumptions in Appendix D.1, we have

hom(G∗) > hom(G), (6)
|V∗| ≤ O(|V|), |E∗| ≤ O(|E|). (7)

The effectiveness of our proposed GRAPHITE is also empirically validated in Section 4.3. As
shown in Figure 2, our proposed GRAPHITE significantly increases the homophily of originally
heterophilic graph.

3.3 NEURAL ARCHITECTURE

The transformed graph G∗ can be readily fed into existing GNNs to boost their performance, even
when the GNNs were originally designed for homophilic graphs, as demonstrated in Table 3. Mean-
while, to maximize the GNN performance on the transformed graph G∗, we introduce a GNN archi-
tecture specially designed for the transformed graph in this subsection.

To help the GNN distinguish graph nodes V from feature nodes VX , we use different edge weights
for different edges. As a reference weight, suppose that graph edges E have weight wE := 1. Let
wX > 0 denote the weight of feature edges EX . Following GCN Kipf & Welling (2016), we also
use self-loops in GNN message passing; let w0 > 0 denote the weight of self-loops.

Let du denote the weighted degree of each node u ∈ V∗. Specifically, for each graph node vi ∈ V ,

dvi := w0 +
∑

(vi,vj)∈E

wE +
∑

(vi,xk)∈EX

wX ; (8)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

and for each feature node xk ∈ VX ,

dxk
:= w0 +

∑
(vi,xk)∈EX

wX . (9)

Inspired by FAGCN Bo et al. (2021), we use a self-gating mechanism in GNN aggregation. For each
node u ∈ V∗, let hu ∈ Rm denote the embedding of node u before GNN aggregation, where m is
the embedding dimensionality. Then, the self-gating score αu,u′ between two nodes u, u′ ∈ V∗ is
defined as

αu,u′ := tanh
(aT(hu ∥ hu′) + b

τ

)
. (10)

where ∥ denotes the concatenation operation, a ∈ R2m and b ∈ R are learnable parameters, and
τ > 0 is a temperature hyperparameter.

Next, we describe our aggregation mechanism. For each node u ∈ V∗, let h′
u ∈ Rm denote the

embedding of node u after GNN aggregation. For each graph node vi ∈ V , we define

h′
vi :=

w0αvi,vi√
dvi

√
dvi

hvi +
∑

(vi,vj)∈E

αvi,vj√
dvi

√
dvj

hvj

+
∑

(vi,xj)∈EX

wXαvi,xk√
dvi

√
dxk

hxk
; (11)

and for each feature node xk ∈ VX , we define

h′
xk

:=
w0αxk,xk√
dxk

√
dxk

hxk
+

∑
(vi,xk)∈EX

wXαvi,xk√
dvi

√
dxk

hvi . (12)

Furthermore, we add a multi-layer perceptron (MLP) with residual connections after each GNN
aggregation. We use the GELU activation function Hendrycks & Gimpel (2016).

4 EXPERIMENTS

We conduct extensive experiments on both heterophilic and homophilic datasets to answer the fol-
lowing research questions:

RQ1: How does the proposed framework GRAPHITE compare with state-of-the-art methods?

RQ2: How much improvement can the proposed graph transformation achieve in the graph
homophily?

RQ3: Can the proposed graph transformation alone enhance the performance of existing ho-
mophilic GNNs?

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate GRAPHITE and various baseline methods across six real-world datasets. The
dataset statistics are summarized in Appendix B (Table 4). The reported homophily is the adjusted
homophily introduced in Platonov et al. (2024), which exhibits more desirable properties compared
to traditional edge/node homophily. We leverage adjusted homophily to categorize the datasets into
two groups: heterophilic and homophilic. Please see the appendix for dataset descriptions.

Training and evaluation. To benchmark GRAPHITE and compare it with the baseline methods,
we use node classification tasks with performance measured by classification accuracy on Actor,
Chameleon-Filtered (Chameleon-F), Squirrel-Filtered (Squirrel-F), Cora, and CiteSeer and by ROC-
AUC on Minesweeper following Platonov et al. (2023). For all baseline methods, we use the hy-
perparameters provided by the authors. For the evaluation of Actor, Chameleon-F and Squirrel-F,
we generate 10 random splits with a ratio of 48%/32%/20% as the training/validation/test set, re-
spectively, following Gu et al. (2024). For the evaluation of Minesweeper, we directly utilize the 10

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison with existing methods. GRAPHITE significantly outperforms state-of-the-art
methods on heterophilic graphs while achieving comparable accuracy with state-of-the-art methods
on homophilic graphs. Best results are marked in bold, and second best results are underlined.

Method Heterophilic Graphs Homophilic Graphs
ACTOR SQUIRREL-F CHAMELEON-F MINESWEEPER CORA CITESEER

MLP 35.04± 1.53 33.91± 1.55 38.44± 5.14 50.99± 1.47 75.45± 1.88 71.53± 0.70

ChebNet 34.40± 1.18 31.75± 3.42 34.30± 4.33 91.60± 0.44 81.58± 5.09 65.18± 8.37
GCN 30.21± 0.86 35.57± 1.86 40.06± 4.38 72.32± 0.93 87.50± 1.68 75.77± 0.96
SGC 29.26± 1.41 38.27± 2.16 41.40± 4.91 72.11± 0.95 88.05± 2.08 75.80± 1.75
GAT 28.86± 0.99 32.74± 3.02 40.11± 2.80 87.59± 1.35 87.11± 1.48 76.43± 1.31
GraphSAGE 34.95± 1.06 34.43± 2.68 39.33± 4.53 90.54± 0.66 87.90± 1.73 76.43± 1.19
GIN 28.29± 1.45 39.51± 2.83 40.17± 4.76 75.89± 2.09 85.65± 2.26 72.55± 1.78
APPNP 33.68± 1.26 33.75± 2.31 37.93± 4.33 67.36± 1.08 87.59± 1.68 75.90± 0.91
GCNII 34.78± 1.50 35.93± 2.87 41.56± 2.74 88.42± 0.85 87.20± 1.56 73.84± 0.91
GATv2 28.87± 1.39 32.49± 2.51 39.72± 6.60 88.85± 1.16 87.66± 1.52 76.59± 1.19
MixHop 35.40± 1.34 30.43± 2.33 37.93± 3.87 89.68± 0.57 84.53± 1.53 76.11± 0.83
TAGCN 34.92± 1.19 33.33± 2.37 41.01± 3.77 91.54± 0.56 88.38± 1.95 76.49± 1.41
DAGNN 33.15± 1.14 34.72± 2.55 38.94± 3.53 67.87± 1.26 88.27± 1.53 75.81± 0.90
JKNet 28.63± 0.94 40.81± 2.60 40.39± 4.85 81.00± 0.92 86.24± 0.85 73.11± 1.82
Virtual Node 30.71± 0.82 38.00± 2.28 41.45± 5.46 72.36± 0.98 87.24± 2.00 69.80± 6.89

H2GCN 34.20± 1.47 34.02± 3.15 40.89± 3.13 87.08± 0.82 76.89± 2.25 75.87± 1.02
FAGCN 36.18± 1.52 36.52± 1.72 39.83± 3.93 84.69± 2.05 88.66± 2.11 76.82± 1.48
OrderedGNN 35.64± 0.98 32.70± 2.42 38.38± 3.65 91.01± 0.50 84.81± 1.67 74.10± 1.62
GloGNN 19.80± 2.61 28.72± 2.63 40.17± 4.66 53.42± 1.47 73.02± 2.98 72.46± 2.09
GGCN 32.76± 1.39 35.06± 5.65 34.08± 3.44 84.76± 1.84 86.39± 1.93 75.36± 1.99
GPRGNN 35.42± 1.33 34.97± 2.83 40.50± 4.55 83.94± 0.98 88.86± 1.42 76.49± 1.00
ALT 33.10± 1.38 37.28± 1.49 39.61± 3.36 89.06± 0.64 88.82± 2.02 76.88± 1.20

NodeFormer 29.26± 2.31 24.29± 2.60 34.92± 4.08 77.71± 3.50 87.44± 1.37 75.20± 1.27
SGFormer 25.89± 0.80 34.54± 2.96 42.79± 4.06 52.06± 0.50 86.24± 1.58 70.74± 1.25
DIFFormer 26.31± 1.19 33.17± 2.84 39.16± 4.10 69.25± 0.93 86.61± 3.04 76.65± 1.52

GRAPHITE (Ours) 37.69± 1.57 43.06± 2.89 45.08± 4.04 94.78± 0.41 88.23± 1.65 76.41± 1.57

random splits provided by the original paper Platonov et al. (2023). For the evaluation of Cora and
CiteSeer, we follow Luan et al. (2021); Chien et al. (2020) to randomly generate 10 random splits
with a ratio of 60%/20%/20% as the training/validation/test set, respectively. For each experiment,
we report the mean and the standard deviation of the performance metric across the corresponding
10 random splits. Please see the appendix for additional experimental settings.

4.2 MAIN RESULTS

To answer RQ1, we compare the proposed method GRAPHITE with 25 state-of-the-art methods on
six heterophilic and homophilic graphs. The results are shown in Table 1.

As shown in Table 1, GRAPHITE achieves significant performance gains (p-value<0.1) over
prior state-of-the-art GNN methods on heterophilic graphs while maintaining competitive accu-
racy on homophilic graphs. Specifically, GRAPHITE outperforms the best baseline methods by
4.17%, 5.23%, 5.35% and 3.47% on ACTOR, SQUIRREL-F, CHEMELEON-F and MINESWEEPER,
respectively. While some existing models perform well on individual datasets, they often strug-
gle on others, highlighting their insufficient consistency. In contrast, GRAPHITE demonstrates the
best results across all four heterophilic benchmarks. Another interesting observation is that while
GRAPHITE is built upon FAGCN Bo et al. (2021), it significantly surpasses FAGCN, demonstrating
the effectiveness of the beneficial effect of graph transformation and feature edges.

Discussion. It is worth noting that most of the baseline methods cannot achieve better results com-
pared to MLP on ACTOR, which can be explained by the fact that these methods typically treat
node features and graph structure as joint input without explicitly decoupling them. The weak struc-
tural homophily exhibited by ACTOR makes typical GNNs fail to capture important feature signals,
reinforcing the importance of our graph transformation strategy that boosts feature homophily sig-
nificantly. For SQUIRREL-F, we find that JKNet is the best among baselines. This observation
reveals that structure information is very important within SQUIRREL-F since JKNet aggregates

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

feature knowledge from multi-hop neighbors to learn structure-aware representation. This finding
also explains the success of GRAPHITE since the useful multi-hop information in SQUIRREL-F can
be propagated even more efficiently through the constructed feature edges.

As another example, SGFormer performs the best on CHAMELEON-F among baseline methods.
We argue that CHAMELEON-F needs a considerable amount of global messages and graph trans-
formers are experts at capturing this type of information. Compared with NodeFormer and DIF-
Former, SGFormer is the most advanced graph transformer utilizing simplified graph attention that
strikes a good balance between global structural information and feature signal, preventing the over-
globalizing issue Xing et al. (2024). Similarly, GRAPHITE transforms the original graph into a
form that facilitates global message exchange by the introduction of feature edges. As a final re-
mark, although GRAPHITE is designed specifically to deal with heterophilic datasets, GRAPHITE
still maintains competitive accuracy on homophilic datasets (CORA and CITESEER), achieving re-
sults that are on par with the best existing methods.

4.3 HOMOPHILY ANALYSIS

Table 2: Relative improvement ratio of fea-
ture homophily and adjusted homophily across
datasets. Larger values represent more significant
homophily boost after applying GRAPHITE. See
Figure 2 for visualization.

Dataset ∆H feature(G) ∆Hadj(G)
ACTOR 2.79 28.67
SQUIRREL-F 10.61 3.15
CHAMELEON-F 18.39 5.02
MINESWEEPER 1.41 11.23

To answer RQ2, we conduct a homophily anal-
ysis across heterophilic datasets under two ho-
mophily metrics: feature homophily and ad-
justed homophily, whose formal definition can
be found in Appendix C. As shown in Figure 2,
we can observe a significant boost in both two
homophilily metrics after applying GRAPHITE
across heterophilic datasets. The relative im-
provement ratio is presented in Table 2, where
∆H ·(G) is the ratio between the corresponding
homophily metric computed on original graph
and the graph after applying GRAPHITE.

Discussion. Overall, GRAPHITE effectively
boosts both homophily metrics across all het-
erophilic datasets. Specifically, Squirrel-F and Chameleon-F demonstrate significant boosts in terms
of feature homophily. This is mainly because their discrete features directly correspond to specific
topics and each feature edge will contribute much higher feature similarity than usual edges. On
the other hand, Actor and Minesweeper showcase much higher adjusted homophily after apply-
ing GRAPHITE. For Actor, this favorable behavior can be attributed to the high correlation between
page co-occurrences and node labels; while for Minesweeper, the sum of label-specific node degrees
(defined in Equation (14)) increases much due to the transformation performed by GRAPHITE.

Baseline methods. In our experiments, we consider a wide range of GNN baselines, including MLP
(structure-agnostic), homophilic GNNs, heterophilic GNNs, and Graph Transformers. The full list
is shown in Appendix B.2.

Table 3: Effectiveness of the proposed graph transformation. GRAPHITE transformed graphs alone
can already enhance the performance of homophilic GNNs.

Dataset ACTOR MINESWEEPER
+GRAPHITE? ✗ ✓ ✗ ✓

GCN 30.21± 0.86 34.83± 1.28 72.32± 0.93 75.38± 1.56
GAT 28.86± 0.99 32.09± 1.35 87.59± 1.35 88.66± 0.88
GraphSAGE 34.95± 1.06 35.09± 1.06 90.54± 0.66 90.85± 0.67
JKNet 28.63± 0.94 35.96± 1.40 81.00± 0.92 85.56± 2.59
GIN 28.29± 1.45 33.75± 1.83 75.89± 2.09 87.07± 1.71

4.4 ABLATION STUDIES

To further demonstrate the effectiveness of our proposed graph transformation GRAPHITE and
answer RQ3, we compare the performance of homophilic GNNs on the original graph and that
on the transformed graph. In this experiment, we use two larger-scale datasets, ACTOR and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

MINESWEEPER, and five representative homophilic GNNs, GCN, GAT, GraphSAGE, JKNet, and
GIN. The results are presented in Table 3.

From Table 3, we can see that our proposed GRAPHITE consistently improves the performance of
the five representative homophilic GNNs on both datasets, even though these GNNs are not specially
designed for modeling feature nodes. For example, the accuracy of GAT on ACTOR is enhanced
from 30.21% to 34.83%, which is a relative improvement of 15.29%. The results demonstrate
that our proposed graph transformation GRAPHITE can significantly enhance the performance of
homophilic GNNs on originally heterophilic graphs, echoing the fact that our proposed graph trans-
formation can significantly increase the graph homophily.

5 RELATED WORK

Heterophily. A substantial body of research has explored the challenges of heterophily in graph
neural networks (GNNs). Many early approaches sought to improve information aggregation,
such as MixHop Abu-El-Haija et al. (2019), which mixes different-hop neighborhood features,
and GPRGNN Chien et al. (2020), which employs generalized PageRank propagation for adaptive
message passing. Other methods focus on explicit heterophilic adaptations, such as H2GCN Zhu
et al. (2020), which separates ego- and neighbor-embeddings, and FAGCN Bo et al. (2021), which
learns optimal representations via frequency-adaptive filtering. Additional works, including Or-
deredGNN Song et al. (2023), GloGNN Li et al. (2022), and GGCN Yan et al. (2022), leverage
structural ordering, global context, and edge corrections, respectively, to enhance performance on
heterophilic graphs. Recent advances explore alternative formulations, such as component-wise sig-
nal decomposition (ALT Xu et al. (2023)) and adaptive residual mechanisms Xu et al.; Yan et al.
(2024) for greater flexibility. Beyond architectural innovations, rigorous benchmarking efforts Lim
et al. (2021); Zhu et al. (2024); Platonov et al. (2023) have been introduced to standardize evalua-
tions and assess generalization across diverse graph properties. A broader synthesis of heterophilic
GNN techniques can be found in recent surveys Zheng et al. (2022); Zhu et al. (2023); Luan et al.
(2024); Gong et al. (2024).

Over-squashing. A problem related to heterophily is over-squashing. The over-squashing problem
in Message Passing Neural Networks (MPNNs) arises when long-range information is exponen-
tially compressed, preventing effective dissemination across the graph Alon & Yahav (2020); Shi
et al. (2023b). A primary research direction addresses this issue by identifying topological bot-
tlenecks and modifying graph connectivity. Topping et al. (2021) established an initial framework
linking oversquashing to graph Ricci curvature, demonstrating that negatively curved edges act as
bottlenecks. Building on this idea, subsequent works have developed rewiring strategies inspired by
curvature-based principles Nguyen et al. (2023); Shi et al. (2023a). Beyond curvature, Black et al.
(2023) introduced a perspective using effective resistance. Another line of research leverages spec-
tral methods to counteract over-squashing, with notable approaches including spectral gaps Arnaiz-
Rodrı́guez et al. (2022), expander graph constructions Deac et al. (2022), and first-order spectral
rewiring Karhadkar et al. (2022). More recently, Di Giovanni et al. (2023) provided a comprehen-
sive analysis of the factors contributing to oversquashing. Additional solutions explore advanced
rewiring strategies and novel message-passing paradigms Barbero et al. (2023); Qian et al. (2023);
Behrouz & Hashemi (2024).

6 CONCLUSION

In this paper, we propose GRAPHITE, a simple yet efficient framework to address the heterophily
issue in node classification. By introducing feature nodes that connect to graph nodes with corre-
sponding discrete features, we can solve the heterophily issue by increasing the graph homophily
ratio. Through theoretical analysis and empirical study, we validate that GRAPHITE can indeed
effectively increase the graph homophily. Our extensive experiments demonstrate that GRAPHITE
consistently outperforms state-of-the-art methods, achieving significant performance gains on het-
erophilic graph datasets and comparable performance on homophilic graph datasets. An interesting
future direction would be extending the proposed graph transformation to general graphs with con-
tinuous node features.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics Statement. Our study is based entirely on publicly available graph datasets commonly
used in the GNN literature and does not involve private or sensitive information. We develop a
graph transformation framework that explicitly increases graph homophily to enable more effective
message passing. To ensure methodological soundness and reproducibility, we provide both theoret-
ical analyses and extensive empirical evaluations across heterophilic datasets. The future release of
code and data splits is intended solely for academic research to advance the understanding of graph
machine learning and to support future work on graph neural networks, and are not designed for
sensitive or high-stakes applications.

Reproducibility Statement. We include the conceptual framework, transformation steps, method
details and evaluation setup in the paper and appendix. To ensure reproducibility, we will release
the full implementation and code scripts upon acceptance for verification.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In international conference on machine learn-
ing, pp. 21–29. PMLR, 2019.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv preprint arXiv:2006.05205, 2020.

Adrián Arnaiz-Rodrı́guez, Ahmed Begga, Francisco Escolano, and Nuria Oliver. Diffwire: Inductive
graph rewiring via the lov\’asz bound. arXiv preprint arXiv:2206.07369, 2022.

Wenxuan Bao, Ruxi Deng, Ruizhong Qiu, Tianxin Wei, Hanghang Tong, and Jingrui He. Latte: Col-
laborative test-time adaptation of vision-language models in federated learning. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2025.

Federico Barbero, Ameya Velingker, Amin Saberi, Michael Bronstein, and Francesco Di Giovanni.
Locality-aware graph-rewiring in gnns. arXiv preprint arXiv:2310.01668, 2023.

Ali Behrouz and Farnoosh Hashemi. Graph mamba: Towards learning on graphs with state space
models. In Proceedings of the 30th ACM SIGKDD conference on knowledge discovery and data
mining, pp. 119–130, 2024.

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in
gnns through the lens of effective resistance. In International Conference on Machine Learning,
pp. 2528–2547. PMLR, 2023.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
convolutional networks. In Proceedings of the AAAI conference on artificial intelligence, vol-
ume 35, pp. 3950–3957, 2021.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? arXiv
preprint arXiv:2105.14491, 2021.

Eunice Chan, Zhining Liu, Ruizhong Qiu, Yuheng Zhang, Ross Maciejewski, and Hanghang Tong.
Group fairness via group consensus. In The 2024 ACM Conference on Fairness, Accountability,
and Transparency, pp. 1788–1808, 2024.

Lingjie Chen, Ruizhong Qiu, Siyu Yuan, Zhining Liu, Tianxin Wei, Hyunsik Yoo, Zhichen Zeng,
Deqing Yang, and Hanghang Tong. WAPITI: A watermark for finetuned open-source LLMs,
2024.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pp. 1725–1735. PMLR,
2020.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv preprint arXiv:2006.07988, 2020.

Andreea Deac, Marc Lackenby, and Petar Veličković. Expander graph propagation. In Learning on
Graphs Conference, pp. 38–1. PMLR, 2022.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
and topology. In International Conference on Machine Learning, pp. 7865–7885. PMLR, 2023.

Jian Du, Shanghang Zhang, Guanhang Wu, José MF Moura, and Soummya Kar. Topology adaptive
graph convolutional networks. arXiv preprint arXiv:1710.10370, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Chenghua Gong, Yao Cheng, Jianxiang Yu, Can Xu, Caihua Shan, Siqiang Luo, and Xiang Li. A
survey on learning from graphs with heterophily: Recent advances and future directions. arXiv
preprint arXiv:2401.09769, 2024.

Ming Gu, Zhuonan Zheng, Sheng Zhou, Meihan Liu, Jiawei Chen, Tanyu Qiao, Liangcheng Li,
and Jiajun Bu. Universal inceptive gnns by eliminating the smoothness-generalization dilemma.
arXiv preprint arXiv:2412.09805, 2024.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, volume 30, 2017.

Xinyu He, Jian Kang, Ruizhong Qiu, Fei Wang, Jose Sepulveda, and Hanghang Tong. On the
sensitivity of individual fairness: Measures and robust algorithms. In Proceedings of the 33rd
ACM International Conference on Information and Knowledge Management, pp. 829–838, 2024.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units. arXiv preprint arXiv:1606.08415,
2016.

Di Jin, Rui Wang, Meng Ge, Dongxiao He, Xiang Li, Wei Lin, and Weixiong Zhang. Raw-gnn:
Random walk aggregation based graph neural network. In 31st International Joint Conference on
Artificial Intelligence, IJCAI 2022, pp. 2108–2114. International Joint Conferences on Artificial
Intelligence, 2022.

Kedar Karhadkar, Pradeep Kr Banerjee, and Guido Montúfar. Fosr: First-order spectral rewiring for
addressing oversquashing in gnns. arXiv preprint arXiv:2210.11790, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Gaotang Li, Marlena Duda, Xiang Zhang, Danai Koutra, and Yujun Yan. Interpretable sparsification
of brain graphs: Better practices and effective designs for graph neural networks. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1223–
1234, 2023a.

Ting-Wei Li, Ruizhong Qiu, and Hanghang Tong. Model-free graph data selection under distribution
shift, 2025.

Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
Finding global homophily in graph neural networks when meeting heterophily. In International
Conference on Machine Learning, pp. 13242–13256. PMLR, 2022.

Xiao Li, Li Sun, Mengjie Ling, and Yan Peng. A survey of graph neural network based recommen-
dation in social networks. Neurocomputing, 549:126441, 2023b.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34:20887–20902, 2021.

Xiao Lin, Zhining Liu, Dongqi Fu, Ruizhong Qiu, and Hanghang Tong. BackTime: Backdoor
attacks on multivariate time series forecasting. In Advances in Neural Information Processing
Systems, volume 37, 2024.

Xiao Lin, Zhining Liu, Ze Yang, Gaotang Li, Ruizhong Qiu, Shuke Wang, Hui Liu, Haotian Li,
Sumit Keswani, Vishwa Pardeshi, et al. Moralise: A structured benchmark for moral alignment
in visual language models, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lihui Liu, Zihao Wang, Ruizhong Qiu, Yikun Ban, Eunice Chan, Yangqiu Song, Jingrui He, and
Hanghang Tong. Logic query of thoughts: Guiding large language models to answer complex
logic queries with knowledge graphs, 2024a.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
338–348, 2020.

Zhining Liu, Zhichen Zeng, Ruizhong Qiu, Hyunsik Yoo, David Zhou, Zhe Xu, Yada Zhu, Kommy
Weldemariam, Jingrui He, and Hanghang Tong. Topological augmentation for class-imbalanced
node classification, 2023.

Zhining Liu, Ruizhong Qiu, Zhichen Zeng, Hyunsik Yoo, David Zhou, Zhe Xu, Yada Zhu, Kommy
Weldemariam, Jingrui He, and Hanghang Tong. Class-imbalanced graph learning without class
rebalancing. In Proceedings of the 41st International Conference on Machine Learning, 2024b.

Zhining Liu, Ruizhong Qiu, Zhichen Zeng, Yada Zhu, Hendrik Hamann, and Hanghang Tong. AIM:
Attributing, interpreting, mitigating data unfairness. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 2014–2025, 2024c.

Zhining Liu, Ze Yang, Xiao Lin, Ruizhong Qiu, Tianxin Wei, Yada Zhu, Hendrik Hamann, Jin-
grui He, and Hanghang Tong. Breaking silos: Adaptive model fusion unlocks better time series
forecasting. In Proceedings of the 42nd International Conference on Machine Learning, 2025.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Is heterophily a real nightmare for graph neural networks to do node
classification? arXiv preprint arXiv:2109.05641, 2021.

Sitao Luan, Chenqing Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang, Minkai Xu,
Xiao-Wen Chang, Doina Precup, Rex Ying, et al. The heterophilic graph learning hand-
book: Benchmarks, models, theoretical analysis, applications and challenges. arXiv preprint
arXiv:2407.09618, 2024.

Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh
Nguyen. Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In In-
ternational Conference on Machine Learning, pp. 25956–25979. PMLR, 2023.

Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Faloutsos. Netprobe: a fast and
scalable system for fraud detection in online auction networks. In Proceedings of the 16th inter-
national conference on World Wide Web, pp. 201–210, 2007.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of gnns under heterophily: Are we really making progress? arXiv
preprint arXiv:2302.11640, 2023.

Oleg Platonov, Denis Kuznedelev, Artem Babenko, and Liudmila Prokhorenkova. Characterizing
graph datasets for node classification: Homophily-heterophily dichotomy and beyond. Advances
in Neural Information Processing Systems, 36, 2024.

Chendi Qian, Andrei Manolache, Kareem Ahmed, Zhe Zeng, Guy Van den Broeck, Mathias Niepert,
and Christopher Morris. Probabilistically rewired message-passing neural networks. arXiv
preprint arXiv:2310.02156, 2023.

Ruizhong Qiu and Hanghang Tong. Gradient compressed sensing: A query-efficient gradient esti-
mator for high-dimensional zeroth-order optimization. In Proceedings of the 41st International
Conference on Machine Learning, 2024.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A differentiable meta solver for combina-
torial optimization problems. In Advances in Neural Information Processing Systems, volume 35,
pp. 25531–25546, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Ruizhong Qiu, Dingsu Wang, Lei Ying, H Vincent Poor, Yifang Zhang, and Hanghang Tong. Re-
constructing graph diffusion history from a single snapshot. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1978–1988, 2023.

Ruizhong Qiu, Jun-Gi Jang, Xiao Lin, Lihui Liu, and Hanghang Tong. TUCKET: A tensor time
series data structure for efficient and accurate factor analysis over time ranges. Proceedings of the
VLDB Endowment, 17(13), 2024.

Ruizhong Qiu, Gaotang Li, Tianxin Wei, Jingrui He, and Hanghang Tong. Saffron-1: Safety infer-
ence scaling, 2025a.

Ruizhong Qiu, Zhe Xu, Wenxuan Bao, and Hanghang Tong. Ask, and it shall be given: On the Tur-
ing completeness of prompting. In 13th International Conference on Learning Representations,
2025b.

Ruizhong Qiu, Weiliang Will Zeng, Hanghang Tong, James Ezick, and Christopher Lott. How
efficient is LLM-generated code? A rigorous & high-standard benchmark. In 13th International
Conference on Learning Representations, 2025c.

Manon Réau, Nicolas Renaud, Li C Xue, and Alexandre MJJ Bonvin. Deeprank-gnn: a graph neural
network framework to learn patterns in protein–protein interfaces. Bioinformatics, 39(1):btac759,
2023.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Dai Shi, Yi Guo, Zhiqi Shao, and Junbin Gao. How curvature enhance the adaptation power of
framelet gcns. arXiv preprint arXiv:2307.09768, 2023a.

Dai Shi, Andi Han, Lequan Lin, Yi Guo, and Junbin Gao. Exposition on over-squashing problem on
gnns: Current methods, benchmarks and challenges. arXiv preprint arXiv:2311.07073, 2023b.

Yunchong Song, Chenghu Zhou, Xinbing Wang, and Zhouhan Lin. Ordered gnn: Ordering message
passing to deal with heterophily and over-smoothing. arXiv preprint arXiv:2302.01524, 2023.

Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks.
In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 807–816, 2009.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522, 2021.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Dingsu Wang, Yuchen Yan, Ruizhong Qiu, Yada Zhu, Kaiyu Guan, Andrew Margenot, and Hang-
hang Tong. Networked time series imputation via position-aware graph enhanced variational
autoencoders. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 2256–2268, 2023.

Tianxin Wei, Ruizhong Qiu, Yifan Chen, Yunzhe Qi, Jiacheng Lin, Wenju Xu, Sreyashi Nag, Ruirui
Li, Hanqing Lu, Zhengyang Wang, Chen Luo, Hui Liu, Suhang Wang, Jingrui He, Qi He, and
Xianfeng Tang. Robust watermarking for diffusion models: A unified multi-dimensional recipe,
2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Advances in Neural Information Processing
Systems, 35:27387–27401, 2022.

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. Dif-
former: Scalable (graph) transformers induced by energy constrained diffusion. arXiv preprint
arXiv:2301.09474, 2023.

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, and
Junchi Yan. Simplifying and empowering transformers for large-graph representations. Advances
in Neural Information Processing Systems, 36, 2024a.

Ziwei Wu, Lecheng Zheng, Yuancheng Yu, Ruizhong Qiu, John Birge, and Jingrui He. Fair anomaly
detection for imbalanced groups, 2024b.

Yujie Xing, Xiao Wang, Yibo Li, Hai Huang, and Chuan Shi. Less is more: on the over-globalizing
problem in graph transformers. arXiv preprint arXiv:2405.01102, 2024.

Haobo Xu, Yuchen Yan, Dingsu Wang, Zhe Xu, Zhichen Zeng, Tarek F Abdelzaher, Jiawei Han,
and Hanghang Tong. Slog: An inductive spectral graph neural network beyond polynomial filter.
In Forty-first International Conference on Machine Learning.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018a.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
conference on machine learning, pp. 5453–5462. PMLR, 2018b.

Zhe Xu, Yuzhong Chen, Qinghai Zhou, Yuhang Wu, Menghai Pan, Hao Yang, and Hanghang Tong.
Node classification beyond homophily: Towards a general solution. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2862–2873, 2023.

Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng,
Mahashweta Das, and Hanghang Tong. Discrete-state continuous-time diffusion for graph gener-
ation. In Advances in Neural Information Processing Systems, volume 37, 2024.

Yuchen Yan, Yuzhong Chen, Huiyuan Chen, Minghua Xu, Mahashweta Das, Hao Yang, and Hang-
hang Tong. From trainable negative depth to edge heterophily in graphs. Advances in Neural
Information Processing Systems, 36, 2024.

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the
same coin: Heterophily and oversmoothing in graph convolutional neural networks. In 2022
IEEE International Conference on Data Mining (ICDM), pp. 1287–1292. IEEE, 2022.

Hyunsik Yoo, Zhichen Zeng, Jian Kang, Ruizhong Qiu, David Zhou, Zhining Liu, Fei Wang, Charlie
Xu, Eunice Chan, and Hanghang Tong. Ensuring user-side fairness in dynamic recommender
systems. In Proceedings of the ACM on Web Conference 2024, pp. 3667–3678, 2024.

Hyunsik Yoo, SeongKu Kang, Ruizhong Qiu, Charlie Xu, Fei Wang, and Hanghang Tong. Embrac-
ing plasticity: Balancing stability and plasticity in continual recommender systems. In Proceed-
ings of the 48th International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, 2025a.

Hyunsik Yoo, Ruizhong Qiu, Charlie Xu, Fei Wang, and Hanghang Tong. Generalizable recom-
mender system during temporal popularity distribution shifts. In Proceedings of the 31st ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, 2025b.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Ronghui You, Shuwei Yao, Hiroshi Mamitsuka, and Shanfeng Zhu. Deepgraphgo: graph neural net-
work for large-scale, multispecies protein function prediction. Bioinformatics, 37(Supplement 1):
i262–i271, 2021.

Zhichen Zeng, Ruizhong Qiu, Zhe Xu, Zhining Liu, Yuchen Yan, Tianxin Wei, Lei Ying, Jingrui
He, and Hanghang Tong. Graph mixup on approximate Gromov–Wasserstein geodesics. In
Proceedings of the 41st International Conference on Machine Learning, 2024.

Zhichen Zeng, Ruizhong Qiu, Wenxuan Bao, Tianxin Wei, Xiao Lin, Yuchen Yan, Tarek F. Abdelza-
her, Jiawei Han, and Hanghang Tong. Pave your own path: Graph gradual domain adaptation on
fused Gromov–Wasserstein geodesics, 2025.

Xin Zheng, Yi Wang, Yixin Liu, Ming Li, Miao Zhang, Di Jin, Philip S Yu, and Shirui Pan. Graph
neural networks for graphs with heterophily: A survey. arXiv preprint arXiv:2202.07082, 2022.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in
neural information processing systems, 33:7793–7804, 2020.

Jiong Zhu, Yujun Yan, Mark Heimann, Lingxiao Zhao, Leman Akoglu, and Danai Koutra. Het-
erophily and graph neural networks: Past, present and future. IEEE Data Engineering Bulletin,
2023.

Jiong Zhu, Gaotang Li, Yao-An Yang, Jing Zhu, Xuehao Cui, and Danai Koutra. On the im-
pact of feature heterophily on link prediction with graph neural networks. arXiv preprint
arXiv:2409.17475, 2024.

Jiaru Zou, Yikun Ban, Zihao Li, Yunzhe Qi, Ruizhong Qiu, Ling Yang, and Jingrui He. Transformer
copilot: Learning from the mistake log in LLM fine-tuning, 2025.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A USE OF LARGE LANGUAGE MODELS

We made limited and controlled use of Large Language Models, e.g. ChatGPT, solely for stylistic
refinement and improving readability of the text. All scientific content, methodology, experiments,
and conclusions were fully conceived and validated by the authors. The LLM’s role was purely
editorial and does not constitute co-authorship.

B EXPERIMENTAL SETTINGS (CONT’D)

B.1 DATASETS (CONT’D)

For heterophilic group, we consider the following datasets, which are widely used as benchmarks
for studying graph learning methods under heterophilic settings.

• ACTOR Pei et al. (2020): Actor dataset is an actor-only induced subgraph of the film dataset
introduced by Tang et al. (2009). The nodes are actors and the edges denote co-occurrence
on the same Wikipedia page. The node features are keywords on the pages and we classify
nodes into five categories.

• SQUIRREL-F Platonov et al. (2023): Squirrel-Filtered (Squirrel-F) is a page-page dataset.
It is a subset of the Wiki dataset Rozemberczki et al. (2021) that focus on the topic related
to squirrel. Nodes are web pages and edges are mutual links between pages. The node
features are important keywords in the pages and we classify nodes into five categories in
terms of traffic of the webpage.

• CHAMELEON-F Platonov et al. (2023): Chameleon-Filtered (Chameleon-F) is a page-page
dataset. It is a subset of the Wiki dataset Rozemberczki et al. (2021) that focus on the topic
related to chameleon. Nodes are web pages and edges are mutual links between pages.
The node features are important keywords in the pages and we classify nodes into five
categories in terms of traffic of the webpage.

• MINESWEEPER Platonov et al. (2023): Minesweeper dataset is a synthetic dataset that sim-
ulates a Minesweeper game with 100x100 grid. Each node is connected to its neighboring
nodes where 20% nodes are selected as mines at random. Node features are numbers of
neighboring mines and the goal is to predict whether each test node is mine. These datasets
are widely used as benchmarks for studying graph learning methods under heterophilic
settings.

For the homophilic group, we consider the following datasets, which are standard homophilic net-
work benchmarks.

• CORA Sen et al. (2008) : Cora dataset is a citation network, where nodes represent sci-
entific papers in the machine learning field, and edges correspond to citation relationships
between these papers. Each node is associated with a set of features that describe the paper,
represented as a bag-of-words model. The task for this dataset is to classify each paper into
one of seven categories, reflecting the area of research the paper belongs to.

• CITESEER Sen et al. (2008): CiteSeer dataset is a citation network of scientific papers. It
consists of research papers as nodes, with citation links forming the edges between them.
Each node is associated with a set of features derived from the paper’s content, which is a
bag-of-words representation of the paper’s text. The task for this dataset is to classify each
paper into one of six categories, each representing a specific field of study.

B.2 BASELINE METHODS (CONT’D)

We briefly introduce GNN-based baseline methods as follows.

The first category is homophilic GNNs, which are originally designed under the homophily assump-
tion.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: Summary of dataset statistics. We use four heterophilic graphs and two homophilic graphs.

Statistic Heterophilic Graphs Homophilic Graphs
ACTOR SQUIRREL-F CHAMELEON-F MINESWEEPER CORA CITESEER

Nodes 7600 2223 890 10000 2708 3327
Edges 33544 46998 8854 39402 5429 4732
Features 931 2089 2325 7 1433 3703
Classes 5 5 5 2 7 6
Homophily 0.0028 0.0086 0.0295 0.0094 0.7711 0.6707

• ChebNet Defferrard et al. (2016): Uses Chebyshev polynomials to approximate graph con-
volutions.

• GCN Kipf & Welling (2016): Employs a first-order Chebyshev approximation for spectral
graph convolutions.

• SGC Wu et al. (2019): Simplifies GCN by removing non-linearities and collapsing weight
matrices for efficiency.

• GAT Veličković et al. (2018): Introduces attention mechanisms to assign adaptive impor-
tance to edges.

• GraphSAGE Hamilton et al. (2017): Uses several aggregators for inductive graph learning.
• GIN Xu et al. (2018a): Employs sum-based aggregation to maximize graph structure ex-

pressiveness.
• APPNP Gasteiger et al. (2018): Combines personalized PageRank with neural propagation.
• GCNII Chen et al. (2020): Extends GCN with residual connections and identity mapping

for deep GNN training.
• GATv2 Brody et al. (2021): Enhances GAT with dynamic attention coefficients for flexible

neighbor weighting.
• MixHop Abu-El-Haija et al. (2019): Aggregates multi-hop neighborhood features by mix-

ing different powers of adjacency matrices.
• TAGCN Du et al. (2017): Introduces trainable polynomial filters for adaptive, multi-scale

feature extraction.
• DAGNN Liu et al. (2020): Uses dual attention to decouple message aggregation and trans-

formation, improving depth scalability.
• JKNet Xu et al. (2018b): Uses a jumping knowledge mechanism to combine features from

different layers adaptively. We default the backbone GNN model to GCN.
• Virtual Node Gilmer et al. (2017): Introduces an auxiliary global node to facilitate message

passing. We default the backbone GNN model to GCN.

The second category is heterophilic GNNs, which are designed for graphs where connected nodes
often have different labels.

• H2GCN Zhu et al. (2020): Enhances GNNs by ego-/neighbor-embedding seperation,
higher-order neighbors and intermediate representation combinations.

• FAGCN Bo et al. (2021): Uses frequency adaptive filtering to learn optimal graph repre-
sentations.

• OrderedGNN Song et al. (2023): Aligns the order to encode neighborhood information and
avoids feature mixing.

• GloGNN Li et al. (2022): Incorporates global structural information to enhance graph
learning beyond local neighborhoods.

• GGCN Yan et al. (2022): Utilizes structure/feature-based edge correction to combat over-
smoothing and heterophily.

• GPRGNN Chien et al. (2020): Introduces generalized PageRank propagation to capture the
graph structure.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• ALT Xu et al. (2023): Decomposes graph into components, extracts signals from these
components and adaptively integrate these signals.

The last category is graph transformers, which adapt transformer architectures to graph data and
look beyond local neighborhood aggregation.

• NodeFormer Wu et al. (2022): Introduces all-pair message passing on layer-specific adap-
tive latent graphs, enabling global feature propagation with linear complexity.

• SGFormer Wu et al. (2024a): Develops a graph encoder backbone that efficiently computes
all-pair interactions with one-layer attentive propagation.

• DIFFormer Wu et al. (2023): Proposes an energy-constrained diffusion model, leading to
variants that are efficient and capable of capturing complex structures.

B.3 TRAINING & EVALUATION (CONT’D)

For our method, we use wX ∈ {0.01, 0.1, 0.6, 8}, w0 ∈ {0.1, 0.2, 0.3, 0.5, 1, 8}, τ ∈ {0.01, 0.1, 1},
and dropout rate 0.2. We use the GNN architecture described in the method section with 8 GNN lay-
ers with hidden dimensionality 512 and add a two-layer MLP after each GNN layer for heterophilic
graphs and use FAGCN for homophilic graphs. We use original node features as described in Sec-
tion 3.2, except that we use zeros as the features of graph nodes on Squirrel-F and that we normalize
the features of graph nodes on Cora and CiteSeer after computing the features of feature nodes. We
train the GNN with learning rate 0.00003 for 1000 steps using the Adam optimizer Kingma & Ba
(2014). Experiments were implemented in PyTorch 2.7.0 and Deep Graph Library (DGL) 2.4.0 and
were run on Intel Xeon CPU @ 2.20GHz with 96GB memory and NVIDIA Tesla V100 32GB GPU.

C DEFINITION OF HOMOPHILY METRICS

To measure to what extent GRAPHITE can boost graph homophily on heterophlic datasets, we
consider two popular homophily metrics: feature homophily Jin et al. (2022) and adjusted ho-
mophily Platonov et al. (2024). Formally, given a graph G,feature homophily H feature is defined
as follows:

H feature(G) := 1

|E|
∑

(vi,vj)∈E

sim(vi, vj), (13)

where sim(vi, vj) := cos(X[vi, :],X[vj , :]) is the cosine-similarity computed between features of
nodes vi, vj . This metric is a variant of the generalized edge homophily ratio Hedge proposed by Jin
et al. (2022), which measures the feature similarity between each of the connected node pairs in the
graph dataset. Then, the adjusted homophily (Hadj(G)) is defined as follows:

Hadj(G) :=
Hedge(G)−

∑C
k=1 D

2
c/(2|E|)2

1−
∑C

c=1 D
2
c/(2|E|)2

, (14)

where C denotes the number of classes and Hedge(G) is edge homophily, which is defined similarly
as Equation (13) with the similarity function sim(vi, vj) = 1{yvi

=yvj
}, and

Dc :=
∑

v:yv=c

deg(v) (15)

is the sum of node degrees with a specific node label c. Note that yvi stands for the node label of
graph node vi. Since we do not have node labels for the feature nodes when computing adjusted
homophily, we assign them “soft label”, which is a uniform probability distribution over classes,
obtained by aggregating the labels of its 1-hop neighbors.

D THEORETICAL ANALYSIS

D.1 ASSUMPTIONS

In this subsection, we introduce the assumptions of our theoretical analysis, which are mild and
realistic.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Given a graph G = (V, E ,X) with E ≠ ∅ and X ∈ {0, 1}V×X , we define the feature similarity
metric as sim(vi, vj) := ∥X[vi, :] ∧ X[vj , :]∥∞ and use the feature homophily as the homophily
metric:

hom(G) := 1

|E|
∑

(vi,vj)∈E

sim(vi, vj). (16)

Furthermore, we assume that the original graph G is heterophilic. That is, we have hom(G) < 1
while there exists a pair of nodes, vi, vj ∈ V (vi ̸= vj), such that sim(vi, vj) > 0 but (vi, vj) /∈ E .

Besides that, we assume that the given graph G does not have too dense features. Formally, we
assume that |X | ≤ O(|V|) and that ∥X∥0 ≤ O(|E|). For the transformed graph G∗, we assume that
every feature is used: for any feature k ∈ X , there exists a graph node vi ∈ V such that X[vi, k] = 1.

D.2 TECHNICAL LEMMA

Here, we prove a technical lemma that we will use later.

Lemma 4. Let A,B ⊂ R be two nonempty, finite multisets with z′ > 1
|A|

∑
z∈A z for all z′ ∈ B.

Then,

1

|A ⊔ B|
∑

z∈A⊔B
z >

1

|A|
∑
z∈A

z.

Proof. To simplify notation, let

µ :=
1

|A|
∑
z∈A

z, (17)

∆ := minB − µ > 0. (18)

Then,

1

|A ⊔ B|
∑

z∈A⊔B
z − 1

|A|
∑
z∈A

z (19)

=
1

|A|+ |B|

(∑
z∈A

z +
∑
z∈B

z

)
− 1

|A|
∑
z∈A

z (20)

=
1

|A|+ |B|

(
|A| · 1

|A|
∑
z∈A

z +
∑
z∈B

z

)
− 1

|A|
∑
z∈A

z (21)

=
1

|A|+ |B|

(
|A| · µ+

∑
z∈B

z

)
− µ (22)

≥ 1

|A|+ |B|

(
|A| · µ+

∑
z∈B

minB
)
− µ (23)

=
1

|A|+ |B|
(
|A| · µ+ |B| ·minB

)
− µ (24)

=
1

|A|+ |B|
(
|B| ·minB − |B| · µ

)
(25)

=
|B|

|A|+ |B|
(minB − µ) (26)

=
|B|

|A|+ |B|
∆ > 0. (27)

It follows that
1

|A ⊔ B|
∑

z∈A⊔B
z >

1

|A|
∑
z∈A

z.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D.3 PROOF OF THEOREM 1

Homophily. Since the original graph G is homophilic, then there exists a pair of nodes, vi, vj ∈ V
(vi ̸= vj), such that sim(vi, vj) = ∥X[vi, :] ∧X[vj , :]∥∞ > 0 but (vi, vj) /∈ E . According to the
definition of E†, we know that (vi, vj) ∈ E† \ E ̸= ∅, so E† \ E ̸= ∅.

Furthermore, for any (vi, vj) ∈ E† \ E , since sim(vi, vj) = ∥X[vi, :] ∧X[vj , :]∥∞ > 0, then there
exists a feature k ∈ X such that X[vi, k]∧X[vj , k] > 0. Since the feature matrix X is binary, then
we must have

X[vi, k] = 1, X[vj , k] = 1. (28)
It follows that

sim(vi, vj) = ∥X[vi, :] ∧X[vj , :]∥∞ (29)

= max
k′∈X

|X[vi, k
′] ∧X[vj , k

′]| (30)

≥ |X[vi, k] ∧X[vj , k]| (31)
= |1 ∧ 1| = 1. (32)

Since hom(G) < 1, then
sim(vi, vj) ≥ 1 > hom(G). (33)

Therefore, by Lemma 4 with
A := {{sim(vi, vj) : (vi, vj) ∈ E}}, (34)

B := {{sim(vi, vj) : (vi, vj) ∈ E† \ E}}, (35)
we have

hom(G†) =
1

|E†|
∑

(vi,vj)∈E†

sim(vi, vj) (36)

=
1

|E ⊔ (E† \ E)|
∑

(vi,vj)∈E⊔(E†\E)

sim(vi, vj) (37)

=
1

|A ⊔ B|
∑

z∈A⊔B
z (38)

>
1

|A|
∑
z∈A

z (39)

=
1

|E|
∑

(vi,vj)∈E

sim(vi, vj) (40)

= hom(G). (41)

Number of edges. Since there are |V| nodes in total, then the total number of node pairs is
(|V|

2

)
.

Recall that E† \ E is the set of added edges. It follows that

|E†| − |E| = |E† \ E| ≤
(
|V|
2

)
(42)

=
|V|(|V| − 1)

2
= O(|V|2). (43)

D.4 PROOF OF OBSERVATION 2

Since sim(vi, vj) = ∥X[vi, :] ∧ X[vj , :]∥∞ > 0, then there exists a feature k ∈ X such that
X[vi, k] ∧X[vj , k] > 0. Since the feature matrix X is binary, then we must have

X[vi, k] = 1, X[vj , k] = 1. (44)
This implies that (vi, xk) ∈ E∗ and that (vj , xk) ∈ E∗. Hence, there exists a length-2 path vi →
xk → vj connecting graph nodes vi and vj . Therefore, vi and vj are two-hop neighbors of each
other.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D.5 PROOF OF THEOREM 3

Homophily. Since the original graph G is homophilic, then there exists a pair of nodes, vi, vj ∈ V
(vi ̸= vj), such that sim(vi, vj) = ∥X[vi, :]∧X[vj , :]∥∞ > 0 but (vi, vj) /∈ E . Since sim(vi, vj) =
∥X[vi, :] ∧ X[vj , :]∥∞ > 0, then there exists a feature k ∈ X such that X[vi, k] ∧ X[vj , k] > 0.
Since the feature matrix X is binary, then we must have

X[vi, k] = 1, X[vj , k] = 1. (45)

This implies that (vi, xk) ∈ E∗ \ E and that (vj , xk) ∈ E∗ \ E . Thus, E∗ \ E is nonempty.

Furthermore, for any feature node xk ∈ VX , since any feature edge (vi, xk) ∈ EX ensures
X[vi, k] = 1, then we have

X∗[xk, k] =
1

|EX ∩ (V × {xk})|
∑

vi:(vi,xk)∈EX

X[vi, k] (46)

=
1

|EX ∩ (V × {xk})|
∑

vi:(vi,xk)∈E

1 (47)

=
1

|EX ∩ (V × {xk})|
∑

vi:(vi,xk)∈E∩(V×{xk})

1 (48)

= 1. (49)

Finally, for any added feature edge (vi, xk) ∈ E∗ \ E = EX ,

sim(vi, xk) = ∥X[vi, :] ∧X[xk, :]∥∞ (50)

= max
k′∈X

|X[vi, k
′] ∧X[xk, k

′]| (51)

≥ |X[vi, k] ∧X[xk, k]| (52)
= |1 ∧ 1| = 1. (53)

Since hom(G) < 1, then

sim(vi, xk) ≥ 1 > hom(G). (54)

Therefore, by Lemma 4 with

A := {{sim(vi, vj) : (vi, vj) ∈ E}}, (55)
B := {{sim(vi, xk) : (vi, xk) ∈ EX }}, (56)

we have

hom(G∗) =
1

|E∗|
∑

(u,u′)∈E∗

sim(u, u′) (57)

=
1

|E ⊔ EX |
∑

(u,u′)∈E⊔EX

sim(u, u′) (58)

=
1

|A ⊔ B|
∑

z∈A⊔B
z (59)

>
1

|A|
∑
z∈A

z (60)

=
1

|E|
∑

(vi,vj)∈E

sim(vi, vj) (61)

= hom(G). (62)

Number of nodes. Since |X | ≤ O(|V|), then

|VX | = |X | ≤ O(V). (63)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

It follows that

|V∗| = |V|+ |VX | (64)
≤ |V|+O(|V|) (65)
= O(|V|). (66)

Number of edges. Since X is a binary matrix, then ∥X∥1 = ∥X∥0 ≤ O(|E|). Hence,

|EX | =
∑
vi∈V

∑
xk∈VX

1[(vi,xk)∈EX] (67)

=
∑
vi∈V

∑
k∈X

1[(vi,xk)∈EX] (68)

=
∑
vi∈V

∑
k∈X

1[X[vi,k]=1] (69)

=
∑
vi∈V

∑
k∈X

X[vi, k] (70)

=
∑
vi∈V

∑
k∈X

|X[vi, k]| (71)

= ∥X∥1 = ∥X∥0 ≤ O(|E|). (72)

It follows that

|E∗| = |E|+ |EX | (73)
≤ |E|+O(|E|) (74)
= O(|E|). (75)

23

	Introduction
	Preliminaries
	Notation
	Problem Definition

	Proposed Method: GRAPHITE
	Motivation
	Efficient Graph Homophily Booster
	Neural Architecture

	Experiments
	Experimental Settings
	Main Results
	Homophily Analysis
	Ablation Studies

	Related Work
	Conclusion
	Use Of Large Language Models
	Experimental Settings (Cont'd)
	Datasets (Cont'd)
	Baseline Methods (Cont'd)
	Training & Evaluation (Cont'd)

	Definition of Homophily Metrics
	Theoretical Analysis
	Assumptions
	Technical Lemma
	Proof of Theorem 1
	Proof of Observation 2
	Proof of Theorem 3

