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Abstract

As large language models (LLMs) have shown
effectiveness with different prompting methods,
such as Chain of Thought, Program of Thought,
we find that these methods have formed a great
complementarity to each other on math reason-
ing tasks. In this work, we propose XoT, an in-
tegrated problem solving framework by prompt-
ing LLMs with diverse reasoning thoughts. For
each question, XoT always begins with select-
ing the most suitable method then executes
each method iteratively. Within each iteration,
XoT actively checks the validity of the gen-
erated answer and incorporates the feedback
from external executors, allowing it to dynami-
cally switch among different prompting meth-
ods. Through extensive experiments on 10 pop-
ular math reasoning datasets, we demonstrate
the effectiveness of our proposed approach and
thoroughly analyze the strengths of each mod-
ule. Moreover, empirical results suggest that
our framework is orthogonal to recent work
that makes improvements on single reasoning
methods and can further generalise to logical
reasoning domain. By allowing method switch-
ing, XoT provides a fresh perspective on the
collaborative integration of diverse reasoning
thoughts in a unified framework.

1 Introduction

The AI community has long sought to achieve
automated reasoning (Hewitt, 1969), which is an
important component of Artificial General Intel-
ligence (Steunebrink et al., 2016). Mathemati-
cal reasoning, as a cognitive skill essential for
humans yet challenging for language models, at-
tracts increasing interests and commitment from re-
searchers (Feigenbaum and Feldman, 1963; Wang
et al., 2017; Lu et al., 2022).

With the abilities endowed by in-context learn-
ing (ICL), Large Language Models (LLMs)
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Figure 1: CoT only reasons in a single pass, while self-
refine involves refinement using the same method. XoT
integrates a verification module that makes a difference
in method planning, enabling the attempts of diverse
reasoning thoughts within an iterative framework.

(Brown et al., 2020; Chowdhery et al., 2022; Tou-
vron et al., 2023a; OpenAI, 2023) are able to
solve mathematical problems through textual ra-
tionales with Chain-of-Thought prompting (Wei
et al., 2022) (CoT) or through Python functions
with Program-Aided Language Model (Gao et al.,
2022) and Program-of-Thought prompting (Chen
et al., 2022) (PAL or PoT). These prompting meth-
ods exhibit unique strengths and limitations. CoT
generates a step-by-step reasoning flow in natural
language and performs calculations on the fly. This
approach enables a more flexible solution format,
but may result in a loss of precision since language
models often struggle with arithmetic calculations
(Lewkowycz et al., 2022; Wei et al., 2022). On the
other hand, PoT or PAL resolves problems through
Python statements, relying on Python interpreters
to ensure calculation accuracy. Another noteworthy
and intriguing prompting method is to form math
problems as linear equation systems (He-Yueya
et al., 2023). Similarly, inspired by Linear Algebra,
we propose Equation-of-Thought (EoT), which per-
forms math reasoning in a more direct way.

The diversity inherent in each method does not



render them as competing or mutually exclusive
alternatives. On the contrary, in practical problem
solving scenarios, possessing multiple methods can
always yield a range of complementary advantages.
The distinct problem-solving approaches can con-
tribute to synergistic benefits that surpass the out-
comes of any single approach. We find that this
intuition also applies to the realm of math reason-
ing. With the availability of CoT, PoT and EoT, we
hold the hypothesis that a model has the potential
to solve a problem if it reaches the correct answer
using any one of the prompting methods. As il-
lustrated in Figure 2, our analysis shows that the
model exhibits the potential to solve 92.72% of the
problems, surpassing the best performing single
method by over 10%.

Motivated by this observation, we propose XoT,
an integrated math problem solving framework,
which improves the LLM’s reasoning ability by
switching among diverse reasoning thoughts. Since
there is no guarantee that LLMs can always solve
the problem in a single attempt, we follow the hu-
man intuition and allow the model to rethink and
switch to a different method when encountering
difficulties or obstacles. We apply two complemen-
tary verification methods to facilitate the model
to decide whether it is time to switch to another
method: passive and active verification. Passive
verification relies on the external executors to pro-
vide determinable results based on the generated
programs (Chen et al., 2023; Le et al., 2022). It
offers shallow inspections, such as program syntax
issues or the runtime errors. For active verification,
we ask the model to verify the solution by check-
ing whether the answer adheres to the conditions
outlined in the original question.

As shown in Figure 1, XoT consists of three mod-
ules that work in an iterative framework: planning,
reasoning and verification. Given a problem as in-
put, the planning module first proposes the most
appropriate method. The reasoning module then
generates one solution using the planned prompt-
ing method. With the outputs and the results from
external executors, the model is asked to assess
the answers in the context of the questions. If the
answer fails the verification, we will go back to
the planning module for another round of iteration
and attempt alternative methods. The iterative pro-
cess concludes when the verification confirms the
correctness of the answer or after exhausting all
available methods.
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Figure 2: Complementarity of X-of-Thought methods
on different datasets. The stacked bars indicate the
best performance achieved by using one, two and three
methods separately. Employing multiple methods under
oracle setting can offer significant performance gains.

To demonstrate the effectiveness of XoT, we
conduct extensive experiments on 10 popular math-
ematical reasoning datasets and achieve consistent
improvement. Empirical results suggest that XoT
can accommodate recent work that focuses on im-
proving single reasoning methods. Additional ex-
periments also indicate that XoT can generalise to
other domains such as logical reasoning tasks.

We summarize the main contributions as follows.
First, we propose an integrated problem solving
framework XoT, utilising the complementarity of
different reasoning thoughts. Second, we introduce
EoT which solves math problems with a system
of linear equations, serving as a complementary
method to existing approaches. Third, we incor-
porate passive and active verification to facilitate
the framework to switch among diverse reasoning
thoughts, empowering the framework to make in-
formed decisions regarding the subsequent steps to
be taken. More generally, XoT sheds lights on a
new direction of interacting with diverse reasoning
methods and tools. As shown in Figure 1, instead
of sticking to one determined method, LLMs can
benefit from the verification and the flexible switch-
ing among available reasoning thoughts. 1

2 Related Work

2.1 Math Reasoning with LLMs

As the field of large language models continues to
prosper, many prompting techniques have emerged

1Code is publicly available at: https://github.com/
tengxiaoliu/XoT.
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to unlock the reasoning abilities of LLMs (Qiao
et al., 2022). Early success includes reasoning with
step-by-step chain of thought (Wei et al., 2022),
decomposing questions into sub-questions in a
least-to-most fashion (Zhou et al., 2022), zero-shot
prompting LLMs with simply one sentence (Ko-
jima et al., 2022), writing programs to solve pro-
cedural tasks (Gao et al., 2022; Chen et al., 2022).
Despite generating solutions in single forward pass,
one line of work employs multiple reasoning re-
sults and ensembles them by majority vote (Wang
et al., 2022), and stepwise verifier (Li et al., 2022).
Additionally, Tree-of-Thoughts (Yao et al., 2023)
deliberately explores multiple reasoning paths and
searches over a tree-structured reasoning states.
Imani et al. (2023) propose to vote over multiple
solutions generated with algebraic and program
prompts. One concurrent work (Zhao et al., 2023)
considers the difference of CoT and PoT and asks
the LLM to choose one better reasoning rationale.
In contrast to their work, XoT involves more re-
liable verification modules and switches methods
when necessary.

2.2 Iterative Refinement

One stream of work is dedicated to iteratively en-
hancing LLMs by continuously reevaluating and
refining outputs until the desired quality is achieved.
Madaan et al. (2023) prompts the model to write
feedback based on previously generated drafts and
leverages the feedback to generate high-quality out-
puts. Similarly, Chen et al. (2023) iteratively de-
bugs the code by utilizing external program execu-
tion results and code explanations generated by the
model itself. In order to avoid repetitive mistakes,
Shinn et al. (2023) builds a memory of previous
errors, while Wang and Li (2023) collects all mis-
takes during the training phase to provide a global
insight. When considering sources of hints to guide
rethinking, Paul et al. (2023) focuses on interme-
diate reasoning steps, while Zheng et al. (2023)
directly utilizes the previously generated answers.
Qi et al. (2023) propose to emulate the divide-
and-conquer fashion of human thinking strategy
and involve self-questioning and recursive thinking
processes in the problem solving framework. Al-
though these approaches contribute to improving
the reasoning quality of LLMs, they are limited in
retrying without looking around for other possible
thoughts. In contrast, our proposed method aims to
explore alternative solutions, and it is orthogonal

Question
Together Lily, David, and Bodhi collected 43 insects. Lily found 7 
more than David. David found half of what Bodhi found. How 
many insects did Lily find?

Gold: 16.0

PoT
insects_total = 43
david_insects = insects_total / 4
bodhi_insects = david_insects * 2
lily_insects = david_insects + 7
ans = lily_insects

CoT
Let's start by using the information given to set up equations:
L + D + B = 43 (to represent the total number of insects collected)
L = D + 7 (since Lily found 7 more than David)
D = 1/2B (since David found half of what Bodhi found)
……
B = 24
……Therefore, Lily found 19 insects. The answer is 19.

EoT
david = x
lily = david + 7
bodhi = 2 * david
lily + david + bodhi = 43
ans = lily

ans = 17.75

ans = 16.0

Figure 3: In particular cases where CoT and PoT fall
short, EoT successfully solves the problem, which
serves as a good complement.

to iterative refinement, as we have the flexibility to
switch solutions when refining no longer leads to
further improvement.

3 Preliminary

3.1 Prompting methods

For math reasoning tasks, we use three rea-
soning thoughts in this work, namely Chain-of-
Thought (CoT), Program-of-Thought (PoT) and
Equation-of-Thought (EoT). Despite the well-
known strengths of CoT and PoT methods, our
proposed EoT excels particularly in reasoning with
unknown variables. For each problem, EoT at-
tempts to model the questions as linear equations
and involves unknown values in the description.
A detailed formulation of EoT prompting can be
found in Table 12 of Appendix C. As illustrated
in Figure 3, while CoT correctly sets up the equa-
tions, it fails in accurately performing the calcu-
lations. PoT falls short in dealing with unknown
variables, as Python requires that every variable
is defined with a value. Assigning a value to an
unknown variable (david_insects) hallucinates
PoT to generate a misleading step (the highlighted
line). In comparison, EoT manages to express the
question context in straightforward equations and
solves them with a deterministic equation solver.



3.2 Complementarity

Given a question q, we denote the correctness of the
reasoning answers using each method as R̂X(q),
where X ∈ {CoT, PoT,EoT} denotes the diverse
reasoning methods. R̂X(q) = {0, 1} represents
whether the generated answer is correct according
to the gold label. We define the accuracy under the
oracle setting as:

ACCoracle =
∑
q

R̂CoT (q)∨R̂PoT (q)∨R̂EoT (q).

(1)
The oracle setting represents that the model has

the potential for solving one given problem if any
of the methods accurately generates the answer. It
also implies that in cases where the generated an-
swer does not match the gold answers, XoT will
make further attempts using alternative methods
to answer the question. Under oracle setting, the
model can potentially achieve more than 10% gains
on various datasets. In Figure 2, the bar at the bot-
tom represents the highest performance achieved
by employing a single method, followed by the
optimal performance achieved through the use of
two methods. The overall stacked bar shows the
utilization of all three methods, which indicates
the upper bound that can be reached through the
combined collaboration of various methods.

4 XoT

Our goal is to develop a generalized problem solv-
ing framework that can automatically select the
appropriate method for different problems and has
the capability to switch among reasoning thoughts
using both active and passive verification. We first
describe the overall framework and introduce each
module in detail.

4.1 Overall Framework

The overall pipeline is described in Algorithm 1.
The inputs of our framework include a question q
and a predefined set of methods M . With the user
input, XoT employs its three built-in modules to
output the final solution, namely planning module
P , reasoning module R and verification module V .

These three modules collaborate in an iterative
manner. Suppose at iteration t, the planning mod-
ule P first chooses the most appropriate method
available: mt = P (M). The chosen method is
subsequently excluded from the set of methods.
The reasoning module is then tasked to generate

Algorithm 1 XoT Reasoning Algorithm

Require: input question q, method set M , plan-
ning module P , reasoning module R, verifica-
tion module V

1: t← 0
2: while |M | > 0 do
3: mt ← P (M) ▷ Choose method
4: M ←M \ {mt}
5: y ← Rmt(q)
6: if V (y) then
7: break ▷ Verification passed
8: else
9: t← t+ 1 ▷ Continue next iteration

10: end if
11: end while
12: return y ▷ Return the solution

one solution y using the proposed method mt. Fol-
lowing this, the verification module evaluates the
solution by rethinking the answer within the given
conditions. If the answer successfully passes the
verification, we proceed to return the current so-
lution. Otherwise, XoT will move forward to the
next iteration. Every module is implemented with
a LLM through inference under few-shot setting.
We will elaborate each module with details.

4.2 Planning and Reasoning
The planning module is responsible for selecting
the appropriate method at the beginning of each
round of iteration. Recent work shows the neces-
sity to equip reasoning framework with the ability
to plan ahead (Lu et al., 2023). As elaborated in
Section 3, it is evident that each method possesses
distinct strengths. Our intuition is to consistently
initiate the process with the optimal method to en-
hance reasoning efficiency.

The reasoning module performs few-shot rea-
soning with the planned prompting method. Each
round of reasoning operates independently, mean-
ing that subsequent iterations do not rely on the
failed reasoning attempts of previous iterations.

4.3 Verification module
The verification module assesses the effectiveness
of the reasoning solution through two approaches:
passive verification and active verification.

When solutions involve offloading computation
to external tools, the execution results naturally
serve as a passive verification. Any occurrence of
errors or exceptions during the execution directly



Question
John brings his dog to the vet. His dog needs 2 vaccines, which are $20 each, and a heartworm check. 
The heartworm check is 60% of his total bill. If he brought $125 with him, how much does he leave with?

Program-of-Thought
vaccine_cost = 20
num_vaccines = 2
heartworm_check_percent = 0.6
total_cost = (vaccine_cost * num_vaccines) +

(heartworm_check_percent * (vaccine_cost * 
num_vaccines))

money_brought = 125
money_left = money_brought - total_cost
ans = money_left

Equation-of-Thought
vaccine_cost = 20 * 2
heartworm_check_cost = 0.6 * (vaccine_cost + 

heartworm_check_cost)
total_money = 125
total_cost = vaccine_cost +
heartworm_check_cost
ans = total_money - total_cost

Passive feedback passed

Active verification
# The total cost of the vaccines and heartworm 
check should be equal to 100% of the total 
bill. The amount left ...
assert vaccine_cost + heartworm_check_cost == 

total_money * 0.6 and left_money ==
total_money - (vaccine_cost +
heartworm_check_cost)

Reasoning ModulePlanning Module Verification Module

Passive feedback passed

Active verification
# The total cost should be equal to the sum of 
the cost of vaccines and the cost of the 
heartworm check. 

assert total_cost == 
vaccine_cost * num_vaccines +
heartworm_check_percent * total_cost

Method 1
Program-of-Thought

Method 2
Equation-of-Thought

Iteration 1

Iteration 2

continue

return

Input

Figure 4: Overview of XoT. Following the suggestion of the planning module, XoT first reasons with PoT. However,
the generated answer fails in the verification module. In the second iteration, the selected method is EoT. The
reasoning module successfully generates the solution that passes the verification.

Dataset # Data # Steps

GSM8K (Cobbe et al., 2021) 1,319 3.25
SVAMP (Patel et al., 2021) 1,000 1.24
AQuA (Ling et al., 2017) 253 ≥ 3⋆

Algebra (He-Yueya et al., 2023) 222 ≥ 2⋆

GSM-hard (Gao et al., 2022) 1,313 3.25
MATH (Hendrycks et al., 2021) 5,000 ≥ 3⋆

AddSub (Hosseini et al., 2014) 395 1
SingleOP (Roy et al., 2015) 562 1
SingleEQ (Koncel-Kedziorski et al., 2015) 508 1.31
MultiArith (Roy and Roth, 2015) 600 2

Table 1: Statistics of the datasets we used. # Steps
denotes the average number of reasoning steps in the
gold answers. ⋆ indicates a rough estimate due to the
inconsistent rationale formats.

results in a failure in the verification process. So-
lutions that pass the passive verification stage then
proceed to active verification.

In the case of active verification, the module re-
thinks the answer within the context of the given
question. It first acquires all intermediate values
associated with each variable mentioned in the so-
lution. These values are computed by external ex-
ecutors. We intentionally exclude the reasoning
process (expressions) leading to the results to pre-
vent the verification module from emulating the
solution’s thinking process. With the intermediate
results and final answer in hand, the module is ex-
pected to recheck whether the answer satisfies the
conditions specified in the question. The desired

format for this evaluation is an assertion statement,
as shown in Figure 4. This assertion is subsequently
combined with the original solution for external
tools to execute. If no issues arise during this ex-
ecution phase, it means the solution successfully
passes the verification. A detailed illustration of
the prompts we use can be found in Appendix C.
The verification module is specially designed for
PoT and EoT as the intermediate values can be eas-
ily obtained. We leave the exploration of a more
effective verification for CoT as future work.

5 Experiments

5.1 Experimental Setting
Datasets Our experiments are conducted on a
comprehensive set of 10 math reasoning datasets,
encompassing various challenging math reason-
ing scenarios. Some widely used datasets in-
clude GSM8K, SVAMP, AQuA, MATH and
MAWPS (AddSub, SingleOP, SingleEQ, Multi-
Arith) (Koncel-Kedziorski et al., 2016). Besides,
we also incorporate several recently introduced
datasets, namely Algebra, GSM-hard. Algebra
comprises a collection of solely algebraic word
problems that can be resolved through the use of
equations. To increase the complexity of calcula-
tions, GSM-hard replaced small numerical values
with larger ones. The details of the statistics of the
datasets can be found in Table 1.



Model We query OpenAI API for experiments2.
Specifically we use gpt-3.5-turbo as the infer-
ence engine. If not further explained, we manually
construct the prompts with 8 examples sampled
from the training set. For CoT and PoT, we directly
use the examples released by published paper (Fu
et al., 2022; Gao et al., 2022; Chen et al., 2022).
For model generation strategy, we employ greedy
decoding in all runs. Due to the non-deterministic
APIs, we report the average performance and the
standard deviation across 3 runs. We also evaluate
XoT with various base models in Appendix A.2.

5.2 Main Results

The main results are shown in Table 2. We consider
three prompting methods as baselines, namely CoT,
PoT and EoT. On average, XoT achieves a signif-
icant improvement of 5.49% across the datasets.
For MATH dataset, we show the breakdown results
of different question subtopics in Table 3. We also
represent the performance enhancement over the
strongest baseline as ∆. As questions in MATH are
too complex for equation systems to solve, we only
consider CoT and PoT with passive verification.
Specifically, on the AQuA dataset, which consists
of multiple-choice questions, we observe that PoT
or EoT often fails to generate a valid answer due
to the diverse answer formats. Across the three
runs, 24.4% of the PoT answers and 30.3% of the
EoT answers cannot be executed. Therefore, ap-
plying passive verification is adequate to ensure
the explortion of other method options. When post
processing the generated results, we further enforce
a restriction that the model cannot make a random
guess if it fails to extract an answer from the gener-
ated output. Such instances should be proceeded to
the next iteration to guarantee a fair evaluation of
the performance.

Notably, we observe that the enhancements are
more pronounced for the challenging datasets com-
pared to the easier ones. Difficult datasets usually
contain longer questions and more than 3 reason-
ing steps while easier datasets such as SingleEQ
require only one equation to solve the problem. We
find that the improvement directly correlates with
the complementary nature of the three methods em-
ployed across different datasets. On easier datasets,
each method performs well individually, resulting
in only minor complementarity. Figure 5 reveals
that XoT demonstrates superior performance on

2https://openai.com

datasets that exhibit stronger enhancement under
oracle setting. The bars in the figure represent the
improvement under XoT, while the line indicates
the upper bound of the improvement under oracle
setting. The comparison indicates that MultiArith
and SingleEQ allow minimal room for improve-
ment, therefore the overall XoT performance is
negatively impacted by the accumulated errors in-
troduced by the verification module.

Additionally, we conduct experiments on logical
reasoning task to evaluate the generalisability of
XoT. Details can be found in Appendix A.1.

6 Analysis

In this section, we first analyze the effectiveness
and necessity of each module within XoT. Then
we provide comparison with majority voting and
describe how model’s self refinement can be inte-
grated in our framework.

6.1 Ablation Study

Planning The planning module decides which
method to attempt at the beginning of each itera-
tion. We are curious about how well it performs
in selecting the most suitable method among the
available options. The planning module is expected
to select from PoT and EoT at the beginning be-
cause these two methods can be verified with both
active and passive verification. To demonstrate the
necessity of the planning module, we conduct an
experiment in which XoT is asked to execute each
method in a predefined order. Whether to switch
the method is still determined by the verification
module. We break down the performance of each
dataset with respect to different combinations of
methods in Table 4.

Our findings align with two design ethos of the
planning module. First, it demonstrates robustness
across different datasets. While specific combi-
nations excel at different datasets, XoT equipped
with the planning module outperforms all other
predetermined combinations on average. For in-
stance, on GSM-hard, the combination of PoT and
EoT achieves the best performance, which high-
lights the importance of leveraging external tools
to handle calculation involving large numbers. Ad-
ditionally, on SingleEQ and MultiArith where XoT
fails to offer improvement, the combination of two
methods proves to be efficient, surpassing the sin-
gle method baselines. With the inclusion of the
planning module, XoT can dynamically adjust the

https://openai.com


GSM8K SVAMP AQuA⋆ Algebra GSM-hard AddSub SingleOP SingleEQ MultiArith Average

CoT 80.20.2 79.50.6 55.11.0 81.50.8 42.40.1 88.40.3 93.40.3 94.30.1 97.50.3 79.14
PoT 77.20.3 79.50.3 49.21.0 62.50.7 61.80.4 88.40.2 93.40.4 98.10.1 97.20.0 78.59
EoT 63.80.4 69.60.7 46.70.5 82.30.5 53.80.2 71.61.0 75.40.4 85.80.8 78.60.6 69.73
XoT 83.30.5 83.60.6 61.70.6 89.90.3 63.40.5 90.50.4 94.30.3 97.70.1 97.30.3 84.63

oracle 92.50.2 92.70.3 77.01.4 95.50.5 74.30.4 93.90.3 97.50.0 99.10.1 99.30.0 91.31
∆ +3.1 +4.1 +6.6 +7.6 +1.6 +2.1 +0.9 -0.4 -0.2 +5.49

Table 2: Main experiment results across various math reasoning datasets. Under oracle setting, XoT switches
the method if the generated answer does not match the gold answers. ⋆ denotes we only use passive verification.
∆ represents the improvement over the best performing baseline.

InterAlgebra Precalculus Geometry NumTheory Probability PreAlgebra Algebra Overall

CoT 17.80.4 20.30.4 24.40.4 32.21.0 30.40.6 56.60.4 49.70.4 35.770.4
PoT 14.40.1 15.50.1 8.80.3 31.20.7 19.60.2 36.50.2 38.20.1 25.790.1
XoT 25.10.1 26.00.3 25.30.7 48.10.6 36.10.4 62.00.2 57.30.4 42.810.0

oracle 28.10.2 31.20.1 27.60.4 50.50.1 39.00.7 68.00.4 64.10.4 47.350.2
∆ +7.3 +5.7 +0.9 +15.9 +5.7 +5.4 +7.6 +7.04

Table 3: Experiment results on MATH dataset. We only employ two methods and passive verification on MATH.
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Figure 5: The correlation between oracle performance
and final improvement. A higher oracle gain allows
more room for XoT to improve.

execution order based on different questions, which
ensures a more consistent and robust performance.

Second, the planning module enhances effi-
ciency, facilitating XoT to reach the final answer
in fewer iterations by always starting from the most
possible method. To illustrate, on GSM8K, XoT
needs 1.46 iterations on average in comparison with
1.58 iterations with the fixed EPC order (EoT->PoT-
>CoT, the best performing fixed order). Specifi-
cally, 68.8% of the questions are resolved in the
first iteration with XoT, as opposed to 57.2% when
employing the fixed EPC order.

Reasoning How important is it to try different
methods instead of exclusively relying on a single
method? To investigate this, we restrict the avail-
able method options to utilizing PoT only, denoted

PoT3 PoT3-d XoT PoT3

oracle
PoT3-d
oracle

XoT
oracle

80

90

100

84.08
85.60

92.72

78.39 78.62

82.71A
cc

ur
ac

y
(%

)

1st iter 2nd iter 3rd iter

Figure 6: Repeatedly exploiting the same method (PoT3)
results in limited complementarity compared to XoT
with three methods. PoT3-d denotes we use different
few-shot examples in three iterations.

as PoT3. In other words, if the generated solution
fails to pass the verification, it reconsiders its rea-
soning using the same prompting method instead of
changing to another. The results are demonstrated
in Figure 6. PoT3 uses the same few-shot exam-
ples in three iterations while PoT3-d uses differente
examples randomly sampled from the training set.
It is observed that under orcale setting, repetitive
exploitation of a single method has limited com-
plementarity of 84.08%, which is 8.64% less than
XoT. As a result, the final performance reflects such
a gap with PoT3 of 78.39% and XoT of 82.71%.



Methods GSM8K SVAMP AQuA Algebra GSM-hard AddSub SingleOP SingleEQ MultiArith Average

PE 77.70.3 80.70.2 56.71.0 81.70.5 63.40.3 89.60.3 93.80.3 98.00.2 95.00.2 81.85
PC 81.80.2 82.70.6 61.71.5 83.60.5 59.60.4 90.40.0 94.40.2 98.30.1 97.80.2 83.36
EP 80.90.4 80.80.4 58.00.6 83.80.9 64.60.3 88.40.4 94.10.5 96.70.0 97.80.2 82.80
EC 82.40.5 81.40.6 60.00.6 92.00.3 56.20.4 87.30.4 93.70.2 95.10.1 97.30.2 82.82
EPC 82.60.5 82.60.6 63.11.0 89.90.3 63.10.4 88.70.6 94.50.3 96.70.0 97.50.0 84.29
PEC 82.60.4 83.10.5 61.81.0 85.30.5 63.30.3 90.10.3 94.40.3 98.20.1 97.40.3 84.02
XoT 83.30.5 83.60.6 61.70.6 89.90.3 63.40.5 90.50.4 94.30.3 97.70.1 97.30.3 84.63

Table 4: Results across different datasets without the planning module. We manually define the execution sequence,
denoted as the combination of the first letter in each method. For example, ‘PEC’ indicates PoT-EoT-CoT.

Figure 7: Comparison of passive and active verifications.
The blue and green matrices represent verifications for
PoT and EoT respectively.

active ACC FPR↓ FNR↓ XoT

PoT ✗ 79.3 89.5 0.0
80.4

EoT ✗ 88.3 32.7 0.0
PoT ✓ 77.9 41.0 16.5

82.7
EoT ✓ 81.2 16.7 20.0

Table 5: Ablation results of different verification meth-
ods on GSM8K. Employing active verification signifi-
cantly reduces false positive rate and results in a notable
improvement in the overall XoT performance.

This suggests the necessity of employing various
reasoning methods in our framework.

Verification The verification module facilitates
seamless switching between iterations. We here
explore how helpful the active and passive verifi-
cations are. Figure 7 illustrates the performance
comparison when considering different verification
aspects. If we solely depend on passive verifica-
tion, only 2.43% of the PoT results and 24.18% of
the EoT results are deemed “incorrect” and subse-
quently advanced to the next iteration. However,

GSM8K SVAMP

PoT 77.20.3 79.50.6
EoT 63.80.4 69.60.7
XoT (only PE) 79.40.7 81.30.3
XoT (w/o verification) 74.51.4 79.20.4

Table 6: Ablation results of excluding the entire verifi-
cation module on GSM8K and SVAMP. XoT (only PE)
is equipped with the verification module. The lack of
this module compromises its ability for iterative method-
switching, resulting in diminished performance.

such a simplistic verification approach yields an
alarmingly high false positive rate of 89.5% and
41.0%, as shown in Table 5. This drawback is par-
ticularly critical as our XoT’s essence lies in the
ability to adaptively switch methods, and a high
false positive rate restricts the model’s ability to
explore alternative method options. By additionally
incorporating active verification, despite a slight
compromise in accuracy, the false positive rate is
substantially reduced by 56.8% and 24.3%. We
also note that this approach inevitably leads to an
increase in the false negative rate. However, this
is a minor drawback as the subsequent method
options still have chances to get it correct. Conse-
quently, employing active verification offers 2.3%
gains to the overall XoT performance.

Additionally, we explore the necessity of the
iterative nature of XoT by removing the entire veri-
fication module. In this scenario, we only reason
once with the most suitable method suggested by
the planning module. The results are presented in
Table 6. As our planning module mainly chooses
the method from PoT or EoT, we here restrict the
available methods to PoT and EoT only in XoT
framework, which is denoted as ‘XoT (only PE)’.
By removing the verification module, the frame-
work, denoted by ‘XoT (w/o verification)’ is no
more capable of rechecking the answer thus cannot



GSM8K SVAMP AQuA Algebra GSM-hard AddSub SingleOP SingleEQ MultiArith Average #Tokens

XoT 83.30.5 83.60.6 61.70.6 89.90.3 63.40.5 90.50.4 94.30.3 97.70.1 97.30.3 84.63 4.5k
Vote 82.40.2 84.70.8 55.61.9 79.70.5 61.31.1 89.40.4 94.40.1 97.20.1 98.50.2 82.59 5.4k

Table 7: Comparison between XoT and Majority Voting. XoT outperforms the majority vote approach in a more
efficient manner, yielding an average gain of 2.04 with a reduction of 16.7% in token count. #Tokens denotes the
average number of tokens consumed for one case (including prompts, question and response).

ACC ACC + refine

CoT 80.4 81.7
PoT 76.9 76.9
EoT 64.1 66.5
XoT 82.7 84.5

Table 8: Results of adding self-refinement within rea-
soning module on GSM8K test set.

perform iterative attempts to switch methods. This
leads to a performance degradation of 4.9% and
2.9% on GSM8K and SVAMP respectively.

6.2 Comparison with Majority Voting

We additionally conduct experiments involving the
majority vote of three distinct methods. The vote is
based on three answers generated by three methods
(one answer per method). As shown in Table 7, tak-
ing the majority vote of the three methods achieves
82.59 on average, while XoT achieves better per-
formance at 84.63. Additionally, we observe that
the majority vote fails on datasets containing ques-
tions that align exceptionally well with a specific
method. Specifically, the majority vote achieves
79.73 on Algebra, while XoT achieves 89.94.

The majority vote needs to execute all three
methods to reach an answer, while XoT will stop
when the answer passes the verification. We cal-
culate the total token count as #total_token =
#input_token+#output_token ∗ 2, according
to OpenAI’s pricing policy3. As shown from the ta-
ble, XoT is able to achieve higher performance with
a lower budget, exhibiting a reduction of 16.7%
in expenses. The token count includes all the in-
context examples used and is averaged across the
number of the total questions in 9 datasets.

6.3 Self-refinement

The design principle underlying XoT is its adapt-
able capability to switch methods, allowing for
smooth integration with research aimed at improv-
ing individual methods. The line of iterative refine-
ment methods enhances the model performance

3https://openai.com/pricing

by asking the model to rethink on its previous re-
sponse, serving as a good alternative for the reason-
ing module in XoT. Specifically, before moving on
to another method at each iteration, we allow the
model to first make self refinement on its current
approach, making the best use of current method.

Inspired by previous work (Madaan et al., 2023),
after reasoning with one method for the first time,
we require the model to analyze its response line-
by-line and summarize several advice to mitigate
the potential errors. Then, the model answers the
question for a second time in the same method, with
the summarized advice as a hint. After that, we
verify the results produced by the second round and
determine whether to switch to another method.

To achieve the iterative refinement in CoT, we
follow Zheng et al. (2023) to progressively hint the
model with the answers generated before. For PoT
and EoT, we follow the released self-refinement
prompts from Madaan et al. (2023). The re-
sults are shown in Table 8. We only allow the
model to think twice using each prompting method.
Though adding only one round of refinement yields
marginal improvement within each single method,
their collaboration contributes to a more significant
improvement under XoT framework.

7 Conclusion

We propose XoT, an integrated problem solving
framework that utilizes diverse reasoning thoughts
to prompt LLMs. XoT integrates planning, rea-
soning and verification into a unified framework,
enabling the model to explore multiple methods
based on the active and passive verification of the
solutions. We conduct extensive experiments on 10
math reasoning datasets to thoroughly evaluate the
advantages of each module and showcase the effi-
cacy of our proposed approach. Further results also
show that the design ethos of XoT can generalize
to logic reasoning domain. We consider its gen-
eralisation to more diverse tasks as a compelling
avenue for future exploration.

https://openai.com/pricing


Limitations

We acknowledge that our approach falls short on
easier and more straightforward datasets where dif-
ferent methods exhibit limited complementary re-
lations. Our current approach relies on the avail-
ability of diverse prompting methods for reasoning
tasks. Further research is required to explore new
problem solving methods for general reasoning
tasks. Moreover, we observe that our method works
better on larger base models. Although different
reasoning methods do exhibit notable complemen-
tarity on smaller models, the inherent potential is
not yet fully unleashed in current XoT design.
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The data used in our work all comes from public
dataset, and our proposed method can be further
integrated with other methods. Our work is confor-
mant to ACL Ethics Policy.
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A Further Analysis

A.1 Generalisation to logical domain
We analyze the generalisability of XoT framework
to logical reasoning domain. One recent work (Yao
et al., 2023) proposed LogicLM to solve logical
reasoning questions using First Order Logic ex-
pressions and executed them in external symbolic
reasoners. Following LogicLM, we design similar
formal language expressions to represent First Or-
der Logic and conduct experiments on FOLIO (Han
et al., 2022), an expert-written, logically complex
and diverse dataset for natural language reasoning.
Our findings in Table 9 suggest that different meth-
ods in logical domain also show strong complemen-
tarity, achieving 77.45% under oracle setting. After
involving the verification module, XoT performs
at 62.75% on the validation set of FOLIO. These
results underscore the applicability of XoT as a
general problem solving framework.

Method FOLIO ACC

CoT 58.82
FOL 42.65

Oracle 77.45
XoT 62.75

Table 9: XoT performance on logical reasoning task
FOLIO validation set. Normal text reasoning and for-
mal language FOL are complement to each other under
oracle setting and XoT framework.

A.2 Experiments on other models
We further assess the performance of XoT across
various base models, such as Llama-2 series (Tou-
vron et al., 2023b). The results are shown in Ta-
ble 10, and we illustrate the performance scaling
curve in Figure 8. With less capable models, dif-
ferent prompting methods still demonstrate strong
complementarity under oracle setting. Our obser-
vations suggest that smaller models tend to yield
suboptimal results, likely due to the unbalanced
performance across different reasoning approaches
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Figure 8: Performance scaling curve on different base
models. The performance is averaged across the four
datasets shown in Table 10.

and the models’ limited capability for active verifi-
cation. This limitation inhibits the model’s ability
to timely switch between methods. However, as
the model’s size increases, XoT consistently shows
its strength across the datasets.

A.3 Proportion of XoT
Figure 9 illustrates the proportion of different meth-
ods that XoT selects as the final answers. On
GSM8K, 56.7% questions end up being solved
with PoT, while 28.3% are tackled by EoT. The
remaining 15% is left for CoT to solve.

56.7%

28.3%

15.0%

PoT
EoT
CoT

Figure 9: The proportion of different methods that XoT
finally chooses as the answer on GSM8K.

B XoT with self refinement

We here offer the details of how we combine it-
erative self-refinement with XoT framework. As
shown in Figure 10, the self refinement process
can be integrated in the reasoning module, where
the dashed line indicates rethinking using the same
method. When the desired number of self refine-
ment iterations is reached, the generated solutions
will proceed to the verification module. Then the

verification will determine whether to use the cur-
rent solution or change to another method.

passed

Input

Planning

Reasoning

Verification

Output

failed

Refinement

Figure 10: Self refinement can be integrated in the XoT
framework. The dashed block indicates the reasoning
module with the inclusion self refinement. Within each
self refinement process, the model repeatedly exploits
the same method.

C Examples

In this section, we show the input and output
examples of each module in XoT. Full prompts
are available in public Github repository: https:
//github.com/tengxiaoliu/XoT. For EoT, we
use sympy 4 library to solve the linear equations.

4https://www.sympy.org/
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Method GSM8K GSM-hard Algebra SVAMP Average

LLaMA2-7B

CoT 14.3 3.8 17.6 33.3 17.23
PoT 10.2 8.3 14.9 32.8 16.52
EoT 8.0 5.0 16.2 23.2 13.12
Oracle 24.6 14.6 32.0 58.9 32.50
XoT 13.5 5.9 19.4 35.2 18.50
Vote 13.9 7.0 19.8 37.4 19.54

LLaMA2-13B

CoT 27.5 8.5 20.3 40.3 24.13
PoT 26.4 22.7 26.1 50.4 31.40
EoT 14.5 12.1 32.9 29.9 22.33
Oracle 46.1 32.2 49.6 68.7 49.13
XoT 30.2 17.4 30.2 46.2 30.98
Vote 28.6 18.9 31.5 51.0 32.50

LLaMA2-70B

CoT 59.1 27.1 43.2 75.2 51.16
PoT 52.3 43.1 35.6 73.6 51.14
EoT 31.0 25.0 63.5 44.4 40.99
Oracle 78.3 59.3 78.8 89.0 76.36
XoT 57.9 43.8 64.0 77.0 60.68
Vote 58.6 38.9 56.3 80.0 58.45

gpt-3.5-turbo-instruct

CoT 77.9 44.4 82.0 73.8 69.52
PoT 72.5 59.5 64.4 78.4 68.70
EoT 41.3 36.1 65.3 47.6 47.58
Oracle 90.1 73.7 95.1 90.2 87.27
XoT 77.8 58.8 90.5 80.1 76.80
Vote 77.9 58.2 85.6 81.5 75.80

Table 10: XoT performances with various base models.

Input:
You need to choose the best method for the given question. Each method has its own strength. The
methods are described as follows:
- Python Program: This method generates a Python program that can solve the given question. It takes
in the question and possible context and produces a program. Normally, we consider using this method
when the questions and contexts involve forward reasoning, such as arithmetic operations over multiple
numbers, or when the questions involve complex logical operations, such as "if-else" statements.
- System of linear equations: This method builds a math model and generates a system of linear
equations that contains the answer as an unknown variable. Normally, we consider using this method
when the questions and contexts involve an unknown variable that must be used to build an equation,
especially when the question can be better modeled with abstract mathematical declarations, or when
the unknown variable appears at the beginning of the questions and needs backward reasoning to solve.
Below are some examples that choose the most appropriate method for the math word problems.
{Examples}
Question: Alyssa, Keely, and Kendall ordered 100 chicken nuggets from a fast-food restaurant. Keely
and Kendall each ate twice as many as Alyssa. How many did Alyssa eat?
Method:

Output:
System of linear equations

Table 11: Example of planning module.



Input:
{Examples}
Question: Alyssa, Keely, and Kendall ordered 100 chicken nuggets from a fast-food restaurant. Keely
and Kendall each ate twice as many as Alyssa. How many did Alyssa eat?
System of linear equations: (Do not simplify)

Output:
% Assume Alyssa ate x chicken nuggets:
alyssa = x
% Alyssa, Keely, and Kendall ordered 100 chicken nuggets from a fast-food restaurant:
total = 100
alyssa + keely + kendall = total
% Keely and Kendall each ate twice as many as Alyssa:
keely = 2 * alyssa
kendall = 2 * alyssa
% How many did Alyssa eat? The answer is alyssa:
ans = alyssa

Table 12: Example of reasoning in EoT.

Program:
nuggets_total = 100
nuggets_keely = 2 * nuggets_alyssa
nuggets_kendall = 2 * nuggets_alyssa
nuggets_alyssa = (nuggets_total - nuggets_keely - nuggets_kendall) / 5
ans = nuggets_alyssa

Python Interpreter:
NameError: name ’nuggets_alyssa’ is not defined

Table 13: Example of a failed passive verification on PoT. The Python interpreter throws an error, indicating the
solution does not pass the passive verification.

Input:
{Examples}
Question: Alyssa, Keely, and Kendall ordered 100 chicken nuggets from a fast-food restaurant. Keely
and Kendall each ate twice as many as Alyssa. How many did Alyssa eat?
alyssa = 20
total = 100
keely = 40
kendall = 40
# Assertion

Output:
# The total number of chicken nuggets should be equal to the sum of the nuggets Keely, Kendall and
Alyssa ate. The number of Keely and Kendall each ate should be twice as many as Alyssa.
assert total == alyssa + keely + kendall
assert keely == 2 * alyssa and kendall == 2 * alyssa

Table 14: Example of an active verification on an EoT solution.



Input:
{Examples}
Question: Alyssa, Keely, and Kendall ordered 100 chicken nuggets from a fast-food restaurant. Keely
and Kendall each ate twice as many as Alyssa. How many did Alyssa eat?
alyssa = 20
total = 100
keely = 40
kendall = 40
# Assertion

Output:
# The total number of chicken nuggets should be equal to the sum of the nuggets Keely, Kendall and
Alyssa ate. The number of Keely and Kendall each ate should be twice as many as Alyssa.
assert total == alyssa + keely + kendall
assert keely == 2 * alyssa and kendall == 2 * alyssa

Table 15: Example of an active verification on an EoT solution.


