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ABSTRACT

Recently, for finding inherent causality implied in CNN, the black box problem
of its discrimination part, which is composed of all fully connected layers of the
CNN, has been studied by different scientific communities. Many methods were
proposed, which can extract various interpretable models from the optimal dis-
crimination part based on inputs and outputs of the part for finding the inherent
causality implied in the part. However, the inherent causality cannot readily be
found. We think that the problem could be solved by shrinking an interpretable
distance which can evaluate the degree for the discrimination part to be easily ex-
plained by an interpretable model. This paper proposes a lightweight interpretable
model, Deep Cognitive Learning Model(DCLM). And then, a game method be-
tween the DCLM and the discrimination part is implemented for shrinking the
interpretation distance. Finally, the proposed self-explanatory method was eval-
uated by some contrastive experiments with certain baseline methods on some
standard image processing benchmarks. These experiments indicate that the pro-
posed method can effectively find the inherent causality implied in the discrimi-
nation part of the CNN without largely reducing its generalization performance.
Moreover, the generalization performance of the DCLM also can be improved.

1 INTRODUCTION

Convolution neural network(CNN) has surpassed human abilities in some specific tasks such as
computer game and computer vision etc. However, they are considered difficult to understand and
explain(Brandon, 2017), which leads to many problems in aspects of privacy leaking, reliability and
robustness. Explanation technology is of immense help for companies to create safer, more trustable
products, and to better manage any possible liability of them (Riccardo et al., 2018). Recently, for
finding inherent causality implied in the CNN, the unexplainable problem of CNN, especially con-
cerning the discrimination part which is composed of the fully connected layers of the CNN, has
been studied by different scientific communities. Many methods were proposed, which can extract
various interpretable models from the optimal discrimination part based on inputs and outputs of
the part for expressing the inherent causality implied in the part. However, because of data bias
and noisy data in the training data set, the inherent causality cannot readily be found because the
part is difficult to be approximated by any interpretable model. We think that the problem could be
solved by the following procedure. Firstly, a lightweight interpretable model is designed which can
be easily understood by human. And then, the model is initiatively extracted from the discrimina-
tion part by solving a Maximum Satisfiability(MAX-SAT) problem based on the activated states of
the neurons in the first layer and the output layer of the part. An new distance is proposed which
can evaluate the degree to which the discrimination part is easily explained, namely as interpretabil-
ity performance or interpretable distance. For shrinking the interpretable distance, a game process
between the interpretable model and the discrimination part is implemented. Finally, the optimal
interpretable model can be obtained, which can express inherent causality implied in the discrim-
ination part. Moreover, based on the procedure, it is also possible to monitor the evolution of the
inherent causality implied in the part in the game process.

Main contributions of this paper can be summarized as follows:

• An interpretable model, Deep Cognitive Learning Model(DCLM), is proposed to express
the inherent causality implied in the discrimination part, and a greedy method is given
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for initiatively extracting the DCLM from the discrimination part by solving its Maximum
Satisfiability(MAX-SAT) Problem.

• A new game method is proposed to improve the interpretability performance of the discrim-
ination part without largely reducing its generalization performance by iteratively shrinking
the interpretable distance between DCLM and the discrimination part.

• A new distance is proposed to evaluate the degree to which the discrimination part is easily
explained, namely as interpretability performance or interpretable distance.

2 RELATED WORK

There are usually two types of methods for the unexplainable problem of the discrimination part,
such as post-hoc method and ante-hoc method (Holzinger et al., 2019). However, because ante-hoc
method is a transparent modeling method(Arrietaa et al., 2020), it can not obtain an explanation
about the discrimination part. So, the post-hoc method will be reviewed.

Early post-hoc method can obtain global explanations for a neural network by extracting an in-
terpretable model. Some references(Craven & Shavlik, 1999; Krishnan et al., 1999; Boz, 2002;
Johansson & Niklasson, 2009) proposed a few methods that can find a decision tree for explaining a
neural network by maximizing the gain ratio and an estimation of the current model fidelity. Other
references (Craven & Shavlik, 1994; Johansson & Niklasson, 2003; Augasta & Kathirvalavakumar,
2012; Sebastian et al., 2015; Zilke et al., 2016) proposed rule extraction methods for searching op-
timal interpretable rules from a neural network.

Recently, some feature relevance methods have become progressively more popular. Montavon et
al.(Montavon et al., 2017) proposed a decomposition method from a network classification deci-
sion into contributions of its input elements based on deep Taylor decomposition. Shrikumar et
al.(Shrikumar et al., 2016) proposed DeepLIFT which can compute importance scores in a multi-
layer neural network by explaining the difference of the output from some reference output in terms
of differences of the inputs from their reference inputs.

Some other works make complex black box model simpler. Che et al.(Che et al., 2017) proposed a
simple distillation method called Interpretable Mimic Learning for extracting an interpretable sim-
ple model by gradient boosting trees. Thiagarajan et al.(Thiagarajan et al., 2016) build a Treeview
representation of the complex model by hierarchical partitioning of the feature space. In addition,
some references (Hinton et al., 2015; Bucila et al., 2006; Frosst & Hinton, 2017; Traore et al., 2019)
proposed the distillation method of knowledge from an ensemble of models into a single model. Wu
et al.(M. Wu, 2018) proposed a tree regularization method via knowledge distillation to represent
the output feature space of a RNN based on a Multilayered perception. However, these methods
can only solve the unexplainable problem of trained neural network or trained deep neural networks
with explicit input characteristics. Wan et al.(Wan et al., 2020) constructed a decision tree using the
last fully connection layer of the discrimination part of a CNN based on a prior structure.

In the paper, our goal is to find the inherent causality implied in the discrimination part of CNN,
which is composed of all fully connected layers of the CNN without hurting its generalization per-
formance by initiatively extracting its logic relationships with no prior structure and finally obtain
its explanation by these logic relationships.

3 DEEP COGNITIVE LEARNING MODEL

For expressing the causal relationship between these neurons in the discrimination part, a new inter-
pretable model is designed in the section. As we all known, a CNN includes a feature extractor and
a discrimination part. The feature extractor composes of some convolution layers and some pooling
layers. The outputs from the feature extractor are the inputs of the discrimination part of the CNN,
namely feature maps, τ1, τ2, ..., τk where k is the number of feature maps. All these feature maps
form a feature set Γ.

We suppose that the discrimination part should better be explained by the logic relationships of the
activated states of the neurons in its first layer and its output layer. This is because the relationships
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are the inherent property of the part. In order to express the relationships, a deep cognitive learning
model (DCLM)is proposed, shown in Fig.1(b).
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Figure 1: Discrimination part and DCLM of a CNN(A predication Zi indicates an activated state of
a neuron Ii of the discrimination part of the CNN and a predication Di indicates an activated state
of a neuron Oi)

The DCLM consists of three layers:feature predicate layer, disjunction layer, and decision layer. The
top layer is feature predicate layer which consists of many nodes. Every node has a predicate Zj(Γ)
that expresses a positive action or negative action of features which the jth neuron in the first fully
connected layer of the discrimination part captures. The predicate Zj(Γ) is defined as follows:

Z1(Γ) =





1,
∑k

i=1 τi ∗ wi,1 > −b and τi ∈ Γ, (1)

null,
∑k

i=1 τi ∗ wi,1 = −b and τi ∈ Γ, (1′)
0, otherwise. (1′′)

where j ∈ 1, 2, ..., N , N is the number of the input neurons of the first fully connection layer of
the discrimination part of the CNN. wi,j is a weight vector between the ith feature map and the jth
neuron, bj is the bias of the jth neuron, and ”∗” is a convolution operation. ”1” and ”0” denote a
positively activated state and a negatively activated state of the neuron respectively. ”null” denotes
an inactivated state.

The bottom layer is a decision layer which includes all nodes used for decision. Every node has
a predicate which expresses an activated state of an output neuron of the discrimination part. It is
defined as follows:

D(y1) =
{

1, y1 > 0, (2)
0, otherwise. (2′)

where i ∈ 1, 2, ..., C,C is number of the output neurons of the CNN, yi is the output value of the
ith output neuron of the discrimination part. All nodes on the feature predicate layer and every node
on the decision layer are connected to one or more nodes on the middle layer, namely as disjunction
layer, with true or false edges. Every node represents a disjunction relation, which is expressed by a
disjunctive normal form. It is worth mentioning: if a node is connected to a node on the disjunction
layer by a false edge, its predicate follows after a non-operator in the disjunctive normal form.

The potential function of a disjunctive normal form can be obtained by using the Lukasiewicz
method(Giles, 1975).

φc(yi) = min(1, T (Γ, yi)) (3)
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where T (Γ, yi) =
∑N

j=1{aj [1− Zj(Γ)] + (1− aj)Zj(Γ)}+ (aN + 1)D(yi) and N is the number
of the nodes on the feature predicate layer. If aj = 1, there is a false edge. Otherwise, there is a true
edge.

The conditional probability distribution that a ground DCLM including all disjunctive normal forms
is true is

p(y,Γ) =
1
Ξ

exp(
∑G

i=1 λiφci(yi)∑G
i=1 λi

) (4)

where G is the number of all ground formulas, Ξ =
∑

Γ∈F exp(
∑G

i=1 λiφci(yi)∑G
i=1 λi

) is a partition func-
tion, y = (y1, y2, ..., yG), yi is an output value of the CNN and λi is a weighted value of the ith
ground formula.

By maximizing its likelihood function, the optimal ai and λi in the DCLM can be obtained.

C(Γ) = arg max
ai,λi

[log p(y,Γ)] = arg max
ai,λi

(
∑

i λiφci(yi)∑
i λi

− log(Ξ)) (5)

For extracting a optimal DCLM, a Maximum A Posterior(MAP) algorithm on the Maximum Satis-
fiability Problem (MAX-SAT) was designed. Using the disjunction normal form with the greatest
weighted value in the optimal DCLM, a prediction of an input image can be obtained.

4 EVALUATION OF INTERPRETABILITY PERFORMANCE

We consider that if the discrimination part of a CNN has a similar shape of function curve with its
optimal interpretable model, the former can be easily explained by the latter. Therefore, the inter-
pretable performance of the discrimination part can be measured by the shape similarity between it
and its optimal interpretable model. We posit that given the same input data set, the similarity may
be measured by variance of differences between outputs of the both models. It can be named inter-
pretation distance. It is easily proved that the smaller the interpretation distance is, the more similar
their shapes are, and the better the interpretability performance of the discrimination part would be.

Definition 1 If X is a compact metric space and ν is a Borel measure in X , such as Lebesgue
measure or marginal measures, inL2

ν(X), a square integrable function space on X , the interpretation
distance, φd(P ∗, f), between a discrimination part f(x) and its optimal DCLM P ∗(x) is

φd(P ∗, f) =
∫

Z

(f(x)− P ∗(x)− µP∗(f))2dν (6)

where
µP∗(f) =

∫

Z

(f(x)− P ∗(x))dν (7)

5 GAME BETWEEN A DCLM AND THE DISCRIMINATION PART OF A CNN

As discussed above,when the shapes of the discrimination part of a CNN and its optimal interpretable
model are enough similar, the discrimination part has well interpretability performance. However, its
generalization performance will tend to decrease. This is mainly attributed to the fact that because of
data bias and noisy data in training data set, the sufficient and necessary condition for the consistent
convergence of the two performances, φd(P ∗, f∗) = 0(f∗ is the optimal prediction model), is
difficult to be guaranteed. Therefore, for the tradeoff problem, in training process, extracting an
DCLM from the discrimination part and then iteratively reducing the interpretation distance between
the two models may be a feasible solution. A detailed discussion about the problem can be found in
the appendix.

To avoid reducing the generalization performance, the maximum probability p(w | X, yt) should be
guaranteed, where X is a training sample, w is the parameter set of the CNN and yt is the target
vector of X .

p(w | X, yt) =
p(w | X)p(yt | w, X)

p(yt | X)
∝ p(w)p(yt | w, X) (8)
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Algorithm 1 Game between DCLM and the discrimination part of a CNN(Its time complexity is
O(N + M) where O(N) is a time complexity of training CNN,O(M) is a time complexity of
construction of Logic Net.)

Input: Data set
Output: DCLM
Repeat
CNN = CNN Train(Data set, Adam, loss = CrossEntropy)
for data,label in Data set do

Feature map = CNN featureextractor(CNN).
disjunctive normal form = Disjunction(Feature map, Fnn, Wi,j , Rule1 =
Eq.1, Rule2 = Eq.2)
UpData DCLM(disjunctive normal form, Updata = Eq.5)

end for
for i = 1 to n do

for data,label in Data set do
Feature map = CNN feature extractor(CNN)
ym = DCLM(Feature map)
CNN DCLM(data, ym, loss = Eq.14)

end for
end for
Until the interpretation distance and accuracy converge

where p(yt | w, X) =
∫

p(yt | f, w, X)
∫

p(f | ydclm, w, X)p(ydclm | w, X)dydclmdf and ydclm is
a prediction of DCLM.

When the DCLM is known, y∗dclm is its optimal prediction and p(y∗dclm | w, X) = 1. Then
∫

p(f | ydclm, w, X)p(ydclm | w, X)dydclm = p(f | y∗dclm, w, X) (9)

Similarly, known the input X and w, fnn is the optimal solution of the CNN.

p(yt | w, X) = p(yt | fnn, w, X)p(fnn | y∗dclm, w, X) (10)

If w and X are given and the loss function φr(yt, fnn) = − 1
2

∑
l | yt − fnn |2, the conditional

probability distribution function

p(yt | fnn, w, X) =
exp(φr(yt, fnn))

Ξ1

(11)

Meanwhile,

p(fnn | y∗dclm, w, X) =
exp(−φd(y∗dclm, fnn))

Ξ2

(12)

where Ξ1 and Ξ2 are partition functions. Then by maximizing a likelihood function of p(w | X, yt)
the optimal w can be obtained. In particular, assuming that w follows Gaussian distribution, we get:

Cw(X, yt) = arg max
w

[−α

2
‖ w ‖2 +φr(yt, fnn)− log(Ξ1)− φd(y∗dclm, fnn)− log(Ξ2)] (13)

where α is a meta-parameter determined by the variance of the selected Gaussian distributions. Turn
it into a minimization problem:

Cw(X, yt) = arg min
w

[
α

2
‖ w ‖2 −φr(yt, fnn) + log(Ξ1) + φd(y∗dclm, fnn) + log(Ξ2)] (14)

The iterative optimization algorithm is shown as follows:

6 EXPERIMENTAL VERIFICATION

We designed two experiments to verify the effectiveness of the proposed method. The first exper-
iment verified whether the self-explanatory method could improve the interpretability performance

5



Under review as a conference paper at ICLR 2021

of the CNN without sacrificing its generalization performance. The second experiment verified
whether the proposed method can tend towards stability and convergence in the game process.

In the experiments, CNN3(includes 3 convolution layers,3 MaxPooling layers, 3 fully connect lay-
ers(FCLs) and 1 output layer),CNN5(includes 5 convolution layers,5 MaxPooling layers, 3 FCLs
and 1 output layer), and CNN8(includes 8 convolution layers,8 MaxPooling layers, 3 FCLs and 1
output layer) were used. Traditional training methods on the three types CNN were named as CNN3-
Trad, CNN5-Trad and CNN8-Trad respectively. By contrast, our proposed methods on these CNNs
were named as CNN3-DCLM, CNN5-DCLM and CNN8-DCLM respectively. All experiments used
Mnist(Lecun et al., 1998), FashionMnist(Zalando, 2017), and Cifar-10(Krizhevsky, 2009) bench-
mark data sets. All algorithms were implemented in Python using the Pytorch library(Paszke et al.,
2019). All experiments ran on a server with Intel Xeon 4110(2.1GHz) Silver Processor, 20GB RAM
and Nvidia Telsa T4.

Experiment 1: Performance verification of the proposed method on CNN. We replaced the dis-
crimination part of three traditionally trained CNNs with soft decision tree(SDT)(Frosst & Hinton,
2017) and designated these methods as CNN3-Trad-SDT, CNN5-Trad-SDT and CNN8-Trad-SDT
respectively. The accuracy of CNN, accuracy of STD or DCLM, and interpretation distance corre-
sponding to all methods were shown in Table 1. Some values are ”—”, which indicates that these
results do not exist.

It is observed in Table 1 that the accuracies of all CNN trained by the proposed method are higher
than those of the two interpretable models, such as SDT and DCLM, on all benchmark data sets
and are around 1.4 percentage points lower than those of all CNN trained by the traditional training
method. But it is worth noticing that on the most of data sets the interpretation distances of these
CNNs trained by the proposed method are lower than interpretation distances of CNNs obtained
by the traditional method. These might prove that that the self-explanatory method can improve
the interpretability performance of the discrimination part of a CNN without largely reducing its
generalization performance. The accuracies of the DCLMs are higher than those of the SDTs except
CNN3-DCLM on FashionMnist data set and CNN3-DCLM on Mnist. These results might prove
that the proposed method can find more excellent interpretable model than the traditional method.

Experiment 2: Convergence test of the proposed method We designed the experiments to demon-
strate convergence of the proposed method. CNN3-Trad, CNN5-Trad and CNN8-Trad were used
for comparing with CNN3-DCLM, CNN5-DCLM, and CNN8-DCLM respectively. Every training
works out 25 epochs. Experiment results were measured at every epoch and shown in four figures,
Fig.2, Fig.3, Fig.5 and Fig.4. Every figure includes nine subplots. The three subplots on the left
column were shown for the experiment results on Cifar-10 data set. These subplots on the middle
column were for FashionMnist data set and these subplots on the right column were for Mnist data
set.

Figure 2: Accuracies of DCLMs and CNNs obtained
by the proposed method

Figure 3: Interpretation distance of CNNs from the
tradition training method and the proposed method re-
spectively
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Table 1: Classification accuracies and interpretation distances.

DATA SET: MNIST

METHOD ACCURACY ACCURACY OF SDT OR DCLM INTERPRETATION DISTANCE

CNN3-TRAD 0.971±0.06 — 0.005±0.0039
CNN3-TRAD-SDT — 0.970±0.017 —
CNN3-DCLM 0.993±0.006 0.958±0.017 0.004±0.0010

CNN5-TRAD 0.993±0.006 — 0.005±0.0046
CNN5-TRAD-SDT — 0.968±0.017 —
CNN5-DCLM 0.993±0.007 0.973±0.014 0.003±0.0010

CNN8-TRAD 0.984±0.007 — 0.003±0.0019
CNN8-TRAD-SDT — 0.978±0.012 —
CNN8-DCLM 0.992±0.009 0.989±0.018 0.001±0.0010

DATA SET: FASHIONMNIST

METHOD ACCURACY ACCURACY OF SDT OR DCLM INTERPRETATION DISTANCE

CNN3-TRAD 0.921±0.021 — 0.083±0.0355
CNN3-TRAD-SDT — 0.842±0.041 —
CNN3-DCLM 0.920±0.024 0.824±0.032 0.014±0.0030

CNN5-TRAD 0.923±0.024 — 0.064±0.0119
CNN5-TRAD-SDT — 0.792±0.041 —
CNN5-DCLM 0.921±0.022 0.873±0.036 0.009±0.0020

CNN8-TRAD 0.931±0.022 — 0.122±0.0397
CNN8-TRAD-SDT — 0.785±0.043 —
CNN8-DCLM 0.914±0.020 0.905±0.032 0.005±0.0020

DATA SET: CIFAR-10

METHOD ACCURACY ACCURACY OF SDT OR DCLM INTERPRETATION DISTANCE

CNN3-TRAD 0.681±0.040 — 0.044±0.0060
CNN3-TRAD-SDT — 0.538±0.057 —
CNN3-DCLM 0.643±0.038 0.601±0.040 0.022±0.0030

CNN5-TRAD 0.744±0.041 — 0.036±0.0040
CNN5-TRAD-SDT — 0.609±0.038 —
CNN5-DCLM 0.729±0.037 0.684±0.039 0.027±0.0040

CNN8-TRAD 0.754±0.035 — 0.040±0.0040
CNN8-TRAD-SDT — 0.647±0.035 —
CNN8-DCLM 0.682±0.038 0.661±0.036 0.014±0.0030

In Fig.2, the accuracies of the DCLMs and the CNNs of every epoch in the game process were
shown. From these figures, it is obvious that accuracies of the DCLMs and these CNNs steadily
increase in the early stage. In the next stage, these accuracies tend to be stable. This reflects that the
game method do not affect the improvement of the generalization performances of these DCLMs and
these CNNs. We also find that the accuracy gap obtain by CNN3-DCLM for the FashionMnist data
set is much more than other two data sets. Meanwhile, it can be found that the DCLM convergence to
a stable state. The main reason is that for CNN3, in the later stage of the game process, new inherent
causality implied in the part can not readily be found by the FashionMnist data set. Even so, the
proposed method also improves the accuracies of the DCLMs and these CNN-DCLMs steadily. We
also find that the gaps between these accuracies of the DCLMs and the CNNs obtained by the CNN8
become very small at the later epochs. This reflects that CNN8 can extract more effective features by
which the DCLMs can find more accurate causality implied in the discrimination part of the CNNs.

Fig.3 shows the interpretation distances of the CNNs trained by the traditional method and the
CNNs trained by the proposed method. As seen from these subplots, the interpretation distances of
CNNs trained by the traditional method are greater than those of the other CNNs at the most of the
epochs, especially by the end of the game. The results indicate that the game method can effectively
improve the interpretability performance of CNNs. From these subplots in Fig.2and Fig.3, we also
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Figure 4: Information Entropy of DCLM Figure 5: Accuracies of CNNs obtained by the tradition
training method and the proposed method

can see that after the 15th epoch, interpretation distances of CNNs from the proposed method tend
to converge. The phenomenon indicates that the discrimination part of the CNNs can be explained
by its DCLMs at every epoch after the fifteenth epoch.

From Fig.4, it is evident that all DCLMs from CNN3-DCLMs, CNN5-DCLMs, and CNN8-DCLMs
have been found to have stable information entropies at the end of the game,which calculate the
diversity of disjunction normal forms in the DCLMs obtained by the game method. On Mnist
data set, the entropies finally converge 135,113,and 51.3 respectively. On FashionMnist data set,
the entropies finally converge 144,132,and 65. On Cifar-10 data set, the entropies finally converge
65,73,and 57. More complicated the extract part of CNN, more small the information entropies of
DCLM obtained by the proposed method. The results indicate that the game algorithm can ensure
that the diversity of disjunction normal forms of the DCLMs converges to a stable state. The game
with the CNN with complex structure can obtain the more robust DCLMs than with the CNN with
simply sturcture. The main reason is that the features captured by the CNN with the complex
structure is so sparse and robust that the disjunction normal forms of the DCLMs is sparse and
robust.

In Fig.5,the accuracies of the CNNs trained by the traditional method and the CNNs trained by the
proposed method at every epoch were shown. From these subplots, it can be seen that its accuracies
steadily increase in the early stage. But in the following stage, their accuracies tend to be stable and
consistent. The main reason is that in the early stage, a tradeoff problem between the generalization
performance and interpretability performance of the discrimination part of a CNN inevitably reduces
its generalization performance in order to increase its interpretability performance. Though the
proposed game method can effectively reduce the gap between two performances, it do not increase
the gap between the accuracies of the CNNs trained by the traditional method and the CNNs trained
by the proposed method. This reflects that the proposed method is effective for the tradeoff problem.

7 CONCLUSION

The performance of the proposed method was demonstrated by experiments on benchmark data sets.
The proposed method showed prominent advantages over traditional learning algorithm on CNN for
improving the generalization performance and the interpretability performance of the discrimination
part of the CNN.

In practical engineering, the proposed method may provide a new learning paradigm. The method
can not only predict an relatively accurate result for new input data but also provide a reasonable
causal interpretation for the prediction of the discrimination part of a CNN. We suppose that it can
solve the black box problem in the discrimination part. We believe that the proposed method provide
a way to understand the discrimination part.
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A APPENDIX: SUFFICIENT AND NECESSARY CONDITION FOR CONSISTENT
CONVERGENCE OF THE GENERALIZATION PERFORMANCE AND THE
INTERPRETABILITY PERFORMANCE

If the minimization of loss function of CNN can guarantee the minimum of its interpretability per-
formance, learning algorithm of the CNN can improve its interpretability performance. If not, the
tradeoff problem between the generalization performance and the interpretability performance will
exit. For proving the existence of the problem, we focus on a neuron of CNN. From the foot
we may judge of Hercules. If an input channel f(x) of the neuron is seen as a kernel function
K(x,w)(w is weight vector including a bias of the neuron), it will span a kernel Hilbert space
HK = {f(x) ∈ L2

ν(X) | f(x) = K(x,w) =
∑∞

k=1 akφk(x)} for the neuron. HK can be regarded
as a linear function set on L2

ν(X). It is a solution space of the neuron. The necessary and sufficient
conditions for consistent convergence between the generalization performance and the interpretabil-
ity performance are discussed below in L2

ν(X) based on the following lemmas.

Lemma 1. Continuous linear functional set on a separable Hilbert space X is nowhere dense in a
square integrable function space L2

ν(X).

Lemma 2. Continuous nonlinear functional set of the separable Hilbert space X is everywhere
dense in L2

ν(X).

When the optimal input channel f∗(x) approximate a linear functional in HK while the optimal in-
terpretable model P ∗(x) don’t approximate any linear functional or do not exist in HK , traditional
training process cannot guarantee f(x) approximates P ∗(x) according Lemma 1. From Lemma 2,
the approximate will cannot converge until P ∗(x) approximate f∗(x). Here, if we define the approx-
imation as the similarity between the shapes of function curve of f∗(x) and P ∗(x), the sufficient
and necessary condition for the consistent convergence of the two performances is φd(P ∗, f∗) = 0.
For the discrimination part of the CNN, the sufficient and necessary condition is still true. However
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because of data bias and noisy data in training data set, the condition is difficult to to be ensured
in the majority of engineering applications. The tradeoff problem always exists between the two
performances of the discrimination part.

According to the above conclusion, in order to completely solve the tradeoff problem, the
φd(P ∗, f∗)(Here f∗(x) is the optimal discrimination part) should be reduced. However P ∗ and
f∗(x) are unknown. Therefore, in training process, extracting a interpretable model P (x) from a
discrimination part f(x) and then iteratively reducing φd(P, f) may be a convenient method.
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