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Abstract
Model Predictive Control (MPC) is a powerful control technique that handles constraints, takes the
system’s dynamics into account, and optimizes for a given cost function. In practice, however, it
often requires an expert to craft and tune this cost function and find trade-offs between different
state penalties to satisfy simple high level objectives. In this paper, we use Reinforcement Learning
and in particular value learning to approximate the value function given only high level objec-
tives, which can be sparse and binary. Building upon previous works, we present improvements
that allowed us to successfully deploy the method on a real world unmanned ground vehicle. Our
experiments show that our method can learn the cost function from scratch and without human in-
tervention, while reaching a performance level similar to that of an expert-tuned MPC. We perform
a quantitative comparison of these methods with standard MPC approaches both in simulation and
on the real robot.
A demonstration of our method can be seen in the video: https://youtu.be/PJB8XdXBP_M
Keywords: Reinforcement Learning, Model Predictive Control, Autonomous Robots

1. Introduction

Model Predictive Control (MPC) is a trajectory optimization technique that has gained immense
popularity over the last decades due to its ability to tackle inherently hard control problems (Lee
(2011)). The theory is well understood and it is proven to be stable and optimal for a large variety of
systems (Lee (2011)). MPC has been widely adopted due to algorithmic and technological advances.
It can run in real time on a robot’s on-board computing unit, allowing for applications such as
autonomous racing (Kabzan et al. (2019)), aggressive flight maneuvers with drones (Mueller and
D’Andrea (2013)), and legged locomotion (Neunert et al. (2018)).

In practice, however, it is well known that the cost functions for MPC have to be tuned. Experts
craft specific costs that are a proxy for the original high level objectives, but also use costs that help
the optimization converge, and avoid exploiting unmodelled or uncertain system dynamics. We
refer to the latter as regularization cost terms. Finding a trade-off among regularization and proxy
costs can be extremely difficult and time consuming (Garriga and Soroush (2010)).

On the other side of the spectrum, Reinforcement Learning (RL) has shown to be a powerful
tool, not only capable of handling binary and sparse rewards, but also overcoming the credit as-
signment problem when dealing with long horizons (Silver et al. (2016); Lillicrap et al. (2015);
Schulman et al. (2017)).
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Figure 1: From left to right: simulation of the UGV, the real life UGV platform with visualization
overlayed, and lastly an example of a 3D representation of the learned value function.

Recent approaches such as Plan Online, Learn Offline (POLO, Lowrey et al. (2019)) or Deep
Value Model Predictive Control (DMPC, Farshidian et al. (2019)) attempt to combine best of both
worlds by employing trajectory optimization with value function estimation. In this paper, we
extend these works and learn to solve tasks defined by simple and easily interpretable high level
objectives on a real unmanned ground vehicle (UGV). This is reputably challenging for most MPC
algorithms because such objectives are represented by sparse and binary rewards. With this method,
we can exploit our knowledge of the system dynamics and also endow the optimizer with a represen-
tation of the value landscape to solve the task in a sample efficient manner. The main contributions
of this paper are:

• Presenting a practical extension of deep value function learning that outperforms a baseline
MPC and is comparable to an expert-tuned MPC, trained from scratch on the real physical
system in under 30 min with on-board CPU only.

• Showing that such learning based methods can be trained from high level binary and sparse
rewards only, in under an hour, outperforming hand-tuned dense rewards learning.

• A comparison of two learning based techniques with standard MPC algorithms on a dynami-
cal system with an uncertain model, in simulation and on a real system for trajectory tracking.

In the remainder of this paper, we introduce the background in Section 2, describe the method
in Section 3 and then proceed with the experiments in Section 4. We conclude with a review on
related work in Section 5 and the conclusion in Section 6.

2. Background

2.1. Notation and Definitions

In this problem setting, we consider an agent within an environmentE whose task is to maximize the
discounted expected sum of rewards collected from the current time onwards. This is modelled by a
Markov Decision Process (MDP) described by the state st ∈ Rns and dynamics ds = f(st,at). At
each time step, the agent observes a state st and takes an action at ∈ Rna according to the policy
π(st). The environment returns the corresponding evolved observations st+1 , as well as a reward
rt ∈ R. This forms a transition tuple 〈st,at, rt, st+1〉 for one time step. All transitions are stored in
a replay buffer B. The return is defined by the discounted future rewardsR =

∑∞
t=0 γ

trt(st), where
the discount factor is γ ∈ [0, 1). The value function V (s) describes the expected return of being in
state s, i.e. V (s0) = Eπ[R| s = s0]. V (s) is assumed to be time independent. The term cost is used
as negative value, rendering minimizing cost an maximising value equivalent statements.
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2.2. Model Predictive Control

MPC is a receding horizon control technique that maximizes a value function with respect to a
sequence of control actions a0 . . .aN−1 along a horizon of length N . The problem is constrained
under state dynamics f̂(xt,at), and state and input constraints. Note that here, x ∈ Sk ⊆ Rns

and f̂(xt,at) denote the state and state dynamics of the actor respectively, which are distinguished
from the true state and state dynamics of the environment. This results in the optimization

πMPC(x0) = arg max
a0,...,aN−1

γNgN (xN ) +
N−1∑
k=0

γkg(xk,ak) (1)

s.t. ∂txk = f̂(xk,ak), ak ∈ Ak, xk ∈ Sk, for k = 0, . . . , N,

where x0 ∈ Rns denotes the current state feedback and ak ∈ Ak ⊆ Rna the control action, of
which only the first is applied. This is then repeated for every control cycle. Notice that this MPC
strategy is approximating the initial problem as a finite horizon optimal control problem, which
depending on the horizon choice, is not guaranteed to be stable (Lee (2011)). However, as will be
seen in Section 3.2, defining the terminal (gN (·)) and stage (g(·)) costs in terms of the value function
allows us to alleviate this limitation.

2.3. Value Function learning

Value function learning is commonly employed in reinforcement learning problems (Sutton and
Barto (2018)). In most cases, the value is represented by a state value function it Vθ(st) or an state
action value function Qθ(st,at), parameterized by parameter vector θ. This function is optimized
minimizing the mean squared error loss with respect to a learning target, yt :

L = Eπθ [(yt − Vθ(st))
2]. (2)

3. Method

The presented method is based off the actor-critic framework. The critic captures the global value
function represented by a neural network. The actor is represented by a non-linear model predictive
controller. The focus lays on the contributions that make it possible to run on a real physical system.
The learning algorithm can be found in Appendix A.

3.1. Critic

The key components to training the critic that are listed next. Note, this does introduce a new set of
hyper parameters but were observed to have marginal effect compared to the value function.

Gradient regularization In the value function loss (Equation 2), we also regularize the Jacobian
of the network. Since the Jacobian, J = ∂sVθ(s), and the Hessian of the network are required
on the actor side (See Section 3.2), adding such a term will favor a smoother class of functions,
which are easier to optimize for QP solvers. Note that the Hessian is often approximated as JTJ
in the Gauss-Newton Hessian approximation (Björck (1996)). Therefore, regularizing the Jacobian
norm indirectly reduces the Hessian norm, and also aids numerical stability while training. Without
this regularization, we found that running MPC with the learned value while training often did not
converge. This resulted in unstable behavior, making it difficult to run on a real system.
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Experience replay and data augmentation Experience replay is advantageous in two ways: it
increases sample efficiency, and it stabilizes neural network training. This is realized in the form
of replay buffer B, see (Silver et al. (2014)). Moreover, we augment our data profiting from the
symmetries of the system (e.g. Vθ(x) = Vθ(h(x))). This not only implies that we can augment our
data by the number of symmetries in the system but also that the agent will behave similarly well
for symmetric states despite not having visited some of them.

n-step target An n-step target is employed, it is the bootstrapped sum of discounted rewards over
n consecutive steps (Sutton and Barto (2018)):

R(n)(st) =

n−1∑
i=0

γir(st+i) + γnVθ(st+n). (3)

This choice is due to its ability to balance bias and variance which affects Monte-Carlo and TD(0)
returns respectively and in practice, it accelerates convergence.

Target network We maintain a target network Vθ′(s) along side the critic network Vθ(s). Effec-
tively, the Polyak-averaged version of the critic’s estimated value function is used for bootstrapping.
As shown by Lillicrap et al. (2015), this trick greatly improves the actor-critic learning interaction.

3.2. Actor

RL and MPC can be combined in several ways further explained in Section 5. In this section we
focus on two methods that employ value function learning.

Terminal Deep Value MPC The first and most intuitive combination (presented in Lowrey et al.
(2019)) uses the value function as terminal cost for the MPC. They show that bootstrapping the
trajectory optimizer with the value function enables it to find global optimal solutions. Indeed, the
value provides the missing information about the expected return from the end of the optimization
horizon onwards. In this formulation, Equation 1 takes the following form:

πTDMPC(x0) = arg max
a0...aN−1

γNVθ(xN ) +
N−1∑
k=0

γkg(xk,ak). (4)

Lowrey et al. (2019) use MPPI (Williams et al. (2017)) to solve the MPC problem. Here, we use
a Sequential Quadratic Programming (SQP) formulation that offers several key advantages, which
are detailed later in this section. In the experiments, we refer to this variant as TDMPC.

Deep Value MPC The second formulation (presented by Farshidian et al. (2019)) extracts both
the stage and terminal cost from the learned value function. Hence, DMPC is handle able to sparse
and binary rewards. The intuition behind our modification is that the stage cost represents the value
gained between consecutive time steps, and when taken to the limit it can be expressed as as the time
integral between two steps of the derivative of the value function with respect to time. Formally,
this is referred as the Lie derivative of a function f(·), Lf . The stage cost then takes the form:

g(xt,at) := Vθ(xt+∆T )− Vθ(xt) =

∫ τ=t+∆T

τ=t
LfVθ(xt) dτ =

∫ τ=t+∆T

τ=t
∂xVθ(xt)

T∂txt dτ

=

∫ τ=t+∆T

τ=t
∂xVθ(xt)

T f̂(xt,at) dτ ≈ ∆T ∂xVθ(xt)
T f̂(xt,at). (5)
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In Farshidian et al. (2019), the authors solve the MPC problem with an algorithm known as SLQ
(Sideris and Bobrow (2005)), which does not handle constraints systematically and is sensitive to
initialization (does not globalize well). SQP on the other hand, efficiently solves both issues. The
MPC formulation (Equation 1) is expressed as:

πDMPC(x0) = arg max
a0,...,aN−1

γNVθ(xN ) + ∆T

N−1∑
k=0

γk∂xVθ(xt)
T f̂(xk,ak). (6)

Quadratic Program approximation A popular approach to solve non-linear optimization prob-
lems is SQP, it solves a sequence of QP approximations of the non-linear problem. We chose this
approach to solve the MPC problem due to its ability to handle state-input constraints compared to
SLQ. SQP run is time efficient if tailored QP solvers are used it is robust to initial guesses. For
our implementation we used the ACADO toolkit toolkit (Quirynen et al. (2014)) with the QP solver
qpOASES (Ferreau et al. (2008)). Note, that ACADO does use the real-time iteration scheme, which
only solves one QP per time ste. This further helps to reduce the computational load, for an in depth
analysis of the guarantees of this method see Diehl et al. (2002).

Since the presented value function is differentiable, one could directly find the first and second
order derivatives. However, these approximations were found to be numerically unstable, which
is due to the fact that the stage cost Hessian uses the third order derivative of the original value
function. To mitigate this problem further, a Gauss-Newton approximation of the Hessian has been
chosen with a Levenberg-Marquadrdt style damping factor (Marquardt (1963)), which also guaran-
tees that the Hessian is positive semi-definite.

4. Experiments

4.1. Experimental setup

Platform The differential drive UGV used is shown in Figure 1. The on-board visual-inertial
SLAM system from Sevensense Robotics1 provides an estimate of the pose and velocities of this
system that are used as feedback to control the robot in real time and to report the results. Training
is run on an on-board quadcore Intel i7-6600U CPU at 2.60GHz.

System model The model used by the MPC controller is a unicycle model with limited velocities
and accelerations presented in the following equation:

f̂(st,at) =
[
ẋ, ẏ, ψ̇, v̇, ω̇

]T
= [v cos(ψ), v sin(ψ), ω, a, α]T (7)

where x and y are the position in cartesian coordinates, ψ is the 2D rotation, and v and ω are the
linear and angular velocities in body frame. a and α are the linear and angular accelerations in body
frame. Velocities are the input to the UGV, accelerations are only included into the optimization to
achieve a smooth behaviour with bounded velocity rates.

Error coordinates In order to formulate the trajectory tracking objective, we perform a change
of coordinates to trajectory error coordinates, where the coordinates are expressed with respect to
the reference. Further details can be found in Appendix C.

1. www.sevensense.ch
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Experiment formulation The objective of all experiments is to accurately track a given reference
trajectory. We compare 4 controllers, two learning based , TDMPC, DMPC (see Section 3) and two
classical MPC controllers. The first one is referred to as Naive MPC, which uses the reward as stage
cost and terminal cost. Naive MPC serves as the baseline controller for comparision. The second
one is referred to as Expert MPC, it was the controller deployed by Sevensense Robotics, where the
diagonal weights of the cost function had been hand tuned by their control team.

4.2. Model mismatch experiment

First, we study how the learned value function improves tracking performance in presence of a per-
turbed system model, without modifying or learning such a model. Consider imperfectly modelled
turning dynamics that are represented by a first-order system, where the turning delay is parameter-
ized by a time constant τ . The learning based methods are trained with τ = 0.6s. In Figure 2, it can
be seen that learning based methods perform well even in scenarios far from their training regime;
thus learning to be cautious due to the unmodelled dynamics. The Naive and Expert MPC perform
well when the model is accurate but quickly deteriorate and even become unstable with τ = 0.8s.

Figure 2: Model mismatch experiment. From left to right, the plots show the performance of the
methods for increasing time constants τ = {0.2, 0.6, 0.8}s. Top row: accumulated rewards over an
episode given a dense reward equal to the tracking error squared. Bottom row: tracking response.
DMPC and TDMPC are trained in simulation with τ = 0.6s but the model still assumes perfect
turning dynamics for all methods.

4.3. Training on a real world UGV

TDMPC is capable of learning in the real world on an UGV trained from scratch. This is mostly due
to the sample efficiency of the actor i.e TDMPC. It is able to make the learning process converge
in within 10000 training iterations, collecting around 3000 samples. In addition, due to the basic
knowledge of the model, TDMPC can drive the UGV around the track even if the model is poorly
known and the deviations are large at the beginning. The tracking error can be seen in Figure 3 over
the training period. Once trained, the learned value function can also be used to run DMPC.

4.4. Dense reward on real world UGV

In this experiment, we analyze the performance of all controllers for several paths that cover most
typical maneuvers (see Appendix D). The reward given to the learning based methods is the squared
deviation from the path. It can be seen how the Expert MPC behaves best on the real UGV while
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Figure 3: Average episode reward over training time with dense rewards (left) along with a 3D
representation of the value function and similarly with sparse rewards (right). It can be seen that
training with sparse rewards takes longer to converge compared to dense rewards, but still takes less
than 45 minutes to converge. Moreover, the shape of the value functions correspond to the rewards
given; sparse rewards being much steeper and slimmer compared to dense rewards.

DMPC consistently outperforms TDMPC. Both learning methods perform consistently better than
Naive MPC. It is worth mentioning that DMPC has a damped behavior when approaching the ref-
erence in the straight path with no oscillation (see Appendix D). For the curves and the tight turn
scenario, DMPC starts as good as the Expert MPC but eventually accumulates more error.

Figure 4: Top row: Cumulative rewards over an episode on different trajectories given a dense re-
ward (tracking error squared). Progress means the projected distance travel along the reference path.
Bottom row: Cumulative rewards of the DMPC for dense and sparse reward set-up respectively.

4.5. Sparse rewards on real world UGV

Neither Naive, Expert nor TDMPC can handle binary rewards since the cost function has to be
differentiable for most efficient solvers. However, DMPC can handle this and we give a binary
reward only when close to the reference path. We refer to this as sparse DMPC. This intuitive re-
quirement leads to a successful tracking performance without the need to tune the cost on tracking
error. Results can be seen in Figure 4. It can be seen how dense DMPC tracks comparatively worse
than sparse DMPC. In this experiment the value function has been trained solely on sparse binary
rewards; receiving rewards when the UGV was closer than 10cm to the path (see Appendix B). It
has to be noted that DMPC trained on sparse rewards was not able to complete the straight path ex-
periment starting 0.5m away, as it just stood still. This is probably due to the value function loosing
gradient information when very far from the reward. In theory, the reward should be propagated
without problems due to the bootstrapping of the target with the value function but in practice the
value function flattens out, see Figure 3.
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5. Related Work

Closely related to our work, one can find POLO (Lowrey et al. (2019)) and DMPC (Farshidian
et al. (2019)), which use the learned value function in MPC for the terminal cost, and for the stage
and terminal cost, respectively. Our pipeline builds on these works and extends them with practical
elements that make it possible to run them on real physical systems. In contrast to this work, Lowrey
et al. (2019) maintains several value functions to encourage exploration. Moreover, Lowrey et al.
(2019) used MPPI (Williams et al. (2017)) as the optimizer. It has the advantage that rewards do
not need to be differentiable, as opposed to SQP and SLQ based methods, suffers from the curse of
dimensionality. In addition, there are no guarantees that local maxima of the value function will be
found. In Farshidian et al. (2019), the authors employ a SLQ (Sideris and Bobrow (2005)), which
is known to scale well with system dimensions, but is very sensitive to the initial guess and it is not
trivial to include state constraints.

Another common learning approach in presence of uncertainty is to learn the system’s model
from data. In this category, Gaussian-Processes (GP) have been successfully used and demonstrated
in real and miniature race cars (Kabzan et al. (2019); Hewing and Zeilinger (2017)), but also using
deep neural networks (Chua et al. (2018)). GPs have also been used to model disturbances in
order to improve tracking performance (Ostafew et al. (2014)). Linking value learning and model
learning, Gros and Zanon (2019) pose MPC as a parameterized function approximator, allowing for
the entire MPC problem to be subjected to the learning problem. This approach requires for the
MPC parameters to be carefully selected for learning.

There are paradigms where the agent learns from expert demonstration. Notable ones are im-
itation learning (IM) (Hussein et al. (2017)) and inverse reinforcement learning (IRL) (Ng et al.
(2000)). It has been shown that combining trajectory optimizion with IM can shorten training time
of neural networks (Mordatch and Todorov (2014); Levine and Koltun (2013)). A shortcoming of
IM and IRL is that the performance of the agent is often bounded by the performance of the expert.

Last but not least, learning based methods are often susceptible to exploring unsafe areas of the
state space and it is difficult to guarantee that such methods will not find itself these unsafe areas.
Works of Berkenkamp et al. (2017) estimate the region of attraction in order to provide guarantees
during the learning process. Applying safe learning to MPC, Koller et al. (2018) and Rosolia and
Borrelli (2017) construct safe terminal sets based on collected experiences. This could be a natural
extension of our work as we currently do not provide any guarantees during training.

6. Conclusion and Future Work

We presented a sample efficient practical RL scheme capable of training from scratch on a real world
physical platform. The algorithm performs value function learning, which is used as the MPC cost
function. We use an SQP to solve the corresponding MPC problem. The algorithm is able to learn
from given high level objectives including sparse requirements. We demonstrate learned cautious
behaviour of the agent in simulation. In practice, it is able to run in real time and matches the
performance of expert tuned controllers. The numerical extension presented has shown to be well
suited for trajectory tracking. It would prove insightful to explore more challenging scenarios e.g.
obstacle avoidance, in future work. Additionally, one could employ a more sophisticated sampling
techniques such as prioritized sampling to take advantage of the lesser seen interesting samples.
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Appendix A. Deep Value MPC Training Algorithm

The Deep Value MPC training process is split into two alternating phases: the roll-out phase and
the training phase.

Roll-out phase The roll-out phase generates transition samples〈st,at, rt, st+1〉, which are stored
in the replay buffer B. The samples are generated by taking a control action at according to
πTDMPC(st) with the latest learned value function.

Training phase Using the samples stored in the replay buffer, the target is calculated by using
n-step return where the bootstrapping is evaluated using the target network Vθ′(st) to stabilize the
learning process, specified at equation 3. Once the training iteration is complete the value function
for MPC and the target network are updated. This process then repeats until convergence.

Initialize θ, θ′, n, s0

for t = 0...T : do
Take action at = πTDMPCs(t) with cost function given by equation 4
Observe new state st+1 ∼ P (st+1|st,at) and reward rt
Store transition tuple in replay buffer B
if if mod(t,Z) = 0 then

Sample mini batch M from replay buffer B
Update critic by minimising loss:
L(s) = 1

M

∑M
i (Rn(si)− Vθ(si))2 + β||∂sVθ(si)||22 + λ||θ||22

Update target critic:
θ′ ←− θ′(1− τ) + θτ

end
end

Algorithm 1: Deep Value MPC Training

Appendix B. Reward Engineering

B.1. Dense Rewards

rdense(s) = −
[(
xFerror

)2
+
(
yFerror

)2]
B.2. Sparse Rewards

rsparse(s) =

{
−0.5 if |xFerror| > 0.1 or | yFerror| > 0.1

0 otherwise

Appendix C. Error Coordinates

The state of the MDP, s, is expressed in terms of frenet or error frame with respect to the reference
trajectory and the control point P . The high level objective is to track the reference trajectory with
the control point.

12
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Figure 5: Kinematic Differential Drive Model and error coordinates

[
xFerror
yFerror

]
=

[
xMerror cos(ψref ) + yMerror sin(ψref )
−xMerror sin(ψref ) + yMerror cos(ψref )

]
,

[
xMerror
yMerror

]
=

[
x+ l cos(ψ)− xref
y + l sin(ψ)− yref

]
where .F refers to the frenet frame, .M refers to the map frame. The full frenet states is

sFerror =
[
xFerror, y

F
error, ψ

F
error, v, ω

]T
where ψFerror = ψ − ψref . Throughout the paper the subscript are dropped for clarity.

Appendix D. Experimental Details

In Figure 6 we show complimentary data on the comparisons of the learning based methods and the
classical methods. The first row shows the tracking response of the each controller for each scenario.
Second row shows the tracking response but comparing only the dense DMPC with sparse DMPC.
It is important to note that we are plotting the performance against the progress along the path rather
than time. This way, we are able to compare directly how each controller behave at the same point
of the path. Last row shows the reference trajectory for each scenario. The UGV starts at the green
dot and finishes at the red dot.

D.1. Model mismatch experiment

The following first order system parameterized by the time constant τ is used to model the turning
delay:

ω̇ =
1

τ
(ωcmd − ω). (8)

13
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D.2. Dense reward on a real UGV

Figure 6 shows the tracking response on the straight path (top right). Here, the response of the
DMPC method is the most damped, approaching the reference in controlled manner with less oscil-
lation. One could argue that this is a more desirable behaviour. This explains why the cumulative
rewards of DMPC in Figure 4 on the straight path seems worse compared to Naive MPC and Expert
MPC.

D.3. Sparse reward on a real UGV

Reiterating the point from Section 4.5, the response for sparse reward is missing for the straight
scenario because the UGV simply stood still when initialized far from the reference. This is most
likely due to the reward not propagating properly resulting in the value function flattening out when
far away from reference (see Figure 2). This in turn causes the gradient information to vanish, which
makes it difficult for MPC to correctly navigate back to the reference.

Figure 6: Top row: The lateral tracking error on different trajectories given a dense reward equal to
the tracking error squared. Middle row: The lateral tracking error of the DMPC method for dense
and sparse reward set-up respectively. Bottom row: The reference trajectories corresponding to each
scenario. The UGV starts at the green dot and ends at the red dot.
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