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Abstract

Recent advancements in open-domain conver-001
sational agents highlight challenges in creat-002
ing dynamic chatbot personalities. This pa-003
per explores Logit Bias as a novel mechanism004
for customizing LLM outputs, enabling seam-005
less personality shifts without relying on static,006
dataset-constrained training. Unlike fine-tuning007
or prompt tuning, this method personalizes in-008
teractions without additional training, offering009
a flexible and efficient alternative. Through010
extensive experiments, we show that this ap-011
proach effectively modifies model behavior012
while maintaining overall performance, influ-013
encing conversational quality and linguistic014
properties. This scalable solution allows for dy-015
namically adaptable language models, meeting016
user expectations across diverse applications017
without requiring fine-tuning.018

1 Introduction019

Large language models (LLMs) have emerged in re-020

cent times as powerful tools capable of generating021

human-like language and engaging in sophisticated022

dialogues. These models have found applications023

across a wide range of domains, including cus-024

tomer service, content creation, and educational025

technology. The challenge of tailoring LLM traits026

to align with specific conversational contexts or027

user preferences is yet to be adequately addressed028

however. Traditional approaches often rely on craft-029

ing precise prompts with respect to desired traits030

or, alternatively, involve fine-tuning extensive pa-031

rameters on new datasets – a process that is both032

time-consuming and increasingly constrained by033

data availability.034

Considering the cost of retraining in term of time035

and resources, approaches to automatic dialogue036

that can be adapted without extensive retraining are037

needed. We subsequently propose a new method038

of steering of LLM conversation style that enables039

conversation control over nuanced traits, includ-040

ing reasoning, writing, information extraction, etc., 041

that does not require retraining, prompt engineer- 042

ing, or data-specific fine-tuning. Our approach 043

works by manipulating predicted logit scores from 044

pre-trained models prior to the application of soft- 045

max, allowing Logit Bias to manipulate model out- 046

puts by altering the probability distribution of pos- 047

sible responses. 048

This paper investigates the application of Logit 049

Bias as a strategic mechanism for steering LLM 050

conversational traits. We conduct a series of ex- 051

periments to test the degree to which it is possible 052

to effectively steer model traits with this approach. 053

Experiment results indicate that the approach is 054

capable of steering conversational traits on demand 055

without any retraining. By leveraging the adaptabil- 056

ity of models that do not rely on specific training 057

datasets, we propose a scalable and efficient path 058

to deploying language models that meet the diverse 059

expectations of users and applications. Through 060

this work, we aim to contribute to efficient methods 061

of LLM customization and generalization, present- 062

ing Logit Bias as a promising tool for enhancing 063

model adaptability without the traditional burdens 064

of data and resource-intensive retraining processes. 065

2 Background 066

The customization of language models has pro- 067

gressed significantly, with traditional fine-tuning 068

approaches such as those by (Radford and 069

Narasimhan, 2018), (Devlin et al., 2019), and 070

(Brown et al., 2020) tailoring models to specific 071

domains. However, these methods are computation- 072

ally expensive and impractical for real-time adapt- 073

ability. Parameter-efficient tuning methods like 074

LoRA (Hu et al., 2021) have improved efficiency 075

by reducing resource requirements while maintain- 076

ing performance (Hayou et al., 2024; Liu et al., 077

2024). Despite these benefits, LoRA still necessi- 078

tates training and lacks real-time adaptability. In 079
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Figure 1: An example from Empathetic Dataset tested on Llama3.2B-instruct-3B model with input and potential
outputs using proposed architecture.

parallel, Mixture of Experts (MoE) models (Artetxe080

et al., 2022) have emerged, dynamically selecting081

specialized experts for different inputs, enhancing082

efficiency and scalability. Hybrid methods integrat-083

ing MoE with LoRA, such as (Li et al., 2024; Wang084

et al., 2024; Qing et al., 2024), have demonstrated085

further improvements. However, MoE models re-086

quire multiple trained sub-models, leading to in-087

creased resource demands and complexity. One088

may also argue that adjusting temperature can re-089

sult in varied responses but it lacks precise control090

and is difficult to align to the predefined require-091

ments.092

Prompt engineering has gained popularity as an093

alternative strategy (Lester et al., 2021; Liu et al.,094

2022; Tu et al., 2022; Fan et al., 2023), using struc-095

tured prompts to guide model outputs. This ap-096

proach offers flexibility and reduces computational097

overhead compared to fine-tuning but often results098

in inconsistent outputs and necessitates careful099

prompt design (Macedo et al., 2024; Ronanki et al.,100

2024; Ye et al., 2024; Fagadau et al., 2024). Fur-101

thermore, prompt effectiveness varies across mod-102

els, making deployment consistency challenging.103

Efforts such as (Yang et al., 2024) have attempted104

automated prompt optimization, yet difficulties in105

ensuring stability across tasks and architectures106

remain unresolved.107

Recent advancements in Logit Bias techniques108

have introduced novel ways to modify LLM out-109

puts without altering model parameters. The Offset110

Unlearning framework (Huang et al., 2024) applies111

logit offsets to remove undesired knowledge, while112

Dynamic Logits Fusion (DLF) (Fan et al., 2024)113

combines logits from smaller fine-tuned models to114

enhance performance without additional training.115

Although these methods improve adaptability, they116

rely on complex operations such as KL divergence117

at each decoding step, increasing computational 118

overhead and limiting scalability. Additionally, ex- 119

isting works focus primarily on performance im- 120

provement rather than qualitative aspects like con- 121

versational personality. This study proposes a sim- 122

pler mechanism for adjusting logit probabilities, 123

allowing for controlled personality shifts in LLMs 124

without requiring extensive retraining or intricate 125

prompt engineering. 126

3 Method 127

Our approach takes advantage of the availability of 128

vast numbers of readily available pretrained models 129

fine-tuned for specific use cases, and the autoregres- 130

sive nature of LLMs, as they generate output by 131

predicting one token at a time, with each predic- 132

tion conditioned on all previously generated tokens. 133

This sequential generation make LLMs particularly 134

suitable for fine-grained control over generation 135

through Logit Bias manipulation. 136

Almost all modern LLMs are designed to gen- 137

erate logit scores along with their final output, as 138

logit scores represent the unnormalised scores for 139

each token in the vocabulary. Due to the autoregres- 140

sive nature of LLMs, these scores are generated at 141

the token level to maintain coherence of the output 142

sentence during generation. This property allows 143

us to steer the model’s prediction using Logit Bias. 144

Logit Bias allows control over whether the model 145

is more or less likely to output a specific word 146

and can be used, for example, to ban a particular 147

word from the vocabulary, such as expletives. In 148

contrast, our approach employs Logit Bias manip- 149

ulation in order to steer outputs towards specific 150

conversational traits such as making the dialogue 151

agent more knowledgeable or empathetic. This al- 152

lows generation of new hybrid models that show 153

traits from distinct datasets without fine-tuning. 154

2



For a given set of n base fine-tuned models spe-155

cialized for different traits, we propose using Logit156

Bias mixing at the token level to generate novel157

models that pose the weighted traits of all the base158

fine-tuned models. We achieve this by passing159

prompts through the n base models and extract the160

distribution of logits from each model just before161

feeding them into the softmax function. We can162

then apply arithmetical operation on these distribu-163

tions to get a unified distribution.164

For the scope of this work, we choose weighted165

average of the logits as the arithmetic operation for166

logit combination. As with weighted averaging, we167

can assign varying importance to individual models168

and their specialization, thereby steering the over-169

all output towards the desired blend of traits. We170

achieve this with supplying the weights for each171

trait to define their influence in the final response.172

The following function is used to merge the distri-173

bution:174

x =

∑n
i=1wixi∑n
i=1wi

(1)175

where x is the new set of unified logits; xi are logits176

from the model fined-tuned on trait i (e.g. empathy,177

knowledge, sarcasm, etc.), and wi is the weight178

assigned to trait i.179

For two base models, for example, n = 2, equa-180

tion 1 can be rewritten as:181

x = α× x1 + (1− α)× x2 (2)182

where α is a tunable parameter controlling the in-183

fluence of both traits in the final response.184

As the generation is autoregressive, the Logit185

Bias computation is carried out at the token level.186

In case of two base models, this suggests that187

even after generating two different preferred to-188

kens, both models get fed the same token at each189

generation step after Logit manipulation. This al-190

lows re-aligning of the base models and influences191

them to stick to the current context at the token192

level, enabling fine-grained control over the con-193

versational trajectory of the models; resulting in194

stylistically varied conversations. Allowing the195

user to steer the traits of model while varying α to196

create innumerably varied models using just two197

(or more) base models with distinct conversation198

traits.199

4 Experiments 200

We utilized two variants of Llama 3.2-instruct12 201

with 1 billion and 3 billion parameters as base mod- 202

els to enhance scalability and performance. To es- 203

tablish distinct conversational traits, we focused on 204

two personality attributes: knowledge grounding 205

and empathetic responses, following (Smith et al., 206

2020). We fine-tuned the base models separately 207

on the Wizard of Wikipedia (WoW) dataset (Dinan 208

et al., 2019) and the Empathetic Dialogues (ED) 209

dataset (Rashkin et al., 2019) comprising of 19,533 210

and 18,446 prompts, respectively, after applying 211

the Llama chat-template to each conversation. We 212

used 8-bit quantized LoRA fine-tuning (Hu et al., 213

2021) for the same. 214

To explore the impact of Logit Bias mixing, 215

we created three hybrid models by merging the 216

two fine-tuned models with fixed α values of 0.25, 217

0.50, and 0.75, corresponding to models 25E-75W, 218

50E-50W, and 75E-25W. Additionally, we retained 219

the base models 100E-0W (α = 1) and 0E-100W 220

(α = 0). Here, α represents the influence of the 221

ED-trained model, inversely affecting the contribu- 222

tion of the WoW-trained model. The goal was to 223

investigate how Logit Bias influences model behav- 224

ior, balancing strengths from both models while 225

introducing response variety. 226

Each of the five variants was evaluated on 1,000 227

randomly selected test samples from EMP and 228

WoW datasets. We employed an automatic evalu- 229

ation framework to analyze the performance gra- 230

dient across different α values, including BLEU 231

(Papineni et al., 2002), Word Error Rate (WER), 232

Average Response Length, BERT similarity score 233

(Zhang et al., 2019), and lexical diversity. Addi- 234

tionally, we applied the LLM as Judge approach 235

using MT Bench (Zheng et al., 2023) to qualita- 236

tively assess conversational attributes like reason- 237

ing, writing, and roleplay. This evaluation provides 238

insight into how Logit Bias can be used to steer 239

language generation patterns and model adaptabil- 240

ity. We provide the anonymized code to help future 241

research.3 242

5 Results 243

Tables 1 and 2 present the performance of the 244

(steered) hybrid models based on Llama3.2-instruct 245

1huggingface.co/meta-llama/Llama-3.2-1B-Instruct
2huggingface.co/meta-llama/Llama-3.2-3B-Instruct
3https://anonymous.4open.science/r/logit_bias_

steering-6ADB
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variants (1B and 3B parameters) tested on ED and246

WoW datasets. While automatic metrics are not per-247

fect, trends across WER, ARL, BLEU, and BERT248

score confirm that Logit Bias influences model per-249

formance in the desired way. WER decreases as α250

increases for both datasets, while ARL is highest251

for 0E-100W due to WoW’s prompts explanatory252

nature and decreases significantly with ED’s in-253

fluence. BLEU improves for ED with increasing254

α as expected, while merged models outperform255

base models on WoW, suggesting Logit Bias aids256

dataset alignment or at least does not hurt the base-257

line performance. Stable BERT scores also indicate258

performance retention despite diversified responses.259

Similar trends are observed for Lexical diversity260

presented in Table 3.261

Model WER ARL BLEU BERTScore

E
D

0E-100W 7.4081 66.9165 0.3623 0.8463
25E-75W 4.5601 41.7769 0.6443 0.8537
50E-50W 2.9972 27.1934 0.9731 0.8591
75E-25W 1.9709 17.6826 1.4557 0.8631
100E-0W 1.4082 11.5314 1.8738 0.8634

W
oW

0E-100W 3.9522 66.4440 0.85097 0.8510
25E-75W 2.8478 47.4070 0.8546 0.8546
50E-50W 2.0224 33.3090 0.8575 0.8576
75E-25W 1.4282 21.6260 0.8581 0.8581
100E-0W 1.1391 14.1120 0.8567 0.8568

Table 1: Llama 1B Performance for ED and WoW

Model WER ARL BLEU BERTScore

E
D

0E-100W 3.0905 27.46 0.7439 0.7961
25E-75W 2.5526 22.527 1.1348 0.8409
50E-50W 1.9121 17.078 1.5614 0.8622
75E-25W 1.5488 13.623 1.7771 0.8649
100E-0W 1.3639 11.134 1.8450 0.8639

W
oW

0E-100W 1.6800 21.91 1.81738 0.6158
25E-75W 1.5229 21.61 2.2302 2.2302
50E-50W 1.2690 18.485 2.3831 2.3831
75E-25W 1.2427 17.448 2.02066 2.0206
100E-0W 1.1455 15.318 1.9307 1.9307

Table 2: Llama 3B Performance for ED and WoW

For qualitative evaluation, we use MT-Bench.262

Table 4 for Llama-1B shows a large gap between263

the scores of both base models, likely due to the264

performance drop by fine-tuning on ED, however,265

increasing WoW influence boosts the performance266

of as we decrease α, mitigating the drop in perfor-267

mance, demonstrating Logit Bias effectiveness. In268

Llama-3B experiments, the merged models outper-269

form base models, highlighting the benefits of con-270

trolled logit blending in enhancing conversational271

ability when equally performing base models are272

provided. Figure 3 in Appendix A shows that hy-273

brid models maintain overall performance while274

excelling in specific conversational traits, making275

them more suitable for targeted applications. Addi- 276

tional details for 1B and 3B models are in Tables 8, 277

7, and Figure 2. 278

Both automatic and qualitative evaluations con- 279

firm a gradual shift in response properties as α 280

changes, making it a key hyperparameter for con- 281

trolled output variation without extra fine-tuning. 282

This work demonstrates the potential of Logit Bias 283

for adapting generative model outputs to different 284

use cases while maintaining overall performance, 285

even improving in some cases. Future research 286

will explore dynamic weight optimization at the 287

response level, enabling real-time trait adjustments 288

for improved replies. 289

Llama 1B Llama 3B
Model ED WoW ED WoW

0E-100W 0.0652 0.1913 0.1786 0.2735
25E-75W 0.0707 0.2048 0.1675 0.2609
50E-50W 0.0727 0.2167 0.1708 0.2507
75E-25W 0.0782 0.2245 0.1763 0.2428
100E-0W 0.0842 0.2429 0.1694 0.2497

Table 3: Lexical scores for Llama 1B and Llama 3B
model

Model Llama 1B Llama 3B

0E-100W 6.0815 5.5032
25E-75W 5.7563 6.0751
50E-50W 4.1310 6.2806
75E-25W 3.8875 6.1075
100E-0W 2.7340 5.3516

Table 4: Ave. MT-Bench scores for Llama 1B and 3B
model

6 Conclusion 290

In this paper, we demonstrate the effectiveness of 291

Logit Bias in modulating LLM outputs without 292

additional fine-tuning. By adjusting weight dis- 293

tribution between two base models, we observed 294

a controlled shift in conversational properties, es- 295

tablishing Logit Bias as a potential methodology 296

for tuning model personalities. Automatic metrics 297

such as WER, BLEU, BERT score, and lexical di- 298

versity showed predictable trends, confirming the 299

influence of Logit Bias. Qualitative evaluation via 300

MT-Bench further validated hybrid models, reveal- 301

ing enhanced conversational abilities, often surpass- 302

ing base models by balancing conversation traits. 303

While this work focuses on fixed-weight blending, 304

future research can explore dynamic weight adjust- 305

ments for real-time adaptation. 306
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Limitations307

Despite its advantages, our approach has several308

limitations similar to other logit bias based meth-309

ods. Firstly, the inference process requires running310

infernce on multiple base models simultaneously,311

which increases computational overhead. How-312

ever, this can be seen as a trade-off with the cost313

and inefficiency of training new models for every314

static persona. Secondly, as aligning models us-315

ing Logit Bias fairly recent development, it lacks316

established baselines regarding the shifts in conver-317

sational traits of models. This possed a challenge318

of finding a well established baseline to evaluate319

our apparoach. Lastly, while our technique is the-320

oretically applicable to merging logits from mod-321

els with different architectures, its effectiveness in322

such scenarios remains unverified. We plan to ex-323

plore cross-architecture logit blending to assess its324

viability and limitations in future work.325
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A Appendix496

A.1 Additional Results497

Model Turn 1 Turn 2 Ave. Score

0E-100W 6.0815 5.2927 5.7098
25E-75W 5.7563 4.7500 5.2531
50E-50W 4.1310 3.1943 3.6782
75E-25W 3.8875 3.4250 3.6563
100E-0W 2.7340 2.2941 2.5251

Table 5: MT-Bench scores For llama 1B model

Model Turn 1 Turn 2 Ave. Score

0E-100W 5.4187 5.5945 5.5032
25E-75W 6.1812 5.9589 6.0751
50E-50W 6.4062 6.1466 6.2806
75E-25W 6.3875 5.8205 6.1075
100E-0W 5.5812 5.1066 5.3516

Table 6: MT-Bench scores For llama 3B model
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Figure 2: Scores of Llama3.2 1B based model on different conversational traits from LLM-Bench.

Model Writing Roleplay Reasoning Math Coding Extraction STEM Humanities

orig. 7.5000 6.3810 2.3810 4.2727 3.5000 4.2857 6.3571 8.7917
0E-100W 8.0000 7.0227 3.3000 3.5238 2.3000 4.2857 7.0500 9.0476
25E-75W 7.6750 6.3000 2.1500 3.0500 2.5500 4.5000 7.4500 8.3500
50E-50W 7.2100 5.0851 1.8542 2.2727 2.0976 2.2143 3.7333 4.3556
75E-25W 6.8000 4.4000 2.8500 1.5500 2.3000 2.4000 5.1500 3.8000
100E-0W 3.8214 3.0455 1.7600 1.2000 1.5000 2.2381 3.0000 3.1818

Table 7: Comparison of Llama 1B based models evaluated with respect to a range of on conversational properties,
where orig. = Llama3.2_1b

Model Writing Roleplay Reasoning Math Coding Extraction STEM Humanities

orig. 8.8947 8.1111 4.1053 5.3000 6.2500 8.2632 7.6316 8.4722
0E-100W 7.4000 7.4750 4.2000 3.1053 3.1111 5.1579 6.2000 7.1667
25E-75W 7.2000 7.0500 4.8947 3.8333 4.2222 6.3000 6.8421 7.9211
50E-50W 8.1500 7.1500 4.0000 4.3158 4.1875 6.8500 6.8500 8.2250
75E-25W 6.6500 6.5250 4.9474 3.8500 5.7368 6.3000 7.4000 7.3750
100E-0W 6.3500 5.5000 3.4444 3.8421 3.5556 7.3000 5.4750 6.9000

Table 8: Comparison of Llama 3B based models evaluated with respect to a range of on conversational properties,
where orig. = Llama3.2_3b
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Figure 3: Scores of Llama3.2 3B based model on different conversational traits from MT-Bench.
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