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Abstract001

Sentiment analysis in policy-related studies typ-002
ically involves annotating a subset of data to003
fine-tune a pre-trained model, which is sub-004
sequently used to classify sentiments in the005
remaining unlabeled texts, enabling policy re-006
searchers to analyze sentiments in novel policy007
contexts under resource constraints. We argue008
that existing methods fail to adequately cap-009
ture the temporal volatility inherent in policy-010
related sentiments, which are subject to exter-011
nal shocks and evolving discourse of opinions.012
We propose methods accounting for the tem-013
poral dynamics of policy-related texts. Specifi-014
cally, we propose leveraging continuous time-015
series clustering to select data points for annota-016
tion based on temporal trends and subsequently017
apply model merging techniques – each fine-018
tuned separately on data from distinct time in-019
tervals. Our results indicate that continuous020
time-series clustering followed by fine-tuning021
a single unified model achieves superior perfor-022
mance, outperforming existing methods by an023
average F1-score of 2.71%. This suggests that024
language models can generalize to temporally025
sensitive texts when provided with temporally026
representative samples. Nevertheless, merging027
multiple time-specific models – particularly via028
greedy soup and TIES – achieves competitive029
performance, suggesting practical applications030
in dynamically evolving policy scenarios.031

1 Introduction032

Sentiment analysis in policy-related studies is of-033

ten conducted using transfer learning on partially034

annotated datasets, where a subset of data is an-035

notated and used to fine-tune a pre-trained model,036

subsequently employed to classify sentiments in037

the remaining unlabeled texts (An et al., 2023; Ef-038

frosynidis et al., 2022; Maceda et al., 2023; Melton039

et al., 2022). This allows policy researchers to040

systematically gauge public support (or opposi-041

tion) toward policies from extensive online data,042

providing valuable insights to inform policy rec- 043

ommendations (Ceron and Negri, 2015). This ap- 044

proach enables researchers to leverage robust lan- 045

guage models for sentiment classification even in 046

novel policy contexts, where benchmarks datasets 047

fail to adequately capture the evolving opinions 048

or context-specific semantics associated with sen- 049

timents of emerging policies. For instance, terms 050

like “Welfare Queen” may be associated with posi- 051

tivity among sentiments from benchmark datasets, 052

but are considered derogatory in welfare policy con- 053

texts (Floyd-Thomas, 2016). Additionally, it helps 054

overcome practical constraints such as limited re- 055

sources, since annotating the entire dataset is often 056

infeasible due to time and budgetary limitations. 057

We argue that these commonly employed meth- 058

ods fail to effectively capture the temporally- 059

sensitive nature of sentiments associated with 060

policy-related texts. Sentiments in such contexts 061

are subject to volatile shifts, driven by factors such 062

as external shocks which influence policy percep- 063

tion (Giuliano and Spilimbergo, 2024), the emer- 064

gence of conflicting information over time (Dhin- 065

gra et al., 2022) and the continuous introduction of 066

new vocabulary or terminologies associated within 067

evolving policy discourse (Alkhalifa et al., 2021; 068

Azarbonyad et al., 2017). All these factors can alter 069

the semantic context of underlying sentiments. Fur- 070

thermore, temporal variations in online discourse 071

often reflect shifts in public attention triggered by 072

specific events or emerging issues, characterized by 073

pronounced spikes or drops in online engagement 074

(Yang and Leskovec, 2011). 075

These characteristics often lead to a non-uniform 076

temporal distribution of trends surrounding online 077

textual data. Pronounced fluctuations among sen- 078

timents from policy-related discourse could result 079

in periods where texts are densely clustered around 080

particular events or intervals. Consequently, ran- 081

dom sampling for annotation is likely to dispro- 082

portionately represent texts from these dense inter- 083
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vals, leaving other crucial periods sparsely anno-084

tated (Lazaridou et al., 2021). Such sampling bias085

impairs the generalizability of language models086

by limiting their exposure to representative texts087

and vocabulary, constraining their ability to adapt088

to evolving semantic contexts (Azarbonyad et al.,089

2017).090

Hence, this study aims to leverage strategies in091

developing robust sentiment analysis models capa-092

ble of generalizing across multiple time intervals,093

under realistic settings that mimic sentiment anal-094

ysis in policy-related studies. We aim to integrate095

temporal aspects of policy-related online texts by096

(1) proposing continuous time-series clustering to097

segment the corpus timeline into variable-length098

clusters based on temporal trends, which yields099

a temporally representative training set for fine-100

tuning and (2) subsequently experimenting with101

advance merging methods to integrate multiple102

models – each fine-tuned separately on data from103

distinct time intervals – into a unified sentiment104

classifier.105

We conduct extensive experiments on 3 bench-106

mark datasets across 4 models, and demonstrate107

that continuous time-series clustering improves the108

average F1-score by 2.71% compared to random109

selection, benefitting from taking temporal shifts110

into account. Although certain merging techniques111

achieved competitive performance, it’s overall per-112

formance deteriorated compared to the unified sin-113

gular model finetuned across all time intervals.114

This suggests that language models can generalize115

to temporally volatile policy sentiments when fine-116

tuned on representative samples capturing mean-117

ingful semantic shifts in policy discourse.118

Therefore, our contributions are as follows:119

• We explicitly consider temporal trends of on-120

line texts by proposing continuous time-series121

clustering when sampling data for annota-122

tion and subsequent fine-tuning, thus account-123

ing for fluctuations in online textual activity124

driven by external shocks and evolving dis-125

course. Innovatively, our method incorporates126

aspects beyond purely textual considerations.127

• We rigorously evaluate our methods on re-128

alistic policy-related datasets under settings129

closely resembling typical sentiment analysis130

tasks in policy studies. Our results hence pro-131

vides practical insights for policy researchers132

regarding the expected effectiveness of our133

proposed approach.134

• We rigorously explored advance model merg- 135

ing techniques to test their effectiveness in 136

integrating models fine-tuned on distinct time 137

intervals, despite observing an overall perfor- 138

mance deterioration. 139

2 Related Works 140

2.1 Temporally-sensitive text classification 141

The limited ability of language models to general- 142

ize effectively across multiple time points has been 143

extensively studied. Dhingra et al. (2022) attributes 144

this limitation primarily to ‘temporal staleness,’ em- 145

phasizing that language models, typically trained 146

on static data snapshots, fail to adapt adequately to 147

temporal changes beyond their training snapshot, 148

resulting in degraded performance. To address this, 149

the authors propose prepending temporal informa- 150

tion to the textual data. 151

Similarly, Lazaridou et al. (2021) observed that 152

language models trained under static conditions 153

consistently struggle to capture the dynamic and 154

evolving nature of language. They further demon- 155

strate that scaling models by using larger variants 156

like TransformerXL, fails to remedy this limitation. 157

However, their findings suggest that this limitation 158

can be through sustained training across extensive 159

time points. 160

Additionally, Röttger and Pierrehumbert (2021) 161

demonstrated that fine-tuning an individual model 162

for each month and testing it on the same month 163

produced substantially better predictions than rely- 164

ing on a model fine-tuned with labeled data pooled 165

across all time points when attempting to predict 166

the political leaning of a given Reddit post. This 167

demonstrates the pronounced temporal volatility 168

of online texts with its associated downstream pre- 169

diction and shortcomings of finetuned language 170

models in generalizing across multiple time inter- 171

vals. 172

2.2 Merging multiple time-specific models 173

To address temporal sensitivity in text classification, 174

recent methods propose merging models fine-tuned 175

on discrete intervals (e.g., months or years). Model 176

merging essentially blends weights across multi- 177

ple models to capture complementary knowledge 178

without additional retraining or ensembling. 179

For instance, Nylund et al. (2024) proposed 180

merging multiple fine-tuned models, each trained 181

on distinct fixed intervals (e.g., individual months 182

or years), through “model souping”. However, 183
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(1) A subset of texts 
are sampled for 
annotation

(2) Annotated data used to 
finetune pre-trained model(s)

(3) Unlabeled data 
classified using 
finetuned model

(4) Policy analysis and 
recommendations from 
classified sentiments

Figure 1: Typical sentiment analysis in policy-related studies, where sampled data is annotated and used to fine-tune
a model, subsequently classifying unlabeled data. This approach is beneficial in novel policies, where benchmarks
fail to capture the context-specific discourse associated with sentiments of emerging policies, and annotating the
entire dataset is resource-prohibitive.

results showed that these merged models gener-184

ally performs worse in generalizing across multiple185

time periods compared to a single model fine-tuned186

on labeled data from all intervals. Although in-187

terpolation between two time vectors successfully188

improved predictions for unknown intervals such189

as future or intervening periods, merging multiple190

fine-tuned models simultaneously via souping did191

not yield similar benefits, underscoring the chal-192

lenge of improving generalization with unseen data193

spanning multiple temporal intervals.194

Dziadzio et al. (2025) similarly addressed this195

issue in a streaming context using the Temporal196

Integration of Model Expertise (TIME) framework.197

At each interval, TIME initializes training from198

an exponential moving average (EMA) of prior199

checkpoints, fine-tunes on the current interval, then200

merges the newly trained expert back into the EMA.201

Although TIME outperformed standard continual202

fine-tuning and other merging methods, its sequen-203

tial training assumption limits direct applicability204

to scenarios involving generalization across multi-205

ple intervals simultaneously. Nevertheless, TIME206

motivates us to explore intermediate processing207

steps rather than directly merging fixed-interval208

models (Nylund et al., 2024).209

210

Codes accessible at the anonymous GitHub repository:
https://github.com/anonAclSrw/tempsentpolicy

3 Methods 211

3.1 Selecting data points for annotation 212

As illustrated in Figure 1, sentiment analysis in 213

policy-related studies typically begins by sampling 214

a subset of data points for professional annotation. 215

These labeled data are subsequently used to fine- 216

tune sentiment classification model(s). 217

Random Sampling The selection of data points 218

for annotation is often randomly sampled, where 219

a fixed number (n) of data points – determined 220

based on factors such as the researcher’s annotation 221

budget or desired annotation volume – is drawn 222

uniformly at random (without replacement) from 223

the entire dataset (An et al., 2023; Hayawi et al., 224

2022; Hossain et al., 2020). This can be illustrated 225

in Figure 2a. 226

Sampling Based on Fixed Time Intervals To 227

account for the temporality inherent in online data, 228

some studies propose uniformly sampling data 229

points from each predefined fixed time interval t 230

(e.g., monthly or yearly), where nt ≈ n
|T | for t ∈ T 231

(Nylund et al., 2024; Röttger and Pierrehumbert, 232

2021; Dhingra et al., 2022), as illustrated in Fig- 233

ure 2b. 234

Sampling based on continuous time series clus- 235

tering We propose employing continuous time- 236

series clustering to sample data points from each 237
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(2) Annotated data 
used to finetune pre-
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(3) Annotated data 
used to finetune pre-
trained model(s)

(1) Continuous time-series 
clustering based on 
temporal trends

(2) Sampling 
uniformly from each 
cluster for annotation

(c) Sampling based on continuous time series clustering

Figure 2: The distinct strategies when selecting data points for annotation, which will subsequently be used to
finetune a model to classify the sentiments of the remaining corpus.

identified cluster, as illustrated in Figure 2c. We238

utilize Ruptures (Truong et al., 2020), as it effec-239

tively detects structural shifts or change points in240

discrete time-series data, serving our overarching241

purpose of modeling temporal trends across online242

texts.243

We begin by aggregating the entire corpus into a244

univariate count series N = (N1, . . . , NT ), where245

Nt ∈ N is the total number of policy-related texts246

(e.g., Tweets) observed in time bin t (e.g., day,247

month, or year). Ruptures then segments this se-248

ries into contiguous clusters by locating change-249

points that minimize the penalized within-segment250

cost251

τ̂ = arg min
τ⊂{1,...,T−1}

{ |τ |∑
k=0

L
(
Ntk+1:tk+1

)
︸ ︷︷ ︸

segment-cost

+ β |τ |︸︷︷︸
penalty

}
252

where the segment-cost 253

L
(
Na:b

)
= min

α,γ

b∑
t=a

(
Nt − (α+ γt)

)2
254

fits a local linear trend Nt ≈ α+ γt to each subse- 255

quence [a:b], and the ℓ0 penalty β|τ | to discourage 256

over-segmentation (Truong et al., 2020). 257

The optimal set τ̂ partitions the timeline into 258

M = |τ̂ |+1 trend-homogeneous segments C = 259

{C1, . . . , CM}, which we treat as continuous time- 260

series clusters. From each cluster Cm (m = 261

1, . . . ,M ) we then uniformly draw nCm ≈ n
M 262

texts at random, yielding an annotation pool that is 263

temporally representative of all detected discourse 264

regimes. 265

In this approach, time intervals are dynamically 266

defined by temporal trends in policy-related dis- 267

course, capturing sentiment shifts triggered by ex- 268

ternal shocks and evolving opinions that unfold 269

over variable-length periods. 270
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3.2 Building a model271

3.2.1 Finetuning a single model272

Upon annotating the sampled data, the most273

straightforward and commonly employed approach274

is to finetune a single unified model using all the275

annotated data-points.276

3.2.2 Merging multiple models across time277

intervals278

To account for temporal dynamics across data279

points, some propose fine-tuning separate models280

– each trained exclusively on data from a specific281

time interval – and subsequently merging them282

into a unified models (Aghapour and Rahili, 2024;283

Wortsman et al., 2022; Nylund et al., 2024). This284

approach aims to embed time into the model’s285

weights by integrating multiple specialized models,286

each of which is fine-tuned to a specific time inter-287

val. We hence experimented the following merging288

techniques:289

Souping Souping, which involves averaging the290

weights of multiple models, remains a commonly291

employed merging technique across distinct time292

intervals (Wortsman et al., 2022; Nylund et al.,293

2024). Two variants are commonly used: uniform294

souping, which equally averages the weights of all295

models from each time interval, and greedy soup-296

ing, an iterative approach that sequentially adds297

models into the averaged ensemble, retaining each298

new model only if it improves performance on a299

held-out validation set.300

Task Arithmetic Task Arithmetic uses “task vec-301

tors” that capture the parameter-space direction of302

a task (Ilharco et al., 2022). Task vectors τ can be303

defined as the element-wise difference between a304

model fine-tuned on time interval T and the pre-305

trained weights θpre. Hence, we learn a task vector306

for each interval T and add them to the base pa-307

rameters
(
θpre + λ

∑
T∈T τT

)
to obtain a merged308

model.309

TIES Merging TrIm, Elect Sign, and Merge310

(TIES Merging) trims each task vector to the311

top k% largest-magnitude values, then elects the312

sign with the greatest total magnitude across the313

trimmed vectors before merging (Yadav et al.,314

2023). In doing so, it aims to remove redundant pa-315

rameters and resolve sign conflicts during merging.316

DARE Drop And REscale (DARE) proposes ran-317

domly dropping p% of delta parameters and rescal-318

ing the remaining ones
(

by 1
1−p

)
before merging 319

the models (Yu et al., 2024), aiming to eliminate 320

small and redundant changes witnessed in fine- 321

tuned models from their pre-trained variants. 322

Fisher Merging Across multiple fine-tuned mod- 323

els derived from the same pretrained model, Fisher 324

Merging first estimates the diagonal Fisher infor- 325

mation for each model using a small batch of task- 326

specific data (Matena and Raffel, 2022). Subse- 327

quently, for each parameter, it computes a weighted 328

average across the models, with weights deter- 329

mined by the Fisher scores. Parameters considered 330

more informative thus have greater influence, en- 331

abling the merged model to retain essential updates 332

and minimize interference. 333

RegMean Merging Regression Mean (Reg- 334

Mean) merging treats model merging as a regres- 335

sion problem by computing an optimal weighted 336

average of parameters across fine-tuned models 337

(Matena and Raffel, 2022). Specifically, it uses the 338

inner product matrices of layer inputs from each 339

model to find parameters minimizing the squared 340

difference between merged and individual model 341

outputs. This hence reweighs and linearly com- 342

bines parameter rows based on their importance. 343

4 Experimental Setup 344

4.1 Datasets 345

We perform our above-mentioned methods on 3 346

datasets that meet the following criteria: (1) a senti- 347

ment classification task, (2) data is policy-relevant, 348

(3) all texts are professionally annotated, (4) dataset 349

details, particularly the time-stamps, are available, 350

and (5) is sufficiently large. Details of each dataset 351

are elaborated in Appendix A. 352

Climate Change Twitter Dataset The Climate 353

Change Twitter Dataset (Effrosynidis et al., 2022; 354

Bauch and Qian, 2018) contains 43,943 annotated 355

tweets surrounding climate change sentiments span- 356

ning Apr 27, 2015 and Feb 21, 2018. Tweets are la- 357

beled as Pro-, Anti-, Neutral- and News- stance 358

towards climate change. 359

AI Perceptions The “Long-Term Trends of Pub- 360

lic Perception of Artificial Intelligence (AI)”, 361

which we will call the AI Perceptions dataset, is 362

a dataset that captures nearly 30 years of public 363

perceptions regarding AI. Annotators labeled per- 364

ceptions based on 5,685 paragraphs extracted from 365
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New York Times (NYT) articles related to AI, span-366

ning 1986 to 2016 (Fast and Horvitz, 2017; Sha-367

hane et al., 2018). Perceptions are categorized as368

either Positive, Negative, or Neutral/Mixed.369

COVID Vaccine Twitter Dataset The COVID370

Vaccine Twitter Dataset contains 6,000 tweets anno-371

tated with sentiment labels (positive, negative,372

or neutral) toward COVID-19 vaccines. The373

tweets were collected during the initial months fol-374

lowing the vaccine’s release, spanning December375

2020 through April 2021 (Preda, 2021b,a).376

4.2 Model fine-tuning and evaluation377

To mimic the typical sentiment analysis process378

employed in policy-related studies – where large379

datasets are classified using models fine-tuned on380

partially annotated subsets (An et al., 2023; Ef-381

frosynidis et al., 2022; Maceda et al., 2023; Melton382

et al., 2022) – we sample 10,000, 2,000, and 3,000383

annotated data points from the Climate Change384

Twitter, AI Perceptions, and COVID-19 Vaccine385

Twitter datasets, respectively, using the strategies386

detailed in Section 3.1. These sampled data points387

are used to fine-tune pretrained models. The re-388

maining data points are reserved for evaluation,389

mimicking the practical scenario in which models390

trained on a subset of annotated data are subse-391

quently used to classify sentiments of remaining392

unlabeled corpora.393

We performed our experiments on four pre-394

trained models commonly employed in text395

classification: DeBERTalarge (He et al., 2021),396

RoBERTalarge (Liu et al., 2019), BERTlarge (Devlin397

et al., 2019), and a domain-specific model selected398

based on the dataset – BERTweetlarge (Nguyen399

et al., 2020) for Twitter data and NewsBERT (Wu400

et al., 2022) for news data. The training hyper-401

parameters are detailed in Appendix B.402

5 Results403

5.1 Selecting data points for labeling404

We begin by evaluating the sampling approaches405

described in Section 3.1 in selecting annotated data406

points to fine-tune a unified sentiment classification407

model. When sampling through fixed time inter-408

vals, we set the temporal granularity to monthly for409

the Climate Change Twitter and COVID-19 Vac-410

cine Twitter datasets, and annually for the AI Per-411

ceptions dataset. Similarly, when sampling through412

continuous time series clustering, we cluster base413

on the daily, monthly and annual trends for the414

COVID-19 Vaccine Twitter, Climate Change Twit- 415

ter, and AI Perceptions datasets, respectively. The 416

clusters identified through continuous time-series 417

clustering for each dataset are shown in Figure 3. 418

Our overall results demonstrate competitive or 419

superior performances relative to prior studies (Ef- 420

frosynidis et al., 2022; Almars et al., 2022; Then- 421

mozhi et al., 2024; Akpatsa et al., 2022), even 422

though those studies employed traditional train-test 423

splits, whereas we used smaller annotated subsets 424

to mimic realistic annotation constraints in policy- 425

related research. 426

As shown in Table 1, our proposed method of us- 427

ing continuous time-series clustering to select data 428

points for annotation and model fine-tuning consis- 429

tently outperforms random selection – improving 430

upon average F1-score and accuracy by 2.71% and 431

1.18%, respectively. Similarly, our method of se- 432

lecting through continuous time-series sampling 433

improves upon fixed time-interval sampling by an 434

average F1-score and accuracy score of 4.03% and 435

1.92%, respectively. Surprisingly, fixed-interval 436

sampling results in a slight performance deteriora- 437

tion relative to random selection, with an average 438

decrease in F1-score of 0.99%. 439

5.2 Building a robust model across time 440

intervals 441

Having determine the best strategy when selecting 442

the data for annotation towards model fine-tuning, 443

we proceed to assess the effectiveness of the merg- 444

ing methods outlined in Section 3.2.2, wherein 445

models fine-tuned separately on data from distinct 446

time intervals are merged. We then compare the 447

performance of these merged models against the 448

single unified model fine-tuned across all intervals 449

in Section 5.1. 450

As shown in Figure 4, our results show that 451

fine-tuning a single unified model using data from 452

all time intervals consistently outperforms merg- 453

ing individually fine-tuned models from separate 454

intervals. The sole exception arises from the 455

DeBERTalarge variant from the AI perceptions 456

dataset, in which greedy souping outperforms a 457

single unified model by 0.89%. 458

Nonetheless, in many cases, certain merging 459

techniques – particularly greedy souping and TIES 460

merge – yields very competitive performances, of- 461

ten coming a few percentage points off a single uni- 462

fied model. This suggests that merging separately 463

fine-tuned models may still be advantageous in 464

scenarios involving incremental or online learning, 465
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Figure 3: Clusters obtained from continuous time-series clustering based on temporal trends within each dataset.
Distinct colors correspond to individual clusters.

Climate Change AI Perceptions COVID vaccine
Type Model Accuracy F1 AUROC Accuracy F1 AUROC Accuracy F1 AUROC

Random Sample
RoBERTalarge

79.93% 79.26% 93.48% 68.58% 58.09% 76.42% 77.37% 76.88% 87.46%
Fixed intervals 79.65% 79.26% 93.00% 69.03% 58.58% 75.17% 77.37% 77.02% 87.00%

Continous time series clusters 80.34% 79.81% 93.63% 72.75% 70.49% 77.38% 77.58% 77.68% 87.64%
Random Sample

BERTlarge

74.79% 74.28% 90.12% 68.77% 58.75% 72.00% 74.23% 71.90% 85.03%
Fixed intervals 74.54% 74.06% 89.66% 67.75% 54.72% 69.07% 73.91% 71.12% 83.96%

Continous time series clusters 75.40% 74.78% 90.14% 71.35% 65.75% 73.27% 76.05% 75.49% 85.69%
Random Sample

DeBERTalarge

81.67% 81.37% 93.90% 69.06% 62.51% 73.69% 77.60% 76.81% 86.83%
Fixed intervals 80.75% 80.65% 93.66% 71.34% 66.24% 73.95% 77.98% 77.62% 86.26%

Continous time series clusters 81.79% 81.49% 94.05% 71.90% 66.69% 74.90% 78.27% 77.92% 86.58%
Random Sample

BERTweetlarge
/ NewsBERT

80.99% 80.41% 93.93% 70.64% 64.23% 75.24% 77.77% 77.56% 87.96%
Fixed intervals 80.01% 79.55% 93.48% 69.63% 60.49% 73.37% 70.53% 66.87% 74.54%

Continous time series clusters 81.38% 80.87% 94.09% 70.89% 65.63% 75.10% 77.87% 77.94% 88.18%

Table 1: Results spanning the distinct sampling approaches in selecting data points for annotation and model
fine-tuning. Among each dataset, the best performing results across each model are bolded and the best results
across all models are underlined.
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Figure 4: Results spanning the distinct merging techniques.

where new data continually streams in as policies466

and associated events evolve over time.467

We further examined whether merging models468

fine-tuned on fixed intervals, as opposed to con-469

tinuous time series clusters, might improve perfor-470

mance. Additional experiments, detailed in Ap-471

pendix C, shows that merging models base on472

fixed intervals performed even worse than merging473

cluster-based models, reinforcing the advantage of474

continuous clustering for both unified and merged- 475

model strategies. 476

6 Discussion 477

Despite advancements in LLMs enhancing senti- 478

ment classification among complex, nuanced policy 479

texts, existing methods often neglect the temporally 480

volatile nature of its associated sentiments, which 481
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continuously evolves due to external shocks and482

evolving discourse of opinions. To this end, we483

propose methods to account for the temporally-484

sensitive nature of policy-related texts (Alkhal-485

ifa et al., 2021; Giuliano and Spilimbergo, 2024)486

and experimentally evaluate them in realistic set-487

tings that mimic sentiment analysis as conducted488

in policy-related studies. Specifically, we propose489

leveraging continuous time-series clustering to se-490

lect data points for annotation based on temporal491

trends before subsequently applying advance merg-492

ing techniques to merge multiple models, each fine-493

tuned separately on data from distinct time inter-494

vals.495

Our results demonstrate that sampling data496

points for annotation through continuous time-497

series clustering, and subsequently fine-tuning a498

single unified model using all annotated data, yields499

the best performance. These findings are unsurpris-500

ing given that they echo the results of Nylund et al.501

(2024), who found that fine-tuning a single model502

across all time intervals outperformed merging in-503

dividually fine-tuned models trained separately on504

each time interval in all but one instance, despite505

the merged models collectively receiving five times506

more training data – albeit in a different down-507

stream task from ours.508

Our results suggests that language models can509

generalize across temporally volatile sentiments510

associated with policy-related texts across multi-511

ple time points, provided they are fine-tuned on512

representative samples that capture meaningful se-513

mantic variations within evolving policy discourse514

(Azarbonyad et al., 2017). Hence, leveraging ma-515

chine learning methods to identify distinct tempo-516

ral patterns allows us to select more representative517

samples for annotation and model fine-tuning, ef-518

fectively capturing varying trends associated with519

sentiment shifts driven by external shocks or evolv-520

ing opinions across variable-length periods (Alkhal-521

ifa et al., 2021). These patterns align with previous522

studies, which have demonstrated that accounting523

for temporality when applying language models to524

downstream tasks – especially in domains subject525

to temporal volatility – can improve performances526

(Röttger and Pierrehumbert, 2021; Lazaridou et al.,527

2021; Dhingra et al., 2022).528

Nonetheless, the attainment of competitive per-529

formances when merging multiple models – each530

trained on intervals determined through continuous531

time-series clustering – using techniques such as532

greedy souping and TIES merging could be bene-533

ficial in certain practical scenarios. For instance, 534

when significant events or shifts – such as political 535

transitions – lead to external shocks that substan- 536

tially alter public sentiment (e.g., sudden changes 537

in online immigration-policy rhetoric following 538

President Trump’s emergence and subsequent elec- 539

tion (Quinonez, 2018)) that may necessitate the 540

collection and annotation additional data to update 541

already-tuned language models in order to facil- 542

itate an up-to-date policy analysis of sentiments 543

(Azarbonyad et al., 2017; Alkhalifa et al., 2021). 544

Under such conditions, merging newly fine-tuned 545

models with previously trained models offers an ef- 546

ficient and flexible alternative to retraining a single 547

classifier from scratch. 548

7 Conclusions 549

Sentiments in policy-related texts exhibit high 550

volatility due to external shocks and evolving dis- 551

course. We posit that these temporal dynamics are 552

typically overlooked by existing methods. To ad- 553

dress this, we propose leveraging continuous time- 554

series clustering to select temporally representative 555

data points for annotation, followed by advance 556

merging techniques to combine models fine-tuned 557

on distinct time intervals. 558

Our results show that continuous time-series 559

clustering combined with fine-tuning a single uni- 560

fied model outperforms conventional random sam- 561

pling by an average F1-score of 2.71%. Although 562

merging multiple models typically reduces perfor- 563

mance compared to a unified model, certain merg- 564

ing methods – particularly greedy souping and 565

TIES merging – yield competitive results. These 566

findings suggest language models effectively gen- 567

eralize to temporally sensitive policy texts when 568

trained on representative samples. Furthermore, the 569

competitive performance of merged time-specific 570

models indicates practical advantages in dynami- 571

cally evolving policy contexts. 572

Limitations 573

Our analyses – from the experimental setup and 574

selected datasets to the choice of models – were ex- 575

plicitly designed to mimic sentiment analysis tasks 576

in policy-related contexts. While our results are 577

consistent with similar studies (Nylund et al., 2024; 578

Lazaridou et al., 2021), as discussed in Section 6, 579

further research is needed to explore whether these 580

findings generalize effectively to other downstream 581

tasks across distinct domains. 582

8



Additionally, our experiments employed transfer583

learning on partially annotated datasets to mimic584

practical constraints – such as limited annotation585

resources – which represent the most common and586

straightforward method for leveraging robust lan-587

guage models for policy-related sentiment analysis588

(An et al., 2023; Effrosynidis et al., 2022; Maceda589

et al., 2023; Melton et al., 2022). Nonetheless,590

further research could explore incorporating unan-591

notated examples and their temporal contexts, po-592

tentially enhancing the generalizability of predic-593

tions across multiple time intervals through weak594

supervision (Tong et al., 2024) and semi-supervised595

learning techniques (Shi et al., 2023).596

Furthermore, fine-tuning on limited subsets may597

directly influence the predictive performance of598

our models. While our chosen subset sizes were599

guided by prior studies in policy-related contexts600

(An et al., 2023; Effrosynidis et al., 2022; Maceda601

et al., 2023; Melton et al., 2022), the precise rela-602

tionship between relative training sample size and603

predictive performance remains unclear, as does604

the optimal subset size within commonly employed605

setups for policy-related sentiment analysis. We606

therefore highlight these as important considera-607

tions for future work.608

Moreover, as open-source LLMs with impressive609

reasoning capabilities (Grattafiori et al., 2024; Guo610

et al., 2025) continue to emerge, their performance611

in classifying sentiments within temporally volatile612

policy contexts under few-shot settings remains un-613

clear. If such models excel under these conditions,614

the practical advantages of our approach may be615

diminished. Thus, comparing the effectiveness of616

few-shot learning with larger, reasoning-focused617

LLMs against our proposed methods represents an618

important avenue for future research.619

Finally, our work was evaluated on benchmark620

datasets covering global policy topics—climate621

change, artificial intelligence perceptions, and622

COVID-19 vaccine attitudes—primarily due to the623

extensive availability of fully annotated datasets624

in these domains. However, sentiment analysis is625

also commonly applied to national and local poli-626

cies (Maceda et al., 2023; Haqbeen et al., 2021;627

Chen and Wei, 2023; An et al., 2023), where typ-628

ically only a subset of data is annotated, similar629

to our experimental setup. Since national and lo-630

cal policies often exhibit greater temporal volatility631

(Henisz, 2004), it remains unclear if our findings632

would generalize to these contexts.633

Ethical Considerations 634

Given that sentiments expressed in policy-related 635

opinions in online spaces are often intertwined 636

with racial, gender, age, and socio-economic stereo- 637

types, there is an inherent risk that fine-tuned lan- 638

guage models may similarly associate stereotype- 639

embedded terminologies with particular sentiments 640

(Lee et al., 2024). Furthermore, policy-related sen- 641

timents can be highly subjective; thus, annotators 642

may inadvertently introduce their own biases or 643

stereotypical associations into the manual annota- 644

tion process, potentially embedding these biases 645

into models during fine-tuning (Sap et al., 2022; 646

Davani et al., 2023). 647
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A Dataset details 871

Climate Change Twitter Dataset Tweets were 872

annotated, by Bauch and Qian, as Pro if it supports 873

the concept of man-made climate change, Anti if 874

the tweet denies man-made climate change, News if 875

it contains factual news information regarding cli- 876

mate change, and neutral if it neither beliefs nor 877

denies the role of man-made climate change. In to- 878

tal, there were 22962 (52.25%) Pro, 9276 (21.11%) 879

news, 420 (17.56%) neutral, and 3990 (9.08%) 880

Anti sentiments. Missing timestamps were im- 881

puted based on the nearest-neighbor tweet ID, as 882

tweet IDs are generated incrementally and corre- 883

spond directly to the chronological posting order. 884

AI Perceptions The dataset was annotated, by 885

Fast and Horvitz, as either “positive” or “negative” 886

based on several key indicators. Positive indicators 887

include its beneficial impact on (1) education, (2) 888

transportation, (3) entertainment, (4) healthcare, 889

(5) decision-making, (6) work, (7) positive singu- 890

larity, (8) merging of Ai and human applications, 891

otherwise known as cyborg (e.g., robotic limbs for 892

the disabled) and (9) others. Negative indicators 893

included (1) loss of control, (2) negative impact on 894

work, (2) military applications, (3) ethics, (4) mili- 895

tary applications, (5) lack of progress, (6) negative 896

singularity, (7) negative cyborg applications (e.g., 897

cyborg soldiers), and (8) others. Among each an- 898

notator, we consider their sentiment to be negative 899
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if majority of the selected indicators were negative,900

and vice-versa. We consider the sentiments to be901

“neutral or mixed” if none of the indicators were902

selected or an equal amount of negative and posi-903

tive indicators were selected. In total, there were904

4065 (71.47%) neutral / mixed, 1220 (21.45%)905

positive, and 402 (7.07%) negative sentiments.906

The final sentiment label was determined based on907

a majority vote among the annotators. In lieu of908

some text having missing timestamps, we sampled909

the annotated data-points (and plotted Figure 3)910

from texts with corresponding time-stamps.911

COVID-19 Twitter Dataset Tweets were an-912

notated, by Preda, based on their sentiments to-913

wards the COVID-19 vaccine during the initial914

months following the vaccine’s roll-out and ap-915

proval, on December 11 2020, spanning December916

2020 through April 2021 (Preda, 2021b,a). The917

vaccines that were covered in the dataset included918

Pfizer/BioNTech, Sinopharm, Sinovac, Moderna,919

Oxford / Astra Zeneca, Covaxin, and the Sputnik920

V vaccines. In total, there were 3680 (61.33%)921

neutral, 1900 (31.66%) positive, and 420 (7%)922

negative sentiments. Missing timestamps were923

imputed based on the nearest-neighbor tweet ID,924

as tweet IDs are generated incrementally and corre-925

spond directly to the chronological posting order.926

B Hyper-parameters927

B.1 Finetuning Parameters928

We fine-tune all models using learning rates of929

{1 × 10−5, 2 × 10−5}, batch sizes of 6 for930

RoBERTalarge; 8 for RoBERTalarge, BERTlarge, and931

BERTweetlarge; and 12 for NewsBERT. Addition-932

ally, we use a warmup ratio of 5% and weight decay933

of {0.01, 0.1}. Models fine-tuned across all time934

intervals are trained for up to 3 epochs with an935

early stopping patience of 2, while models fine-936

tuned within each time interval are trained for up937

to 8 epochs, also with an early stopping patience of938

2 – though early stopping criteria are mostly met939

before reaching the maximum number of epochs.940

These hyper-parameters are adapted from previous941

studies employing the same datasets (Effrosynidis942

et al., 2022; Almars et al., 2022; Thenmozhi et al.,943

2024; Akpatsa et al., 2022). All models were fine-944

tuned on a Nvidia GeForce RTX 4090.945

B.2 Parameters for Continuous Time-Series 946

Clustering 947

When sampling data using continuous time-series 948

clustering, we set the temporal granularity t to 949

daily, monthly, and yearly trends for the COVID- 950

19 Vaccine Twitter, Climate Change Twitter, and 951

AI Perceptions datasets, respectively. The penalty 952

parameter β|τ | for clustering was set to 0.5 for 953

the COVID-19 Vaccine Twitter dataset and 0.1 for 954

both the Climate Change Twitter and AI Percep- 955

tions datasets. 956

B.3 Model merging parameters 957

Table 2 summarizes the range of hyperparame- 958

ters explored across the different model merg- 959

ing techniques. For each merging technique, hy- 960

perparameter configurations were evaluated on a 961

held-out validation set, and the optimal parameters 962

were selected. We adopted these range of hyper- 963

parameters from Yu et al., Yadav et al., and Ilharco 964

et al.. 965

Merging method Range of hyper-parameters
Task Arithmetic λ: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

TIES Merging
λ: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

k%: [10, 20, 30]

DARE Merging
λ: [0.1, 0.3, 0.5, 0.7, 0.9, 1.0]
p: [0.5, 0.6, 0.7, 0.8, 0.9]

Table 2: Searched ranges of hyper-parameters of model
merging methods
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C Additional Results966

Results when merging merging models fine-tuned967

on fixed intervals, as opposed to continuous time968

series clusters are shown in Figure 5. Note that un-969

like the aforementioned section, the λ parameters970

were fixed here but the remaining parameters were971

selected via a held-out validation set (similar to972

Section B.3). Overall, results of models merged on973

fixed intervals performed even worse than models974

merged on time series clusters. The observations975

are similar to the results in Section 5.2: fine-tuning976

a single unified model using data from all time inter-977

vals consistently outperforms merging individually978

fine-tuned models from separate intervals.979
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Figure 5: Results when merging models fine-tuned on
fixed intervals, as opposed to continuous time series
clusters.
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