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ABSTRACT

Deepfakes, synthetic media created using advanced AI techniques, pose a growing
threat to information integrity, particularly in politically sensitive contexts. This
challenge is amplified by the increasing realism of modern generative models,
which our human perception study confirms are often indistinguishable from real
images. Yet, existing deepfake detection benchmarks rely on outdated generators or
narrowly scoped datasets (e.g., single-face imagery), limiting their utility for real-
world detection. To address these gaps, we present OPENFAKE, a large politically
grounded dataset specifically crafted for benchmarking against modern generative
models with high realism, and designed to remain extensible through an innovative
crowdsourced adversarial platform that continually integrates new hard examples.
OPENFAKE comprises nearly four million total images: three million real images
paired with descriptive captions and almost one million synthetic counterparts
from state-of-the-art proprietary and open-source models. Detectors trained on
OPENFAKE achieve near-perfect in-distribution performance, strong generalization
to unseen generators, and high accuracy on a curated in-the-wild social media test
set, significantly outperforming models trained on existing datasets. Overall, we
demonstrate that with high-quality and continually updated benchmarks, automatic
deepfake detection is both feasible and effective in real-world settings.

1 INTRODUCTION

Deepfakes, realistic synthetic media generated by AI, have emerged as a serious threat to the informa-
tion ecosystem (Canadian Security Intelligence Service, 2023; Bengio et al., 2025c). By enabling
anyone to fabricate audio-visual content of real people, deepfakes can spread false information at an
unprecedented scale, eroding trust across various platforms, from social media and online content
to traditional media outlets. High-profile cases (e.g., forged speeches or imagery of public figures)
and the prevalence of non-consensual intimate imagery underscore the potential for harm to political
stability, reputation, and public safety Marchal et al. (2024). Scholars have warned of an “infopoca-
lypse” where constant exposure to fake media breeds cynicism or paranoia Schick (2020). Detecting
deepfakes reliably is therefore critical to mitigate the spread of misinformation and disinformation1,
and to restore trust in digital media. The rapid advancement of AI-generated image technologies has
reached a point where distinguishing between real and synthetic images has become increasingly
challenging for humans. Studies have shown that humans underperform in identifying AI-generated
images, highlighting the sophistication of these generative models (Diel et al., 2024).

The political sphere is particularly vulnerable to the risks posed by deepfakes, which can be
weaponized to manipulate public opinion and undermine democratic processes (Bengio et al., 2025c;b;
Karen Hao, 2019). Synthetic media have already been exploited for scams, blackmail, and targeted
reputation sabotage, while the fabrication of fake historical artifacts, manipulated medical images,
and staged events introduces new avenues for the spread of misinformation and societal harm (Ferrara,
2024; Bengio et al., 2025c). By flooding social and traditional media with convincing falsehoods,
deepfakes erode public trust in news and create confusion about what is real, particularly during
sensitive periods like elections (IVADO and CEIMIA, 2025). Such disruptions threaten not only indi-

1We adopt the term misinformation throughout this paper to refer broadly to harmful or misleading content.
Technically, misinformation denotes false information shared without intent to deceive, while disinformation
refers to deliberately deceptive content. Our usage includes both, given the difficulty of inferring intent.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: We begin by scraping politically relevant images from social media (e.g., X, Reddit,
Bluesky), filtered by election-related hashtags. Manual investigation of these social media images
helps us to design a prompt for filtering politically relevant images. A vision-language model (e.g.,
Qwen2.5-VL) extracts thematic captions or prompts from real images from LAION. These prompts
serve dual purposes: (1) forming a large bank of real image–prompt pairs, and (2) seeding generation
across a range of synthetic image models (e.g., SDv3.5, Flux, Ideogram, GPT Image 1).

vidual reputations and public safety, but also the legitimacy of democratic institutions and processes,
with scholars warning that advances in generative AI could empower malicious actors to influence
political outcomes and destabilize societies (Bengio et al., 2025a; Hameleers et al., 2024; Vaccari &
Chadwick, 2020).

Despite significant progress in deepfake detection research (LI et al., 2024; Shao et al., 2025;
Cozzolino et al., 2024), current datasets suffer from major limitations that restrict their effectiveness
in modern, real-world scenarios (Pal et al., 2024; Chen & Zou, 2023). As shown in Table 1, most
established benchmarks rely on outdated generation methods; GAN-based face-swapping tools such
as DeepFaceLab (Liu et al., 2023) and Face2Face (Thies et al., 2016). These datasets, while valuable
for early detection efforts, are increasingly unrepresentative of the latest synthetic media, particularly
high-fidelity diffusion and transformer-based models. Moreover, they overwhelmingly focus on
single-face portraits, providing little to no real-world grounded images and neglecting the broader
spectrum of image-based misinformation that floods political and social media discourse: crowd
scenes, protests, disaster images, manipulated signage, or synthetic screenshots.

To address these gaps, we introduce OPENFAKE2 , a politically grounded dataset for general deepfake
detection. OPENFAKE pairs large-scale real image corpora with state-of-the-art synthetic images and
is designed to remain extensible through OPENFAKE ARENA, a crowdsourced adversarial platform
that continually contributes hard, validated examples via a CLIP-based prompt-consistency gate and
scoring against a live detector. This yields a self-improving benchmark that tracks the evolution of
modern generators.

By training a modest SwinV2-Small (Liu et al., 2021b) detector on OPENFAKE we produce near
perfect in-distribution results on the held-out test sets (unseen images from the seen generators and
their variants), as well as strong performance on images from unseen generators (see Table 3), with
overall F1 score of 0.99 compared to the 0.88 from our strongest baseline (same model trained on
GENIMAGE). More interestingly, the model trained on OPENFAKE achieves a strong performance on
a curated in-the-wild social-media test set, with a F1 score of 0.86 compared to 0.08 (GENIMAGE),
and 0.26 (SEMI-TRUTHS) (see Table 4). This finding stands in contrast to the prevailing pessimism
around automatic deepfake detection, which is deemed as both futile and intractable, largely due to
the increasing realism of generative models (Helmus, 2022; Engler, 2019; Kusnezov et al., 2023;
Lazerowitz, 2024; Cao, 2019; Babaei et al., 2025). Indeed, some experts argue that distinguishing
real from synthetic images will soon become impossible, which has shifted attention to watermarking
(Wen et al., 2023; Min et al., 2024; Liu et al., 2025; Saberi et al., 2024). However, watermarking
depends on developer cooperation, consistent deployment across proprietary systems, and robustness
to post-processing, and therefore cannot replace open-world detection. OPENFAKE paves the way for
automatic detection, demonstrating that highly realistic deepfake, which evade detection by human
eyes, can be detected with high accuracy. In summary, our contributions are:

• Providing OPENFAKE, an easily accessible dataset, which has

2https://huggingface.co/datasets/Anonymous460/OpenFake
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– Rich Scope: A large, politically relevant dataset of 3 million real images paired with extracted
prompts, curated for misinformation risk and designed by studying real-world social media.

– High Realism: A diverse, high-quality synthetic image set spanning 963k images, generated
from state-of-the-art open-source and proprietary models.

– Extendable: A scalable crowdsourcing framework (OPENFAKE ARENA) for adversarial
image generation, enabling continual community-driven benchmarking.

• An experimental study which shows the weak performance of detectors trained on the currently
available datasets on detecting realistic deepfakes, with F1 ranging between 0.0 to 0.88. Our model
trained on OPENFAKE significantly outperform these baselines with a F1 of 0.99.

• A human perception study showing that images from modern proprietary generators can be
imperceptible to humans, with accuracy in some cases dropping to near random chance (e.g., with
Imagen 3). Our model trained on OPENFAKE, however, achieves a near perfect performance.

• A real-world feasibility study which report a strong performance of OPENFAKE on detecting
real and fake images actually circulated on social media, based on a carefully curated in-the-wild
test set. OPENFAKE achieves a F1 score of 0.86, significantly higher that when relying on two
strong contenders: 0.08 (GENIMAGE), and 0.26 (SEMI-TRUTHS).

Together, OPENFAKE and OPENFAKE ARENA form a robust and adaptive foundation for studying
deepfakes in politically sensitive contexts, providing researchers and practitioners with the publicly
available tools necessary to characterize emerging synthetic threats.

2 RELATED WORK

Synthetic image datasets. Despite the proliferation of generative models, existing deepfake datasets
remain limited in realism, diversity, and accessibility. Early benchmarks such as FaceForensics++
(Rössler et al., 2019), Celeb-DF (Li et al., 2020), and DFDC (Dolhansky et al., 2020) rely on GAN-
based face-swapping techniques and focus almost exclusively on single-person portrait videos. Even
newer datasets such as ForgeryNet (He et al., 2021), OpenForensics (Le et al., 2021), and FFIW
(Zhou et al., 2021) continue to emphasize face-centric detection, with limited variation in image
content or generation method (Cheng et al., 2024; Chen et al., 2024c; Yan et al., 2024). More recent
image datasets have started to incorporate diffusion-based generators (e.g., Stable Diffusion, DALL·E
2, Midjourney), as seen in Fake2M (Lu et al., 2023), DiffusionForensics (Wang et al., 2023), and
GenImage (Zhu et al., 2023). However, these datasets still fall short in several ways. First, most
rely on open-source models like SDv1.5 or SDv2.1 (Rombach et al., 2022), which, while important,
do not match the visual fidelity of cutting-edge proprietary models such as Imagen 3 (Baldridge
et al., 2024) or GPT Image 1 (OpenAI, 2025). As a result, they fail to represent the modern threat
landscape posed by the most deceptive fakes. Second, many datasets lack real-world grounding.
Image prompts are frequently abstract, artistic, or class-based (e.g., GenImage uses classes from
ImageNet-1k (Deng et al., 2009)), failing to capture the multimodal misinformation strategies actually
deployed online. Third, these datasets are static and infrequently updated, meaning they quickly
become outdated as generation tools evolve. Fourth, prompts used for image generation are often
withheld, making it difficult for others to reproduce, regenerate, or expand these datasets with future
models. In contrast, we release a large bank of extracted prompts along with the images, which
enables researchers to extend the dataset. Finally, accessibility remains a persistent issue. Many
datasets require downloading large zip archives via Google Drive or web links, making them difficult
to integrate into new pipelines. In contrast, OPENFAKE is fully hosted on the HuggingFace Hub
in streaming-friendly Parquet format, enabling scalable access and evaluation, which should help
the community develop new detection tools. Table 1 highlights these differences in model coverage,
dataset scope, prompt extensibility, and access modality.

Deepfake detection methods. Early detection approaches relied on convolutional neural networks
trained on known forgery artifacts, such as blending boundaries or low-level inconsistencies in the
images (Afchar et al., 2018; Rössler et al., 2019; V & Joy, 2023). While effective in-domain, these
models struggle to generalize across generation techniques (Ojha et al., 2023). As diffusion and
transformer-based models reduce such artifacts, recent work has focused on semantic-level signals
and frequency-domain cues (Durall et al., 2020; Liu et al., 2021a; Frank et al., 2020; Qian et al.,
2020). CLIP-based detection (Cozzolino et al., 2024; Khan & Dang-Nguyen, 2024) has emerged as a
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Dataset Year Fakes Reals Extends Content Scope Realism Access Methods Most recent model

FaceForensics++ (Rössler et al., 2019) 2019 5K 1K ✗ ● Narrow Low ● Hard 4 Face2Face (2016)
Celeb-DF (Li et al., 2020) 2020 5K+ 590 ✗ ● Narrow Low ● Hard 1 DeepFaceLab (2020)
DFDC (Dolhansky et al., 2020) 2020 100K+ 20K+ ✗ ● Narrow Low ● Hard 8 DeepFaceLab (2020)
ForgeryNet (He et al., 2021) 2021 1.5M 1.5M ✗ ● Narrow Low ● Hard 15 DeepFaceLab (2020)
FFIW (Zhou et al., 2021) 2021 10K 10K ✗ ● Narrow Low ● Hard 3 DeepFaceLab (2020)
OpenForensics (Le et al., 2021) 2021 100K 100K ✗ ● Narrow Low ● Hard 3 GAN (2020)
DeepFakeFace (Song et al., 2023) 2023 90K 30K ✗ ● Narrow Medium ● Hard 3 SD v1.5 (2022)
Fake2M (Lu et al., 2023) 2023 2M 0 ✗ ● Moderate Medium ● Easy 3 SD v1.5 (2022)
DiffusionForensics (Wang et al., 2023) 2023 570K 140K ✗ ● Moderate Medium ● Hard 8 iDDPM (2021)
DMDetection (Corvi et al., 2023) 2023 200K 200K ✗ ● Moderate Medium ● Hard 3 DALL·E 2 (2022)
GenImage (Zhu et al., 2023) 2023 1.3M 1.33M ✗ ● Moderate Good ● Hard 5 Midjourney 5 (2023)
TWIGMA (Chen & Zou, 2023) 2023 800K 0 ✗ ● Rich Medium ● Unavailable – –
DiffusionDeepfake (Bhattacharyya et al., 2024) 2024 100K 94K ✗ ● Narrow Good ● Hard 2 Midjourney (2024)
DF40 (Yan et al., 2024) 2024 1M+ 1.5K ✗ ● Narrow Medium ● Hard 40 PixArt-α (2024)
DiffusionFace (Chen et al., 2024c) 2024 600K 30K ✗ ● Narrow Good ● Hard 11 SD v2.1 (2022)
DiFF (Cheng et al., 2024) 2024 500K 23K ✗ ● Narrow Good ● Hard 13 Midjourney 5 (2023)
Semi-Truths (Pal et al., 2024) 2024 1.34M 26K ✗ ● Moderate Good ● Easy 8 Stable Diffusion XL (2023)

OPENFAKE (Ours) 2025 963K 3M ✓ ● Rich High ● Easy 18 Imagen 4.0 (2025)

Table 1: Compared to current public deepfake datasets, OpenFake uniquely combines rich
scope, high realism, large real sample count, easy access, and extensibility. “Fakes” and “Reals”
count individual media items (images or videos; units omitted for brevity). Content Scope: ● Narrow
(face-focused); ● Moderate (diverse but limited); ● Rich (broad, internet-like variety). Access:
● Unavailable; ● Hard (public but cumbersome); ● Easy (clean, ready-to-use hosting). Realism:
qualitative fidelity of synthetic content — Low, Medium, Good, High. Extendable: availability of
prompts/metadata enabling seamless dataset expansion.

promising direction, leveraging large-scale vision-language pretraining to improve robustness. Other
advances include domain-adaptive feature learning (Shao et al., 2025; Jia et al., 2024), zero-shot
detectors (Lin et al., 2024), and hybrid approaches that blend local artifact patterns with global
semantic reasoning (LI et al., 2024; Zhou et al., 2024; Ma et al., 2025). Despite progress, the rapid
pace of generative model development continues to outstrip detection capabilities, motivating adaptive
benchmarks like OPENFAKE ARENA to assess robustness in a dynamic, adversarial setting.

3 CASE STUDY: REAL-WORLD MISINFORMATION AND HUMAN LIMITS

(a) Obvious fake (b) Text embedded (c) Realistic faces (d) Realistic sign (e) News event

Figure 2: Examples of deepfake images collected from X depicting various types of fabricated
scenarios involving Canadian political figures and events.

Social media platforms have become critical channels for political discourse, and consequently, for
amplifying deepfake disinformation. This raises a key question: how are deepfakes actually deployed
within political conversations? As part of a subsequent study, and to investigate how deepfakes are
used in political conversations and to later evaluate our detector in a realistic setting, we collected
images from X, Reddit, and Bluesky. The collection spans the period immediately before and
during the 2025 Canadian federal election, enabling analysis of synthetic media in a high-stakes,
time-sensitive information environment.

We manually examined over 2000 randomly sampled images collected during a 72-hour period to
better understand the types of visuals circulating on social media, identifying 163 deepfakes (see
Section 6.1 for more details). Many of these prominently featured political figures. Fabricated
scenarios involving leading candidates distorted public perception, and even when some deepfakes
were clearly artificial (Figure 2a), they reinforced existing biases more effectively than textual
misinformation alone (Ecker et al., 2022; Hameleers et al., 2020; Vaccari & Chadwick, 2020). When
photorealistic deepfakes aligned with viewers’ prior beliefs, the risk was higher, as illustrated in
Figure 2c. Beyond portraits, misinformation extended to political symbols, banners, and manipulated
depictions of protests or disasters (Figure 2d,e), often paired with misleading text (Figure 2b). These
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Real GPT Image 1 Imagen 3 Grok SDv2 SDv3.5 Flux.1-dev

Figure 3: Examples of deepfakes from each model used in the survey with their respective real image.

findings inform the construction of our dataset: to support generalizable detection, a deepfake
benchmark must move beyond faces to capture the full breadth of misleading visual content. While
this dataset serves here to illustrate the variety of real-world deepfakes, in Section 6.1 we also use it
as a small in-the-wild evaluation set. Importantly, none of these images or their captions are included
in training or generation, ensuring a clean separation between evaluation and benchmark design.

3.1 HUMAN PERCEPTION STUDY

To assess the difficulty of detecting deepfakes generated by different models, we conducted a simple
human study. A total of 100 participants completed the survey, each viewing a randomized set of 24
images. The set consisted of 12 real photographs and 12 synthetic images—2 from each of the six
generation models: GPT Image 1 (OpenAI) (OpenAI, 2025), Imagen 3 (Google) (Baldridge et al.,
2024), Grok 2 (xAI), Flux.1.0-dev (Black Forest Labs) (Labs, 2024), Stable Diffusion 2.1 Rombach
et al. (2022), and Stable Diffusion 3.5. All synthetic images were generated from the same prompts as
their real counterparts, using the text automatically extracted by our pipeline described in Section 4.
Each prompt was only shown once to a given participant. This ensured that responses reflected a fair
and diverse exposure across the dataset. In total, the survey contained 168 unique images.

Source Release Access Humans CLIP-D-10k+ Corvi2023 Fusion
(CLIP+Corvi)

SwinV2
(GenImage)

SwinV2
(Semi-Truths)

SwinV2
(OPENFAKE)

Real — — 0.718 0.479 0.000 0.062 1.000 0.500 1.000
Imagen 3 2024 Proprietary 0.490 0.458 0.708 0.667 0.625 1.000 1.000
GPT Image 1 2025 Proprietary 0.684 0.458 0.500 0.458 0.750 1.000 1.000
Flux.1.0-dev 2024 Open 0.689 0.562 0.792 0.812 0.917 1.000 1.000
SDv3.5 2024 Open 0.709 0.521 1.000 0.938 0.750 1.000 1.000
SDv2.1 2022 Open 0.879 0.646 1.000 0.938 0.917 1.000 1.000

Grok 2 2024 Proprietary 0.811 0.771 1.000 0.938 0.208 1.000 0.875

Overall Accuracy 0.714 0.524 0.417 0.427 0.804 0.750 0.990

Table 2: Survey results showing human true positive rate (TPR) for synthetic images and true negative
rate (TNR) for real images. A score near 0.50 indicates chance-level performance. SwinV2 trained
on OPENFAKE achieves high accuracy on its in-distribution generators.

The results in Table 2 highlight key insights into synthetic image realism and human perception.
Imagen 3 from Google achieved the lowest human accuracy (48.5%), equivalent to random guessing.
GPT Image 1, OpenAI’s recent model, was similarly deceptive, with nearly one-third of its images
undetected. In contrast, Stable Diffusion 2.1 (SDv2.1, which is widely used in current benchmarks,
had the highest detection rate (87.9%) and was easily flagged by all detectors. These findings
suggest that while open-source models remain relatively easy to spot, advanced proprietary models
demonstrate exceptional realism and consistency. This underscores the need to include such models
in benchmarks, as current deepfake detection datasets trained on older or open-source models fail to
capture the new quality standards set by proprietary systems.

However, this perceptual difficulty is not limited to humans. Baseline deepfake detectors also failed to
consistently identify these advanced fakes. The CLIP-D-10k+ method (Cozzolino et al., 2024), which
fine-tunes a linear classifier on CLIP embeddings, performed close to random on several models (e.g.,
45.8% on Imagen 3, and GPT Image 1), and failed to distinguish real images entirely (47.9% TNR).
Similarly, the Corvi2023 method (Corvi et al., 2023), which uses curated handcrafted features for
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detection, fared better on some open-source models (e.g., 100% on SDv3.5), but completely failed on
real images (0.0% TNR) and newer proprietary content like GPT Image 1 (50.0%). In contrast, our
SwinV2 baseline, trained directly on a curated mix of real and synthetic images from models included
in our dataset, achieved 99.0% overall accuracy and perfect performance on its in-distribution models
while having a reasonable score of 87.5% on Grok 2 (kept out of the training for this test). While this
result demonstrates that deep networks can learn to detect even the most realistic fakes with sufficient
supervision, it also highlights the brittleness of existing methods when faced with novel or unseen
generative sources. The two additional SwinV2 baselines confirm this pattern: models trained on
smaller or differently distributed data (GenImage and Semi-Truths) showed weaker generalization to
modern deepfakes, with accuracy dropping to 80.4% and 75.0%, respectively. These results reinforce
the importance of training on a large, diverse and higher-quality dataset like OpenFake to ensure
robustness against emerging generation techniques.

4 DATASET OVERVIEW & COLLECTION

OPENFAKE combines a large repository of real images with a diverse collection of high-quality
synthetic counterparts generated by multiple state-of-the-art models. In Appendix A, Table 5 presents
in details the key statistics of the dataset. Figure 4 offers a qualitative view of the underlying
distribution of some of the images. The substantial overlap between real and synthetic samples in the
CLIP feature space highlights their semantic alignment, suggesting that synthetic images effectively
mimic the distribution of real-world content. This shows that the prompt generation pipeline is
working as intended. Figure 1 presents an overview of the data collection and generation process.

Real images. We extract metadata from the LAION-400M dataset (Schuhmann et al., 2021),
which we selected due to its broad representation of internet-sourced images—the same domain
where visual misinformation typically circulates. Additionally, this dataset was likely included in
the training data of the text-to-image models used to generate the synthetic images, which should
theoretically make it more difficult for detectors to distinguish between real and fake images. More
importantly, these images preserve real-world compression artifacts, which are crucial for training
detectors that operate in the wild. While LAION may contain some synthetic images, we expect this
contamination to be minimal, as the dataset primarily consists of content from 2014–2021, before the
public release of diffusion models in 2022. After scraping LAION, we filter image–caption pairs
using a vision–language model (Qwen2.5-VL (Bai et al., 2025)). As described by the prompt used
to query the model in Section C, an image is retained if it is identified as depicting either (i) real
human faces or (ii) politically salient or newsworthy events. For every retained image, we generate a
more detailed caption to use as prompt input for text-to-image models. These 3M prompts are also
publicly released and form the basis of the prompts shown to users of our crowdsourcing platform
OPENFAKE ARENA.

We filtered real images using Qwen2.5-VL, selected for its trade-off between speed and quality.
To prevent detection shortcuts, we excluded LAION images smaller than 512×512 pixels from
the released train/test sets, as lower resolutions introduced compression artifacts that made
detection artificially easier. Full prompts used for filtering and captioning are provided in Section C,
and additional details on generation and compute resources are in Section E.

Synthetic images. We generated images from a diverse set of state-of-the-art generators using
samples from our prompt bank: Stable Diffusion 1.5/2.1/XL/3.5 (Rombach et al., 2022), Flux
1.0-dev/1.1-Pro/Schnell (Labs, 2024), Midjourney v6/v7 (Midjourney, 2024; 2025), DALL·E 3
(OpenAI, 2023), Imagen 3/4 (Baldridge et al., 2024; Google Cloud, 2025), GPT Image 1 (OpenAI,
2025), Ideogram 3.0 (Ideogram AI, 2025), Grok-2 (xAI, 2024), HiDream-I1 (HiDream-ai, 2025b;a),
Recraft v3 (Recraft, 2024), Chroma (Lodestones, 2025), and 10 community variants (Finetuned or
LoRA) of Stable Diffusion 1.5/XL and Flux-dev. All images are produced at ∼1 MP resolution
with varied aspect ratios (9:16, 16:9, 1:1, 2:3, 3:4, etc.), mirroring common social-media formats.
Because several proprietary sources impose “non-compete” clauses, those subsets are released under
a non-commercial license.

Splits and accessibility. We construct the train/test split by sampling 1,000 images per
generative model (with the exception of out-of-distribution models, which contribute between 200
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and 600 images) along with the corresponding number of real images, yielding a test set of roughly
60,000 images (about 3% of the dataset assuming balanced classes). The remaining images are
allocated to the training set. To ensure balance, each model is equally represented in the test split,
and real images are matched accordingly. The rest of the real images and prompts are provided in
a CSV file, with the real images accessible through their URLs. As OPENFAKE ARENA expands
and more synthetic images are collected, additional real images will be incorporated to preserve
parity between real and synthetic domains in the train/test splits. All assets are hosted on the
HuggingFace Hub. All images have their associated prompts and model name as metadata, which
can be used for model attribution.

5 CROWDSOURCED ADVERSARIAL PLATFORM

Generative and detection models co-evolve: advances in generation demand stronger detectors, which
in turn promote new generation models. To keep benchmarks relevant amid rapid progress, we
introduce OPENFAKE ARENA: a crowdsourced platform where users generate synthetic images to
fool a live detector. Successful examples are added to the benchmark, enabling sustained evaluation.

OPENFAKE ARENA3 s designed as a web-based interactive game to encourage wide participation.
Each round begins with a prompt sampled from our bank of over 3 million. Users respond by
generating a synthetic image using any generative model or editing tool that aligns with the prompt.
A CLIP-based similarity gate verifies prompt-image alignment. If the image passes this check, it is
evaluated by a detector trained on the OPENFAKE dataset. If the detector misclassifies the synthetic
image as real, the user earns a point and the image is added to the benchmark.

The Arena features a real-time leaderboard to gamify the experience and incentivize participation.
The detector is periodically retrained with newly collected data, enabling continual improvement.
Submitted images are periodically reviewed. This human-in-the-loop setup transforms model drift
from a challenge into a feature, allowing the benchmark to evolve organically alongside the state of
generative models. Implementation details and screenshots of the arena are in Section F.

6 BASELINE DETECTOR BENCHMARKS

We evaluate a selection of deepfake detectors on the OPENFAKE dataset, with the goal of assessing
how well existing models generalize to modern synthetic media, especially high-quality images from
diffusion and transformer-based models.

Benchmark models. Our primary detector is SwinV2-Small (Liu et al., 2021b), a hierarchical
vision transformer that has achieved state-of-the-art results on large-scale classification tasks. We
adopt it as the backbone for our supervised detector, trained on OPENFAKE. In addition, we evaluate
two SwinV2 variants trained on external datasets (GenImage and Semi-Truths, chosen based on
relevance from Table 5), a ConvNeXt baseline trained on DRCT taken from (Chen et al., 2024a), and
an EfficientNet-B4 baseline trained on FaceForensics++ from (Yan et al., 2023). For semi-supervised
detection, we include the CLIP-Based Synthetic Image Detector (Cozzolino et al., 2024), which
applies a linear probe over CLIP embeddings with minimal training data. For zero-shot detection, we
use InternVL (Chen et al., 2024b) directly without finetuning.4 Finally, we also test the handcrafted
detector of Corvi et al. (2023) and a hybrid fusion baseline that averages predictions from CLIP and
Corvi2023. Together, these baselines cover a diverse range of architectures, training regimes, and
prior benchmarks, allowing us to compare detectors trained on OpenFake against both legacy and
contemporary approaches.

Results on OPENFAKE. As shown in Table 3, the SwinV2 trained on OPENFAKE is near-perfect,
confirming that modern classifiers are highly reliable when trained on the evaluation distribution.
Separately, we evaluate robustness to compression artifacts and, with artifact-matching augmentation,
the same model attains an F1 of 0.992 on a fully compressed test set (see Section B.2 for more
details). The SwinV2 trained on GENIMAGE is the next strongest and handles many shared open-
source families, but degrades on newer proprietary generators (Grok 2, Midjourney 6, Flux-1.1 pro,

3Redacted URL for anonymity, we provide image examples in Section F.
4We use the InternVL3-38B;
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OPENFAKE
SwinV2

GenImage
SwinV2

S.-Truths
SwinV2

DRCT
ConvNeXt

FF++
EffNet-B4

CLIP-
D-10k+

DMD
Corvi’23

InternVL-3
(zero-shot)

Real (TNR) 0.995 0.955 0.689 0.777 0.516 0.703 0.998 0.431

SD 1.5 1.000 0.936 1.000 0.447 0.529 0.579 0.000 0.849
SD 2.1 1.000 0.998 0.999 0.482 0.453 0.717 0.011 0.900
SD XL 1.000 0.956 1.000 0.426 0.507 0.438 0.001 0.814
SD 3.5 1.000 0.982 1.000 0.324 0.466 0.406 0.000 0.796

Flux 1.0 Dev 1.000 0.967 0.999 0.290 0.450 0.401 0.005 0.748
Flux-1.1-Pro 1.000 0.315 0.975 0.319 0.467 0.596 0.000 0.722
Flux-1.0-Schnell 0.999 1.000 0.998 0.289 0.476 0.503 0.000 0.803

Midjourney 6 1.000 0.090 0.949 0.166 0.486 0.100 0.000 0.884
Midjourney 7 0.994 0.952 0.997 0.264 0.484 0.404 0.001 0.961
DALL·E 3 0.995 0.238 0.927 0.461 0.543 0.394 0.000 0.983
GPT Image 1 0.998 0.772 0.983 0.402 0.442 0.384 0.005 0.932
Ideogram 3.0 1.000 0.993 1.000 0.254 0.481 0.414 0.001 0.844
Imagen 3.0 0.999 0.962 0.998 0.237 0.461 0.286 0.005 0.784
Imagen 4.0 0.996 0.948 0.996 0.228 0.459 0.359 0.003 0.796
Grok 2 1.000 0.142 0.963 0.383 0.463 0.303 0.000 0.805
HiDream-I1 Full 1.000 0.976 0.993 0.332 0.440 0.485 0.000 0.789
Chroma 0.992 0.980 0.995 0.451 0.435 0.298 0.003 0.726

Ideogram 2.0 0.993 0.997 1.000 0.234 0.482 0.777 0.000 0.865
Lumina 1.000 1.000 1.000 0.494 0.355 0.720 0.028 0.983
Frames 0.968 0.816 1.000 0.368 0.392 0.920 0.000 0.912
Halfmoon 0.995 0.953 1.000 0.263 0.353 0.632 0.000 0.832
Recraft v2 0.972 0.699 1.000 0.379 0.443 0.248 0.004 0.929
Recraft v3 0.701 0.288 0.997 0.364 0.497 0.430 0.002 0.912

Average TPR 0.988 0.823 0.992 0.354 0.475 0.443 0.003 0.827

Overall F1 0.992 0.881 0.861 0.449 0.485 0.509 0.005 0.697
Overall ROC AUC 1.000 0.926 0.960 0.616 0.493 0.600 0.487 0.629
Overall PR AUC 1.000 0.949 0.952 0.613 0.493 0.600 0.488 0.586

Table 3: Performance comparison on OPENFAKE across detectors trained on different datasets.
Finetuned (FT) and LoRA variants are grouped under their respective base generators. Generators
shown in blue are out-of-distribution for all detectors. SwinV2 trained on OPENFAKE consistently
outperforms others on unseen generators, while most alternative detectors exhibit high false positive
rates (misclassification of real images).

DALL·E 3), reflecting a distribution gap in the fake images. The SwinV2 trained on SEMI-TRUTHS
achieves high TPRs yet misclassifies many real images, which is consistent with its training data
focused on edits rather than full generation. Legacy or narrow baselines (ConvNeXt/DRCT, EffNet-
B4/FF++) underperform, CLIP-D-10k+ is middling, and Corvi2023 largely predicts “real,” while
zero-shot InternVL is better than older baselines but still trails supervised models. Overall, robust
performance requires training on the correct, broad, and up-to-date image distribution.

Transferability to unseen models. Using the out-of-distribution generators in Table 3 (blue rows),
which were collected from public web sources rather than generated by us, the SwinV2 trained on
OPENFAKE shows the strongest transfer while keeping a high true-negative rate on real images. The
SwinV2 trained on GENIMAGE is competitive on several open-source families but lags on newer
proprietary models, and the SEMI-TRUTHS model attains high TPRs yet mislabels many real images,
so its apparent OOD gains are not reliable. Cross-benchmark tests as seen in Table 6 (Appendix B.1)
reinforce this: when evaluated on GENIMAGE, the OPENFAKE model substantially outperforms
the SEMI-TRUTHS model (Accuracy 0.849 vs. 0.613; F1 0.836 vs. 0.714), and when evaluated on
SEMI-TRUTHS it exceeds the GENIMAGE model (Accuracy 0.920 vs. 0.865; F1 0.947 vs. 0.907),
despite being out-of-domain in both cases. This suggests that while dataset coverage is the main
driver of transferability, there is also some degree of cross-generator generalization, likely because
different models share subtle artifacts; the broader the training distribution, the more likely a detector
can recognize previously unseen generators.
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6.1 DETECTOR IN THE WILD

Performance on benchmarks often differs from performance in real-world settings. For deepfake
detection, evaluation in the wild is particularly challenging. Manually labelling real images is
not always straightforward, since, as discussed in Section 3.1, humans struggle to identify high-
quality fakes. Real images are easier to validate because their authenticity can often be established
through provenance cues such as credits from a reputable source, multiple photos of the same event,
consistent backgrounds, or camera metadata. Images without any such evidence can be discarded as
uncertain. The risk, however, is that the benchmark becomes trivial, with fakes limited to the easiest
cases. With an experienced labeler, the aid of reverse image search, and contextual text (which may
explicitly indicate AI generation), more difficult deepfakes can be identified. Using this approach,
we constructed a small evaluation set of social media images, described in Section 3, containing
1,057 real images and 163 labeled as deepfakes by us, and compared the performance of our SwinV2
baseline trained on OPENFAKE, GENIMAGE, and SEMI-TRUTHS (Table 4), since these were the only
competitive baselines from Table 3.

Metric Train
OPENFAKE

Train
GENIMAGE

Train
SEMI-TRUTHS

TNR 0.976 0.998 0.220
TPR 0.865 0.043 0.908

Accuracy 0.962 0.871 0.312
F1 Score 0.857 0.081 0.261
ROC–AUC 0.978 0.557 0.634

Table 4: Generalization of SwinV2 detectors trained on different benchmarks when evaluated on an
in-the-wild social-media set (1,057 real, 163 fake; see Section 3). Metrics include TNR (real) and TPR
(fake). Training on OPENFAKE yields balanced performance, while GENIMAGE and SEMI-TRUTHS
show strong class biases.

The detector trained on OPENFAKE shows encouraging results. It produces very few false positives,
meaning real images are rarely misclassified as deepfakes, while still identifying 86.5% of the fakes.
Although the evaluation set is small and not without limitations—labels were verified, but some of the
most difficult cases may have been discarded during curation (out of roughly 2000 candidate images,
many were removed, including irrelevant real samples such as screenshots of text or drawings);
the results strongly suggest that OPENFAKE offers superior real-world applicability compared to
existing datasets. This is a promising outcome for the deepfake detection community. Expanding
generator coverage and incorporating image edits, rather than only fully generated images, could
further improve performance and move closer to practical, reliable detection systems.

7 CONCLUSION

We introduced OPENFAKE, a politically grounded benchmark built from three million real images
paired with nearly one million high-quality synthetic counterparts, and extended it with OPENFAKE
ARENA, a crowdsourced adversarial platform for continual updates. Our human perception study
confirmed that recent proprietary generators often fool users, while detectors trained on older datasets
fail against these models. In contrast, detectors trained on OPENFAKE achieved strong in-distribution
performance and promising results on a curated in-the-wild set of social-media images, suggesting
that reliable detection of deepfakes is attainable outside controlled benchmarks.

While performance on some proprietary or lower-quality sources remains uneven, the path forward
is clear: expanding generator coverage and broadening real image diversity (e.g., camera types,
capture conditions) to further improve robustness. By combining high-fidelity benchmarking with
community-driven adversarial submissions, our framework aims to narrow the gap between generation
and detection, equipping researchers and practitioners with tools to confront emerging misinformation
threats in real time.
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8 REPRODUCIBILITY STATEMENT

We have made all components necessary for reproducibility available. Section 4 describes in detail
how both the real and synthetic data were collected and generated, and the complete dataset is
publicly released through a permanent link (anonymous for now). The code used for training and
evaluating all baseline detectors (including model weights) is provided alongside the OPENFAKE
and in-the-wild datasets, ensuring that the reported experiments can be replicated. Appendix E
gives further implementation details, including training procedures, hyperparameters, and compute
resources. These resources should enable independent researchers to reproduce our results and extend
the benchmarks under comparable settings.

REFERENCES

Darius Afchar, Vincent Nozick, Junichi Yamagishi, and Isao Echizen. Mesonet: a compact facial
video forgery detection network. In 2018 IEEE international workshop on information forensics
and security (WIFS), pp. 1–7. IEEE, 2018.

Reza Babaei, Samuel Cheng, Rui Duan, and Shangqing Zhao. Generative artificial intelligence
and the evolving challenge of deepfake detection: A systematic analysis. Journal of Sensor
and Actuator Networks, 14(1), 2025. ISSN 2224-2708. doi: 10.3390/jsan14010017. URL
https://www.mdpi.com/2224-2708/14/1/17.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Jason Baldridge, Jakob Bauer, Mukul Bhutani, Nicole Brichtova, Andrew Bunner, Lluis Castrejon,
Kelvin Chan, Yichang Chen, Sander Dieleman, Yuqing Du, et al. Imagen 3. arXiv preprint
arXiv:2408.07009, 2024.

Yoshua Bengio, Michael Cohen, Damiano Fornasiere, Joumana Ghosn, Pietro Greiner, Matt MacDer-
mott, Sören Mindermann, Adam Oberman, Jesse Richardson, Oliver Richardson, Marc-Antoine
Rondeau, Pierre-Luc St-Charles, and David Williams-King. Superintelligent agents pose catas-
trophic risks: Can scientist ai offer a safer path?, 2025a. URL https://arxiv.org/abs/
2502.15657.

Yoshua Bengio, Tegan Maharaj, Luke Ong, Stuart Russell, Dawn Song, Max Tegmark, Lan Xue,
Ya-Qin Zhang, Stephen Casper, Wan Sie Lee, Sören Mindermann, Vanessa Wilfred, Vidhisha
Balachandran, Fazl Barez, Michael Belinsky, Imane Bello, Malo Bourgon, Mark Brakel, Siméon
Campos, Duncan Cass-Beggs, Jiahao Chen, Rumman Chowdhury, Kuan Chua Seah, Jeff Clune,
Juntao Dai, Agnes Delaborde, Nouha Dziri, Francisco Eiras, Joshua Engels, Jinyu Fan, Adam
Gleave, Noah Goodman, Fynn Heide, Johannes Heidecke, Dan Hendrycks, Cyrus Hodes, Bryan
Low Kian Hsiang, Minlie Huang, Sami Jawhar, Wang Jingyu, Adam Tauman Kalai, Meindert
Kamphuis, Mohan Kankanhalli, Subhash Kantamneni, Mathias Bonde Kirk, Thomas Kwa, Jeffrey
Ladish, Kwok-Yan Lam, Wan Lee Sie, Taewhi Lee, Xiaojian Li, Jiajun Liu, Chaochao Lu, Yifan
Mai, Richard Mallah, Julian Michael, Nick Moës, Simon Möller, Kihyuk Nam, Kwan Yee Ng,
Mark Nitzberg, Besmira Nushi, Seán O hÉigeartaigh, Alejandro Ortega, Pierre Peigné, James
Petrie, Benjamin Prud’Homme, Reihaneh Rabbany, Nayat Sanchez-Pi, Sarah Schwettmann, Buck
Shlegeris, Saad Siddiqui, Aradhana Sinha, Martín Soto, Cheston Tan, Dong Ting, William Tjhi,
Robert Trager, Brian Tse, Anthony Tung K. H., Vanessa Wilfred, John Willes, Denise Wong, Wei
Xu, Rongwu Xu, Yi Zeng, HongJiang Zhang, and Djordje Žikelić. The singapore consensus on
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A OPENFAKE COMPOSITION AND LICENSING

Table 5 summarizes the dataset at the generator level, listing each base model and its LoRA or
finetuned variants with release month, exact image counts, and license category. In total there
are 963,342 synthetic images drawn from Stable Diffusion (1.5/2.1/XL/3.5), Flux (1.0 dev, 1.1
Pro, Schnell), Midjourney (6/7), DALL·E 3, Imagen (3/4), GPT Image 1, Grok 2, Ideogram 3.0,
HiDream, Chroma, and Recraft v3. The real corpus contains 3M filtered LAION-400M images.
Some proprietary and out-of-distribution generators appear with smaller totals because they were
sourced from external collections rather than produced end-to-end.

Licensing and access are made explicit to support downstream compliance. We label sources as
Community, Non-commercial, or Non-compete and include these labels in the release metadata. All
manifests are hosted on the HuggingFace Hub in streaming-friendly formats (Parquet and CSV) with
per-item metadata such as model family, variant, release month, and prompt text.

Source Release (YYYY–MM) # Images Licence

Real (LAION-400M, filtered) 2021–08 ∗3M –

Stable Diffusion 1.5 2022–08 76,510 Community
Stable Diffusion 1.5 (base) 2022–08 20,000 Community
Dreamshaper (FT) 2023–07 36,510 Community
EpicDream (FT) 2023–08 20,000 Community

Stable Diffusion 2.1 2022–12 135,487 Community

Stable Diffusion XL 2023–07 186,666 Community
Stable Diffusion XL (base) 2023–07 40,000 Community
Epic Realism (FT) 2025–06 59,770 Community
Touch of realism (LoRA) 2025–06 32,828 Community
RealVisXL-v5 (FT) 2024–09 29,300 Community
Juggernaut (FT) 2025–05 24,768 Community

Flux 1.0 dev 2024–08 144,788 Non-commercial
Flux 1.0 dev (base) 2024–08 106,796 Non-commercial
Mystic (FT) 2024–10 15,608 Non-commercial
MVC5000 (LoRA) 2025–07 16,244 Non-commercial
Amateur Snapshot Photos (LoRA) 2025–06 4,140 Non-commercial
Realism (LoRA) 2024–08 2,000 Non-commercial

DALL·E 3 2023–10 33,336 Non-compete
Midjourney 6 2023–12 50,000 Non-compete
Imagen 3.0 2024–08 4,032 Non-compete
Flux-1.0-Schnell 2024–08 36,084 Non-commercial
Flux-1.1-Pro 2024–10 29,923 Non-commercial
Recraft v3 2024–10 1,000 Community
Stable Diffusion 3.5 2024–10 139,114 Non-compete
Grok 2 2024–12 9,803 Non-compete
Ideogram 3.0 2025–03 28,495 Non-compete
Midjourney 7 2025–04 3586 Non-compete
GPT Image 1 2025–04 41,315 Non-compete
HiDream-I1 Full 2025–04 27,904 Community
Imagen 4.0 2025–05 10,721 Non-compete
Chroma 2025–08 4,532 Community

Total synthetic – 963,342 –

Table 5: OPENFAKE statistics. Image counts are exact. ∗While we release the entire 3M real images
and prompts, only a balanced subset is fully uploaded to the HuggingFace Hub to match the number
of fake images. The remainder can be downloaded via URLs provided in CSV files on the Hub.
LoRA variants (“LoRA”) and full finetunes (“FT”) are listed on separate, smaller rows directly below
their base models.
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B MORE RESULTS

B.1 CROSS-BENCHMARK GENERALIZATION OF SWINV2

Summary. Table 6 compares SwinV2 detectors trained on three datasets and evaluated across two
external test suites. The OPENFAKE-trained model attains the best out-of-domain balance between
TPR and TNR on both GENIMAGE and SEMI-TRUTHS, translating into stronger Accuracy and F1.
In-domain results (italicized) saturate, as expected, but are less informative about generalization.

Test set Metric Train
OpenFake

Train
GenImage

Train
Semi-Truths

GENIMAGE

TPR 0.771 1.000 0.965
TNR 0.928 1.000 0.261
Accuracy 0.849 1.000 0.613
F1 Score 0.836 1.000 0.714

SEMI-TRUTHS

TPR 0.909 0.830 1.000
TNR 0.962 1.000 1.000
Accuracy 0.920 0.865 1.000
F1 Score 0.947 0.907 1.000

Table 6: Cross-benchmark generalization of SwinV2 detectors. Italicised numbers indicate in-domain
evaluations, where the model is tested on the same dataset it was trained on. TPR = true-positive rate
(synthetic images), TNR = true-negative rate (real images). All values are shown to three decimal
places.

Figure 4: t-SNE visualization of CLIP vision embeddings for 3,500 test images, including both real
and synthetic images from a few generative models. Each point corresponds to an individual image,
and colours indicate the generative model (or “real” for authentic images).

Why OPENFAKE transfers better. We attribute the gains primarily to coverage and recency.
OPENFAKE aggregates diverse, up-to-date generators and visual conditions (including compressions
and photorealistic prompts), reducing shortcut reliance. By contrast, models trained on older or
narrower distributions tend to overfit curation artifacts, which explains the high TPR but poor
TNR observed when SEMI-TRUTHS-trained detectors face newer datasets: many real images are
misclassified as synthetic.

Error patterns and operational trade-offs. The cross-benchmark gaps underscore the importance
of calibrating for deployment goals. A detector with inflated TPR but depressed TNR can look
strong on superficially balanced metrics yet cause unacceptable false-positive rates in real pipelines.
Threshold selection, confidence calibration, and cost-sensitive training are therefore critical when
transferring across domains.
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B.2 ROBUSTNESS TO COMPRESSION ARTIFACTS

Real images (sourced from LAION-400M in our dataset) are typically compressed and carry authentic
JPEG artifacts and blur. In contrast, synthetic images are high-resolution and minimally compressed.
This mismatch creates an obvious signal: detectors may rely on compression differences instead of
true semantic features, thus failing on compressed fakes. To assess this vulnerability, we implemented
a data augmentation pipeline to degrade synthetic images during training, mimicking the distribution
of real images, as done in previous work (Corvi et al., 2023; Wang et al., 2021; Cheng et al., 2024).
This includes random resizing, Gaussian blur, JPEG compression, and Gaussian noise. We then
evaluated the SwinV2 model trained with these augmentations on a fully compressed test set and got
an overall F1 score of 0.992. This demonstrates that the model remains highly accurate even when
the compression signal is neutralized.

C FILTERING AND CAPTIONING OF LAION IMAGES

To curate a relevant subset of real images from LAION-400M, we implemented a two-stage filtering
and captioning pipeline using the vision-language model Qwen2.5-VL. This approach allowed us
to filter politically salient and emotionally impactful content while preserving real-world visual
characteristics (e.g., compression artifacts) crucial for training robust deepfake detectors.

Filtering prompt. The first step used a vision-language reasoning prompt to assess whether each
image depicted (i) real human faces, and/or (ii) politically or emotionally significant events. Many
original LAION captions are noisy or incomplete, so the model was asked to jointly analyze both
image and caption. The prompt was:

Analyze the provided image and its caption: “{caption}”.
Provide detailed reasoning on the following two points:

1. Does the image contain any real human face(s)? Exclude
animations, cartoons, figurines, statues, drawings,
paintings, or video games.

2. Does the image contain content related to political
events, catastrophes, news events, or anything likely
to have high emotional impact or polarization? Exclude
animations, cartoons, drawings, paintings, or video games.

Conclude clearly with either “Humans: yes” or “Humans:
no”, and “Catastrophes: yes” or “Catastrophes: no”.

Only images with at least one “yes” label (human or catastrophe) were retained. This strategy
allowed us to target both portrait-based and event-based misinformation vectors while filtering out
non-photographic and low-impact content.

Captioning prompt. For the selected images, we generated improved prompts to guide synthetic
image generation. These prompts describe the image in a style suitable for text-to-image models,
incorporating visual format and subject matter. The Qwen2.5-VL prompt used was:

Given the image and its caption: “{caption}”, generate
a concise prompt in a single sentence that describes the
image and its format (e.g., photograph, poster, screenshot),
including any people present. Do not mention the caption
directly.

These refined prompts were used for synthetic image generation and are also included in the public
release to support downstream research and reproducibility.

D ETHICS, PRIVACY & LIMITATIONS

While our dataset aims to support robust deepfake detection, it inherits limitations from its sources.
The real image corpus, derived from the LAION crawl (2014–2021), skews toward Western-centric
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and pre-pandemic imagery. Proprietary generative models also reflect aesthetic and cultural biases
from their training data. These imbalances may affect the generalizability of detection models across
diverse global contexts. We document these issues in the HuggingFace Data Card and encourage
contributions from underrepresented regions via our Arena pipeline.

The paper includes details of both the human perception study and the Arena crowdsourcing platform.
No compensation was offered, as participation was voluntary, and both systems were designed to
ensure anonymity and avoid the collection of personal data.

Prompt extraction may introduce semantic noise, and the quality of adversarial data depends on
user participation. Our dataset focuses on visual realism, but does not yet capture multimodal or
context-based misinformation. Fairness across demographic groups and long-term robustness remain
open challenges. We encourage downstream audits and broader evaluation to support responsible
deployment.

E TRAINING DETAILS AND COMPUTE RESOURCES

E.1 COMPUTE RESOURCES AND COST

All experiments were conducted on an internal compute cluster or local workstations with moderate
storage and GPU availability. Below, we detail the computational resources and costs associated with
dataset filtering, image generation, baseline evaluation, and dataset hosting.

Filtering and analysis. The LAION filtering pipeline ran continuously for two weeks on 4 NVIDIA
L40S GPUs (48 GB VRAM each). An additional 2 days of compute on the same setup was used for
prompt selection and vision–language model evaluation, comparing multiple candidate models and
prompt formats.

Synthetic image generation. Images from Stable Diffusion v2.1 and Flux.1.0-dev were generated
on 4 L40S GPUs over a span of 4 days per model. Other models generated images for 1 day. Each
GPU was fully utilized to maximize throughput.

Model training and evaluation. Training the SwinV2 baseline classifier on the OPENFAKE dataset
required approximately 12 hours on a single NVIDIA L40S GPU. Inference for evaluation purposes
was negligible in comparison.

Baseline inference. For baseline evaluation:

• InternVL inference over the full test set was performed over 10 hours on a single RTX8000
GPU (48 GB VRAM).

• CLIP and the Corvi2023 baselines were evaluated in approximately 6 hours on the same
RTX8000 GPU.

Proprietary model generation. Images generated via proprietary APIs incurred a per-image cost
of approximately $0.04 (USD), varying slightly by model and resolution. No GPU compute was
required on our end; generation was offloaded entirely to the remote API services.

Storage and hosting. Dataset preprocessing, metadata formatting, and uploads to Hugging Face
required only CPU cores but substantial storage capacity. The working set size during dataset
preparation exceeded 1TB.

Total estimated GPU compute: ∼4 GPU-months across L40S and RTX8000 class cards. All
compute was performed on institutional resources without incurring cloud costs.

E.2 SWINV2 FINE-TUNING HYPERPARAMETERS

For our main benchmark detector, we finetune microsoft/swinv2-small-patch4-window16-256 on the
OPENFAKE dataset using the HuggingFace Trainer API. All experiments were conducted on a
single L40S GPUs.
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Model architecture. We use the SwinV2-Small transformer backbone with the classifier head
modified to predict two classes: real vs. fake. The model is initialized from ImageNet-1k weights
and fine-tuned end-to-end.

Input resolution. Images are resized to 256× 256 using the default SwinV2 image processor.

Training configuration.

• Optimizer: AdamW

• Learning rate: 5e-5

• Batch size: 32

• Epochs: 5

• Learning rate scheduler: Linear with warmup

Data augmentation. During training we use two augmentation streams. A general geomet-
ric/photometric stream is applied to both real and synthetic images, including random resized
crops, color jitter, small rotations, occasional horizontal flips, and mild Gaussian blur. To neutralize
compression shortcuts, a light degradation stream is applied to synthetic images only, including
resolution downscaling, blur adjustment, low-level Gaussian noise, and JPEG compression with
randomized quality. Transforms are sampled stochastically, and the synthetic-only degradations are
calibrated to match statistics of LAION-derived real images. For compressed test-set evaluation,
synthetic images are post-processed with the same degradation function to simulate internet-style
artifacts; we report accuracy, precision, recall, F1, and ROC AUC.

E.3 GENERATION PARAMETERS FOR OPEN-SOURCE MODELS

We document here the generation settings used to produce synthetic images from open-source models
within the OPENFAKE dataset. This ensures reproducibility and clarity on the diversity of generated
outputs.

We used stabilityai/stable-diffusion-3.5-large to generate synthetic images and
black-forest-labs/Flux.1.0-dev using the same bank of prompts. Both models were
run in bfloat16 precision using their official pipelines—StableDiffusion3Pipeline and
FluxPipeline, respectively—and deployed across multiple GPUs with prompt sharding and
batched inference for scalability. We used the official HugginFace weights for the other models via
the Diffusers Python library.

For all models, the following generation settings were generally applied (there could be slight
modifications based on the recommended parameters for each model):

• Resolution: Randomly sampled from a predefined set of social-media-style sizes: [(1024,
1024), (1024, 512), (512, 1024), (1024, 768), (768, 1024),
(1152, 768), (768, 1152)]

• Guidance scale: Uniformly sampled between 1.5 and 7

• Inference steps: [10, 40]

• Scheduler: Default

These configurations were chosen to maximize diversity and photorealism, while reflecting the
resolution and stylistic variability typical of online content.

F OPENFAKE ARENA

We host the Arena as a Gradio app on Hugging Face Spaces, leveraging their compute resources. A
pretrained CLIP model acts as a prompt-matching gate to ensure image relevance, and successful
submissions that fool the detector are stored in a connected Hugging Face dataset. The detector is a
SwinV2 model trained on the OPENFAKE dataset and periodically updated to reflect new data. We
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also log metadata such as the generative model used and the user ID to support leaderboard tracking.
Prompts are designed to be specific and difficult to spoof, and additional safeguards are in place to
prevent misuse. Upon acceptance, we plan to promote the Arena through social media and at the
conference to encourage broader participation. Figures 5, 7, and 6 show the Arena interface and
leaderboard, along with examples of successful and failed submissions.

Figure 5: OPENFAKE ARENA interface. Users are presented with a prompt and asked to generate an
image that can fool the detector.
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Figure 6: Example of a successful submission. The image aligns with the prompt "The cover
of "Erased" by Jennifer Rush features a dramatic image of a shirtless man with a stormy sky and
lightning, set against a grid background, creating a suspenseful atmosphere". It is incorrectly classified
as real by the detector.
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Figure 7: Example of an unsuccessful submission. The image fails to fool the detector and is correctly
classified as synthetic. The prompt used was "A photograph captures Dianne Reeves performing on
stage in the East Room of the White House during the National Governors Association Dinner on
February 26, 2012, with an audience seated in the foreground."
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G SYNTHETIC IMAGE EXAMPLES FROM OPENFAKE

Figure 8: Sample images from OPENFAKE generated by GPT Image 1.

Figure 9: Sample images from OPENFAKE generated by Ideogram 3.0.
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Figure 10: Sample images from OPENFAKE generated by Flux-1.1-Pro.

Figure 11: Sample images from OPENFAKE generated by Flux.1-Dev.
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Figure 12: Sample images from OPENFAKE generated by Stable Diffusion 3.5.

26


	Introduction
	Related work
	Case Study: Real-World Misinformation and Human Limits
	Human Perception Study

	Dataset Overview & Collection
	Crowdsourced Adversarial Platform 
	Baseline Detector Benchmarks
	Detector in the wild

	Conclusion
	Reproducibility Statement
	OpenFake composition and licensing
	More results
	Cross-benchmark generalization of SwinV2
	Robustness to compression artifacts

	Filtering and Captioning of LAION Images
	Ethics, Privacy & Limitations
	Training Details and Compute Resources
	Compute Resources and Cost
	SwinV2 Fine-Tuning Hyperparameters
	Generation Parameters for Open-Source Models

	OpenFake Arena
	Synthetic image examples from OpenFake

