
HELM: Hierarchical Encoding for mRNA Language
Modeling

Mehdi Yazdani-Jahromi ∗ †

Department of Computer Science
University of Central Florida

yazdani@ucf.edu

Mangal Prakash ∗

Johnson & Johnson Innovative Medicine
mpraka12@its.jnj.com

Tommaso Mansi
Johnson & Johnson Innovative Medicine

tmansi@its.jnj.com

Artem Moskalev ‡

Johnson & Johnson Innovative Medicine
amoskal2@its.jnj.com

Rui Liao ‡

Johnson & Johnson Innovative Medicine
rliao2@its.jnj.com

Abstract

Messenger RNA (mRNA) plays a crucial role in protein synthesis, with its codon
structure directly impacting biological properties. While Language Models (LMs)
have shown promise in analyzing biological sequences, existing approaches fail to
account for the hierarchical nature of mRNA’s codon structure. We introduce Hier-
archical Encoding for mRNA Language Modeling (HELM), a novel pre-training
strategy that incorporates codon-level hierarchical structure into language model
training. HELM modulates the loss function based on codon synonymity, aligning
the model’s learning process with the biological reality of mRNA sequences. We
evaluate HELM on diverse mRNA datasets and tasks, demonstrating that HELM
outperforms standard language model pre-training as well as existing foundation
model baselines on six diverse downstream property prediction tasks on average by
around 8%. Additionally, HELM enhances the generative capabilities of language
model, producing diverse mRNA sequences that better align with the underlying
true data distribution compared to non-hierarchical baselines.

1 Introduction

RNA analysis is becoming increasingly important in molecular biology [40; 27]. Messenger RNA
(mRNA) is of particular interest due to its unique role in protein synthesis [60]. mRNA consists
of triplets of nucleotides, called codons, which directly translate to protein amino acids through a
surjective many-to-one mapping (Figure 1 left). This results in multiple synonymous mRNAs that

∗Equal contribution as first authors.
†This work was done while the author was an intern at Johnson & Johnson.
‡Equal contribution as last authors.

AI for New Drug Modalities at NeurIPS 2024.

encode identical amino acid sequences while exhibiting distinct physical and biological properties at
the nucleotide level [11]. The role of mRNA, serving as an intermediary between DNA and proteins,
underlies its therapeutic potential in applications such as vaccines and gene therapies [12; 52], while
also presenting challenges for analysis and optimization [43].

Language Models (LMs) have emerged as powerful tools for analyzing biological sequences, with
notable successes in protein [23; 24; 39; 34] and DNA [47; 71] research. Despite the importance of
mRNA, the field still lacks specialized LMs tailored for its analysis. Existing RNA LMs [38; 15]
focus on non-coding sequences and do not account properly for codon hierarchy (Fig. 1 right) which,
as we demonstrate, falls short when dealing with mRNA tasks. In this work, we aim to address this
gap in mRNA language modeling by focusing specifically on the unique challenges presented by
mRNA sequences.

Figure 1: Hierarchical encoding of mRNA sequences as a biological prior. Left: Hierarchical structure
of codons for HELM and codon tokenization. The tree diagram illustrates the codon hierarchy used in
the HELM approach, categorizing codons into Start, Coding (grouped by amino acids), and Stop. This
hierarchy informs the loss calculation. The codon tokenizer demonstrates the process of converting
an mRNA input sequence into codon tokens for modeling. Right: Codon prediction probabilities on
a amino acid codon wheel. Segments represent amino acids, bars represent codons. Orange: HELM
approach; Blue: cross-entropy (XE) loss. Bar height indicates probability. Non-hierarchical XE
model assigns high probabilities to non-synonymous codons for masked tokens, while HELM assigns
high probabilities to synonymous codons, even when errors occur.

To address the limitations of existing bio-language modeling methods, we introduce Hierarchical
Encoding for mRNA Language Modeling (HELM), a novel pre-training strategy for mRNA sequences.
Rather than directly adopting natural-language pre-training methods such as Masked Language
Modeling (MLM) [21; 44; 16] or Causal Language Modeling (CLM) [57; 58; 10], HELM begins
by recognizing and formalizing the hierarchical structure of mRNA sequences based on codon
synonymity. HELM modulates the CLM or MLM loss based on a codon’s position in this hierarchy,
treating errors between synonymous codons as less significant than those resulting in different amino
acids. This approach requires minimal modifications to standard pipelines while aligning the model
training process with the intrinsic hierarchical structure of mRNA data (Figure 1 right). In addition,
to facilitate further development of mRNA LMs, we provide a consistent comparison of various
tokenization methods, hierarchical and standard pre-training strategies, and different language model
architectures, including recent Mamba and Hyena models [31; 56].

To demonstrate the practical advantages of HELM, we focus on the important domain of antibody
mRNAs where codon distribution can significantly impact physical and therapeutic properties [70].
We conduct comprehensive experiments, evaluating our hierarchical model against its non-hierarchical
counterparts pre-trained with natural-language CLM and MLM as well as against other state-of-the-art
RNA foundation models. Our results show that hierarchical pre-training yields significantly better
representations of antibody-encoding mRNA and even excels on non-antibody mRNA data. Our
hierarchy-aware model outperforms non-hierarchical counterparts pre-trained with natural-language

2

CLM and MLM as well as other state-of-the-art RNA foundation models by around 8% on average
across six diverse downstream property prediction tasks while requiring up to 2 times fewer model
parameters. Beyond its excellent discriminative performance, we demonstrate that HELM-based
CLM pre-training yields strong generative models capable of producing diverse mRNA sequences
while preserving closer alignment with the true data distribution. Ultimately, HELM addresses the
limitations of current bio-LMs by effectively capturing the hierarchical structure of mRNA as a
strong biological prior, leading to improved performance in both predictive and generative tasks while
requiring minimal modification of the pre-training.

To sum up, we make the following contributions:

• We highlight the importance of biological hierarchy when modeling mRNA sequences and
demonstrate that standard natural-language pre-training methods do not account for this
inherent biological structure, leading to suboptimal performance in mRNA tasks.

• We propose Hierarchical Encoding for mRNA Language Modeling (HELM), a novel pre-
training strategy that incorporates mRNA hierarchical structure into language model pre-
training. HELM modulates the CLM or MLM loss based on codon hierarchy, aligning the
model’s learning process with the biological structure of mRNA sequences.

• We provide a consistent comparison of various tokenization methods, hierarchical and stan-
dard pre-training strategies, and different LM architectures to facilitate further development
of mRNA models.

• We demonstrate the advantages of representation learning with HELM where our method
yields substantial downstream performance improvement on multiple diverse mRNA datasets
spanning property prediction and sequence generation tasks.

2 Related works

Pre-training bio-language models Recent advancements in LMs have significantly improved the
analysis of biological sequences such as DNA, RNA, and proteins [37]. The standard approach for
bio-language modeling adopts pre-training strategies from natural language; state-of-the-art protein or
DNA LMs rely on Masked Language Modeling [44; 39; 20] or Causal Language Modeling [10; 39]
and pre-train representations on large bio-databases [4; 67; 19; 61]. In addition, the modeling
choices of pre-training bio-LMs involve network architecture and tokenization strategy. Regarding
architectures, transformer-based models have been widely adopted [23; 39], while recent works
explore structured state-space [54; 63] and long-convolutional models [48; 47; 46] to better handle
long-range dependencies in biological sequences. Tokenization strategies vary from character-level
approaches [23; 39] to k-mer tokenization [20] and Byte Pair Encoding [71]. These existing pre-
training and modeling choices primarily adapt natural language paradigms to biological sequences,
overlooking the incorporation of inherent biological structures crucial for mRNA analysis. Moreover,
the lack of consistent comparisons between these various approaches hinders the development of
effective mRNA LMs. Our work addresses these limitations with HELM, a pre-training strategy
incorporating mRNA’s hierarchy into the training, and we also provide analysis of various pre-training
and modeling choices to facilitate further development of mRNA LMs.

RNA language models Unlike the many protein and DNA LMs [39; 23; 20; 47], there is a
noticeable lack of models specifically designed for mRNA due to the smaller, specialized datasets
available. Existing RNA models focus on specific RNA types or regions, such as RNA-FM [14] and
RINALMO [55] for non-coding RNAs, UTR-LM [17] and UTRBERT [69] for untranslated regions,
and SpliceBERT [15] for precursor mRNA. While these models are valuable, they are not tailored for
protein-coding mRNAs. Proprietary models such as CodonBERT [38] have been developed but they
do not utilize the natural hierarchy of mRNA sequences. Our work addresses these limitations by
introducing HELM to explicitly incorporate the biological knowledge of mRNA structure into the
pre-training process of a LM.

Modeling hierarchical data Hierarchical relationships are important across various domains, and
several methods have been proposed to model them effectively. In computer vision, approaches
range from embedding-based methods like DeViSE [26], which maximizes cosine similarity between
image and label embeddings, to geometric approaches that rely on hyperbolic spaces [42; 2] or

3

hyperspheres with structural constraints [6; 7]. Hierarchical loss functions, such as hierarchical
cross-entropy (HXE) [8; 28], have been applied to tasks like image classification and astrophysical
transient classification [68]. In natural language processing, hierarchical structures have been modeled
both implicitly through contrastive learning [41; 29] and explicitly using hyperbolic losses [33] or
hierarchical softmax [62]. While these methods show great promise in their respective domains,
they are not tuned for biological data. Our HELM approach addresses this gap by extending the
hierarchical learning to mRNA sequences, effectively capturing the codon hierarchy in the pre-training
process. This demonstrates the potential of incorporating biological priors into language modeling
pre-training, paving the way for more accurate and biologically relevant models in this domain.

3 Hierarchical Cross-Entropy Loss

Hierarchical cross-entropy (HXE) is a technique for training neural networks that incorporates
hierarchical information into the learning process. HXE was originally proposed in computer vision
for image classification [8] tasks, where the data labels can be organized in a hierarchical structure,
such as a tree. When the hierarchy H is structured as a tree, HXE allows for a unique factorization
of the categorical distribution p(C) over the classes in terms of the conditional probabilities along
the path from each class to the root of the tree. Specifically, for any leaf node/class C with a path
C(0) = C, . . . , C(h) = R, the probability of C can be written as p(C) =

∏h−1
l=0 p(C(l) | C(l+1)),

where h is the height of the node C. The conditional probabilities can be expressed in terms of the
class probabilities as:

p(C(l) | C(l+1)) =

∑
A∈Leaves(C(l)) p(A)∑

B∈Leaves(C(l+1)) p(B)
, (1)

where Leaves(C) denotes the set of leaf nodes within the subtree rooted at C. To incorporate
hierarchical information directly into the loss function, the classifier’s output can be factorized
according to the hierarchical structure, and the total loss can be defined as a reweighted sum of
the cross-entropies of these conditional probabilities along the hierarchical path. This leads to the
hierarchical cross-entropy (HXE) loss, effectively incorporating the hierarchical information into the
learning process:

LHXE(p, C) = −
h−1∑
l=0

λ(C(l)) log p(C(l) | C(l+1)), (2)

where λ(C(l)) is the weight associated with the edge between nodes C(l+1) and C(l).

Formalizing the hierarchcy for mRNA sequences We present a novel formalism for constructing
a multi-level hierarchical tree H = (V,E) that captures the structured relationships within mRNA
sequences at the codon level (see Fig. 1 left, Appendix Fig. 4) and well-rooted in biology [18].
The root node R of this tree represents a node corresponding to all codons. This root node has
two immediate child nodes: coding codons Ccoding and non-coding codons Cnon-coding. The non-
coding codons Cnon-coding further branch into two child nodes: the start codon node Cstart and the
stop codon node Cstop. The start codon node Cstart has a single leaf node corresponding to the
codon AUG. The stop codon node Cstop has three leaf nodes corresponding to the codons UAA,
UAG, and UGA. On the other side of the hierarchy, the coding codons Ccoding are organized into
multiple child nodes, each corresponding to a specific amino acid Aj . Each amino acid node Aj

has a number of child nodes, each corresponding to a synonymous codon that encodes for Aj . Let
Codons(Aj) = {Ci1 , Ci2 , . . . , Cim} denote the set of all synonymous codons for the amino acid Aj .
These synonymous codons preserve the same amino acid, allowing for degeneracy in the genetic code.
The complete hierarchical structure is thus represented by the tree H = (V,E), where V includes
the root node, all internal nodes (corresponding to coding and non-coding codons, start/stop codons,
and amino acids), and all leaf nodes (corresponding to individual codons). The edges E define the
hierarchical relationships between these nodes.

Hierarchical MLM and CLM pre-training for mRNA We adapt the Hierarchical Cross-Entropy
to incorporate the biological structure of mRNA into Masked Language Modeling and Causal

4

Language Modeling pre-training strategies. For the hierarchical MLM, we randomly mask a portion
of codons in the input sequence and train a model to predict the masked codons supervising it by the
HXE loss. In the hierarchical CLM, a model predicts the next codon given the previous ones with the
HXE loss function.

The hierarchical structure of mRNA informs the HXE objective, allowing the model’s output token
probabilities to be factorized according to the tree structure. Then, the HXE loss uses Eq.1 and
Eq.2 weighting the MLM or CLM errors differently based on the codon’s position in the hierarchy.
We employ a practical weighting function λ(C) = exp(−αh(C)) where h(C) is the height of the
node C in the hierarchy and (α > 0). The value of α determines how much weight is given to
information at different hierarchical levels. This weighting function is applied in both MLM and
CLM pre-training, allowing HELM to capture both local codon-level information and the global
hierarchical structure of the genetic code. By incorporating this hierarchical loss into pre-training,
HELM encourages the model to learn biologically meaningful representations of mRNA sequences,
which closely aligns the model’s learning with the biological structure of mRNA sequences. Note
that our approach does not require modifying the architecture or tokenization of a model and permits
operating on the standard codon vocabulary. mRNA hierarchy modeling with HXE will be referred
as HELM from here on.

4 Experiments

In our experiments, we first compare various mRNA language modeling configurations by exploring
different tokenization strategies and model architectures (Transformer, Mamba, Hyena) with MLM
and CLM objectives. We demonstrate how HELM significantly improves mRNA property prediction
over its non-hierarchical counterparts. Next, we investigate the effectiveness of hierarchical mRNA
encoding, evaluating it through synonymous sequence clustering. Finally, we present generative
evaluations include assessing generated sequence quality and diversity via Frechet Biological Distance
(FBD), as well as testing the preservation of functional properties in generated mRNA sequences.

Datasets Unlike protein and DNA modality which boast many large-scale datasets, mRNA does
not have many curated high-quality pre-training datasets. For this reason, we curated the OAS
database [50] which contains antibody mRNA data from over 80 different studies with around 2
billion unpaired and 1.5 million paired sequences from various species. Although prior studies
have curated this database on protein level [59; 65; 35] in the context of antibody-protein language
modeling, a high-quality curated version of corresponding mRNA data does not exist. Due to its
origin in high-throughput sequencing studies, the mRNA sequences in OAS exhibit varying levels
of sequencing errors and noise. We conducted an extensive curation process to ensure high-quality
mRNA data for pre-training. Dataset curation details can be found in Appendix A.8. Post-curation,
we end up with 15.3 million mRNA sequences for pre-training mRNA LMs.

For downstream evaluation, we use the following six mRNA datasets, including antibody (Ab)
encoding mRNA and general mRNA sequences:

• Ab1 [1] includes 1200 Ab-mRNA sequences with protein expression labels.
• Ab2 [1] contains 3442 Ab-mRNA sequences with protein expression labels.
• MLOS [38] has 167 viral mRNA sequences with expression in HeLa cells.
• iCodon [22] includes 65357 mRNA sequences with thermostability profiles from humans, mice,

frogs, and fish.
• Tc-Riboswitches [30] consists of 355 riboswitch mRNA sequences with switching factor measure-

ments.
• mRFP [49] has 1459 mRNA sequences with protein production levels for various gene variants in

E. coli.

All downstream evaluation datasets provide regression labels for evaluating the quality of mRNA
property prediction.

Evaluation We ran all models for 3 random data splits (train:val:test split of 70:15:15) and we report
average performance across splits. When evaluating property prediction tasks, we use Spearman rank

5

correlation as a standard metric under commonly used probing methodology [45; 13; 51; 32] with a
TextCNN [36] head to assess representation quality and transferability. For generative evaluation, we
take the metrics used to evaluate generative models for DNA [66; 65] and we adopt them for mRNA
data. We provide comprehensive experimental details in Appendix A.3.

4.1 Pre-training and modeling choices

We first aim to establish a strong non-hierarchical mRNA language model as a baseline. For this, we
aim for consistent comparison between various standard pre-training strategies, different architectures,
and various tokenization methods. We conduct the comparison on the property prediction mRNA
tasks where we pre-train all our language language models on the same curated OAS data and test
them on downstream property prediction tasks.

4.1.1 Experimental details

Pre-training objective To train an mRNA LM, we start with two standard pre-training objectives:
Masked Language Modeling (MLM) and Causal Language Modeling (CLM). MLM is an inherently
bidirectional pre-training method that relies on model learning to capture context from both directions
of a sequence. CLM, on the other hand, is unidirectional, predicting each token based on previous
tokens. We evaluate both objectives to determine their effectiveness in capturing the biological
structure of mRNA sequences.

Model architectures We evaluate various state-of-the-art architectures for sequence modeling:
Transformer [58], Hyena [56], and Mamba [31]. Transformers support both MLM and CLM
objectives, while Hyena and Mamba are primary designed for CLM. All models use 50M parameters,
balancing performance and efficiency. We found that models of this scale can outperforms larger
existing models while maintaining reasonable run-times (see Appendix A.7 and Table 7). Detailed
pre-training information is available in Appendix A.2.

Tokenization Inspired by protein and DNA language modeling, we explored various tokenization
strategies for mRNA sequences: nucleotide, codon-level, and 6-mer. We observed that codon-level
tokenization consistently outperforms other strategies (results in Appendix Sec. A.4). We hypothesize
that the superior performance of codon tokenization stems from codons’ role as the fundamental
units of the genetic code, directly mapping to amino acids during protein synthesis. In addition, the
codon level tokenization allows to naturally capture the variability in wobbling nucleotides, where
changes in the third nucleotide do not always alter the amino acid produced [5; 51]. Here on, we
adopt codon-level tokenization as the default strategy for our models. This way, our vocabulary
includes 43 = 64 codon tokens, representing all possible nucleotide combinations, plus special tokens
for start, stop, padding, masking, and unknown characters.

Baselines We additionally compare trained models against three state-of-the-art public foundation
models: RNA-FM, SpliceBERT, and CodonBERT. While RNA-FM and CodonBERT are 100M
parameter models, SpliceBERT is a 20M parameter model. We choose these baselines as CodonBERT
is the only existing mRNA LM publicly available while SpliceBERT is pre-trained on pre-mRNA,
and RNA-FM is known to be one of the strongest baselines in recent works because of its reported
strong performance across multiple domains [47; 25; 9]. Additionally, we include a simple one-
hot encoding-based baseline to evaluate how much LMs performances surpass basic sequence
representation methods commonly used [32; 9].

4.1.2 Results

We first compare the performance of the transformer-based mRNA language models to state-space
Mamba and long-convolutional Hyena-based architectures. In Table 1, we can see that transformer-
based models outperform Hyena and Mamba on 4 out of 6 datasets, with the transformer CLM
trailing closely behind Mamba on the remaining 2 datasets. The superior performance of transformers
is likely due to the relatively short sequence lengths (∼ 1000 tokens) of mRNA sequences in both
pre-training and downstream datasets. Transformers, with their explicit global attention mechanism
between each pair of tokens, excel at capturing fine-grained interactions in these relatively short
sequences. In contrast, Hyena and Mamba architectures are optimized for handling much longer

6

Table 1: Performance of mRNA LMs trained with standard cross-entropy loss on downstream tasks.
Our models outperform general-purpose RNA baselines across various mRNA tasks. MLM and
CLM show comparable results. Bold: best performance. Italics: second-best. Missing values: model
unable to process due to sequence length limitations.

Model Ab1 Ab2 MLOS iCodon Tc-Riboswitches mRFP
Baseline Models

One-hot 0.431 0.421 0.462 0.152 0.378 0.511
RNA-FM 0.595 0.515 - - 0.504 0.527
SpliceBERT 0.652 0.542 - - 0.418 0.596
CodonBERT 0.686 0.557 0.543 0.350 0.502 0.770

mRNA LMs (Ours)

Transformer XE (MLM) 0.748 0.599 0.653 0.503 0.569 0.753
Transformer XE (CLM) 0.752 0.597 0.611 0.498 0.531 0.815
Hyena XE 0.743 0.594 0.623 0.526 0.517 0.844
Mamba XE 0.742 0.585 0.620 0.509 0.520 0.823

sequences via efficient convolutional or state-space mechanisms and may not fully leverage their
strengths in this shorter sequence regime owing to their implicit handling of sequence dependencies,
despite performing competitively. Given that transformer-based models generally show better
performance than Hyena and Mamba models, we select transformer-based MLM and CLM models
for all subsequent experiments.

Additionally, our results indicate that for the transformer models, both MLM and CLM perform
comparably on 3 out of 6 datasets (Ab1, Ab2, and iCodon), while MLM outperforms CLM on
MLOS and Tc-Riboswitches data, and CLM surpasses MLM on the mRFP dataset. The comparable
performance of MLM and CLM across most cases suggests that the statistical and structural properties
of mRNA are adequately captured by both unidirectional and bidirectional context modeling. This
implies that the underlying biological information in mRNA sequences may be robust to the specific
directional biases introduced by MLM or CLM pre-training, with neither approach consistently
outperforming the other across varied bio-sequence contexts.

We then compare the performance of our transformer, Hyena, and Mamba models against various
foundation model baselines. Table 1 illustrates that our transformer, Mamba, and Hyena-based LMs
outperform all baselines by 5-17 percentage points across all downstream tasks which highlights the
value of our curated mRNA pre-training dataset, tokenization, and architectural design choices.

4.2 HELM improves mRNA property prediction

Next, we evaluate the effect of learning hierarchical mRNA encoding with HELM for the mRNA
property prediction tasks. As can be observed from Table 2, training with biological hierarchical prior
consistently improves model performance for both MLM and CLM objectives on all six datasets
compared to baseline models trained with standard non-hierarchical cross-entropy. For causal
language modeling, HELM-CLM outperforms the non-hierarchical XE-CLM model in five out of
six datasets. For the masked language modeling, HELM-MLM outperforms the non-hierarchical
XE-MLM model in all datasets. Within hierarchy-aware models, we again observe the same trend
that MLM and CLM HELM models perform comparably for most tasks with each performing best
on three of the six datasets.

When and why learning hierarchical mRNA encoding is most effective? Hierarchical HELM
modeling improves the performance in all predictive tasks we considered. However, the extent of
improvement varies across datasets. Greater gains are seen in MLOS, Tc-Riboswitches, and mRFP
datasets, while Ab1, Ab2, and iCodon show smaller improvements (see Table 2). We hypothesize that
this variation is driven by synonymous codon usage bias which indicates the preference for certain
synonymous codons (coding for the same amino acid) to be used more frequently than others due to
factors like gene expression, tRNA availability, or evolutionary pressures [64; 53]. We hypothesize
that datasets with more pronounced synonymous codon usage bias benefit more from learning with

7

Table 2: Performance comparison of HELM vs. XE models. HELM models encoding mRNA hierar-
chy outperform non-hierarchical XE models across all downstream tasks and datasets, highlighting
the importance of hierarchy as a strong biological prior. Bold indicates the best performing model.

Model Ab1 Ab2 MLOS iCodon Tc-Riboswitches mRFP
Transformer XE (MLM) 0.748 0.599 0.653 0.503 0.569 0.753
Transformer HELM (MLM) 0.767 0.609 0.701 0.525 0.626 0.822
Transformer XE (CLM) 0.752 0.597 0.611 0.498 0.531 0.815
Transformer HELM (CLM) 0.760 0.614 0.592 0.529 0.619 0.849

hierarchy as HELM treats amino acids as parent nodes and their synonymous codons as child nodes,
enabling the model to learn codon usage bias by capturing preferences at both the amino acid and
codon levels.

To evaluate synonymous codon usage bias for any dataset, we first calculate the distribution of
synonymous codons for each amino acid and then compute the entropy of codon usage for the
five most frequent amino acids. Lower entropy indicates less uniform codon distribution hence the
preference towards specific codons or codon bias. Appendix Fig. 5 and Appendix Table 5 demonstrate
that MLOS, Tc-Riboswitches, and mRFP datasets have lower entropy, suggesting stronger codon bias,
which aligns with the larger improvements seen in these datasets using HELM models. These findings
suggest that HELM’s hierarchical approach is particularly beneficial for datasets with pronounced
codon usage biases, highlighting its potential for improved mRNA modeling in biologically diverse
contexts.

4.3 HELM improves generative mRNA sequence design

Our HELM-CLM models are inherently generative and can be used for mRNA sequence generation.
We evaluate their ability to produce biologically relevant and diverse mRNA sequences through two
experiments: Frechet Biological Distance and functional properties preservation.

Evaluating sample quality of generated mRNA We adopt the Frechet Biological Distance (FBD)
metric [66] to assess the quality of generated sequences. FBD is a standard generative evaluation
metric which quantifies the similarity between generated and real sample distributions, and is used
for biological sequences. Our experiment uses XE and HELM CLM models to generate 2000 mRNA
sequences encoding antibody D and J regions, conditioned on signal peptide and V regions from
the OAS hold-out dataset. Generated and real mRNAs are translated to protein sequences, from
which we extract embeddings using the ESM-2 model [39]. FBD is computed as the Wasserstein
distance between Gaussian distributions fitted to these embeddings, with lower scores indicating
better alignment with real data. We focus on amino acid (and hence protein) level FBD since the
encoding hierarchy reflects the codon-amino acid relationship.

In the absence of any other existing generative models for mRNA, we benchmark the HELM model
against the non-hierarchical baseline trained with vanilla cross-entropy (XE) loss. As an additional
control, we establish a random baseline by generating sequences randomly, following the approach
of [66]. The random baseline serves as a control to assess the significance of the sequence generation
capabilities of both our HELM model and the XE baseline.

Results in Fig. 2 demonstrate that both the HELM model and the XE baseline significantly outperform
the random baseline, indicating that both models generate mRNA sequences that are meaningfully
aligned with real data distributions. Unsurprisingly, the generative performance varies with generation
temperature, with higher temperatures leading to greater diversity but worse FBD scores. Notably,
HELM consistently achieves better FBD scores than XE across all temperatures, suggesting it
produces sequences more representative of real mRNA data while maintaining generation diversity.
These results demonstrate HELM’s effectiveness in both predictive and generative tasks, highlighting
its potential for improved mRNA sequence design.

Evaluating functional properties of generated mRNA We assess the models’ ability to generate
sequences that maintain functional properties across six datasets from our downstream predictive tasks

8

2120

2130

2140

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
240

250

260

270

280

290

300

310

Temperature

FB
D

HELM
XE
Random

Figure 2: FBD comparison of generative HELM,
XE, and random models across varying temperature.
Higher temperatures increase diversity but worsen
FBD scores. HELM consistently beats XE, suggesting
better alignment with real mRNA data while maintain-
ing diversity.

Figure 3: Percentage MSE reduction: HELM vs XE
models. MSE compares the predicted properties of
generated sequences to the predicted properties of
original sequences. HELM consistently outperforms
non-hierarchical models, indicating better retention of
key mRNA properties in generated sequences.

(Sec. 4.1.2). For each dataset, we select up to 2000 sequences, condition the models on the first third
of each sequence, and task them with generating the remaining two-thirds. To evaluate the retention
of functional properties in generated sequences, we employ pre-trained property prediction models to
estimate task-specific labels, following the protocol established in [66; 3]. We use Mean Squared
Error (MSE) between predicted labels of generated sequences and true labels of corresponding real
sequences as our performance metric, with lower MSE indicating better preservation of functional
properties.

Fig.3 illustrates the relative improvement in MSE for HELM models compared to non-hierarchical
XE models across all datasets. HELM consistently outperforms XE, with improvements ranging
from 2% to 31%. This demonstrates that HELM’s hierarchical encoding better preserves func-
tional properties across diverse tasks and datasets. Notably, we observe greater improvements for
MLOS, Tc-Riboswitches, and mRFP datasets, which aligns with the stronger synonymous codon
usage bias observed in these datasets (as discussed in Sec.4.2). These results further underscore
HELM’s effectiveness in capturing and preserving the biological nuances of mRNA sequences during
generation.

5 Conclusions

In this work, we highlight the importance of biological hierarchy in mRNA language modeling
and show that standard natural language modeling approaches fall short in capturing the biological
structure of mRNA sequences. We introduce HELM, a method to incorporate mRNA’s hierarchical
structure into bio-language model pre-training. By modulating loss based on codon hierarchy, HELM
aligns the learning process with mRNA’s inherent biological structure. In addition, we provide a
consistent comparison of various tokenization methods, pre-training strategies, and model architec-
tures to guide future mRNA LM development. HELM consistently outperforms non-hierarchical
models by an average of 8% across six diverse downstream property prediction tasks with the biggest
improvement observed on datasets with pronounced synonymous codon bias. Moreover, HELM
models demonstrate significantly better generative capabilities than the non-hierarchical generative
LMs enabling generation of more diverse and plausible mRNA sequences.

One limitation of our work is learning hierarchical relationships in Euclidean space, which may limit
the model’s ability to fully leverage the hierarchical prior. In contrast, hyperbolic spaces are naturally
better suited for capturing hierarchical relationships, as they can effectively model the exponential
growth of tree-like structures. This can be explored in future work to improve hierarchical learning
and further enhance mRNA sequence modeling.

9

References
[1] A. Anonymous. Bridging biomolecular modalities for knowledge transfer in bio-language

models. Under review, 2024.

[2] Mina Ghadimi Atigh, Julian Schoep, Erman Acar, Nanne Van Noord, and Pascal Mettes.
Hyperbolic image segmentation. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 4453–4462, 2022.

[3] Pavel Avdeyev, Chenlai Shi, Yuhao Tan, Kseniia Dudnyk, and Jian Zhou. Dirichlet diffusion
score model for biological sequence generation. In International Conference on Machine
Learning, pages 1276–1301. PMLR, 2023.

[4] Amos Bairoch, Rolf Apweiler, Cathy H Wu, Winona C Barker, Brigitte Boeckmann, Serenella
Ferro, Elisabeth Gasteiger, Hongzhan Huang, Rodrigo Lopez, Michele Magrane, et al. The
universal protein resource (uniprot). Nucleic acids research, 33(suppl_1):D154–D159, 2005.

[5] Nils Aall Barricelli. On the origin and evolution of the genetic code i. wobbling and its potential
significance. Journal of Theoretical Biology, 67(1):85–109, 1977.

[6] Björn Barz and Joachim Denzler. Hierarchy-based image embeddings for semantic image
retrieval. In 2019 IEEE winter conference on applications of computer vision (WACV), pages
638–647. IEEE, 2019.

[7] Samy Bengio, Jason Weston, and David Grangier. Label embedding trees for large multi-class
tasks. Advances in neural information processing systems, 23, 2010.

[8] Luca Bertinetto, Romain Mueller, Konstantinos Tertikas, Sina Samangooei, and Nicholas A
Lord. Making better mistakes: Leveraging class hierarchies with deep networks. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 12506–12515,
2020.

[9] Nicholas Boyd, Brandon M Anderson, Brent Townshend, Ryan Chow, Connor J Stephens,
Ramya Rangan, Matias Kaplan, Meredith Corley, Akshay Tambe, Yuzu Ido, et al. Atom-1: A
foundation model for rna structure and function built on chemical mapping data. bioRxiv, pages
2023–12, 2023.

[10] Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[11] Florian Buhr, Sujata Jha, Michael Thommen, Joerg Mittelstaet, Felicitas Kutz, Harald Schwalbe,
Marina V Rodnina, and Anton A Komar. Synonymous codons direct cotranslational folding
toward different protein conformations. Molecular cell, 61(3):341–351, 2016.

[12] NJ Caplen. Gene therapy progress and prospects. downregulating gene expression: the impact
of rna interference. Gene therapy, 11(16):1241–1248, 2004.

[13] Bo Chen, Xingyi Cheng, Pan Li, Yangli-ao Geng, Jing Gong, Shen Li, Zhilei Bei, Xu Tan,
Boyan Wang, Xin Zeng, et al. xtrimopglm: unified 100b-scale pre-trained transformer for
deciphering the language of protein. arXiv preprint arXiv:2401.06199, 2024.

[14] Jiayang Chen, Zhihang Hu, Siqi Sun, Qingxiong Tan, Yixuan Wang, Qinze Yu, Licheng Zong,
Liang Hong, Jin Xiao, Tao Shen, et al. Interpretable rna foundation model from unannotated
data for highly accurate rna structure and function predictions. arXiv preprint arXiv:2204.00300,
2022.

[15] Ken Chen, Yue Zhou, Maolin Ding, Yu Wang, Zhixiang Ren, and Yuedong Yang. Self-
supervised learning on millions of pre-mrna sequences improves sequence-based rna splicing
prediction. bioRxiv, pages 2023–01, 2023.

[16] Xingyi Cheng, Bo Chen, Pan Li, Jing Gong, Jie Tang, and Le Song. Training compute-optimal
protein language models. bioRxiv, pages 2024–06, 2024.

[17] Yanyi Chu, Dan Yu, Yupeng Li, Kaixuan Huang, Yue Shen, Le Cong, Jason Zhang, and
Mengdi Wang. A 5’ utr language model for decoding untranslated regions of mrna and function
predictions. Nature Machine Intelligence, 6(4):449–460, 2024.

10

[18] Suzanne Clancy and William Brown. Translation: Dna to mrna to protein. Nature Education, 1
(1):101, 2008.

[19] Genome Reference Consortium et al. Genome reference consortium human build 38 (grch38).
Database (GenBank or RefSeq), 2013.

[20] Hugo Dalla-Torre, Liam Gonzalez, Javier Mendoza-Revilla, Nicolas Lopez Carranza,
Adam Henryk Grzywaczewski, Francesco Oteri, Christian Dallago, Evan Trop, Bernardo P
de Almeida, Hassan Sirelkhatim, et al. The nucleotide transformer: Building and evaluating
robust foundation models for human genomics. BioRxiv, pages 2023–01, 2023.

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding, 2019. URL https://arxiv.
org/abs/1810.04805.

[22] Michay Diez, Santiago Gerardo Medina-Muñoz, Luciana Andrea Castellano, Gabriel
da Silva Pescador, Qiushuang Wu, and Ariel Alejandro Bazzini. icodon customizes gene
expression based on the codon composition. Scientific Reports, 12(1):12126, 2022.

[23] Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Yu Wang, Llion
Jones, Tom Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, et al. Prottrans: Toward
understanding the language of life through self-supervised learning. IEEE transactions on
pattern analysis and machine intelligence, 44(10):7112–7127, 2021.

[24] Noelia Ferruz, Steffen Schmidt, and Birte Höcker. Protgpt2 is a deep unsupervised language
model for protein design. Nature communications, 13(1):4348, 2022.

[25] Joerg KH Franke, Frederic Runge, Ryan Koeksal, Rolf Backofen, and Frank Hutter. Rnaformer:
A simple yet effective deep learning model for rna secondary structure prediction. bioRxiv,
pages 2024–02, 2024.

[26] Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Marc’Aurelio Ranzato,
and Tomas Mikolov. Devise: A deep visual-semantic embedding model. Advances in neural
information processing systems, 26, 2013.

[27] Xiang-Dong Fu. Non-coding rna: a new frontier in regulatory biology. National science review,
1(2):190–204, 2014.

[28] Ashima Garg, Depanshu Sani, and Saket Anand. Learning hierarchy aware features for reducing
mistake severity. In European Conference on Computer Vision, pages 252–267. Springer, 2022.

[29] Francis Gosselin and Amal Zouaq. Sorbet: A siamese network for ontology embeddings using
a distance-based regression loss and bert. In International Semantic Web Conference, pages
561–578. Springer, 2023.

[30] Ann-Christin Groher, Sven Jager, Christopher Schneider, Florian Groher, Kay Hamacher, and
Beatrix Suess. Tuning the performance of synthetic riboswitches using machine learning. ACS
synthetic biology, 8(1):34–44, 2018.

[31] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

[32] Ameya Harmalkar, Roshan Rao, Yuxuan Richard Xie, Jonas Honer, Wibke Deisting, Jonas
Anlahr, Anja Hoenig, Julia Czwikla, Eva Sienz-Widmann, Doris Rau, et al. Toward generalizable
prediction of antibody thermostability using machine learning on sequence and structure features.
In Mabs, volume 15, page 2163584. Taylor & Francis, 2023.

[33] Yuan He, Zhangdie Yuan, Jiaoyan Chen, and Ian Horrocks. Language models as hierarchy
encoders. arXiv preprint arXiv:2401.11374, 2024.

[34] Brian L Hie, Varun R Shanker, Duo Xu, Theodora UJ Bruun, Payton A Weidenbacher, Shaogeng
Tang, Wesley Wu, John E Pak, and Peter S Kim. Efficient evolution of human antibodies from
general protein language models. Nature Biotechnology, 42(2):275–283, 2024.

11

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

[35] Henry Kenlay, Frédéric A Dreyer, Aleksandr Kovaltsuk, Dom Miketa, Douglas Pires, and Char-
lotte M Deane. Large scale paired antibody language models. arXiv preprint arXiv:2403.17889,
2024.

[36] Yoon Kim. Convolutional neural networks for sentence classification. In Alessandro Moschitti,
Bo Pang, and Walter Daelemans, editors, Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1746–1751, Doha, Qatar, October
2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1181. URL https:
//aclanthology.org/D14-1181.

[37] Jon M Laurent, Joseph D Janizek, Michael Ruzo, Michaela M Hinks, Michael J Hammer-
ling, Siddharth Narayanan, Manvitha Ponnapati, Andrew D White, and Samuel G Rodriques.
Lab-bench: Measuring capabilities of language models for biology research. arXiv preprint
arXiv:2407.10362, 2024.

[38] Sizhen Li, Saeed Moayedpour, Ruijiang Li, Michael Bailey, Saleh Riahi, Lorenzo Kogler-Anele,
Milad Miladi, Jacob Miner, Dinghai Zheng, Jun Wang, et al. Codonbert: Large language models
for mrna design and optimization. bioRxiv, pages 2023–09, 2023.

[39] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, 2023.

[40] Chuang Liu, Qiangqiang Shi, Xiangang Huang, Seyoung Koo, Na Kong, and Wei Tao. mrna-
based cancer therapeutics. Nature Reviews Cancer, 23(8):526–543, 2023.

[41] Hao Liu, Yehoshua Perl, and James Geller. Concept placement using bert trained by transforming
and summarizing biomedical ontology structure. Journal of Biomedical Informatics, 112:
103607, 2020.

[42] Shaoteng Liu, Jingjing Chen, Liangming Pan, Chong-Wah Ngo, Tat-Seng Chua, and Yu-Gang
Jiang. Hyperbolic visual embedding learning for zero-shot recognition. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 9273–9281, 2020.

[43] Yi Liu, Qian Yang, and Fangzhou Zhao. Synonymous but not silent: the codon usage code for
gene expression and protein folding. Annual review of biochemistry, 90(1):375–401, 2021.

[44] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Ro{bert}a: A robustly optimized {bert} pre-
training approach, 2020. URL https://openreview.net/forum?id=SyxS0T4tvS.

[45] Céline Marquet, Michael Heinzinger, Tobias Olenyi, Christian Dallago, Kyra Erckert, Michael
Bernhofer, Dmitrii Nechaev, and Burkhard Rost. Embeddings from protein language models
predict conservation and variant effects. Human genetics, 141(10):1629–1647, 2022.

[46] Artem Moskalev, Mangal Prakash, Rui Liao, and Tommaso Mansi. Se(3)-hyena operator for
scalable equivariant learning, 2024. URL https://arxiv.org/abs/2407.01049.

[47] Eric Nguyen, Michael Poli, Matthew G Durrant, Armin W Thomas, Brian Kang, Jeremy
Sullivan, Madelena Y Ng, Ashley Lewis, Aman Patel, Aaron Lou, et al. Sequence modeling
and design from molecular to genome scale with evo. BioRxiv, pages 2024–02, 2024.

[48] Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-
Sykes, Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, et al. Hyenadna:
Long-range genomic sequence modeling at single nucleotide resolution. Advances in neural
information processing systems, 36, 2024.

[49] Thijs Nieuwkoop, Barbara R Terlouw, Katherine G Stevens, Richard A Scheltema, Dick
De Ridder, John Van der Oost, and Nico J Claassens. Revealing determinants of translation
efficiency via whole-gene codon randomization and machine learning. Nucleic acids research,
51(5):2363–2376, 2023.

12

https://aclanthology.org/D14-1181
https://aclanthology.org/D14-1181
https://openreview.net/forum?id=SyxS0T4tvS
https://arxiv.org/abs/2407.01049

[50] Tobias H Olsen, Fergus Boyles, and Charlotte M Deane. Observed antibody space: A diverse
database of cleaned, annotated, and translated unpaired and paired antibody sequences. Protein
Science, 31(1):141–146, 2022.

[51] Carlos Outeiral and Charlotte M Deane. Codon language embeddings provide strong signals
for use in protein engineering. Nature Machine Intelligence, 6(2):170–179, 2024.

[52] Norbert Pardi, Michael J Hogan, Frederick W Porter, and Drew Weissman. mrna vaccines—a
new era in vaccinology. Nature reviews Drug discovery, 17(4):261–279, 2018.

[53] Sujatha Thankeswaran Parvathy, Varatharajalu Udayasuriyan, and Vijaipal Bhadana. Codon
usage bias. Molecular biology reports, 49(1):539–565, 2022.

[54] Zhangzhi Peng, Benjamin Schussheim, and Pranam Chatterjee. Ptm-mamba: A ptm-aware
protein language model with bidirectional gated mamba blocks. bioRxiv, 2024.

[55] Rafael Josip Penić, Tin Vlašić, Roland G Huber, Yue Wan, and Mile Šikić. Rinalmo: General-
purpose rna language models can generalize well on structure prediction tasks. arXiv preprint
arXiv:2403.00043, 2024.

[56] Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. In International Conference on Machine Learning, pages 28043–28078.
PMLR, 2023.

[57] A Radford. Improving language understanding by generative pre-training. 2018.

[58] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[59] Jeffrey A Ruffolo, Jeffrey J Gray, and Jeremias Sulam. Deciphering antibody affinity maturation
with language models and weakly supervised learning. arXiv preprint arXiv:2112.07782, 2021.

[60] Ugur Sahin, Katalin Karikó, and Özlem Türeci. mrna-based therapeutics—developing a new
class of drugs. Nature reviews Drug discovery, 13(10):759–780, 2014.

[61] Conrad L Schoch, Stacy Ciufo, Mikhail Domrachev, Carol L Hotton, Sivakumar Kannan,
Rogneda Khovanskaya, Detlef Leipe, Richard Mcveigh, Kathleen O’Neill, Barbara Robbertse,
et al. Ncbi taxonomy: a comprehensive update on curation, resources and tools. Database,
2020:baaa062, 2020.

[62] Jetze Schuurmans and Flavius Frasincar. Global hierarchical neural networks using hierarchical
softmax. arXiv preprint arXiv:2308.01210, 2023.

[63] Damiano Sgarbossa, Cyril Malbranke, and Anne-Florence Bitbol. Protmamba: a homology-
aware but alignment-free protein state space model. bioRxiv, pages 2024–05, 2024.

[64] Paul M Sharp and Wen-Hsiung Li. The codon adaptation index-a measure of directional
synonymous codon usage bias, and its potential applications. Nucleic acids research, 15(3):
1281–1295, 1987.

[65] Richard W Shuai, Jeffrey A Ruffolo, and Jeffrey J Gray. Iglm: Infilling language modeling for
antibody sequence design. Cell Systems, 14(11):979–989, 2023.

[66] Hannes Stark, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay,
and Tommi Jaakkola. Dirichlet flow matching with applications to dna sequence design. arXiv
preprint arXiv:2402.05841, 2024.

[67] Baris E Suzek, Hongzhan Huang, Peter McGarvey, Raja Mazumder, and Cathy H Wu. Uniref:
comprehensive and non-redundant uniprot reference clusters. Bioinformatics, 23(10):1282–
1288, 2007.

[68] V Ashley Villar, Kaylee de Soto, and Alex Gagliano. Hierarchical cross-entropy loss for
classification of astrophysical transients. arXiv preprint arXiv:2312.02266, 2023.

13

[69] Yuning Yang, Gen Li, Kuan Pang, Wuxinhao Cao, Xiangtao Li, and Zhaolei Zhang. Deciphering
3’utr mediated gene regulation using interpretable deep representation learning. bioRxiv, pages
2023–09, 2023.

[70] He Zhang, Liang Zhang, Ang Lin, Congcong Xu, Ziyu Li, Kaibo Liu, Boxiang Liu, Xiaopin
Ma, Fanfan Zhao, Huiling Jiang, et al. Algorithm for optimized mrna design improves stability
and immunogenicity. Nature, 621(7978):396–403, 2023.

[71] Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. Dnabert-
2: Efficient foundation model and benchmark for multi-species genome. arXiv preprint
arXiv:2306.15006, 2023.

14

A Appendix

A.1 Codon Hierarchy

Figure 4 shows the formalized codon hierarchy used in Helm pre-training.The root node R of this tree
represents a node corresponding to all codons. This root node has two immediate child nodes: coding
codons Ccoding and non-coding codons Cnon-coding. The non-coding codons Cnon-coding further branch
into two child nodes: the start codon node Cstart and the stop codon node Cstop. The start codon node
Cstart has a single leaf node corresponding to the codon AUG. The stop codon node Cstop has three
leaf nodes corresponding to the codons UAA, UAG, and UGA. On the other side of the hierarchy,
the coding codons Ccoding are organized into multiple child nodes, each corresponding to a specific
amino acid Aj . Each amino acid node Aj has a number of child nodes, each corresponding to a
synonymous codon that encodes for Aj . Let Codons(Aj) = {Ci1 , Ci2 , . . . , Cim} denote the set of all
synonymous codons for the amino acid Aj . These synonymous codons preserve the same amino acid,
allowing for degeneracy in the genetic code. The complete hierarchical structure is thus represented
by the tree H = (V,E), where V includes the root node, all internal nodes (corresponding to coding
and non-coding codons, start/stop codons, and amino acids), and all leaf nodes (corresponding to
individual codons). The edges E define the hierarchical relationships between these nodes.

Figure 4: Formalized tree of the codon hierarchy used for pre-training HELM models

A.2 Pre-training details

We experimented with GPT-2, Mamba, and Hyena architectures pre-trained on a curated dataset.
GPT-2 was trained with both MLM and CLM objective, while Mamba and Hyena were trained
exclusively with CLM, given that Mamba is specifically designed for Causal Language Modeling,
and recent findings show that CLM is superior to MLM for representation learning [48]. The models
are pre-trained with either vanilla cross-entropy loss (vanilla XE) or hierarchical cross-entropy loss
(HXE), also referred to as the HELM model (See Sec. 4.1 in main text).

With codon tokenization, the maximum context length for pre-training is 444 tokens, equivalent
to the longest sequence of 1332 nucleotides in the dataset. However, the models are designed to
support sequences up to 2048 tokens, thanks to a positional embedding layer that scales to 2048
positional embeddings, offering flexibility for future use with longer sequences without architectural
changes. All models were pre-trained for 40 epochs on 8 Nvidia A100 GPUs. For downstream
tasks, a 1 million-parameter TextCNN[36] head was used for fine-tuning, following common probing
techniques[45; 13; 51; 32].

All models are designed to have approximately 50 million parameters. GPT-2 used 10 layers with a
hidden size of 640 and an intermediate size of 2560. For position embedding, we follow the strategy
used in GPT-2. We employ an embedding layer and add the embedded positional embeddings to the
token embeddings. This approach is consistent across all models in our study.

Although GPT-2 supports CLM by design, we use attention without causal masking for creating MLM
variant of it. We employ the AdamW optimizer with a learning rate scheduler using linear warmup
and cosine decay. Initially, we use a learning rate of 1e-3 for all models. For hierarchical HELM
models trained with HXE loss, we reduced the learning rate to 1e-4 for all models to accommodate
the smaller scale of the loss compared to XE. We experimented with three different α values for HXE:
0.2, 0.4, and 0.6 (See Sec. 3 in main text for details) with α = 0.2 performing the best overall.

15

All models are trained using 8 NVIDIA A100 GPUs, each with 80GB of GPU memory. We utilized
mixed-precision training (AMP) to improve computational efficiency. The distributed training setup
allowed us to effectively use a batch size of 1024 (128 per GPU across 8 GPUs).

We initially experimented with longer training durations but found no significant improvement beyond
40 epochs. Therefore, all models are trained for 40 epochs to ensure consistent comparison and
efficient use of computational resources. The hyperparameters used for training are summarized in
the following table:

Table 3: Hyperparameters for trained LM Models
Hyperparameter GPT-2 Mamba Hyena
Number of layers 10 40 7
Hidden size 640 256 768
Intermediate size 2560 1024 3072
Batch size 1024 1024 1024
Learning rate (XE) 1e-3 1e-3 1e-4
Learning rate (HXE) 1e-4 1e-4 1e-4
Minimum learning rate 1e-5 1e-5 1e-6
Weight decay 0.1 0.1 0.1
Number of epochs 40 40 40
Vocabulary size 70 70 70

A.3 Downstream task finetuning details

To evaluate the effectiveness of our pre-trained LMs on downstream tasks, we employ probing
approach [45; 13; 51; 32] using TextCNN [36]. This allows us to assess the quality and transferability
of the learned representations across various downstream predictive tasks.

In our implementation of TextCNN, we set the embedding size to 640 to match the hidden size of our
models, ensuring consistency across all probing experiments. The convolutional layer size is fixed at
100, which we find to provide a good balance between model capacity and computational efficiency.
To focus solely on evaluating the quality of the learned representations, we freeze the weights of
the pre-trained LMs, using them as fixed feature extractors to generate embeddings for the probing
experiments. We conduct a comprehensive hyperparameter search to optimize the performance of the
TextCNN probe on each downstream task. Our search strategy employs a grid search methodology,
exploring a range of learning rates and batch sizes. Specifically, we investigate learning rates of
3e-4, 1e-4, and 1e-5, which span a reasonable range for finetuning neural networks. For batch sizes,
we examine values of 8, 16, 32, and 64, allowing us to balance between update frequency and the
stability of gradient estimates. The combination of three learning rates and four batch sizes results in
twelve distinct configurations for each downstream task. We train the TextCNN probe using each
of these configurations and evaluate their performance on a hold-out validation set to choose the
best hyperparameters. For our final results, we report the performance as measured on a separate
test set. This approach ensures that we are comparing the most optimized versions of each probing
model, providing a fair assessment of the underlying representations learned by our pre-trained
models. For all datasets, whether they come with predefined splits or not, we maintained a consistent
data partitioning strategy. We divide the data into training, validation, and test sets with ratios of
0.75, 0.15, and 0.15, respectively. This split ensures a substantial portion of data for training while
allocating sufficient samples for validation and testing. In cases where the datasets for downstream
tasks does not come with predefined train-validation-test splits, we implement a robust splitting
strategy. We randomly divide the data into training, validation, and test sets, maintaining consistent
proportions across all tasks. To account for potential variability introduced by this random splitting,
we repeat the entire process using three different random seeds. The reported results for these tasks
represent the average performance across these three splits, providing a more reliable estimate of the
model’s generalization capabilities. This comprehensive finetuning and evaluation process allows us
to systematically and fairly assess the transferability and quality of the representations learned by our
pre-trained models.

16

A.4 Tokenization Strategy Experiments

We conducted experiments to compare the performance of different tokenization strategies on various
mRNA datasets, including nucleotide-level, 6-mer, and codon-level tokenization. The experiments
were performed using a 50M parameter GPT-2 model with a Masked Language Modeling (MLM)
objective. Other experimental setups, such as data processing, training pipelines, and evaluation
metrics, were kept consistent across all models to ensure a fair comparison of tokenization strategies.

A.4.1 Tokenization Strategies

• Nucleotide-level Tokenization: This strategy treats each nucleotide (A, C, G, U) as a single
token, resulting in a vocabulary size of 4.

• 6-mer Tokenization: In this approach, sequences are split into overlapping or non-
overlapping chunks of six nucleotides, generating a more complex vocabulary.

• Codon-level Tokenization: Codon-level tokenization represents sequences as triplets of
nucleotides, resulting in a vocabulary of 64 codons, corresponding directly to amino acids.

A.4.2 Results

Table 4 presents a comparison of the performance of different tokenization strategies across several
mRNA datasets in terms of Spearman rank correlation (higher the better). Codon-level tokeniza-
tion generally performs best across most datasets, except for mRFP, where 6-mer tokenization
outperformed codon-level tokenization.

Table 4: Comparison of tokenization strategies across different mRNA datasets. Codon-level tok-
enization generally performs best, with 6-mer outperforming on mRFP.

Dataset Nucleotide-level Codon-level 6-mer
Ab1 0.699 0.747 0.733
Ab2 0.569 0.599 0.582
MLOS 0.528 0.654 0.625
Tc-Riboswitches 0.533 0.570 0.562
mRFP 0.820 0.754 0.857

The results show that codon-level tokenization captures the biological significance of mRNA se-
quences and is more suitable for most tasks. However, on MRFP and iCodon datasets, 6-mer
tokenization yielded better performance.. The 50M parameter GPT-2 model with the MLM objective
was used in all experiments, and all other experimental setups remained the same to facilitate fair
comparison. For further experimental details and setup, please refer to this appendix.

A.5 Entropy Details

Table 5 reveals that MLOS, Tc-Riboswitches, and mRFP datasets exhibit lower entropy values,
indicating stronger codon usage bias compared to Ab1, Ab2, and iCodon datasets which have higher
entropy and more uniform codon distributions. This observation aligns with our hypothesis, as
HELM models achieve greater improvements in datasets with skewed codon usage, suggesting that
hierarchical learning better captures and leverages these codon biases for enhanced accuracy.

A.6 Impact of the choice of α for HXE loss

In this section, we present a detailed analysis of the impact of the hyperparameter α on the perfor-
mance of models trained using the Hierarchical Cross-Entropy (HXE) loss. The α parameter in the
HXE loss plays a crucial role in weighting the importance of hierarchical relationships during model
training. Specifically, α controls how much weight is given to mistakes that violate the hierarchical
structure of mRNA sequences, where codons are organized based on their synonymous relationships.

As explained in Sec. 3, the HXE loss leverages the hierarchical nature of mRNA sequences by
applying differential penalties to the prediction errors based on their position within the hierarchy.

17

Table 5: Average entropy values of synonymous codon distributions for the top five most frequent
amino acids in each dataset. Datasets with lower entropy values, such as MLOS, Tc-Riboswitches,
mRFP, and iCodon, exhibit stronger synonymous codon usage bias, correlating with the enhanced
performance of hierarchical HELM models on these datasets (see Fig. 5 and Table 2).

Dataset Average Entropy (top-5)

Ab1 1.81
Ab2 1.81
MLOS 1.62
iCodon 1.77
Tc-Riboswitches 1.63
mRFP 1.20

The weighting function λ(C) is λ(C) = exp(−αh(C)), where h(C) is the height of the node C and
α > 0, determines the extent to which errors are penalized. Higher values of α increase the penalty
for mistakes higher up in the hierarchy (e.g., confusing codons that code for different amino acids),
while lower values of α result in a more uniform penalty across the hierarchy.

Table 6: Ablation study on HXE loss α across downstream tasks
Hyperparameter Ab1 Ab2 iCodon mRFP Tc-Riboswitches
Transformer HELM (MLM)

α = 0.2 0.767 0.609 0.525 0.822 0.626
α = 0.4 0.767 0.608 0.511 0.831 0.653
α = 0.6 0.762 0.599 0.508 0.796 0.582

Transformer HELM (CLM)

α = 0.2 0.760 0.614 0.529 0.849 0.619
α = 0.4 0.762 0.608 0.527 0.841 0.551
α = 0.6 0.752 0.592 0.526 0.798 0.580

To assess the impact of α we evaluated the performance of the transformer models trained with the
HXE loss using three different values of α: 0.2, 0.4, and 0.6. These values were chosen to explore
a range of hierarchical weighting, from mild to strong penalties for hierarchical errors. Table 6
summarizes the performance of the models on each downstream task. We observe the following
trends:

• α =0.2: At this lower value of α, the model applies relatively mild penalties for hierarchical
mistakes. The performance across most tasks is stable, indicating that even a modest
incorporation of hierarchical weighting can enhance the model’s performance by aligning
with the biological structure of mRNA sequences.

Figure 5: Average entropy of synonymous codon distributions correlates with HELM model performance im-
provement. Lower entropy, indicating stronger codon bias, is observed in datasets like MLOS, Tc-Riboswitches,
and mRFP, where HELM outperforms XE models.

18

• α =0.4: Increasing α to 0.4 generally results in improved performance for MLM, particularly
for the mRFP and Tc-Riboswitches tasks. This suggests that at this level, the model benefits
from a stronger alignment with the hierarchical structure, which is critical for these tasks.
However, the performance on some tasks (e.g., Ab1 and Ab2) remains stable, indicating that
the benefit of increased α might be task-dependent.

• α =0.6: When α is further increased to 0.6, we observe a decline in performance for several
tasks, including mRFP and Tc-Riboswitches. This suggests that an overly strong hierar-
chical penalty can restrict the model’s flexibility, leading to overfitting to the hierarchical
relationships and a loss of generalization across diverse tasks.

Thus, our experiments show that a moderate value of α (0.2 to 0.4) generally yields the best results
across the diverse set of tasks. This value strikes a balance between enforcing hierarchical structure
and maintaining model flexibility.

A.7 Scalability Experiments

In this section, we provide the details of our experiments with three GPT-2-based models: 20 million
(20M), 50 million (50M), and 100 million (100M) parameters. All models were trained using the
HELM framework with a Causal Language Modeling (CLM) objective. The performance was
evaluated on downstream mRNA property prediction tasks.

A.7.1 Model Configurations

• 20M Model: This model consists of 12 transformer layers, each with hidden size of 384
and intermediate size of 1536.

• 50M Model: This model consists of 10 transformer layers, each with a hidden size of 640
and intermediate size of 2560.

• 100M Model: This model consists of 14 transformer layers, each with a hidden size of 768
and intermediate size of 3072.

All models were trained on the same mRNA dataset using the HELM-modified CLM objective, and
we maintained a consistent training pipeline across all experiments.

A.7.2 Results

Figure 6: Performance comparison of GPT-2 models with 20M, 50M, and 100M parameters trained
using the HELM framework.

This analysis illustrates the scalability of HELM and highlights the balance between model size and
performance efficiency (see Fig. 6. The diminishing returns beyond 50M parameters suggest that
optimal model sizes for mRNA tasks may lie within the 50M-100M parameter range.

19

The training duration for each model configuration is illustrated in Figure 7.

Figure 7: Average Pre-training Time Across Models with Varying Parameter Counts

A.8 Pre-training data curation and statistics

As discussed in Sec. 4 in main text, we ensure that the mRNA data used for pre-training our models
in this study is of the highest quality, with careful attention to preserving the biological diversity
and representativeness of the sequences. We conduct statistical analyses to confirm that the curated
dataset maintains a balanced representation of gene types, comparable to the original OAS human
dataset and did not introduce any biases in the gene representation.

First, we filtered sequences based on the ANARCI status annotation in the dataset, excluding those with
unusual residues, indels, truncations, or a lack of conserved cysteines, which are often problematic.
We further refined our selection by focusing only on sequences with a V and J identity greater than
0.7, ensuring a high degree of similarity to known reference sequences. Additionally, we retained
only those sequences labeled as productive and complete vdj, indicating they are fully functional and
contain complete variable, diversity, and joining regions. For the purpose of this study, we restricted
the dataset to human sequences only. Recognizing that the paired sequences in the database are
significantly fewer in number compared to unpaired ones, we unpaired these sequences to increase
the dataset’s size and diversity. We then performed sequence similarity analysis separately on paired
and unpaired sequences to eliminate redundancy with a threshold of 0.5. To maintain a balanced
representation, we manually adjusted the number of heavy and light chains. Finally, we compared
the gene frequencies of heavy and light chains in our curated dataset against the original human
OAS dataset to ensure that our curation process did not introduce artificial overrepresentation or
underrepresentation of any gene types. This process yields 15.3 million sequences with 7.7 million
heavy and 7.6 million light chains each.

The following figures present the distribution of gene types for heavy and light chains in both the
original and curated datasets, as well as a breakdown of heavy and light chain numbers, including
Kappa (K) and Lambda (L) isotypes.

20

Figure 8: Comparison of gene distributions between the original OAS human data and the curated
dataset. (a) shows the gene distribution for heavy chains, and (b) shows the gene distribution for light
chains. (c) illustrates the balanced numbers of heavy and light chains, including the distribution of
Kappa and Lambda isotypes, along with V-allele distribution.

21

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction section carefully convey the paper’s contributions
and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

22

Justification: Limitations of the work was discussed in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: There is no theoretical analysis in this work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [No]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.

23

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental settings and details are availble in the appendix of this work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All compute resources are mentioned in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

25

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: No possible violation exists in this study.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.

26

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

27

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Related works
	Hierarchical Cross-Entropy Loss
	Experiments
	Pre-training and modeling choices
	Experimental details
	Results

	HELM improves mRNA property prediction
	HELM improves generative mRNA sequence design

	Conclusions
	Appendix
	Codon Hierarchy
	Pre-training details
	Downstream task finetuning details
	Tokenization Strategy Experiments
	Tokenization Strategies
	Results

	Entropy Details
	Impact of the choice of for HXE loss
	Scalability Experiments
	Model Configurations
	Results

	Pre-training data curation and statistics

