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Abstract

Graph representation learning is central for the

application of machine learning (ML) models to

complex graphs, such as social networks. Ensur-

ing ‘fair’ representations is essential, due to the

societal implications and the use of sensitive per-

sonal data. In this paper, we demonstrate how

the parametrization of the CrossWalk algorithm

influences the ability to infer a sensitive attributes

from node embeddings. By fine-tuning hyper-

parameters, we show that it is possible to either

significantly enhance or obscure the detectabil-

ity of these attributes. This functionality offers

a valuable tool for improving the fairness of ML

systems utilizing graph embeddings, making them

adaptable to different fairness paradigms.

1. Introduction

The expanding application of machine learning (ML) sys-

tems across various sectors often leads to disparate impact

on different subgroups, frequently disadvantaging minorities

or marginalized groups (Barocas & Selbst, 2016; Angwin

et al., 2016; Angwin & Parris, 2016; Kaplan et al., 2022).

In the context of social networks, these ML systems han-

dle highly personal data and risk negatively impacting lives

(Angwin & Parris, 2016; Mello-Klein, 2022; Kaplan et al.,

2022; Hao, 2021).

A common pre-processing step in ML pipelines for large

and complex graphs, like social networks, is representation

learning, where each node is mapped to a fixed-dimensional

real vector that captures relevant structural properties (Xu,

2021). Methods for learning node representations include

various approaches, with random walks being a common

technique exemplified by DeepWalk (Perozzi et al., 2014)

and node2vec (Grover & Leskovec, 2016). DeepWalk uti-

lizes uniformly random walks to capture network structures
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while node2vec introduces hyperparameters to adapt the

walk strategies for better embeddings in different configura-

tions (Xu, 2021).

Khajehnejad et al. (2022) introduced CrossWalk to make

the node embeddings generated by node2vec fairer. In par-

ticular, the input vertices are assumed to have sensitive

attributes, such as gender or ethnicity, and the random walk

is biased to walk towards group boundaries. This intro-

duces a trade-off between the fairness properties of the node

embeddings and the ability for the node embeddings to ac-

curately capture the original graph structure. However, the

authors do not provide clear guidelines for parameterizing

their algorithm and do not evaluate fairness beyond the dis-

parity metric. In our work, we address these limitations

and evaluate CrossWalk using various parametrizations and

under different notions of fairness. Our contributions are

threefold:

• We demonstrate how CrossWalk can be parameterized

to adjust the detectability of sensitive attributes from

node embeddings, making it either more difficult or

easier to recover these attributes.

• We analyze the impact of fairness improvements on

embedding quality by including a non-sensitive control

attribute in our investigations.

• We provide an integrated implementation to apply and

evaluate both CrossWalk and node2vec, enabling easy

comparison of their embeddings.

2. Related Work

2.1. Fairness

In the machine learning literature, the terms ‘fair’ or ‘just’

are often used interchangeably, but they have different mean-

ings in moral philosophy: Fairness is subjective and depen-

dent on personal perception, whereas justice is objective,

relying on external standards such as laws or other rules.

This distinction is relevant when defining ML ‘fairness met-

rics’, which do not measure subjective fairness, but align

more with the philosophical concept of justice (Kordzadeh

& Ghasemaghaei, 2022; Colquitt & Rodell, 2015; Goldman

& Cropanzano, 2015).

Fairness in ML typically involves grouping the population

based on ‘sensitive attributes’ like ethnicity, gender, or age
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(Mehrabi et al., 2022; Barocas & Selbst, 2016; Kuppler

et al., 2021). In our work, we focus on two concepts for

fair ML: procedural justice and distributive justice. Proce-

dural justice concerns just processes (Rawls, 1999; Miller,

2023), aiming to prevent ML systems from using sensitive

attributes (Kusner et al., 2017; Grgic-Hlača et al., 2016).

This approach faces challenges: (1) the system should not

infer group membership from non-sensitive attributes, and

(2) excluding data might worsen results (Barocas & Selbst,

2016; Grgic-Hlača et al., 2016; Kozyrkow, 2023).

In contrast, distributive justice focuses on the just allocation

of outcomes (Rawls, 1999; Miller, 2023), ensuring similar

performance across sub-groups (Mehrabi et al., 2022; Ko-

rdzadeh & Ghasemaghaei, 2022; Kuppler et al., 2021). The

choice between procedural and distributive justice depends

on the use-case, highlighting the need for a holistic approach

in ethical applications of ML (Kordzadeh & Ghasemaghaei,

2022; Colquitt & Rodell, 2015; AI HLEG, 2019).

2.2. Learning Graph Representations

In the context of our work, the goal of representation learn-

ing is to create an embedding, mapping graph nodes to

fixed-dimensional real vectors while preserving node rela-

tions and features (Perozzi et al., 2014; Grover & Leskovec,

2016). This enables the application of standard statistical

and ML approaches. Node similarity can be defined by

homophily ± similar neighbors, or structural equivalence ±

similar neighborhood structures.

A common method for learning embeddings uses the Skip-

Gram model (Mikolov et al., 2013), often applied in natural

language processing. In this analogy, nodes are ‘words’ and

walks are ‘sentences’ (Perozzi et al., 2014; Tang et al., 2015;

Grover & Leskovec, 2016). Under this model, the strategy

that produces the walks is important.

DeepWalk performs random walks by uniformly sampling

nodes and their neighbors (Perozzi et al., 2014). node2vec

generalizes the sampling process by using edge weights as

transition probabilities and introducing two hyperparameters

p and q. The parameter p controls exploration away from

the walk’s root, while q balances between homophily and

structural equivalence (Grover & Leskovec, 2016).

CrossWalk (Khajehnejad et al., 2022) employs a fairness

intervention before learning representations with node2vec.

It groups nodes by a sensitive attribute and adjusts transition

probabilities to favor crossing group boundaries, reducing

the distance in embedding space between nodes from differ-

ent groups. CrossWalk uses two hyperparameters, α and β.1

The parameter α controls the likelihood of crossing group

boundaries, while β encourages visits near group bound-

aries.

1Khajehnejad et al. (2022) use the names α and p, we
changed p to β to avoid confusion with node2vec’s p.

3. Experimental setup

3.1. Datasets

Obtaining diverse graph datasets with multiple attributes

per node proved challenging. To adress this, we utilized

demographic-rich data from the Pokec social network and

created multiple controlled subgraph datasets to evaluate

CrossWalk in different settings.

The base of our datasets is the Pokec social network dataset,

a collection of anonymized user data, including attributes

like age, place of living, and connections with other users

(Takac & Zabovsky, 2012), sourced from SNAP (Leskovec

& Krevl, 2014). The total graph comprises over 1.6 million

nodes and over 30 million edges (Takac & Zabovsky, 2012).

In our experiments, we focus on the attributes age and lo-

cation, and we select only nodes where these attributes are

available. Preliminary analysis revealed that nodes with

similar attributes tend to be more densely connected.

We define three categories of subgraphs: (1) distinct: small

towns characterized by few connections between each other,

due to their geographical separation; (2) semi-distinct: clus-

ters of well-connected small towns in geographic proxim-

ity, with few connections between geographically distant

groups; and (3) mixed: adjacent city districts within the

same urban area.

Table 1. Summary of the experiment data. Each category consists

of three subgraphs with varying numbers of nodes, edges, and

location groups.

Sub- #Nodes #Edges #Groups

Graph Location Age

D
is

ti
n

ct 0 2,504 10,685 3 3

1 20,927 127,329 4 3

2 24,228 145,488 8 3

S
em

i 0 9,240 33,961 4 3

1 32,640 183,478 12 3

2 35,086 232,304 14 3

M
ix

ed

0 15,677 26,339 5 3

1 32,973 180,788 8 3

2 49,222 138,405 12 3

For each category, we compile three different datasets with

manually selected locations based on geographical prox-

imity. This approach allowed us to control the number of

connections between nodes from different locations, cre-

ating ‘easier’ (distinct category) and ‘harder’ (mixed cate-

gory) node classification problems. We observed that lo-

cations are internally well-connected, and geographically

close locations share more connections than geographically

distant ones. An example of this can be seen in Figure 6

in the appendix, which illustrates a graph from the semi-
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distinc category. This pattern of internal connectivity and

proximity-based connections holds across all other datasets.

In addition, we categorize the age attribute into three groups:

(a) 16-18 years, (b) 19-21 years, and (c) 22 years and older,

to obtain differing group sizes and approximately equal lev-

els of interconnectedness that are more stable across the

different subgraph categories. With this, we can analyze

how the performance of the CrossWalk algorithm changes

under different pre-conditions, and how the generated repre-

sentations perform with respect to a non-sensitive attribute.

Table 1 summarizes the different controlled subgraph selec-

tions used in our experiments.

3.2. Experimental Pipeline

Our experimental pipeline is structured as follows:

1. Dataset selection: We choose a subgraph from one of

the three categories: distinct, semi-distinct, or mixed.

2. CrossWalk biasing: We select parameters (α and β)

and a sensitive attribute (‘location’ or ‘age’) to bias the

transition probabilities within the graph.

3. node2vec embedding: We run the node2vec algorithm

with a set of parameters (p and q) to generate node

embeddings through a collection of random walks.

4. Attribute prediction: From the resulting node embed-

dings, we predict either the sensitive attribute or a

control attribute (‘location’ or ‘age’) using the Label

Propagation algorithm (Zhu & Ghahramani, 2002) with

50% of nodes labeled. We employed 25-fold cross-

validation for robust performance estimation.

The effect of the hyperparameters of node2vec (p, q) and

CrossWalk (α, β) is summarized in Table 2. We evaluated

all combinations of the hyperparameters with the following

values:

± p, q: 0.1, 0.5, 1, 5.0, 10.0

± α: 0.01, 0.25, 0.5, 0.75, 0.99

± β: 1, 2, 3, 5, 8, 11, 15

We further alternate between using location and age as the

sensitive attributes to assess the adaptability of Crosswalks’s

fairness intervention. The source code to create controlled

subgraph datasets, to bias the transition probabilities, to

generate the random walks, and to perform the experiments

is available under an open-source license.2

2https://github.com/jasperforth/fairgraphwalk-experiments

Table 2. Effect of the hyperparameters in node2vec (p, q) and

CrossWalk (α, β).

Param. Effect

p

Controls walk distance from root.

p < min(q, 1) for local revisits

p > max(q, 1) for exploration

q

Controls notion of similarity.

q < 1 for DFS style (homophily)

q > 1 for BFS style (structural equivalence)

α

Controls group boundary crossing.

Higher values make crossing group bound-

aries more likely.

β

Encourages walks towards nodes on group

boundaries. Higher values correspond to

stronger encouragement.

3.3. Evaluation Method

Our evaluation focuses on three key aspects: (i) aware-

ness, (ii) disparity, and (iii) classification performance. The

baseline for our analysis consists of embeddings created

by node2vec without CrossWalk biasing. Since node2vec

embeddings are produced without using node attributes, this

baseline helps us analyze the effect of CrossWalk’s fairness

intervention.

Let G = (V,E) be a graph where each node v ∈ V is associ-

ated with a sensitive attribute and a control attribute, and the

nodes are partitioned into C distinct groups 1, . . . , C based

on the sensitive attribute. For each group i ∈ {1, . . . , C}
defined by the sensitive attribute, we write Qi ∈ [0, 1] for

the ability to predict it, measured as F1 score of Label Prop-

agation, and let Q∗

i
∈ [0, 1] be the corresponding prediction

F1 score for the control attribute, based on the same sensi-

tive attribute groups. We use the following metrics in our

evaluation:

Awareness. Defined as max(Qi : i ∈ {1, . . . , C}), this

metric captures the ability to infer group membership from

the embeddings. Lower awareness indicates better procedu-

ral justice.

Disparity. Following Khajehnejad et al. (2022), we mea-

sure disparity as var(Qi : i ∈ {1, . . . , C}). This metric

compares the classification F1 score across different groups,

with lower disparity indicating better distributive justice.

Performance. We use performance as mean(Q∗

i
: i ∈

{1, . . . , C}), to measure the ability of correctly predicting

the control attribute across sensitive attribute groups. If per-

formance stays high regardless of whether the CrossWalk

intervention was used before applying node2vec, then apply-

ing CrossWalk does not degrade the quality of embeddings

for non-sensitive attributes.
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(a) The low awareness configuration improves procedural jus-
tice, as inferring the sensitive attribute is more difficult.

(b) The high awareness configuration improves distributive
justice, as inferring the sensitive attribute is easier for all groups.

Figure 1. Impact of low awareness and high awareness configurations of the CrossWalk algorithm on node embeddings for a subgraph

from the semi-distinct category, with sensitive attribute ‘location’. The embeddings are visualized using t-SNE for dimensionality

reduction, and the node colors correspond to sensitive attribute class.

4. Results

This section presents the impact of node2vec and Cross-

Walk parametrizations on our evaluation metrics: awareness,

disparity, and classification performance.

Our experiments show that the node2vec parametrization

alone does not significantly influence our evaluation met-

rics. This can be seen in Figure 2, where the error bars

indicate the value range across all evaluated combinations

of node2vec hyperparameters. In contrast, the CrossWalk

parameters have a much higher impact on the representa-

tions. We identify two main configurations: low awareness

and high awareness, illustrated by Figure 1.

Low awareness is achieved through high values for the hy-

perparameters α and β. In our experiments this corresponds

to α = 0.99 and β = 15. With this configuration, the

random walks are biased towards visiting nodes at group

boundaries and frequently crossing group boundaries. This

leads to embeddings where the groups are much more dif-

ferent to separate. This intermixing of embeddings is more

effective when the groups are well interconnected.

Figure 1 shows the resulting embeddings for the same

dataset from the semi-distinct category under the two dif-

ferent configurations. Figure 2 indicates that these results

are consistent across the three graph categories. In the low

awareness configuration depicted in Figure 1(a), embed-

dings from geographically close locations, such as yellow

and dark blue, are much more intermixed than the embed-

dings of nodes from geographically distant locations, such

as yellow and red. Another important observation is that

while CrossWalk is able to mix the embeddings from the

geographically close locations, in none of our evaluated

configurations were the embeddings from geographically

distant locations intermixed. A possible cause could be

that there are simply not enough interconnections between

the groups that allow biased random walks to cross these

specific group borders.

High awareness is achieved through low values for the hy-

perparameters of α and β. In our experiments, this corre-

sponds to α = 0.01 and β = 1. This configuration dis-

courages the crossing of boundaries and biases the random

walks towards staying in the same group as the start node.

This results in similar embeddings for nodes from the same

group and different embeddings for nodes from different

groups, as seen in Figure 1(b).

In addition, it can be seen that the CrossWalk intervention

makes it possible to increase awareness above or below the

node2vec baseline.

Figure 2. Mean awareness over subgraphs for sensitive attribute

‘location’. Error bars show range of values over all node2vec

parametrisations. Low and high awareness configurations can con-

sistently adapt awareness below or above the node2vec baseline.

We also found that the low awareness configuration tends

to increase the disparity metric, which is highlighted in Fig-

ure 4. The combination of reduced awareness and increased

disparity between the low awareness and high awareness

configurations suggests that the changes in classification

score are not equally distributed. As seen in Figure 3, this
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Figure 3. Classification F1 score for sensitive attribute ‘location’

by relative group size of groups in all subgraphs. Low aware-

ness makes classification of small groups virtually impossible,

differences in F1 score between low and high awareness are more

pronounced for smaller groups.

difference tends to be more pronounced for smaller groups.

In the high awareness configuration, the classification F1

score across groups becomes more equal, leading to reduced

disparity (see Figure 3) and improved distributive justice.

Conversely, in the low awareness configuration, it can be-

come virtually impossible to correctly classify members

of underrepresented groups, thereby improving procedural

justice. This unequal impact on classification F1 score can

itself be seen as just under the criterion of prioritarianism,

where more resources should be allocated to the individuals

or groups that are worse off (Kuppler et al., 2021; Parfit,

2001).

Figure 4. CrossWalk’s impact on disparity of sensitive attribute

‘location’. The low awareness configuration tends to lead to higher

disparity, indicating an unequal impact on the different groups.

Finally, we investigate how the CrossWalk fairness inter-

vention impacts the classification performance of the non-

sensitive attribute. As seen in Figure 5, applying both low

awareness and high awareness CrossWalk configurations

leads to decreases in classification performance for the non-

sensitive attribute. Furthermore, across all of our conducted

experiments, no configuration of CrossWalk hyperparame-

ters could improve performance over the node2vec baseline.

This leads to the conclusion that CrossWalk’s introduces a

trade-off between improving fairness for the sensitive at-

tribute and accurately capturing the graph structure.

Figure 5. Classification F1 score for the control attribute ‘age’ by

relative group size of groups in all subgraphs. Influencing em-

beddings for lower or higher awareness of the sensitive attribute

makes classifying the control attribute more difficult.

5. Conclusion

Our findings reveal that CrossWalk can be strategically pa-

rameterized to significantly alter the ability to infer sensitive

attributes. This alteration manifests in two principal ways:

(1) by enhancing procedural justice through the obfuscation

of the sensitive attributes, and (2) by promoting distributive

justice via reducing disparities in the classification perfor-

mance of sensitive attributes.

We demonstrate that these goals are readily achievable: high

hyperparameter lead to low awareness of the sensitive at-

tribute, enhancing procedural justice, while low values lead

to high awareness of the sensitive attribute, improving dis-

tributive justice. Moreover, our results indicate that embed-

dings generated with CrossWalk bias generally outperform

those created with node2vec alone regarding these notions

of justice. Additionaly, underrepresented groups benefit

more from the CrossWalk fairness intervention than major-

ity groups.

However, this approach does present a notable trade-off:

while it elevates fairness concerning sensitive attributes, it

can diminish performance and fairness for other attributes.

An important limitation of the CrossWalk algorithm is its

dependency on prior knowledge of sensitive attributes for

biasing. This makes it a powerful tool for deliberately incor-

porating such information into node embeddings but also

presents the potential for misuse. For instance, rather than

diminishing the recognition of sensitive attributes, Cross-

Walk could be misused to more effectively identify minority

groups, possibly resulting in adverse outcomes for these

groups.

Overall, the CrossWalk algorithm emerges as a potent tool

for learning fairer node embeddings. However, it is im-

portant to acknowledge that no single configuration leads

to ideal results in every scenario. With the parametriza-

tion guidelines presented in this work, CrossWalk can be

effectively tailored to provide use-case dependent solutions,

adeptly navigating the various trade-offs it presents.
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Impact Statement

In this paper, we demonstrate how the parametrization of the

CrossWalk algorithm influences the ability to infer a sensi-

tive attributes from node embeddings. By fine-tuning hyper-

parameters, we show that it is possible to either significantly

enhance or obscure the detectability of these attributes. This

functionality offers a valuable tool for improving the fair-

ness of ML systems that rely on graph embeddings, making

them adaptable to different fairness paradigms.

However, this technology also raises concerns about po-

tential misuse. Enhanced detection of underrepresented

groups, such as those based on religion or sexuality, could

be exploited, leading to adverse consequences for these in-

dividuals. The CrossWalk fairness intervention requires the

presence of sensitive attribute values in the dataset, implying

that malicious actors already have access to information that

could harm underrepresented groups. While the ability to

manipulate the prominence of sensitive attributes in embed-

dings does not fundamentally alter this risk, it underscores

the need for responsible use and robust safeguards to prevent

misuse.
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A. Geographical- and Force Directed Layout of Subgraph ‘semi-distinct 0’

(a) Geographical layout: Displays four towns, each marked with a
unique color, representing their geographical locations as founda-
tion for the graph selection.

(b) Graph visualization: Illustrates the social network of individu-
als from these towns, with each node representing an individual
and its color, representing the location group corresponding to the
respective town on the map.

Figure 6. Visualization of a semi-distinct graph from our dataset. The left panel shows the geographical positioning of four towns, while

the right panel shows the social network derived from these locations. This figure demonstrated the correlation between geographical

proximity and network connectivity, where individuals from from geographically closer towns show higher interconnectivity.

8


