
Published as a conference paper at ICLR 2024

YET ANOTHER ICU BENCHMARK: A FLEXIBLE
MULTI-CENTER FRAMEWORK FOR CLINICAL ML

Robin van de Water1 ∗ Hendrik Schmidt1 Paul Elbers2
Patrick Thoral2 Bert Arnrich1 Patrick Rockenschaub3

1Hasso Plattner Institute, University of Potsdam, Germany
2Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
3Lab for AI in Medicine, Charité - Universitätsmedizin Berlin, Germany

ABSTRACT

Medical applications of machine learning (ML) have experienced a surge in pop-
ularity in recent years. The intensive care unit (ICU) is a natural habitat for ML
given the abundance of available data from electronic health records. Models have
been proposed to address numerous ICU prediction tasks like the early detection
of complications. While authors frequently report state-of-the-art performance,
it is challenging to verify claims of superiority. Datasets and code are often not
published, and cohort definitions, preprocessing pipelines, and training setups
are difficult to reproduce. This work introduces Yet Another ICU Benchmark
(YAIB), a modular framework that allows researchers to define reproducible and
comparable clinical ML experiments; we offer an end-to-end solution from cohort
definition to model evaluation. The framework natively supports most open-access
ICU datasets (MIMIC III/IV, eICU, HiRID, AUMCdb) and is easily adaptable
to future and custom ICU datasets. Combined with a transparent preprocessing
pipeline and extensible training code for multiple ML and deep learning models,
YAIB enables unified model development, transfer, and evaluation. Our benchmark
comes with five predefined established prediction tasks (mortality, acute kidney
injury, sepsis, kidney function, and length of stay) developed in collaboration with
clinicians. Adding further tasks is straightforward by design. Using YAIB , we
demonstrate that the choice of dataset, cohort definition, and preprocessing have
a major impact on the prediction performance, often more so than model class,
indicating an urgent need for YAIB as a holistic benchmarking tool. We provide
our work to the clinical ML community to accelerate method development and
enable real-world implementations.
Software Repository: https://github.com/rvandewater/YAIB

1 INTRODUCTION

The intensive care unit (ICU) has long been a focus for research into data-driven decision support,
owing to the impact of medical decisions as well as the breadth and depth of data collected in this
setting (Johnson et al., 2017). The COVID-19 pandemic confirmed the need for reliable machine
learning (ML)-based clinical decision support that can alert healthcare professionals to worsening
patient states, help them make a clinical diagnosis, or recommend treatment (Medic et al., 2019).

Despite a steep increase in the number of published ICU prediction models (Shillan et al., 2019),
hardly any have made their way into clinical practice (Eini-Porat et al., 2022; Fleuren et al., 2020b).
A major obstacle to translation is an ongoing lack of comparability and reproducibility (Johnson et al.,
2017). By using custom datasets and definitions, preprocessing pipelines, and evaluation schemes,
the benefits of novel models are conflated with differences between patient case mix, task definitions,
and cohort selection (Sarwar et al., 2023; Kelly et al., 2019). Reviewing models for early prediction
of sepsis, for example, Moor et al. (2021b) found that the definition of sepsis, the time of prediction,
and the available features differed substantially between the 22 included studies; similar results
were found in an earlier review (Fleuren et al., 2020a). Even among studies from the same research

∗Corresponding author email: robin.vandewater@hpi.de

1

https://orcid.org/0000-0002-2895-4872
https://orcid.org/0009-0007-9501-7567
https://orcid.org/0000-0003-0447-6893
https://orcid.org/0000-0001-6140-7195
https://orcid.org/0000-0001-8380-7667
https://orcid.org/0000-0002-6499-7933
https://github.com/rvandewater/YAIB

Published as a conference paper at ICLR 2024

group (Hyland, 2020; Yèche et al., 2022), cohort definitions may vary substantially, precluding a
meaningful comparison. Inconsistencies in imputation and feature extraction further complicate an
objective evaluation of research progress.

The increasing availability of open-access ICU datasets is a first, important step towards urgently
needed model comparability (Sauer et al., 2022a). However, models derived from the same dataset
may still vary considerably in their analytical setup. Earlier work has therefore created benchmarks
that establish a single pipeline for preprocessing and modeling (Yèche et al., 2022; Harutyunyan
et al., 2019). These benchmarks are hard-coded for a given dataset, following proprietary formats
and supporting a limited, fixed set of tasks. Extending an existing benchmark to include new datasets
or tasks requires changes to the benchmark’s — often lightly documented — source code. Despite
the existence of multiple benchmarks, new models are therefore rarely evaluated on more than one
dataset or do not use any benchmark (Shillan et al., 2019).

We address this gap by providing Yet Another ICU Benchmark (YAIB) as a modular multi-dataset
framework specifically designed for extensibility. Building on recent work to harmonize ICU
data (Bennett et al., 2023) (i.e., match time-scale, clinical definitions, and units across datasets),
we standardize the entire modeling workflow from the definition of clinical concepts (a medical
abstraction to facilitate patient care) and data extraction to model fitting and evaluation across
several established open-source ICU datasets (Sauer et al., 2022a). We provide a predefined set of
common prediction tasks, developed in collaboration with clinical intensivists, that can be easily
extended to fit user needs. Our benchmark, by default, provides endpoint prediction for ICU mortality,
sepsis (Singer et al., 2016), acute kidney injury (AKI) (KDIGO, 2012), kidney function (KF), and
length of stay (LoS). With this work, we aim to (1) dramatically reduce the overhead of developing
new ICU prediction methods, (2) provide a transparent, open-source, and reproducible definition of
experiments, and (3) unify ML workflows for ICU prediction modeling.

2 RELATED WORK

Our work builds upon several previous efforts to harmonize the definition, development, and evalua-
tion of ICU prediction models. YAIB combines these existing works in a novel, end-to-end fashion
to enable quick, reproducible, and comparable model development.

Publicly available ICU datasets Our benchmark currently supports four established ICU datasets
(Sauer et al., 2022b): the Medical Information Mart for Intensive Care (MIMIC) version III (Johnson
et al., 2016) and IV (Johnson et al., 2023), the eICU Collaborative Research Database (eICU) (Pollard
et al., 2018), the High Time Resolution ICU Dataset (HiRID) (Hyland, 2020), and the Amsterda-
mUMCdb (AUMCdb) (Thoral et al., 2021). These datasets contain similar data items but differ in
size and scope (Table 13). Together, they cover 334,812 ICU stays. We plan to integrate two recently
released ICU datasets in the future (Rodemund et al., 2023; Jin et al., 2023).

Benchmarks To improve comparability between models trained on these ICU datasets, sev-
eral benchmarks or benchmark-like applications have been developed (Table 1). These solutions
mainly differ in the tasks and models they support. Notably, existing benchmarks heavily focus on
benchmarking results, often hardcoding key steps like data extraction, task definition, preprocessing,
feature generation, and sometimes model training. While they may reduce implementation overhead
when evaluating new ML approaches, present benchmarks are difficult to adapt to user requirements.
Core code base changes are often necessary if the users’ problems do not fit into the provided task
definitions. Even advanced modeling frameworks such as Jarrett et al. (2021) and Saveliev & van
der Schaar (2023) share this weakness, as they do not support reproducible data extraction or task
definitions; thus, they do not provide an end-to-end solution like YAIB .

Multi-dataset support Due to considerable heterogeneity in data structure, existing benchmarks
tend to focus on a single dataset, most frequently MIMIC-III. As MIMIC-III also has a large existing
user base (Syed et al., 2021), it thus often becomes the default choice (Shillan et al., 2019). This
has potentially resulted in a self-enforcing bias towards the MIMIC-III datasets, which represent a
single-center US population. Even frameworks that work with its successor MIMIC-IV lack backward
compatibility (Mandyam et al., 2021; Gupta et al., 2022). Among the few multi-dataset solutions,
(Tang et al., 2020) operates on both eICU and MIMIC-III, but lacks many of the model architectures
found in others works and does no longer appear to be in active development. Oliver et al. (2023)
provides a hardcoded pipeline to combine several datasets without providing cohort definitions,

2

Published as a conference paper at ICLR 2024

TABLE 1: Comparison of existing benchmarks and YAIB on ICU data, ordered by publication date.

Jo
hn

so
n

et
al

.

Pu
ru

sh
ot

ha
m

et
al

.

H
ar

ut
yu

ny
an

et
al

.

B
ar

bi
er

ie
ta

l.

W
an

g
et

al
.

Ja
rr

et
te

ta
l.

Sh
ei

kh
al

is
ha

hi
et

al
.

Ta
ng

et
al

.

Y
èc

he
et

al
.

M
an

dy
am

et
al

.

G
up

ta
et

al
.

Y
an

g
et

al
.

Sa
ve

lie
v

et
al

.

O
liv

er
et

al
.

YA
IB

(o
ur

s)

D
at

as
et

s MIMIC-III ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓
MIMIC-IV ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓
eICU ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓
HiRID ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓
AUMCdb ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Pr
ed

ic
tio

n
ta

sk
s

Mortality risk ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓
Circulatory failure ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ *
Kidney function (KF) ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓
Respiratory failure ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ *
Sepsis ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Acute kidney injury ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Phenotyping§ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ *
Interventions ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ *
Length of stay (LoS) ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓

Readmission§ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ *

Pr
ep

ro
c. Feature engineering ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓

Temporal imputation ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓
Temporal resampling ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓
Modular pipeline ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓

M
od

el
ar

ch
ite

ct
ur

es

ML
LR ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓
Random forest ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓
Gradient boost ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓

DL

RNN ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓
LSTM ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓
GRU ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓
Temporal CNN ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓
Transformer ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓

Code available ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Extensible† ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

Dataset interoperability‡ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

*: These tasks are not included by default but may be easily added through our cohort definition pipeline.
§: Due to lack of recorded database information, these tasks can only be defined for MIMIC III and IV.
†: Interface and extensive instructions to add interoperable modules following a provided abstraction (datasets, prediction tasks, models) and
adjust existing modules without extensive rewriting or refactoring.
‡: Provides an uncoupled interoperable dataset definition, allowing a.o. transfer learning and domain adaption.

benchmarking, or an end-to-end pipeline. Finally, Yang et al. (2023) recently proposed PyHealth
as a comprehensive deep learning toolkit for both ML researchers and healthcare practitioners; it is
perhaps most closely related to our work. Unfortunately, PyHealth only supports subsets of the full
datasets, and tasks must be defined anew for each dataset. It also does not currently include time
series or ways to deal with missing data, limiting its use for novel clinical or ML developments.

3 BENCHMARK DESIGN

YAIB addresses the issues identified above and provides a unified interface to develop clinical
prediction models for the ICU. An experiment in YAIB consists of four steps: 1) define clinical
concepts from the raw data; 2) extract the patient cohort and specify the prediction task; 3) preprocess
the data and generate features; and 4) train and evaluate the ML models (Figure 1).

3.1 DESIGN PHILOSOPHY

We strongly believe that medical research is inherently complex and that — rather than providing a
rigid benchmark — there lies most value in providing a modular setup where the user can exchange

3

Published as a conference paper at ICLR 2024

Training Predictor

Bayesian
Hyperparameter

Optimization

Models
LR

LGBM
RF

RNN
LSTM
GRU
TCN

Transformer

…

Select

Y
et A

nother IC
U

 B
enchm

ark
Task

Definition
Model Settings &
Hyperparameters

Pre-processor
Configuration

Pre-processing

Scaling
Missing Indicators

Imputation
Feature Extraction

Splitting
Fold splitting

Caching
Cache data for reuse

…

Metrics

Classification
ROC

AUROC
PRC

AUPRC
Accuracy

Calibration Curve

Regression
MAE
R2

RMSE

…
…

C
o

n
fi

g

(ML)
Researcher

Define

AUMCdb

MIMIC-III/IV

eICU

HiRID

Compatible
DataHarmonization

Clinical
Expert

Dataset X

…

DefineHarmonize

Cohort and
Variable
Selection

…

Sepsis

AKI

Mortality

LoS

KF

Variable
Mapping

Artifact
Removal

Unit
Harmonization

FIGURE 1: Schematic overview of benchmark pipeline. On the left side, the creation of harmonized ICU cohorts
is shown. Note that the domain expertise of clinicians is often necessary for defining clinically useful tasks. The
schematic overview of the benchmark stages can be found on the right. Note that the dotted line indicates that
this component can be easily extended, as it follows an abstracted interface.

any part with something that better suits their needs and, importantly, do so reproducibly. For example,
users frequently want to highlight a particular aspect of their model, prompting them to adapt the
default tasks. Changes, however minor, can render results incomparable. We, therefore, prioritized
extensibility across the entire experiment lifecycle. This high level of extensibility may increase
the complexity of our benchmark. We mitigate this by providing a range of default experiments for
users with limited access to medical expertise or who are content with a fixed set of medical tasks.
The experiments were designed to be directly comparable and provide a common benchmark. This
allows for a standardized evaluation of models similar to existing benchmarks but still benefits from
out-of-the-box support for multiple datasets and easy adaptability if need be. While we did our best
to ensure extensibility, YAIB cannot currently support all possible use cases. Specialized use cases
like federated learning or reinforcement learning currently require custom code. However, we keep
adding functionality to YAIB , and users may nevertheless benefit from using parts of our framework.
We provide detailed documentation on how to implement any extensions (Appendix F). We strongly
request users of YAIB to provide their code and a detailed list of the changes they have made to the
repository to accurately and transparently provide results for their experiments.

3.2 CLINICAL CONCEPTS

We ensured that our benchmark supports existing and future ICU datasets. Working with multi-
ple datasets requires careful data harmonization, as datasets are collected in different locations,
with different clinical recording, and may have completely different data structures. We use the
ricu (Bennett et al., 2023) R package to bring datasets into a common, semantically interoperable
format. This harmonization relies on two things: 1) a common temporal reference point and 2) a
dataset-independent definition of clinical concepts. ricu by default distinguishes measurements
recorded for a patient, a hospital admission, or an ICU admission, and supports conversion between
these levels of measurement. Through definition of reference points, it facilitates temporal compa-
rability between datasets. ricu also allows defining clinical concepts such as heart rate or SOFA
score independently of any particular dataset, specifying their meaning, plausible min/max ranges,
and units of measurement. A concept can be enabled for a dataset by specifying how it should be
extracted from the data, for example, by selecting an entire column or subsetting a table based on an
item identifier. ricu thus acts as an interface to the raw data (stored in a fast, compressed column
format), on command returning the data for a concept in a table of ID-time-value pairs. This is still
no panacea to make ICU datasets immediately interoperable, but it provides a helpful framework
for harmonization. For users unfamiliar with R, we provide an interface to access ricu concepts
directly from Python. PYICU, a native Python implementation of ricu, is in development.

3.3 PATIENT COHORT AND TASK DEFINITION

Once in a common format, the same task definition can be applied across datasets. This facilitates
code reuse and eliminates opportunities for error. Even so, care must be taken to combine clinical
concepts, define meaningful prediction targets, and apply appropriate exclusion criteria. We provide
default workflows and helper functions to support this process, including a transparent pipeline
for applying exclusion criteria and reporting patient attrition. We supplied this functionality in a

4

Published as a conference paper at ICLR 2024

TABLE 2: Prediction task overview. Note that the related work is non-exhaustive.

No Task Frequency Type Related work
1 Mortality Once per stay* C Baker et al. (2020); Lu et al. (2022); Medic et al. (2019); Sharma et al. (2017); Syed et al. (2021)

2 AKI Hourly C Huang et al. (2021); Nikkinen et al. (2022); Pan et al. (2019); Rank et al. (2020); Shamout et al. (2021);
Wang et al. (2020a); Koyner et al. (2018)

3 Sepsis Hourly C Kok et al. (2020); Lauritsen et al. (2020); Merath et al. (2020); Fleuren et al. (2020b); Moor et al. (2021a;
2019); Muralitharan et al. (2021); Reyna et al. (2019); Shamout et al. (2021); Wang et al. (2022)

4 KF Once per stay* R Tomašev et al. (2019); Futoma et al. (2016); Perotte et al. (2015); Cheng et al. (2018)

5 LoS Hourly R Shillan et al. (2019); Guo et al. (2020)

C: Classification, R: Regression, * Using data from 0-24 hours.

standalone repositoryto facilitate its use with other modeling frameworks such as Clairvoyance (Jarrett
et al., 2021). The specification of our adaptive and re-definable pipeline is found in Appendix D.

3.4 PREPROCESSING AND FEATURE EXTRACTION

Further preprocessing is often required at runtime, including data normalization, generation of
missingness indicators, and imputation. We provide a transparent, flexible way for users to define their
preprocessing pipeline (also available as a standalone package), including default implementations of
historical aggregation (e.g., mean or variance), resampling of the time resolution, imputation methods,
and a wrapper for any Scikit-learn (Pedregosa et al., 2011) preprocessing step. Custom steps can be
added by subtyping an abstracted step interface or providing a callable object to a generic step.

3.5 TRAINING AND EVALUATION

A single YAIB experiment creates and optimizes a model for a given task and preprocessing pipeline.
Experiments are defined using the gin-config library (Dan Holtmann-Rice et al., 2018) in
simple Python-like text files. The model configuration defines the model architecture and contains
information on hyperparameters and optimizers. Every aspect of a model is fully configurable. The
task configuration defines the target, the data source, the features, and the preprocessing. Additionally,
one can define the cross-validation splits and the number of iterations. By defining the model and
task separately, they can be mixed and matched, training the same architecture for multiple tasks or
training multiple models for a single task. We provide details for adding new datasets, preprocessing,
models, and an example of sepsis prediction in Appendix E. Training is supervised by PyTorch
Lightning (Falcon & team, 2023), which uses standardized training and logging, GPU parallelism, and
advanced debugging. Users can configure hyperparameter ranges and sampling methods for model
optimization. A Gaussian Process is fit to the hyperparameters using scikit-optimize (Head
et al., 2021) as a robust alternative to random search (Snoek et al., 2012).

Result tracking Results are automatically aggregated and written to a JSON file, in addition
to optional Tensorboard (Abadi et al., 2016), PyTorch Lighting (Falcon & team, 2023), and
WandB (Biewald, 2020) logging for easy experiment tracking. Performance evaluation records
widely-used metrics out of the box (AUROC, AUPRC, calibration curve, accuracy, loss) and sup-
ports multiple evaluation libraries: TorchMetrics (Nicki Skafte Detlefsen et al., 2022), Pytorch-
Ignite (Fomin et al., 2020), and Scikit-Learn (Pedregosa et al., 2011) metrics. New metrics, either
developed by the user or from existing libraries, can be easily added (see Appendix F.6).

4 EXPERIMENTS

We ran experiments for five common prediction tasks: ICU mortality, onset of acute kidney injury
(AKI), onset of sepsis, kidney function (KF) on day 2, and remaining length of stay (LoS) (Table 2).
Mortality and KF used data from 0-24 hours. All other task used all available data until the event or
discharge. We ensured adequate data quality by excluding: 1) patients younger than 18 years; 2) stays
with missing discharge times; 3) stays with less than six hours in the ICU; 4) stays with measurements
in less than four time bins; and 5) stays with no measurement for more than 12 consecutive hours in
the ICU. We also applied task-specific exclusion criteria. For example, we excluded stays of less than
30 hours for the ICU mortality task, as this could introduce causal leakage from patients already dead
or about to die at the time of prediction. For each task, we included 52 features, of which 4 were static
and 48 were time series. Various additional features, including prescriptions and diagnoses, can be
directly used in YAIB by adjusting the cohort generation module (YAIB-cohorts); if features are not
available, their implementation is straightforward (Appendix F). Information on the datasets, features,
and individual cohort definitions can be found in Appendix C and D. The code to define these cohorts

5

Published as a conference paper at ICLR 2024

is publicly available. In addition to the baseline performance for each task, dataset, and model, we
used YAIB to investigate the effects of small variations in task definitions on predictive performance
— a common obstacle to model comparability (Moor et al., 2021b; Fleuren et al., 2020b). Specifically,
we i) only excluded stays of less than 24 hours to assess the effects of causal leakage by aligning our
mortality task with Yèche et al. (2022), ii) omitted static and dynamic historical features (i.e., min,
max, count, mean) to simulate access to fewer input data, and iii) compared alternative definitions
for sepsis . We, additionally, evaluated transfer learning with the harmonized datasets (iv).

Preprocessing 1. Scaling: The data was scaled to zero mean and unit variance. 2. Imputation: After
adding missing indicators, we forward-filled all columns for the dynamic data, replacing missing
values with the last known values of the same stay. Missing values without a prior measurement
were filled with the sample mean. To prevent data leakage, we used the mean of the train split as
the sample mean for all splits. 3. Feature generation: We generated the min, max, mean, and
count of measurements for each feature in the dynamic data. We only applied this step for the
conventional ML models, e.g., Light Gradient Boosting Machine (LGBM), as they cannot capture
sequential information natively.

4.1 MODELS AND EXPERIMENTAL SETUP

We considered a range of algorithms used in previous benchmarks (Table 1)and applied work (Hyland,
2020; Pirracchio et al., 2015; Silva et al., 2012; Syed et al., 2021), including regularized logistic
regression (LR) and elastic net (EN) (used for classification and regression, respectively (Pedregosa
et al., 2011)), LGBM (Ke et al., 2017), and four variations of neural networks: Gated Recurrent Unit
(GRU) (Cho et al., 2014), Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997),
Temporal Convolutional Network (TCN) (Bai et al., 2018) and transformer (TF) (Vaswani et al.,
2017). LR, EN, and LGBM were used with the feature generation described above, as they are unable
to utilize time series. The implementation of neural networks was adapted from Yèche et al. (2022).

For our experiments, unless stated otherwise, we used 5 iterations of 5-fold cross-validation. Hyper-
parameters were tuned on the training set using 30/50 (DL/ML, respectively) iterations of Bayesian
hyperparameter optimization (Snoek et al., 2012). For computational reasons, hyperparameter tuning
used only the first 2/3 folds, respectively (see Appendix H for a definition of all searched and selected
hyperparameters). The final validation of the best hyperparameters used all 5 folds. Each model
was optimized for a maximum of 1000 epochs. Training was stopped early if performance on the
validation set did not improve for 10 epochs. The epoch with the best performance on the validation
set was retained and evaluated on the test set. This process was repeated for 5 iterations, after which
the results were averaged, and the standard deviation was calculated.

4.2 BENCHMARKING BASELINE MODELS ON MAJOR ICU DATASETS

Baseline results for all tasks can be found in Table 3 and 4. Note that we have also benchmarked
our tasks for two openly available demo datasets from MIMIC-III and eICU; these can be directly
accessed without completing a credentialing procedure (see Table 11 and 12).

ICU mortality The performance of traditional ML and DL models was highly comparable among
each other and across datasets when predicting mortality based on data from the first 24 hours.
Notably, AUPRC was higher in AUMCdb due to a higher outcome prevalence (Table 13).

Acute kidney injury (AKI) Maximum achievable performance was also similar across datasets
when predicting the hourly onset of AKI, with the notable exception of HiRID, which had both lower
AUROC and AUPRC for all models. GRU models consistently achieved the best performance.

Sepsis The performance of baseline models was worst for the hourly onset of sepsis, both for AUROC
and especially AUPRC. This may be explained by the particularly low prevalence of ∼ 1% hourly
bins classified as septic and the relative difficulty of predicting sepsis in general (Moor et al., 2021b).

Kidney function (KF) Classical ML models achieved relatively good performance for this task,
which may reflect the dependence of KF on a limited number of features (Grinsztajn et al., 2022).

Remaining length of stay (LoS) The performance of ML and DL models was also comparable
across datasets. Nevertheless, predicting the length of stay seems difficult, given that the average
MAE is almost two days. Transformers consistently outperformed most other model types.

6

Published as a conference paper at ICLR 2024

TABLE 3: Baseline performance on the classification tasks. We embolden the best mean AUROC × 100 (↑,
i.e., higher is better) and AUPRC × 100 (↑) per dataset and those within a standard deviation (±).

AUMCdb HiRID eICU MIMIC-IV
Algorithm AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

Mortality
LR 83.7±0.6 52.9±1.2 84.0±0.3 36.9±1.1 84.8±0.2 33.0±0.7 86.1±0.1 39.7±0.6
LGBM 84.5±0.5 53.7±1.2 84.4±0.3 40.6±0.8 85.7±0.2 36.0±0.6 87.7±0.2 44.2±0.7
GRU 83.9±0.3 53.8±0.7 84.8±0.2 39.4±0.4 86.0±0.1 35.6±0.1 87.6±0.1 42.8±0.3
LSTM 83.7±0.7 53.6±1.4 84.0±0.7 37.8±1.0 85.5±0.2 35.7±0.8 86.7±0.4 41.0±0.7
TCN 84.0±0.6 54.2±1.4 84.6±0.7 39.2±1.3 85.4±0.2 34.3±0.6 87.1±0.3 41.4±0.8
TF 84.1±0.2 54.4±1.1 84.9±0.7 39.3±1.5 85.9±0.2 34.7±0.8 86.9±0.3 42.2±0.3

AKI
LR 85.5±0.3 45.1±0.4 79.6±0.1 31.8±0.8 72.8±0.1 32.2±0.2 77.1±0.2 37.7±0.3
LGBM 85.8±0.3 48.4±0.6 80.2±0.2 32.8±0.4 84.6±0.1 50.8±0.2 83.8±0.1 53.3±0.2
GRU 90.6±0.3 52.8±0.7 82.2±0.2 33.9±0.4 90.9±0.0 72.2±0.1 90.7±0.1 69.6±0.2
LSTM 86.5±0.4 40.6±0.6 81.0±0.4 31.8±0.4 90.2±0.1 69.9±0.2 89.7±0.1 66.5±0.2
TCN 89.6±0.2 50.0±0.9 81.2±0.2 32.3±0.4 90.4±0.0 70.4±0.2 89.8±0.1 66.8±0.2
TF 88.2±0.2 48.2±0.7 81.5±0.2 33.4±0.5 89.9±0.1 68.0±0.3 89.6±0.1 65.6±0.2

Sepsis
LR 74.7±1.0 4.0±0.4 76.5±0.6 8.4±0.3 71.8±0.3 2.9±0.1 77.1±0.4 4.6±0.1
LGBM 74.0±0.8 5.2±0.7 76.1±0.4 10.4±0.5 69.1±0.3 3.3±0.1 77.5±0.3 5.9±0.2
GRU 79.7±0.9 7.7±0.7 80.6±0.5 12.6±0.5 77.4±0.2 5.1±0.1 83.6±0.3 9.1±0.3
LSTM 77.1±0.8 6.4±0.5 78.8±0.4 11.1±0.5 74.0±0.2 4.0±0.1 82.0±0.3 8.0±0.2
TCN 78.7±0.7 7.1±0.6 80.8±0.5 13.0±0.4 76.7±0.1 4.9±0.1 82.7±0.3 8.8±0.2
TF 80.7±0.9 8.6±0.8 80.8±0.3 12.6±0.6 76.2±0.1 4.6±0.1 80.0±0.8 6.6±0.2

TABLE 4: Baseline performance on the regression tasks. Results are reported in Mean Absolute Error (↓)

Kidney function in mg/dL Length of Stay in hours
Algo. AUMCdb HiRID eICU MIMIC-IV AUMCdb HiRID eICU MIMIC-IV

EN 0.24±0.00 0.28±0.00 0.31±0.00 0.25±0.00 54.9±0.0 47.2±0.1 43.6±0.0 46.5±0.0
LGBM0.32±0.00 0.34±0.00 0.29±0.00 0.24±0.00 44.7±0.0 39.2±0.1 39.3±0.0 40.1±0.0
GRU 0.29±0.00 0.32±0.01 0.34±0.01 0.30±0.01 42.9±0.1 39.6±0.1 38.9±0.1 39.9±0.1
LSTM 0.29±0.00 0.33±0.00 0.28±0.01 0.28±0.01 44.8±0.1 39.8±0.1 39.2±0.1 40.6±0.1
TCN 0.28±0.01 0.23±0.01 0.31±0.00 0.28±0.01 43.7±0.1 39.9±0.1 38.9±0.0 40.4±0.1
TF 0.26±0.00 0.31±0.01 0.33±0.01 0.32±0.01 41.8±0.1 39.1±0.1 38.2±0.1 39.0±0.1
We provide the average and Interquartile range for Kidney Function and Length of Stay in Table 14.

4.3 USING YAIB AS AN EXPERIMENTAL ML FRAMEWORK

Changing exclusion criteria for mortality cohorts As hypothesized, the choice of exclusion
criteria could majorly impact achievable prediction performance (Table 5). Compared to the peak
performance achieved with the HiRID-benchmark (Yèche et al., 2022), our baseline performance
for the mortality task was noticeably lower. Aligning the exclusion criteria accounted for half of
the performance difference. The remaining difference was likely due to the inclusion of additional
predictors — most notably drug usage — in the HiRID-benchmark. This highlights the difficulties
of comparing works that ostensibly address the same task, even using the same dataset and model
implementation.

Restricting input features We observed that dynamic feature generation consistently outperformed
task definitions that did not include them (Table 7 and 8). LR on MIMIC-IV showed a considerable
performance gap, whereas AUMCdb remained stable. We noted a performance decrease that ranges
between 4.0% and 19.1% for LR and between 5.2% and 13.1% for LGBM. Omitting static features led
to minor drops in performance (Table 9 and 10); averaged across datasets, we observe a performance
differences ranging between 0.5% and 0.2% for the transformer model.

Comparing sepsis definitions Label definitions also had a considerable impact on AUROC and/or
AUPRC (Table 6), which was not always apparent from the definition alone. Sepsis has been defined
in several ways (Fleuren et al., 2020b), mainly because a clinical gold standard that can be transferred

7

Published as a conference paper at ICLR 2024

TABLE 5: ICU mortality prediction on HiRID with (>24h) and without (>30h) possibility of causal leakage.

Cohort definition
w/o leakage w/ leakage Yèche et al. (2022)

Algorithm AUROC AUPRC AUROC AUPRC AUROC AUPRC

LR 84.0±0.3 36.9±1.1 87.2±0.4 43.1±1.3 89.0±0.0 58.1±0.0
LGBM 84.5±0.3 40.6±0.9 87.9±0.5 47.7±1.2 88.8±0.2 54.6±0.8

GRU 84.8±0.2 39.4±0.4 88.2±0.3 46.1±1.2 90.0±0.4 60.3±1.6
TCN 84.6±0.7 39.2±1.3 87.8±0.2 45.2±1.0 89.7±0.4 60.2±1.1
TF 84.9±0.7 39.4±1.5 88.2±0.3 47.1±1.2 90.8±0.2 61.0±0.8

TABLE 6: Sepsis prediction on MIMIC-IV for different definitions of sepsis.

Sepsis definition
Seymour et al. (2016)* Moor et al. (2021a) Calvert et al. (2016)

Algorithm AUROC AUPRC AUROC AUPRC AUROC AUPRC

LGBM 75.9±0.2 4.3±0.0 72.4±0.0 10.5±0.0 62.2±0.2 1.8±0.0
GRU 79.2±0.1 6.1±0.0 80.9±0.0 17.7±0.0 89.2±0.0 9.3±0.2

* Our definition; adapted to be more clinically actionable, see Appendix D.

to ML models is currently lacking. Our sepsis definition (adapted from Seymour et al. (2016), see
Appendix D) can be considered closely related to that used by Moor et al. (2021a), who implement a
variant of Sepsis-3 (Singer et al., 2016). However, we required that antibiotics were administered
continuously for ≥ 3 days (Reyna et al., 2019). We judged that this would increase the clinical
usability of the task but found that it also severely reduced the achievable AUPRC — likely due to a
much lower prevalence (Table 17). The definition used by Calvert et al. (2016) on the other hand
adapted Sepsis-2 (Levy et al., 2003), which differs fundamentally from Sepsis-3 and resulted in a
notably higher AUROC (Engoren et al., 2020). This highlights the importance of precise cohort
definitions, as some definitions may, by design, be more difficult to predict.

4.4 TRANSFER LEARNING

External validation YAIB ’s common dataset format allowed us to evaluate a model trained on an
equal sample of one dataset on data from all other datasets. We additionally trained a model on pooled
(d-1) data from three datasets and evaluated on the fourth, held-out dataset. For the ICU mortality task
(Figure 2), models, as expected, performed best on independent test data from their training dataset
(diagonal). Performance could drop considerably when models were evaluated in another database
(off-diagonal). Notably, AUPRC performance could increase in the evaluation dataset (rows) but
always remained lower than the highest achievable performance for that dataset (columns). We found
that MIMIC-IV and eICU transferred well among each other. The pooled model usually performed
as well as the best single-dataset model. Notably, AUMCdb AUPRC results demonstrate decidedly

AUMCdb HiRID eICU MIMIC-IV

Evaluation Dataset

AUMCdb

HiRID

eICU

MIMIC-IV

Pooled (d-1)

Tr
ai

ni
ng

 D
at

as
et

83.9 79.6 77.8 80.4

80.5 84.8 77.3 80.5

82.1 79.4 86.0 86.0

81.6 78.5 81.7 87.6

82.5 79.6 82.4 83.9 78

80

82

84

86

AU
R

O
C

 (h
ig

he
r i

s
be

tte
r)

AUMCdb HiRID eICU MIMIC-IV

Evaluation Dataset

AUMCdb

HiRID

eICU

MIMIC-IV

Pooled (d-1)

Tr
ai

ni
ng

 D
at

as
et

53.8 27.8 28.9 33.4

46.1 39.4 24.3 32.3

49.2 30.1 35.6 39.9

50.9 28.6 28.0 42.8

49.9 31.4 30.6 37.9
25

30

35

40

45

50

AU
PR

C
 (h

ig
he

r i
s

be
tte

r)

FIGURE 2: Performance of prediction models when trained on one dataset (row) and evaluated on all others
(columns). Left: Performance in AUROC of the GRU model on ICU mortality. Right: Performance in AUPRC
for the same models. Pooled (d-1) refers to training a model on every dataset except the evaluation dataset.

8

Published as a conference paper at ICLR 2024

higher performance than evaluation on other datasets, which could be the result of a patient case mix
and outcome prevalence (see Table 14).

0 2000 4000 6000 8000 10000
Samples

65

70

75

80

85

AU
R

O
C

 (h
ig

he
r i

s
be

tte
r)

Full HiRID only
Train on HiRID
Full eICU only
Fine-tune eICU on HiRID

FIGURE 3: Fine-tuning an eICU model for
ICU mortality prediction on HiRID.

Fine-tuning In Figure 2, we saw that eICU resulted in the
most generalizable model for ICU mortality, which may
serve as a strong pre-training for transfer learning. Since it
worked worst for HiRID, we further fine-tuned the eICU
GRU model (source) for HiRID (target) by retraining it
using an increasing number of samples from the HiRID
dataset. We compared the results to a model trained from
scratch on the same amount of HiRID samples (Figure 3).
Fine-tuning was profitable for any number of additional
samples and especially for <4,000 samples.

5 DISCUSSION

We provide extensive ML and DL baselines for five clinical prediction tasks trained across four
major open-source ICU datasets. While we frequently obtained comparable results across model
architectures, seemingly small differences in cohort definition could substantially impact the achieved
accuracy. Our findings highlight not only the need for standardized training pipelines but also for
harmonized cohort definitions to allow for a meaningful comparison of clinical prediction models. Our
work provides the first international, multi-center ICU benchmark, including the first-ever benchmark
for the AmsterdamUMCdb dataset. It naturally facilitates sorely needed external validation of model
performances and allows fine-tuning of pre-trained models for new datasets. This makes YAIB
relevant to a wide range of research areas beyond classical supervised learning, including domain
adaption and generalization. We hope this broad reach encourages ICU data providers to ensure
compatibility with YAIB , as they can expect a larger overall research impact. This simplifies the use
of novel datasets by the clinical and ML community.

YAIB aids researchers in training baseline models by providing them with ready-to-use imple-
mentations of state-of-the-art model architectures; new model implementations can therefore be
easily compared. While most existing benchmarking studies are hard-coded, we utilize flexible,
dataset-independent cohort definitions and configurable preprocessing facilities linked via a common,
shareable syntax. This setup acknowledges that task definitions inevitably involve arbitrary decisions,
without one “size” that fits all. In our work, we embrace this idea and aim to equip researchers — both
applied and theoretical — with the tools to quickly adapt a task to their individual needs (including
the use of custom proprietary data) while maintaining reproducibility and reusability across studies.
Models can thus be compared across multiple, slightly different task definitions and datasets, still
ensuring an apples-to-apples comparison. We hope this lowers the bar for researchers to test their
approaches across a range of configurations and datasets.

YAIB is currently limited to ICU settings, where several datasets are publicly available. A similar
setup could be beneficial for data from other medical settings, such as inpatient wards. Although
created for critical care, YAIB is not specific to the ICU and can be readily extended to other settings,
provided a suitable configuration is defined. Features included in YAIB , at the time of writing, mainly
relate to vital signs, lab tests, and data relevant to outcome definitions. Further clinician-assisted
harmonization efforts will be necessary to increase the breadth of features, most notably medications
and comorbidities. If YAIB is adapted to general EHR, including clinical notes and medical imaging
is a logical next step. We also note that we compared these models on the basis of commonly used
ML metrics; we leave the comparison with respect to clinical fairness and bias as an easy future
extension to our framework (see Appendix F). Finally, we advise users of our benchmark to carefully
consider the compromises made to allow for cohort harmonization; we strongly recommend clinical
validation before making practical decisions based on the developed models.

6 CONCLUSION

Routine medical data is highly complex. Without clear ground truth, researchers are inevitably forced
to make arbitrary design choices when defining outcomes and populations of interest. To promote
comparable and reproducible models in this setting, we believe that further tools are needed that
allow researchers to define clinical prediction tasks transparently, share experimental setups easily,
and validate results against various data sources. As a flexible and extensible framework for clinical
modeling on ICU data, YAIB is meant to be a step towards that goal.

9

Published as a conference paper at ICLR 2024

7 ACKNOWLEDGEMENTS

Robin van de Water is funded by the “Gemeinsamer Bundesausschuss (G-BA) Innovationsausschuss”
in the framework of “CASSANDRA - Clinical ASSist AND aleRt Algorithms” (project number
01VSF20015). We would like to acknowledge the work of Alisher Turubayev, Anna Shopova, Fabian
Lange, Mahmut Kamalak, Paul Mattes, and Victoria Ayvasky for adding Pytorch Lightning, Weights
and Biases compatibility, and several optional imputation methods to a later version of the benchmark
repository.

8 ETHICS STATEMENT

We do not manage access and do not provide access to any of the full medical datasets included in
this work, and we adhere to the usage licenses for each dataset. Users can follow the credentialing
procedures outlined in Appendix C. However, we provide two preprocessed demo datasets out of
the box for reproducibility and experimentation. The demo task cohorts for MIMIC-III and eICU
mentioned in that section are derived from the official demo datasets published on PhysioNet by the
original authors of the respective databases. Each demo dataset represents a small, curated subset
of data that is freely accessible without any need for human subject training. Both demo datasets
are published under an Open Data Commons Open Database License v1.0, which explicitly permits
the adoption and sharing of the data. The original demo data, as well as further information, can be
found at the MIMIC-III demo and eICU demo Physionet pages.

9 REPRODUCIBILITY STATEMENT

We include the source code of YAIB1 (main benchmark), YAIB-cohorts2 (adaptable cohort
extraction) and ReciPys3 (extensible preprocessing package) in our submission. Models for each
task and architecture are publicly available4. In the included source code, a file called PAPER.md5

describes the reproducibility steps of the experiments in this paper. Specifically, one requires the
standalone codebase of YAIB-cohorts to first create the cohorts from the acquired data, once you
have completed the required credentialing (see Appendix C for details). As mentioned, we include
demo cohort data for each task (results for these cohorts are shown in Appendix B). Appendix D
describes the data processing and task creation. The usage of YAIB is detailed in Appendix E.
Appendix F shows how YAIB can be extended with new datasets, clinical concepts, tasks, models,
and evaluation metrics. Additionally, we refer to the README.md6 and the wiki7 for the usage of
YAIB . Appendix G and H detail the experiment design and chosen hyperparameters, respectively.
Finally, Appendix I contains the machine learning reproducibility checklist for our work.

1https://github.com/rvandewater/YAIB
2https://github.com/rvandewater/YAIB-cohorts
3https://github.com/rvandewater/ReciPys
4https://github.com/rvandewater/YAIB-models
5https://github.com/rvandewater/YAIB/blob/master/PAPER.md
6https://github.com/rvandewater/YAIB/blob/master/README.md
7https://github.com/rvandewater/YAIB/wiki/YAIB-wiki-home

10

https://physionet.org/content/mimiciii-demo/1.4/
https://physionet.org/content/eicu-crd-demo/2.0.1/
https://github.com/rvandewater/YAIB
https://github.com/rvandewater/YAIB-cohorts
https://github.com/rvandewater/ReciPys
https://github.com/rvandewater/YAIB-models
https://github.com/rvandewater/YAIB/blob/master/PAPER.md
https://github.com/rvandewater/YAIB/blob/master/README.md
https://github.com/rvandewater/YAIB/wiki/YAIB-wiki-home

Published as a conference paper at ICLR 2024

REFERENCES

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete
Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A system for large-scale
machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pp. 265–283, 2016.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An Empirical Evaluation of Generic Convolutional
and Recurrent Networks for Sequence Modeling, April 2018.

Stephanie Baker, Wei Xiang, and Ian Atkinson. Continuous and automatic mortality risk prediction
using vital signs in the intensive care unit: A hybrid neural network approach. Scientific Reports,
10(1):21282, December 2020. ISSN 2045-2322. doi: 10.1038/s41598-020-78184-7.

Sebastiano Barbieri, James Kemp, Oscar Perez-Concha, Sradha Kotwal, Martin Gallagher, Angus
Ritchie, and Louisa Jorm. Benchmarking Deep Learning Architectures for Predicting Readmission
to the ICU and Describing Patients-at-Risk. Scientific Reports, 10(1):1111, January 2020. ISSN
2045-2322. doi: 10.1038/s41598-020-58053-z.

Nicolas Bennett, Drago Plecko, Ida-Fong Ukor, Nicolai Meinshausen, and Peter Bühlmann. Ricu: R’s
interface to intensive care data. GigaScience, 12, June 2023. doi: 10.1093/gigascience/giad041.

Lukas Biewald. Experiment tracking with weights and biases, 2020.

Toon Calders, Faisal Kamiran, and Mykola Pechenizkiy. Building Classifiers with Independency
Constraints. In 2009 IEEE International Conference on Data Mining Workshops, pp. 13–18,
December 2009. doi: 10.1109/ICDMW.2009.83.

Jacob S. Calvert, Daniel A. Price, Uli K. Chettipally, Christopher W. Barton, Mitchell D. Feldman,
Jana L. Hoffman, Melissa Jay, and Ritankar Das. A computational approach to early sepsis
detection. Computers in Biology and Medicine, 74:69–73, July 2016. ISSN 00104825. doi:
10.1016/j.compbiomed.2016.05.003.

Peng Cheng, Lemuel R. Waitman, Yong Hu, and Mei Liu. Predicting Inpatient Acute Kidney Injury
over Different Time Horizons: How Early and Accurate? AMIA Annual Symposium Proceedings,
2017:565–574, April 2018. ISSN 1942-597X.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the Properties
of Neural Machine Translation: Encoder-Decoder Approaches, October 2014.

Dan Holtmann-Rice, Sergio Guadarrama, and Nathan Silberman. Gin-config. Google, 2018.

Wenjie Du. PyPOTS: A Python Toolbox for Data Mining on Partially-Observed Time Series, May
2023.

Bar Eini-Porat, Ofra Amir, Danny Eytan, and Uri Shalit. Tell me something interesting: Clinical
utility of machine learning prediction models in the ICU. Journal of Biomedical Informatics, 132:
104107, August 2022. ISSN 15320464. doi: 10.1016/j.jbi.2022.104107.

Milo Engoren, Troy Seelhammer, Robert E. Freundlich, Michael D. Maile, Matthew J. G. Sigakis,
and Thomas A. Schwann. A Comparison of Sepsis-2 (Systemic Inflammatory Response Syndrome
Based) to Sepsis-3 (Sequential Organ Failure Assessment Based) Definitions—A Multicenter
Retrospective Study*. Critical Care Medicine, 48(9):1258–1264, September 2020. ISSN 0090-
3493. doi: 10.1097/CCM.0000000000004449.

William Falcon and The PyTorch Lightning team. PyTorch lightning. Zenodo, April 2023.

Lucas M. Fleuren, Thomas L. T. Klausch, Charlotte L. Zwager, Linda J. Schoonmade, Tingjie Guo,
Luca F. Roggeveen, Eleonora L. Swart, Armand R. J. Girbes, Patrick Thoral, Ari Ercole, Mark
Hoogendoorn, and Paul W. G. Elbers. Machine learning for the prediction of sepsis: A systematic
review and meta-analysis of diagnostic test accuracy. Intensive Care Medicine, 46(3):383–400,
2020a. ISSN 0342-4642. doi: 10.1007/s00134-019-05872-y.

11

Published as a conference paper at ICLR 2024

Lucas M. Fleuren, Patrick Thoral, Duncan Shillan, Ari Ercole, Paul W. G. Elbers, Mark Hoogendoorn,
Ben Gibbison, Thomas L. T. Klausch, Tingjie Guo, Luca F. Roggeveen, Eleonora L. Swart, Armand
R. J. Girbes, and Right Data Right Now Collaborators. Machine learning in intensive care medicine:
Ready for take-off? Intensive Care Medicine, 46(7):1486–1488, July 2020b. ISSN 1432-1238.
doi: 10.1007/s00134-020-06045-y.

V. Fomin, J. Anmol, S. Desroziers, J. Kriss, and A. Tejani. High-level library to help with training
neural networks in PyTorch, 2020.

Joseph Futoma, Mark Sendak, Blake Cameron, and Katherine Heller. Predicting Disease Progression
with a Model for Multivariate Longitudinal Clinical Data. In Proceedings of the 1st Machine
Learning for Healthcare Conference, pp. 42–54. PMLR, December 2016.

Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based models still outperform
deep learning on typical tabular data? In Thirty-Sixth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, September 2022.

Chonghui Guo, Menglin Lu, and Jingfeng Chen. An evaluation of time series summary statistics as
features for clinical prediction tasks. BMC Medical Informatics and Decision Making, 20(1):48,
December 2020. ISSN 1472-6947. doi: 10.1186/s12911-020-1063-x.

Mehak Gupta, Brennan Gallamoza, Nicolas Cutrona, Pranjal Dhakal, Raphael Poulain, and Rahma-
tollah Beheshti. An Extensive Data Processing Pipeline for MIMIC-IV, September 2022.

Moritz Hardt, Eric Price, Eric Price, and Nati Srebro. Equality of Opportunity in Supervised Learning.
In Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

Hrayr Harutyunyan, Hrant Khachatrian, David C. Kale, Greg Ver Steeg, and Aram Galstyan. Multitask
learning and benchmarking with clinical time series data. Scientific Data, 6(1):96, December 2019.
ISSN 2052-4463. doi: 10.1038/s41597-019-0103-9.

Tim Head, Manoj Kumar, Holger Nahrstaedt, Gilles Louppe, and Iaroslav Shcherbatyi. Scikit-
optimize/scikit-optimize. Zenodo, October 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In Advances
in Neural Information Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc.,
2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Technical Report 9, TU
Munich, 1997.

Wei Huang, Yuwen Chen, Peng Wang, Xiang Liu, and Shuguang Liu. An Interpretable Temporal
Convolutional Network Model for Acute Kidney Injury Prediction in the Intensive Care Unit. In
2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 3021–3028,
December 2021. doi: 10.1109/BIBM52615.2021.9669653.

Stephanie L Hyland. Early prediction of circulatory failure in the intensive care unit using machine
learning. Nature MedIcIne, 26:28, 2020.

Daniel Jarrett, Ioana Bica, Ari Ercole, Jinsung Yoon, and Zhaozhi Qian. CLAIRVOYANCE: A
PIPELINE TOOLKIT FOR MEDICAL TIME SERIES. International Conference on Learning
Representations, pp. 32, 2021.

Daniel Jarrett, Bogdan Cebere, Tennison Liu, Alicia Curth, and Mihaela van der Schaar. HyperImpute:
Generalized Iterative Imputation with Automatic Model Selection, June 2022.

Senjun Jin, Lin Chen, Kun Chen, Chaozhou Hu, Sheng’an Hu, and Zhongheng Zhang. Establishment
of a Chinese critical care database from electronic healthcare records in a tertiary care medical cen-
ter. Scientific Data, 10(1):49, January 2023. ISSN 2052-4463. doi: 10.1038/s41597-023-01952-3.

Alistair E. W. Johnson, Tom J. Pollard, and Roger G. Mark. Reproducibility in critical care: A
mortality prediction case study. In Proceedings of the 2nd Machine Learning for Healthcare
Conference, pp. 361–376. PMLR, November 2017.

12

Published as a conference paper at ICLR 2024

Alistair E. W. Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven Horng,
Tom J. Pollard, Benjamin Moody, Brian Gow, Li-wei H. Lehman, Leo A. Celi, and Roger G. Mark.
MIMIC-IV, a freely accessible electronic health record dataset. Scientific Data, 10(1):1, January
2023. ISSN 2052-4463. doi: 10.1038/s41597-022-01899-x.

Alistair E.W. Johnson, Tom J. Pollard, Lu Shen, Li-wei H. Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G. Mark. MIMIC-III,
a freely accessible critical care database. Scientific Data, 3(1):160035, December 2016. ISSN
2052-4463. doi: 10.1038/sdata.2016.35.

KDIGO. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group:
KDIGO clinical practice guideline for acute kidney injury. Kidney International Supplements, 2
(1), March 2012. ISSN 21571716. doi: 10.1038/kisup.2012.2.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Christopher J. Kelly, Alan Karthikesalingam, Mustafa Suleyman, Greg Corrado, and Dominic King.
Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine, 17(1):
195, December 2019. ISSN 1741-7015. doi: 10.1186/s12916-019-1426-2.

Christopher Kok, V. Jahmunah, Shu Lih Oh, Xujuan Zhou, Raj Gururajan, Xiaohui Tao, Kang Hao
Cheong, Rashmi Gururajan, Filippo Molinari, and U.Rajendra Acharya. Automated prediction of
sepsis using temporal convolutional network. Computers in Biology and Medicine, 127:103957,
December 2020. ISSN 00104825. doi: 10.1016/j.compbiomed.2020.103957.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. DiffWave: A Versatile
Diffusion Model for Audio Synthesis, March 2021.

Jay L. Koyner, Kyle A. Carey, Dana P. Edelson, and Matthew M. Churpek. The Development of a
Machine Learning Inpatient Acute Kidney Injury Prediction Model*:. Critical Care Medicine, 46
(7):1070–1077, July 2018. ISSN 0090-3493. doi: 10.1097/CCM.0000000000003123.

Simon Meyer Lauritsen, Mads Ellersgaard Kalør, Emil Lund Kongsgaard, Katrine Meyer Lauritsen,
Marianne Johansson Jørgensen, Jeppe Lange, and Bo Thiesson. Early detection of sepsis utilizing
deep learning on electronic health record event sequences. Artificial Intelligence in Medicine, 104:
101820, April 2020. ISSN 09333657. doi: 10.1016/j.artmed.2020.101820.

Mitchell M. Levy, Mitchell P. Fink, John C. Marshall, Edward Abraham, Derek Angus, Deborah Cook,
Jonathan Cohen, Steven M. Opal, Jean-Louis Vincent, Graham Ramsay, and International Sepsis
Definitions Conference. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions
Conference. Intensive Care Medicine, 29(4):530–538, April 2003. ISSN 0342-4642. doi:
10.1007/s00134-003-1662-x.

Bryan Lim, Sercan Ö. Arık, Nicolas Loeff, and Tomas Pfister. Temporal Fusion Transformers for
interpretable multi-horizon time series forecasting. International Journal of Forecasting, 37(4):
1748–1764, October 2021. ISSN 0169-2070. doi: 10.1016/j.ijforecast.2021.03.012.

Sheng-Chieh Lu, Cai Xu, Chandler H. Nguyen, Yimin Geng, André Pfob, and Chris Sidey-Gibbons.
Machine Learning–Based Short-Term Mortality Prediction Models for Patients With Cancer
Using Electronic Health Record Data: Systematic Review and Critical Appraisal. JMIR Medical
Informatics, 10(3):e33182, March 2022. doi: 10.2196/33182.

Aishwarya Mandyam, Elizabeth C. Yoo, Jeff Soules, Krzysztof Laudanski, and Barbara E. Engelhardt.
COP-E-CAT: Cleaning and organization pipeline for EHR computational and analytic tasks. In
Proceedings of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health
Informatics, pp. 1–9, Gainesville Florida, August 2021. ACM. ISBN 978-1-4503-8450-6. doi:
10.1145/3459930.3469536.

Goran Medic, Melodi Kosaner Kließ, Louis Atallah, Jochen Weichert, Saswat Panda, Maarten Postma,
and Amer El-Kerdi. Evidence-based Clinical Decision Support Systems for the prediction and
detection of three disease states in critical care: A systematic literature review. F1000Research, 8:
1728, 2019. ISSN 2046-1402. doi: 10.12688/f1000research.20498.2.

13

Published as a conference paper at ICLR 2024

Katiuscha Merath, J. Madison Hyer, Rittal Mehta, Ayesha Farooq, Fabio Bagante, Kota Sahara,
Diamantis I. Tsilimigras, Eliza Beal, Anghela Z. Paredes, Lu Wu, Aslam Ejaz, and Timothy M.
Pawlik. Use of Machine Learning for Prediction of Patient Risk of Postoperative Complications
After Liver, Pancreatic, and Colorectal Surgery. Journal of Gastrointestinal Surgery, 24(8):
1843–1851, August 2020. ISSN 1091-255X, 1873-4626. doi: 10.1007/s11605-019-04338-2.

Michael Moor, Max Horn, Bastian Rieck, Damian Roqueiro, and Karsten Borgwardt. Early Recog-
nition of Sepsis with Gaussian Process Temporal Convolutional Networks and Dynamic Time
Warping. In Proceedings of the 4th Machine Learning for Healthcare Conference, pp. 2–26. PMLR,
October 2019.

Michael Moor, Nicolas Bennet, Drago Plecko, Max Horn, Bastian Rieck, Nicolai Meinshausen, Peter
Bühlmann, and Karsten Borgwardt. Predicting sepsis in multi-site, multi-national intensive care
cohorts using deep learning, July 2021a.

Michael Moor, Bastian Rieck, Max Horn, Catherine R. Jutzeler, and Karsten Borgwardt. Early
Prediction of Sepsis in the ICU Using Machine Learning: A Systematic Review. Frontiers in
Medicine, 8, 2021b. ISSN 2296-858X.

Sankavi Muralitharan, Walter Nelson, Shuang Di, Michael McGillion, Pj Devereaux, Neil Grant Barr,
and Jeremy Petch. Machine Learning–Based Early Warning Systems for Clinical Deterioration:
Systematic Scoping Review. Journal of Medical Internet Research, 23(2):e25187, February 2021.
ISSN 1438-8871. doi: 10.2196/25187.

Nicki Skafte Detlefsen, Jiri Borovec, Justus Schock, Ananya Harsh, Teddy Koker, Luca Di Liello,
Daniel Stancl, Changsheng Quan, Maxim Grechkin, and William Falcon. TorchMetrics - measuring
reproducibility in PyTorch, February 2022.

Okke Nikkinen, Timo Kolehmainen, Toni Aaltonen, Elias Jämsä, Seppo Alahuhta, and Merja Vakkala.
Developing a supervised machine learning model for predicting perioperative acute kidney injury
in arthroplasty patients. Computers in Biology and Medicine, 144:105351, May 2022. ISSN
00104825. doi: 10.1016/j.compbiomed.2022.105351.

Matthieu Oliver, Jérôme Allyn, Rémi Carencotte, Nicolas Allou, and Cyril Ferdynus. Introducing
the BlendedICU dataset, the first harmonized, international intensive care dataset. Journal of
Biomedical Informatics, 146:104502, October 2023. ISSN 1532-0464. doi: 10.1016/j.jbi.2023.
104502.

Ziyuan Pan, Hao Du, Kee Yuan Ngiam, Fei Wang, Ping Shum, and Mengling Feng. A Self-Correcting
Deep Learning Approach to Predict Acute Conditions in Critical Care. arXiv:1901.04364 [cs,
stat], January 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Adler Perotte, Rajesh Ranganath, Jamie S Hirsch, David Blei, and Noémie Elhadad. Risk prediction
for chronic kidney disease progression using heterogeneous electronic health record data and time
series analysis. Journal of the American Medical Informatics Association : JAMIA, 22(4):872–880,
July 2015. ISSN 1067-5027. doi: 10.1093/jamia/ocv024.

Romain Pirracchio, Maya L Petersen, Marco Carone, Matthieu Resche Rigon, Sylvie Chevret, and
Mark J van der Laan. Mortality prediction in intensive care units with the Super ICU Learner
Algorithm (SICULA): A population-based study. The Lancet Respiratory Medicine, 3(1):42–52,
January 2015. ISSN 22132600. doi: 10.1016/S2213-2600(14)70239-5.

Tom J. Pollard, Alistair E. W. Johnson, Jesse D. Raffa, Leo A. Celi, Roger G. Mark, and Omar
Badawi. The eICU Collaborative Research Database, a freely available multi-center database
for critical care research. Scientific Data, 5(1):180178, December 2018. ISSN 2052-4463. doi:
10.1038/sdata.2018.178.

14

Published as a conference paper at ICLR 2024

Sanjay Purushotham, Chuizheng Meng, Zhengping Che, and Yan Liu. Benchmarking deep learning
models on large healthcare datasets. Journal of Biomedical Informatics, 83:112–134, July 2018.
ISSN 15320464. doi: 10.1016/j.jbi.2018.04.007.

Nina Rank, Boris Pfahringer, Jörg Kempfert, Christof Stamm, Titus Kühne, Felix Schoenrath,
Volkmar Falk, Carsten Eickhoff, and Alexander Meyer. Deep-learning-based real-time prediction
of acute kidney injury outperforms human predictive performance. npj Digital Medicine, 3(1):139,
December 2020. ISSN 2398-6352. doi: 10.1038/s41746-020-00346-8.

Matthew A Reyna, Chris Josef, Salman Seyedi, Russell Jeter, Supreeth P Shashikumar, M Bran-
don Westover, Ashish Sharma, Shamim Nemati, and Gari D Clifford. Early Prediction of Sepsis
from Clinical Data: The PhysioNet/Computing in Cardiology Challenge 2019. In 2019 Computing
in Cardiology (CinC), pp. Page 1–Page 4, September 2019. doi: 10.23919/CinC49843.2019.
9005736.

Niklas Rodemund, Bernhard Wernly, Christian Jung, Crispiana Cozowicz, and Andreas Koköfer. The
Salzburg Intensive Care database (SICdb): An openly available critical care dataset. Intensive Care
Medicine, April 2023. ISSN 1432-1238. doi: 10.1007/s00134-023-07046-3.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical
Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F.
Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015,
Lecture Notes in Computer Science, pp. 234–241, Cham, 2015. Springer International Publishing.
ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4_28.

Tabinda Sarwar, Sattar Seifollahi, Jeffrey Chan, Xiuzhen Zhang, Vural Aksakalli, Irene Hudson,
Karin Verspoor, and Lawrence Cavedon. The Secondary Use of Electronic Health Records for
Data Mining: Data Characteristics and Challenges. ACM Computing Surveys, 55(2):1–40, March
2023. ISSN 0360-0300, 1557-7341. doi: 10.1145/3490234.

Christopher M Sauer, Li-Ching Chen, Stephanie L Hyland, Armand Girbes, Paul Elbers, and Leo A
Celi. Leveraging electronic health records for data science: Common pitfalls and how to avoid
them. The Lancet Digital Health, 4(12):e893–e898, December 2022a. ISSN 25897500. doi:
10.1016/S2589-7500(22)00154-6.

Christopher M. Sauer, Tariq A. Dam, Leo A. Celi, Martin Faltys, Miguel A. A. de la Hoz, Lasith
Adhikari, Kirsten A. Ziesemer, Armand Girbes, Patrick J. Thoral, and Paul Elbers. Systematic
Review and Comparison of Publicly Available ICU Data Sets—A Decision Guide for Clinicians
and Data Scientists. Critical Care Medicine, 50(6):e581–e588, June 2022b. ISSN 0090-3493. doi:
10.1097/CCM.0000000000005517.

Evgeny S. Saveliev and Mihaela van der Schaar. TemporAI: Facilitating Machine Learning Innovation
in Time Domain Tasks for Medicine, January 2023.

Christopher W. Seymour, Vincent X. Liu, Theodore J. Iwashyna, Frank M. Brunkhorst, Thomas D.
Rea, André Scherag, Gordon Rubenfeld, Jeremy M. Kahn, Manu Shankar-Hari, Mervyn Singer,
Clifford S. Deutschman, Gabriel J. Escobar, and Derek C. Angus. Assessment of Clinical Criteria
for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-
3). JAMA, 315(8):762, February 2016. ISSN 0098-7484. doi: 10.1001/jama.2016.0288.

Farah Shamout, Tingting Zhu, and David A. Clifton. Machine Learning for Clinical Outcome
Prediction. IEEE Reviews in Biomedical Engineering, 14:116–126, 2021. ISSN 1937-3333,
1941-1189. doi: 10.1109/RBME.2020.3007816.

Alok Sharma, Anupam Shukla, Ritu Tiwari, and Apoorva Mishra. Mortality Prediction of ICU
patients using Machine Leaning: A survey. In Proceedings of the International Conference on
Compute and Data Analysis - ICCDA ’17, pp. 49–53, Lakeland, FL, USA, 2017. ACM Press.
ISBN 978-1-4503-5241-3. doi: 10.1145/3093241.3093267.

Seyedmostafa Sheikhalishahi, Vevake Balaraman, and Venet Osmani. Benchmarking machine
learning models on multi-centre eICU critical care dataset. PLOS ONE, 15(7):e0235424, July
2020. ISSN 1932-6203. doi: 10.1371/journal.pone.0235424.

15

Published as a conference paper at ICLR 2024

Duncan Shillan, Jonathan A. C. Sterne, Alan Champneys, and Ben Gibbison. Use of machine learning
to analyse routinely collected intensive care unit data: A systematic review. Critical Care, 23(1):
284, December 2019. ISSN 1364-8535. doi: 10.1186/s13054-019-2564-9.

Ikaro Silva, George Moody, Daniel J. Scott, Leo A. Celi, and Roger G. Mark. Predicting In-Hospital
Mortality of ICU Patients: The PhysioNet/Computing in Cardiology Challenge 2012. Computing
in Cardiology, 39:245–248, 2012. ISSN 2325-8861.

Mervyn Singer, Clifford S. Deutschman, Christopher Warren Seymour, Manu Shankar-Hari, Djillali
Annane, Michael Bauer, Rinaldo Bellomo, Gordon R. Bernard, Jean-Daniel Chiche, Craig M.
Coopersmith, Richard S. Hotchkiss, Mitchell M. Levy, John C. Marshall, Greg S. Martin, Steven M.
Opal, Gordon D. Rubenfeld, Tom van der Poll, Jean-Louis Vincent, and Derek C. Angus. The
Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315(8):
801–810, February 2016. ISSN 0098-7484. doi: 10.1001/jama.2016.0287.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian Optimization of Machine
Learning Algorithms, August 2012.

Mahanazuddin Syed, Shorabuddin Syed, Kevin Sexton, Hafsa Bareen Syeda, Maryam Garza,
Meredith Zozus, Farhanuddin Syed, Salma Begum, Abdullah Usama Syed, Joseph Sanford,
and Fred Prior. Application of Machine Learning in Intensive Care Unit (ICU) Settings Using
MIMIC Dataset: Systematic Review. Informatics, 8(1):16, March 2021. ISSN 2227-9709. doi:
10.3390/informatics8010016.

Shengpu Tang, Parmida Davarmanesh, Yanmeng Song, Danai Koutra, Michael W Sjoding, and Jenna
Wiens. Democratizing EHR analyses with FIDDLE: A flexible data-driven preprocessing pipeline
for structured clinical data. Journal of the American Medical Informatics Association, 27(12):
1921–1934, December 2020. ISSN 1527-974X. doi: 10.1093/jamia/ocaa139.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: Conditional Score-based
Diffusion Models for Probabilistic Time Series Imputation. In Advances in Neural Information
Processing Systems, volume 34, pp. 24804–24816. Curran Associates, Inc., 2021.

Patrick J. Thoral, Jan M. Peppink, Ronald H. Driessen, Eric J. G. Sijbrands, Erwin J. O. Kompanje,
Lewis Kaplan, Heatherlee Bailey, Jozef Kesecioglu, Maurizio Cecconi, Matthew Churpek, Gilles
Clermont, Mihaela van der Schaar, Ari Ercole, Armand R. J. Girbes, and Paul W. G. Elbers. Sharing
ICU Patient Data Responsibly Under the Society of Critical Care Medicine/European Society of
Intensive Care Medicine Joint Data Science Collaboration: The Amsterdam University Medical
Centers Database (AmsterdamUMCdb) Example*. Critical Care Medicine, 49(6):e563–e577,
June 2021. ISSN 0090-3493. doi: 10.1097/CCM.0000000000004916.

Nenad Tomašev, Xavier Glorot, Jack W. Rae, Michal Zielinski, Harry Askham, Andre Saraiva, Anne
Mottram, Clemens Meyer, Suman Ravuri, Ivan Protsyuk, Alistair Connell, Cían O. Hughes, Alan
Karthikesalingam, Julien Cornebise, Hugh Montgomery, Geraint Rees, Chris Laing, Clifton R.
Baker, Kelly Peterson, Ruth Reeves, Demis Hassabis, Dominic King, Mustafa Suleyman, Trevor
Back, Christopher Nielson, Joseph R. Ledsam, and Shakir Mohamed. A clinically applicable
approach to continuous prediction of future acute kidney injury. Nature, 572(7767):116–119,
August 2019. ISSN 1476-4687. doi: 10.1038/s41586-019-1390-1.

Robin van de Water and Bert Arnrich. Closing Gaps: An Imputation Analysis of ICU Vital Signs. In
Deep Generative Models for Health Workshop NeurIPS 2023, October 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention Is All You Need. arXiv:1706.03762 [cs], December 2017.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental algorithms for scientific computing in python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

16

Published as a conference paper at ICLR 2024

Deepak Vohra. Apache Parquet. In Deepak Vohra (ed.), Practical Hadoop Ecosystem: A Definitive
Guide to Hadoop-Related Frameworks and Tools, pp. 325–335. Apress, Berkeley, CA, 2016. ISBN
978-1-4842-2199-0. doi: 10.1007/978-1-4842-2199-0_8.

Hui Wang, Fuxing Deng, Buyao Zhang, and Shuangping Zhao. Real-Time Prediction of AKI Among
Middle-Aged and Older in ICU: A Retrospective and Machine Learning Study. Preprint, In Review,
August 2020a.

Shirly Wang, Matthew B. A. McDermott, Geeticka Chauhan, Marzyeh Ghassemi, Michael C. Hughes,
and Tristan Naumann. MIMIC-Extract: A data extraction, preprocessing, and representation
pipeline for MIMIC-III. In Proceedings of the ACM Conference on Health, Inference, and
Learning, pp. 222–235, Toronto Ontario Canada, April 2020b. ACM. ISBN 978-1-4503-7046-2.
doi: 10.1145/3368555.3384469.

Yuqing Wang, Yun Zhao, Rachael Callcut, and Linda Petzold. Integrating Physiological Time Series
and Clinical Notes with Transformer for Early Prediction of Sepsis, March 2022.

Chaoqi Yang, Zhenbang Wu, Patrick Jiang, Zhen Lin, Junyi Gao, Benjamin P. Danek, and Jimeng
Sun. PyHealth: A Deep Learning Toolkit for Healthcare Applications. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’23, pp. 5788–5789,
New York, NY, USA, August 2023. Association for Computing Machinery. ISBN 9798400701030.
doi: 10.1145/3580305.3599178.

Hugo Yèche, Rita Kuznetsova, Marc Zimmermann, Matthias Hüser, Xinrui Lyu, Martin Faltys, and
Gunnar Rätsch. HiRID-ICU-Benchmark – A Comprehensive Machine Learning Benchmark on
High-resolution ICU Data. arXiv:2111.08536 [cs], January 2022.

Andy B. Yoo, Morris A. Jette, and Mark Grondona. SLURM: Simple Linux Utility for Resource
Management. In Dror Feitelson, Larry Rudolph, and Uwe Schwiegelshohn (eds.), Job Schedul-
ing Strategies for Parallel Processing, Lecture Notes in Computer Science, pp. 44–60, Berlin,
Heidelberg, 2003. Springer. ISBN 978-3-540-39727-4. doi: 10.1007/10968987_3.

17

Published as a conference paper at ICLR 2024

APPENDICES: TABLE OF CONTENTS

• APPENDIX A: YAIB’S CONTRIBUTION IN CONTEXT

• APPENDIX B: EXTENDED RESULTS

• APPENDIX C: DATASETS

• APPENDIX D: OUTCOME DEFINITIONS

• APPENDIX E: YAIB’S USAGE AND IMPLEMENTATION

• APPENDIX F: EXTENDING YAIB
• APPENDIX G: EXPERIMENTAL SETUP AND REPRODUCIBILITY

• APPENDIX H: HYPERPARAMETERS

• APPENDIX I: MACHINE LEARNING REPRODUCIBILITY CHECKLIST

A APPENDIX: YAIB’S CONTRIBUTION IN CONTEXT

This Appendix provides an extensive description for the positioning of YAIB in the contemporary
clinical ML research landscape. We particularly recommend it to those that are looking into creating
their own solutions for clinical ML.

A.1 EXTENSIBILITY AND REPRODUCIBILITY

We designed YAIB to be as extensible as possible while retaining full reproducibility. This means
easy support of new databases, clinical concepts, tasks, experiment configurations, preprocessing
pipelines, imputation methods, models, and evaluation metrics. If changes are necessary, they need to
be reproducible and easily shareable across research teams. If the user only requires a few default
ICU tasks from a single i.i.d. dataset to test their new method, any existing ICU benchmarks could be
sufficient. Users do not need to apply for access to multiple datasets and do not have to deal with the
intricacies of the clinical task definition. As long as the integration of a new model is seamless, such
simple frameworks are fit-for-purpose and abstract much of the complexity, allowing the user to only
worry about one thing: their model. If multiple papers used the exact same benchmark, results are
also directly comparable between papers (an “apples-to-apples” comparison).

However, we found that this setup tends to be too restrictive and thus unrealistic. Users often want to
highlight a particular aspect of their model, prompting them to adapt to the default task. At other
times, they want to show clinical impact and need to adapt the default task to make it more realistic.
Given the lack of successful translation of prediction models into clinical practice, reviewers are also
increasingly requesting external validation – sometimes with multiple endpoints – which is difficult
to shoehorn into most existing solutions. YAIB embraces the need to tweak experimental setups.
Results will no longer be directly comparable between papers, but we argue that true apples-to-apples
comparisons were inherently rare. Instead of forcing users into a rigid framework, it allows for
adaptations but requires them to be done in a transparent manner. Absolute performance should be
compared only within the same paper or among papers with the same task setup (see our examples in
Tables 5 and 6).

To facilitate the transparency of adaptations, we rely on a sophisticated framework to define clinical
concepts across multiple datasets (ricu). We have adapted and extended ricu to provide a standard
workflow for YAIB to integrate new databases and define new clinical concepts. To date, it has
been successfully used to bring 4/5 +1 ICU datasets into a common format (including our addition
of the Salzburg Intensive Care Database, which is currently in quality control). This approach is
flexible enough that we have not yet encountered significant restrictions in mapping admissions,
demographics, vital signs, laboratory values, medication (including rates and durations), clinical
scores, and outcomes at different time scales across datasets. The main restriction of ricu is that it is
currently implemented in the R language only, but we provide guidance on how to access it via rpy2,
and we are in the process of porting it to Python; this will make our pipeline even more accessible,
especially to clinical researchers. Our cohort definition functionality provides helper functions to
apply inclusion/exclusion criteria on top of ricu and report step-by-step attrition numbers. The cohorts
can be used in a modular fashion with custom preprocessing steps, imputations, prediction models,
and evaluation metrics, all using the exact same code across multiple datasets.

18

Published as a conference paper at ICLR 2024

Even so, there will likely be situations where the user may be better off with a custom solution. We
expect this to occur once their use case diverges significantly from standard supervised learning.
For example, federated learning or reinforcement learning setups may require significantly different
training and evaluation loops. These are not currently supported, but we consider this as future work.
In any case, the user can still use our data processing, cohort generation, and possibly other parts
of YAIB (e.g., by exchanging the default training module with a custom module). Authors using
YAIB should, therefore, provide their code and a detailed list of the changes they have made to the
repository; modern version control allows us to verify this against the original YAIB repository easily.

The YAIB pipeline has helped us to produce reproducible results quickly and provides the required
extensibility for our purposes. We are in touch with some researchers who have used YAIB to
date and provided feedback, although mainly in an informal way. We refer to van de Water et al.
(2023) as an example of the usability of YAIB . This work used YAIB as a bedrock for implementing
imputation methods and are in the process of extending this to more methods and downstream tasks.
For concrete examples and guidance for how to extend YAIB , we refer to Appendix D and the wiki
documentation.

A.2 THE CHOICE OF FEATURES

We chose the 52 most common clinical features shared by all datasets. They were readily available in
all benchmarked datasets, demonstrating YAIB ’s adaptability. This is done because our work focuses
on the interoperability of datasets and the opportunity for experiments with a.o. transfer learning and
domain adaption. We believe there is the most value in providing a modular setup where the user can
add or remove features to suit their needs better and, most importantly, do so reproducibly.

Nevertheless, several medications for eICU and MIMIC-IV are readily available; the ricu package
maintains a full list of the currently available native concepts which are available8. Complex concepts,
dependent on several native concepts, such as SOFA scores, are additionally available. Each concept
that is available in ricu can be readily used in YAIB . Some medications that are already implemented,
such as antibiotics and vasopressors, are used in the definition of the complex Sepsis endpoint.
Therefore, we decided to leave those out to have the same features for each task.

We note, additionally, that it is straightforward to implement new concepts in our pipeline; Appendix
E.2 describes the addition of Potassium Chloride to the ICU harmonization package ricu. A similar
process can be followed for adding new medications, which immediately improves the usability of
YAIB . Moreover, we are actively working on integrating more features, including comorbidities and
medications. We would like to note that many features are not available across all datasets; this does
not mean they can not be valuable in clinical prediction tasks.

Finally, we would like to point out that YAIB ’s end-to-end pipeline is designed as a solid starting
point for 1) clinicians looking for external validation to employ ML in practice, 2) dataset creators
looking for a solid platform to facilitate widespread use, and 3) the ML community to contribute
novel prediction models. They can use a mature and externally developed framework, which adds
to the credibility of any experiment results. Adding new feature concepts for their datasets can also
increase the adoption of their datasets. They are likely domain experts for their respective datasets,
meaning fewer errors are made in this process. This process will improve the usability of YAIB as an
end-to-end benchmarking tool and improve the confidence of health experts in clinical ML.

A.3 USING YAIB IN NOVEL SCIENTIFIC WORK

We acknowledge the importance of reproducible ML experiments. In this section, we describe how
future work can transparently use YAIB as a platform for comparing their contributions. The authors
ideally provide one or more open GitHub repositories so it is straightforward to check versioning;
this includes:

8https://github.com/eth-mds/ricu/blob/main/inst/extdata/config/
concept-dict.json

19

https://github.com/eth-mds/ricu/blob/main/inst/extdata/config/concept-dict.json
https://github.com/eth-mds/ricu/blob/main/inst/extdata/config/concept-dict.json

Published as a conference paper at ICLR 2024

1. The concept dictionary in JSON format if they add new concepts. The main repository
contains the current version of the concept dictionary of the vanilla ricu9.

2. The repository that is used to generate cohorts if they introduce a new task. Ideally, this is
forked from the YAIB -cohorts repository.

3. The preprocessing.py file in case this has been changed.
4. The model.py and dataset.py file that contains the definition for the model and

dataset and dataloader (if adjusted).
5. model.gin file that specificies the used hyperparameters and hyperparameter ranges.
6. wandb.yml if Weights and Biases is used for running experiments with this model.
7. Provide versions of ricu, YAIB-cohorts, and YAIB they have used as a base.

If authors cover these aspects when presenting new work; one can easily reproduce their experiments
even though they might not have used a "vanilla" implementation of YAIB. An additional benefit of
providing these materials is that authors of future work can hereby participate in making YAIB more
comprehensive.

A.4 EXTENDED RELATED WORK

Comparison to existing frameworks We thank the reviewer for bringing up the preprint of TemporAI,
which is still in early development at the time of writing. While we included an earlier work by the
same group, Clairvoyance, in our related work, we have now updated the manuscript by adding this
work in the related work section and to Table 1. We note that Pyhealth is already included in the
related work section of the original manuscript. However, we elaborate on the differences between
YAIB and both works below.

A.4.1 CLAIRVOYANCE

Clairvoyance (Jarrett et al., 2021) is "a Unified, End-to-End AutoML Pipeline for Medical Time
Series". As such, it does not focus on ICUs or benchmarking but instead standardizes model learning
(imputation and training), model evaluation, and model selection, focusing on the computational
aspects of developing a model. Clairvoyance comes with some code to define a task for treatment
effects estimation on MIMIC III data. However, this task is hard coded and lightly documented,
primarily serving as a demo of Clairvoyance. The exemplary nature of this task is further exemplified
by the fact that, at no point the authors mention possible confounders/colliders of the treatment effect
and whether they are conceivably adjusted for by the covariates, rendering any causal interpretation
moot. It is unclear how this task can be easily adapted or extended to other databases without
significant amounts of custom code.

Advantages of YAIB compared to Clairvoyance: YAIB puts ICU data and tasks front and center.
YAIB supports the whole workflow, from raw data to clinical concepts to well-defined cohorts. This
approach greatly facilitates the transparent and reproducible preprocessing of (often messy) ICU
data, which Clairvoyance does not cover. We strongly believe that unless tasks can be adapted
easily and reproducibly, it will lead to inevitable ad-hoc adaptations of the task that often end up
irreproducible. YAIB , therefore, improves on existing modeling frameworks by putting an equal
emphasis on standardized data processing for meaningful model development.

A.4.2 TEMPORAI

TemporAI (Saveliev & van der Schaar, 2023) is a package that is currently in early development
without a peer-reviewed publication associated with it. While it promises to provide: "prediction,
causal inference, and time-to-event analysis, as well as common preprocessing utilities and model
interpretability methods," it is unclear from current documentation how to use established datasets
with this package or how to use relevant medical prediction tasks.

The advantages of YAIB compared to TemporAI are similar to those between YAIB and Clair-
voyance: YAIB puts ICU data and tasks front and center for both ML scientists and clinicians.

9https://github.com/eth-mds/ricu/blob/main/inst/extdata/config/
concept-dict.json

20

https://github.com/eth-mds/ricu/blob/main/inst/extdata/config/concept-dict.json
https://github.com/eth-mds/ricu/blob/main/inst/extdata/config/concept-dict.json

Published as a conference paper at ICLR 2024

YAIB supports the whole workflow, from raw data to clinical concepts to well-defined cohorts. This
approach greatly facilitates the transparent and reproducible preprocessing of (often messy) ICU
data, which TemporAI, similarly to Clairvoyance, does not cover. However, we would like to note
that using TemporAI (or Clairvoyance) with the YAIB pipeline to create a different end-to-end
pipeline is possible as it allows for "swapping out" components. We provide the functionality in our
YAIB-cohorts repository to convert any cohort to a format compatible with Clairvoyance and
TemporAI.

A.4.3 PYHEALTH

PyHealth (Yang et al., 2023) is "a comprehensive deep learning toolkit designed for both ML
researchers and healthcare practitioners." PyHealth aims to support all EHR databases. It is thus
similar in scope to our proposed framework. Unfortunately, upon closer inspection, PyHealth only
supports a small subset of the information in MIMIC and eICU. While diagnoses and prescriptions
are, in theory, included, they are processed as a simple bag of diagnosis codes or drug codes without
information on strength/duration or semantic interpretation of what they represent (e.g., what is a
vasopressor needed in calculating the SOFA score). Vital signs are not supported at all, presumably
because PyHealth reads information from raw .csv files and may struggle to process large quantities
of vital sign data. PyHealth further states that the datasets are independent of task definitions. This,
unfortunately, appears to mean that they have to be implemented anew for each database, with custom
dataset-specific code for the same task. Furthermore, all currently available ICU tasks in PyHealth
use static data only and do not include any time series.

Advantages of YAIB compared to PyHealth: YAIB supports all databases within a common,
principled interface (see the response on data harmonization above). Moreover, YAIB enables a
single task definition that one can directly use for any included dataset. As far as they can work with
time series data, YAIB can incorporate any model defined in PyHealth.

B APPENDIX: EXTENDED RESULTS

This Appendix contains results that were left out of the main text.

TABLE 7: Comparing the use of dynamic feature generation (FG) to the baseline of ICU mortality prediction,
AUROC (↑). Note that an otherwise identical experiment setup was used to obtain results for the “without feature
generation” results.

AUMCdb HiRID eICU MIMIC-IV
Preprocessing w/ FG w/o FG w/ FG w/o FG w/ FG w/o FG w/ FG w/o FG

LR 83.7±0.6 82.2±0.5 84.0±0.3 81.8±0.7 84.8±0.2 81.1±0.1 86.1±0.1 80.2±0.3
LGBM 84.5±0.6 83.5±0.4 84.5±0.3 82.5±0.6 85.7±0.2 83.5±0.3 87.7±0.2 85.9±0.1

TABLE 8: Comparing the use of dynamic feature generation (FG) to the baseline of ICU mortality prediction,
AUPRC (↑). Note that an otherwise identical experiment setup was used to obtain results for the “without feature
generation” results.

AUMCdb HiRID eICU MIMIC-IV
Preprocessing w/ FG w/o FG w/ FG w/o FG w/ FG w/o FG w/ FG w/o FG

LR 52.9±1.2 50.8±1.2 36.9±1.1 33.1±0.8 33.0±0.7 28.3±0.4 39.7±0.6 32.1±0.6
LGBM 53.7±1.2 50.9±1.0 40.6±0.8 35.3±0.9 36.0±0.6 32.5±0.9 44.2±0.7 40.1±0.7

Feature generation We compare the use of feature generation for classical ML models. The
RECIPYS package provides the functionality of assembling different preprocessing steps to be
supplied by the user (i.e., a recipe). We show the results in Table 7 and 8.

The impact of static features We leveraged this customizable preprocessing to perform training
prediction models without static features (i.e., age, sex, height, and weight). The AUROC results are

21

Published as a conference paper at ICLR 2024

TABLE 9: AUROC (↑) performance comparison of including static data for ICU mortality prediction.

AUMCdb HiRID eICU MIMIC-IV
Inclusion w/ static w/o static w/ static w/o static w/ static w/o static w/ static w/o static

LR 83.7±0.6 82.9±0.6 84.0±0.3 82.8±0.7 84.8±0.2 84.3±0.2 86.1±0.1 84.3±0.3
LGBM 84.5±0.6 83.4±0.4 84.4±0.3 83.9±0.7 85.7±0.2 84.7±0.2 84.7±0.2 86.2±0.2

GRU 83.7±0.7 83.4±0.6 84.3±0.7 84.0±0.8 85.9±0.2 85.7±0.2 87.4±0.2 86.9±0.3
LSTM 83.7±0.7 82.9±0.6 84.0±0.7 83.4±0.7 85.5±0.2 85.1±0.2 86.7±0.4 86.1±0.3
TCN 84.0±0.6 83.5±0.6 84.6±0.7 83.9±0.8 85.4±0.2 86.4±0.3 87.1±0.3 86.4±0.3
TF 84.1±0.2 83.7±0.4 84.9±0.7 84.4±0.7 85.9±0.2 85.7±0.2 86.9±0.3 86.5±0.3

TABLE 10: AUPRC (↑) performance comparison of including static data for ICU Mortality Prediction.

AUMCdb HiRID eICU MIMIC-IV
Inclusion w/ static w/o static w/ static w/o static w/ static w/o static w/ static w/o static

LR 52.9±1.2 51.7±1.2 36.9±1.1 34.0±1.1 33.0±0.7 32.2±0.6 39.7±0.6 36.9±0.6
LGBM 53.7±1.2 51.1±1.1 40.6±0.8 38.9±1.5 36.0±0.6 34.1±0.7 44.2±0.7 41.0±0.7
GRU 53.1±1.5 52.9±1.2 37.6±1.2 37.3±1.1 36.1±0.9 35.3±0.8 42.4±0.6 41.5±0.7
LSTM 53.6±1.4 51.0±1.0 37.8±1.0 36.2±1.4 35.7±0.8 34.6±0.7 41.0±0.7 40.2±0.8
TCN 54.2±1.4 52.7±1.0 39.2±1.3 37.5±1.5 34.3±0.6 35.4±0.8 41.4±0.8 40.8±0.7
TF 54.4±1.1 52.7±0.9 39.3±1.5 38.4±1.5 34.7±0.8 34.5±0.7 42.2±0.3 41.3±0.8

found in Table 9 (the AUPRC in Table 10). From these results, we can see that including the static
data seems to result in better performance across all models and datasets.

TABLE 11: Baseline AUROC (↑), AUPRC (↑) performance of the included ML algorithms on the demo cohorts.

eICU Demo MIMIC-III Demo
Algorithm AUROC AUPRC AUROC AUPRC

ICU Mortality
LR 67.7±0.9 15.4±1.3 52.9±3.2 37.6±2.3
LGBM 72.9±1.1 21.4±1.7 59.0±2.1 33.0±2.4
GRU 71.5±1.3 20.8±1.5 50.5±3.6 33.9±3.5
LSTM 71.3±1.6 18.9±1.9 55.5±2.3 34.2±3.3
TCN 69.2±1.7 18.0±1.5 55.1±4.0 38.8±3.6
TF 71.6±1.3 18.7±1.7 53.3±3.5 36.8±3.1

AKI
LR 61.3±0.6 16.8±0.4 52.9±2.3 16.8±2.0
LGBM 72.6±0.3 23.8±0.4 60.7±1.7 22.4±1.8
GRU 63.0±0.8 17.3±0.6 50.5±3.3 17.6±1.5
LSTM 61.9±0.9 16.2±0.6 53.5±2.5 15.4±1.3
TCN 64.5±1.0 17.6±0.6 53.7±2.8 19.6±2.0
TF 70.1±0.5 21.7±0.7 53.9±2.0 15.3±1.0

Sepsis
LR 63.8±0.9 3.7±0.3 * *
LGBM 53.5±1.5 2.8±0.2 * *
GRU 64.7±1.3 4.1±0.3 * *
LSTM 65.3±1.3 4.3±0.5 * *
TCN 66.4±1.1 4.2±0.3 * *
TF 68.4±1.1 5.8±0.6 * *

* Our sepsis definition resulted in just one sepsis case for the MIMIC-III demo dataset. As a result, we could
not use the 5-fold cross-validation approach to train a model reliably.

Demo datasets We offer out-of-the-box (i.e., executable straight after downloading the repository)
experiment definitions with five tasks defined on two demo datasets: MIMIC-III demo and eICU
demo. The results can be seen in Table 11 and 12. The traditional ml models perform better,

22

Published as a conference paper at ICLR 2024

TABLE 12: Baseline performance on the regression tasks. Results are reported in Mean Absolute Error (↓).

Kidney function Length of Stay
eICU Demo MIMIC-III Demo eICU Demo MIMIC-III Demo

EN 0.30±0.00 0.33±0.03 38.5±0.2 52.1±1.3
LGBM 0.87±0.01 0.86±0.04 37.7±0.2 50.4±1.1
GRU 0.54±0.02 3.23±0.19 39.7±0.6 54.7±1.0
LSTM 0.51±0.02 2.95±0.18 39.1±0.5 54.8±1.2
TCN 0.46±0.02 2.98±0.19 38.4±0.6 56.8±1.2
TF 0.60±0.03 3.22±0.18 38.9±1.2 57.1±1.2

AUMCdb HiRID eICU MIMIC-IV

Evaluation Dataset

AUMCdb

HiRID

eICU

MIMIC-IV

Pooled (d-1)

Tr
ai

ni
ng

 D
at

as
et

42.9 46.5 44.1 46.2

52.1 39.6 41.6 44.7

51.0 47.2 38.9 41.8

50.3 49.7 40.8 39.9

47.1 45.7 38.8 42.5 40

42

44

46

48

50

52

M
AE

 (l
ow

er
 is

 b
et

te
r)

FIGURE 4: Performance in MAE of the Transformer model on length of stay (LoS).

most likely explained by the low number of samples. The kidney function task highlights the large
difference in performance especially.

External validation (extended) The length of stay (LoS) results for ICU mortality prediction can
be found in Figure 4.

Fine-tuning (extended) The AUPRC results for our experiment with transfer learning can be found
below and show a similar trend to Figure 3.

0 2000 4000 6000 8000 10000
Samples

15

20

25

30

35

40

AU
PR

C
 (h

ig
he

r i
s

be
tte

r)

Full HiRID only
Train on HiRID
Full eICU only
Fine-tune eICU on HiRID

FIGURE 5: AUPRC for fine-tuning an eICU GRU model for ICU mortality prediction on HiRID.

23

Published as a conference paper at ICLR 2024

C APPENDIX: DATASETS

This Appendix contains detailed description of the datasets and the preprocessing methodology.

C.1 DATABASE CHARACTERISTICS

The Medical Information Mart for Intensive Care (MIMIC)-III dataset is the most commonly used
dataset used for ML in ICU settings; Syed et al. (2021) found 61 eligible studies that used a form of
the MIMIC dataset. It was collected in the USA at the Beth Isreal Deaconess Medical Center (Johnson
et al., 2016). The newer MIMIC-IV includes several improvements, among which newer patient
records and a revised structure including regular hospital information (Johnson et al., 2023).The eICU
Collaborative Research Database (eICU) (Pollard et al., 2018) is an effort to collect the first sizable
(200,000 admissions) multi-center dataset. It was collected using Philips ICU monitoring systems in
the USA at 208 participating hospitals. The High Time Resolution ICU Dataset (HiRID) dataset was
collected at Bern University Hospital, Switzerland, and has incorporated more observations than the
aforementioned datasets (Hyland, 2020). The AmsterdamUMCdb (AUMCdb) is the most recently
released ICU dataset (Thoral et al., 2021). Collected in the Netherlands, it has a temporal resolution
of up to 1 minute and has prioritized patient de-identification. Note that there is no benchmark
software for this dataset yet. Each dataset we are using has undergone de-identification procedures,
and we have not tried to re-identify the people involved, as per the user agreement for each dataset.
Table 13 shows some key characteristics of each dataset. A more comprehensive overview of ICU
datasets can be found in the work of Sauer et al. (2022b).

TABLE 13: Supplemental details of openly accessible ICU datasets. Note that accessing each dataset requires
completing a credentialing procedure.

Dataset MIMIC-III / IV eICU HiRID AUMCdb
Stays* 40k (0.1k)** / 73k 201k (2k) 34k 23k
Version v1.4 / v2.2 v2.0 v1.1.1 v1.0.2
Frequency (time-series) 1 hour 5 minutes 2 / 5 minutes up to 1 minute
Origin USA USA Switzerland Netherlands

Originally published
2015 (Johnson et al., 2016)

/ 2020 (Johnson et al.,
2023)

2017 (Pollard
et al., 2018)

2020 (Hyland,
2020)

2019 (Thoral
et al., 2021)

License A (C) / A A (C) A B
Repository link ρ (ρ)/ ρ ρ (ρ) ρ α

Note that accessing each full dataset requires completing a credentialing procedure.
*: Stays were taken and rounded from the latest available versions of the databases as of the time of writing.
**: The brackets () indicate characteristics of the demo (freely accessible) version of the dataset
A: PhysioNet Contributor Review Health Data License 1.5.0
B: Access Request Form and End User License Agreement for AmsterdamUMCdb 1.6
C: Open Data Commons Open Database License v1.0
ρ: Physionet
α: Amsterdam Medical Data Science

The authors of MIMIC-III and eICU have made small selected datasets available for the purpose of
experimentation. These datasets are also publicly available on Physionet. We support the publicly
accessible "demo" datasets provided for eICU10 and MIMIC-III11. In accordance with the demo
dataset license (Open Data Commons Open Database License v1.0, see Table 13, License C), it is
permitted to adapt and share the data. Still, we recommend the user to complete a human subject
research training to make sure the usage of the dataset does not violate the usage proposal. They
contain respectively 2,500 (eICU) and 100 stays (MIMIC-III) before exclusion. For the purposes
testing and validating YAIB , we have created demo-cohorts, extracted solely from these datasets, for
each of our supported tasks. Usage of the task cohorts and dataset is only permitted in accordance
with the above license.

10https://physionet.org/content/eicu-crd-demo
11https://physionet.org/content/mimiciii-demo

24

https://physionet.org/content/mimiciii/
https://physionet.org/content/mimiciii-demo
https://physionet.org/content/mimiciv/
https://physionet.org/content/eicu-crd/
https://physionet.org/content/eicu-crd-demo
https://physionet.org/content/hirid/
https://amsterdammedicaldatascience.nl/amsterdamumcdb/
https://physionet.org/content/hirid/view-license/1.1.1/
https://cdn-links.lww.com/permalink/ccm/g/ccm_49_6_2021_01_18_thoral_ccmed-d-20-02227_sdc3.pdf
https://opendatacommons.org/licenses/odbl/1-0/
https://physionet.org/content/eicu-crd-demo
https://physionet.org/content/mimiciii-demo

Published as a conference paper at ICLR 2024

TABLE 14: Characteristics of 1) the included datasets (above) and 2) the task cohorts (below).

General characteristics AUMCdb HiRID eICU MIMIC-IV
Version 1.02 1.1.1 2.0 2.0
Number of patients 19,790 -1 160,816 53,090
Number of ICU stays 22,636 32,338 182,774 75,652

Age at admission (years) 65 [55, 75]2 65 [55, 75] 65 [53, 76] 65 [53, 76]
Female 7,699 (35) 11,542 (36) 83,940 (46) 33,499 (44)
Race

Asian - - 3,008 (3) 2,225 (3)
Black - - 19,867 (11) 8,223 (12)
White - - 140,938 (78) 51,575 (76)
Other - - 16,978 (9) 5,514 (8)
Unknown 1,983 8,115

Admission type
Medical 4,131 (21) - 134,532 (79) 49,217 (65)
Surgical 14,007 (72) - 31,909 (19) 25,674 (34)
Other 1,225 (6) - 4,702 (3) 761 (1)
Unknown 1,069 - 11,631 0

Hospital length of stay (days) - - 6 [3, 10] 7 [4, 13]

Task cohorts AUMCdb HiRID eICU MIMIC-IV

ICU mortality
Number of included stays 10,535 12,859 113,382 52,045
Died 1,660 (15.8) 1,097 (8.2) 6,253 (5.5) 3,779 (7.3)

Onset of acute kidney injury
Number of included stays 20,290 31,772 164,791 66,032
KDIGO* ≥ 1 3,776 (18.6) 7,383 (23.2) 62,535 (37.9) 27,509 (41.7)

Onset of Sepsis
Number of included stays 18,184 29,894 123,864 67,056
Sepsis-3 criteria 764 (4.2) 1,986 (6.6) 5,835 (4.7) 3,730 (5.6)

Kidney function (creatinine)
Number of included stays 8,003 7,499 69,117 35,657
Creatinine value 0.97 [0.70, 1.61] 0.92 [0.67, 1.50] 1.00 [0.71, 1.68] 1.00 [0.70, 1.60]

ICU remaining length of stay
Number of included stays 22,636 32,338 182,774 75,652
ICU length of stay (hours) 24 [19, 77] 24 [19, 50] 42 [23, 76] 48 [26, 89]

1 HiRID only provides stay-level identifiers.
2 Since AUMCdb only includes age groups, we calculated the median of the group midpoints.
* KDIGO, Kidney Disease Improving Global Outcomes (KDIGO, 2012).
Numeric variables are summarized by median [IQR].
Categorical variables are summarized by incidence (%).

C.2 EXCLUSION CRITERIA

We included all available ICU stays of adult patients in our analysis. For each stay, we applied the
following exclusion criteria to ensure sufficient data volume and quality: remove any stays with 1) an
invalid admission or discharge time defined as a missing value or negative calculated length of stay,
2) less than six hours spent in the ICU, 3) less than four separate hours across the entire stay where at
least one feature was measured, 4) any time interval of ≥12 consecutive hours throughout the stay
during which no feature was measured. Figure 6 details the number of stays overall and by dataset
excluded this way.

Additional exclusion criteria were applied based on the individual tasks; the details can be found
schematically in Figure 7 and 8. For ICU mortality, we excluded all patients with a length of stay of
fewer than 30 hours (either due to death or discharge). A minimum length of 30 hours was chosen
to exclude any patients that were about to die (the sickest patients) or be discharged (the healthiest
patients) at the time of prediction at 24 hours. For creatinine (kidney function), we excluded all
patients with a length of stay of fewer than 48 hours or without a creatinine measurement between
24 and 48 hours (which was the outcome of interest). For AKI and sepsis, we excluded any stays
where disease onset was outside the ICU or within the first six hours of the ICU stay. To account

25

Published as a conference paper at ICLR 2024

FIGURE 6: Exclusion criteria applied to the base cohort. N: Total amount of cases. A: AUMCdb, H: HiRID, E:
eICU, M: MIMIC-IV

26

Published as a conference paper at ICLR 2024

F
IG

U
R

E
7:

A
dd

iti
on

al
ex

cl
us

io
n

cr
ite

ri
a

ap
pl

ie
d

fo
rt

he
cl

as
si

fic
at

io
n

ta
sk

s.

27

Published as a conference paper at ICLR 2024

FIGURE 8: Additional exclusion criteria applied for the regression tasks.

for differences in data recording across hospitals in eICU, we further excluded hospitals that did
not have a single patient with AKI or sepsis to exclude hospitals with an insufficient recording of
features necessary to define the outcome. Finally, for the AKI task, we excluded stays where the
baseline creatinine, defined as the last creatinine measurement prior to ICU (if exists) or the earliest
measurement in the ICU, was >4 mg/dL to exclude patients with preexisting renal insufficiency. For
a numerical overview, please consult Table 14.

C.3 PREPROCESSING

A total of 52 features were used for model training (Table 15), 4 of which were static and 48 that
were dynamic. These features were selected as they are available across all datasets for most patients.
Dynamic features primarily include vital signs (7 variables) and laboratory tests (39 variables), with
two more variables that measure input (fraction of inspired oxygen) and output (urine). All variables
were extracted via the ricu R package (version 0.5.3). The ricu name for each package is shown
in Table 15. The exact definition for each feature and how it was extracted from the individual
databases can be found in the concept configuration file of the package’s GitHub repository (commit
885bd0c). We also provided cohort definition code for this work, which can be run in both R and
Python, in a github repository.

TABLE 15: Clinical concepts used as input to the prediction models.

Feature ricu unit
Static
Age at hospital admission age Years
Female sex sex -
Patient height height cm
Patient weight weight kg

Time-varying
Blood pressure (systolic) sbp mmHg

28

https://cran.r-project.org/web/packages/ricu/index.html
https://github.com/eth-mds/ricu/blob/09902bdc57a1f2f720a924d32f5e053ce2ce7f97/inst/extdata/config/concept-dict.json

Published as a conference paper at ICLR 2024

TABLE 15: Clinical concepts used as input to the prediction models (continued)

Feature ricu unit
Blood pressure (diastolic) dbp mmHg
Heart rate hr beats/minute
Mean arterial pressure map mmHg
Oxygen saturation o2sat %
Respiratory rate resp breaths/minute
Temperature temp ◦C
Albumin alb g/dL
Alkaline phosphatase alp IU/L
Alanine aminotransferase alt IU/L
Aspartate aminotransferase ast IU/L
Base excess be mmol/L
Bicarbonate bicar mmol/L
Bilirubin (total) bili mg/dL
Bilirubin (direct) bili_dir mg/dL
Band form neutrophils bnd %
Blood urea nitrogen bun mg/dL
Calcium ca mg/dL
Calcium ionized cai mmol/L
Creatinine crea mg/dL
Creatinine kinase ck IU/L
Creatinine kinase MB ckmb ng/mL
Chloride cl mmol/L
CO2 partial pressure pco2 mmHg
C-reactive protein crp mg/L
Fibrinogen fgn mg/dL
Glucose glu mg/dL
Haemoglobin hgb g/dL
International normalised ratio (INR) inr_pt -
Lactate lact mmol/L
Lymphocytes lymph %
Mean cell haemoglobin mch pg
Mean corpuscular haemoglobin concentration mchc %
Mean corpuscular volume mcv fL
Methaemoglobin methb %
Magnesium mg mg/dL
Neutrophils neut %
O2 partial pressure po2 mmHg
Partial thromboplastin time ptt sec
pH of blood ph -
Phosphate phos mg/dL
Platelets plt 1,000 / µL
Potassium k mmol/L
Sodium na mmol/L
Troponin T tnt ng/mL
White blood cells wbc 1,000 / µL
Fraction of inspired oxygen fio2 %
Urine output urine mL

Additional features Furthermore, we consulted clinical experts to identify which features might be
missing from our prediction setup. Several clinical features are currently missing from this setup,
which could potentially improve prediction performance: Glasgow coma scale score, Intubation,
Ventilator settings, Renal replacement therapy, and Vasopressors. We expect to be able to integrate
more concepts as we collaborate with authors of datasets to make them available.

29

Published as a conference paper at ICLR 2024

D APPENDIX: OUTCOME DEFINITIONS

The outcome definitions per task for each dataset are detailed in this Appendix.

D.1 ICU MORTALITY

ICU mortality was defined as death while in the ICU. This was generally ascertained via the recorded
discharge status or discharge destination. Note that our definition of ICU mortality differs from the
definition of death in the ricu R package, which describes hospital mortality that is unavailable
for some included datasets.

AUMCdb Death was inferred from the destination column of the admissions table. A
destination of “Overleden” (Dutch for “passed away”) was treated as a death in the ICU. Since the
date of death was recorded outside of the ICU and may therefore be imprecise, the recorded ICU
discharge date was used as a more precise proxy for the time of death.

HiRID Death was inferred from the column discharge_status in table general. The status
of “dead” was treated as a death in the ICU. Time of death was inferred as the last measurement
of IDs 110 (mean arterial blood pressure) or 200 (heart rate) in column variableid of table
observations.

eICU Death was inferred from the column unitdischargestatus in table patient. The
status of “Expired” was treated as a death in the ICU. The recorded ICU discharge date was used as a
proxy for the time of death.

MIMIC IV Death was inferred from the column hospital_expire_flag in table
admissions. Since MIMIC IV only records a joint ICU/hospital expiration flag, ward trans-
fers were analyzed to ascertain the location of death. If the last ward was the ICU, the death was
considered ICU mortality.

TABLE 16: Staging of AKI according to KDIGO (KDIGO, 2012)

Stage Serum creatinine Urine output

1

1.5–1.9 times baseline

OR

≥0.3 mg/dl (≥26.5 µmol/l) increase
within 48 hours

<0.5 ml/kg/h for 6–12 hours

2 2.0–2.9 times baseline <0.5 ml/kg/h for ≥12 hours

3

3.0 times baseline (prior 7 days)

OR

Increase in serum creatinine to
≥4.0 mg/dl (≥353.6 µmol/l)

within 48 hours

OR

Initiation of renal replacement therapy

<0.3 ml/kg/h for ≥24 hours

OR

Anuria for ≥12 hours

AKI, acute kidney injury; KDIGO, Kidney Disease Improving Global Outcomes.

D.2 ACUTE KIDNEY INJURY

AKI was defined as KDIGO stage ≥1, either due to an increase in serum creatinine or low urine output
(Table 16) (KDIGO, 2012). Baseline creatinine was defined as the lowest creatinine measurement
over the last 7 days. Urine rate was calculated as the amount of urine output in ml divided by the

30

Published as a conference paper at ICLR 2024

number of hours since the last urine output measurement (for a max gap of 24h), except for HiRID,
in which urine rate was recorded directly. The earliest urine output was divided by 1. The rate per kg
was calculated based on the admission weight. If weight was missing, a weight of 75 kg was assumed
instead.

AUMCdb Creatinine was defined via the standard ricu concept of serum creatinine as IDs 6836,
9941, or 14216 in column itemid of table numericitems. Urine output was defined as IDs
8794, 8796, 8798, 8800, 8803 in column itemid of table numericitems (note that this
includes more items than those included in the standard ricu concept of urine output).

HiRID Creatinine was defined via the standard ricu concept of serum creatinine as ID 20000600
in column variableid of table observations. Urine rate was defined as ID 10020000 in
column variableid of table observations.

eICU Creatinine was defined via the standard ricu concept of serum creatinine as IDs “creatinine”
in column labname of table lab. Urine output was defined via the standard ricu concept of urine
output as IDs “Urine” and “URINE CATHETER” in column celllabel of table intakeoutput.

MIMIC IV Creatinine was defined via the standard ricu concept of serum creatinine as ID 50912
in column itemid of table labevents. Urine output was defined via the standard ricu concept
of urine output as IDs 226557, 226558, 226559, 226560, 226561, 226563, 226564,
226565, 226566, 226567, 226584, 227510 in column itemid of table outputevents.

TABLE 17: Comparing MIMIC-IV sepsis cohorts according to three different definitions.

Cohort Seymour et al. (2016)* Moor et al. (2021a) Calvert et al. (2016)
Stays 67,056 53,642 65,901
Prevalence 3,730 (5.6%) 8,919 (16.7%) 2,406 (3.7%)

*Our default definition.

D.3 SEPSIS

The onset of sepsis was defined using the Sepsis-3 criteria (Singer et al., 2016), which defines sepsis
as organ dysfunction due to infection. Following guidance from the original authors of Sepsis-3
(Seymour et al., 2016), organ dysfunction was defined as an increase in SOFA score ≥2 points
compared to the lowest value over the last 24 hours. Suspicion of infection was defined as the
simultaneous use of antibiotics and culture of body fluids. The time of sepsis onset was defined as
the first time of organ dysfunction within 48 hours before and 24 hours after suspicion of infection.
Time of suspicion was defined as the earlier antibiotic initiation or culture request. Antibiotics
and culture were considered concomitant if the culture was requested ≤24 hours after antibiotic
initiation or if antibiotics were started ≤72 hours after the culture was sent to the lab. Where available,
antibiotic treatment was inferred from administration records; otherwise, we used prescription data.
To exclude prophylactic antibiotics, we required that antibiotics were administered continuously for
≥3 days (Reyna et al., 2019). Antibiotic treatment was considered continuous if an antibiotic was
administered once every 24 hours for 3 days (or until death) or was prescribed for the entire time
spent in the ICU. HiRID and eICU did not contain microbiological information. For these datasets,
we followed Moor et al. (2021a) and defined suspicion of infection through antibiotics alone. Note,
however, that the sepsis prevalence in our study was considerably lower than theirs, which was as
high as 37% in HiRID. We suspect this is because they did not require treatment for ≥3 days. For
comparison and to contextualize the results of our experiments, we have benchmarked other sepsis
definitions. See Table 17 for the number of stays and incidence for each cohort in this experiment
performed on MIMIC-IV.

AUMCdb The SOFA score, microbiological cultures, and antibiotic treatment were defined via the
standard ricu concepts sofa, abx, and samp (see the ricu package for more details).

HiRID The SOFA score and antibiotic treatment were defined via the standard ricu concept sofa
and abx (see the ricu package for more details). No microbiology data were available in HiRID.

31

https://github.com/eth-mds/ricu/blob/09902bdc57a1f2f720a924d32f5e053ce2ce7f97/inst/extdata/config/concept-dict.json
https://github.com/eth-mds/ricu/blob/09902bdc57a1f2f720a924d32f5e053ce2ce7f97/inst/extdata/config/concept-dict.json

Published as a conference paper at ICLR 2024

eICU The SOFA score and antibiotic treatment were defined via the standard ricu concept sofa
and abx (see the ricu package for more details). Microbiology data in eICU was not reliable (Moor
et al., 2021a) and therefore omitted.

MIMIC-IV The SOFA score and microbiological cultures were defined via the standard ricu
concepts sofa and samp (see the ricu package for more details). Antibiotics were defined based
on table inputevents. This differs from the standard ricu abx concept, which also considers
the prescriptions table.

D.4 KIDNEY FUNCTION

The median creatinine level over the course of the second day of a patient’s ICU stay was defined
as the target of interest. Given the available datasets, this was chosen as the most suitable proxy of
kidney function.

AUMCdb Creatinine was defined via the standard ricu concept of serum creatinine as IDs 6836,
9941, or 14216 in column itemid of table numericitems.

HiRID Creatinine was defined via the standard ricu concept of serum creatinine as ID 20000600
in column variableid of table observations.

eICU Creatinine was defined via the standard ricu concept of serum creatinine as IDs “creatinine”
in column labname of table lab.

MIMIC IV Creatinine was defined via the standard ricu concept of serum creatinine as ID 50912
in column itemid of table labevents.

D.5 REMAINING LENGTH OF STAY

At each hour, the remaining length of stay in the ICU was calculated in hours until discharge. A
maximum forecasting window of 7 days was chosen, as forecasts beyond this interval were judged
extremely difficult and of lesser clinical relevance. Arguably, an even shorter window of 3 days could
be chosen to support short-term capacity planning. This is left for future investigation.

AUMCdb Length of stay was calculated via the standard ricu concept using the columns
admittedat and dischargedat of table admissions.

HiRID Length of stay was calculated via the standard ricu concept using the column
admissiontime of table general as well as the last observation in table observations.

eICU Length of stay was calculated via the standard ricu concept using the columsn
unitadmitoffset and unitdischargeoffset of table patient.

MIMIC IV Length of stay was calculated via the standard ricu concept using the columsn intime
and outtime of table icustays.

E APPENDIX: YAIB’S USAGE AND IMPLEMENTATION

We describe the most important practical aspects of using YAIB in research in this Appendix. Please
note that there is a wiki, dedicated to usage and development, available at: https://github.
com/rvandewater/YAIB/wiki.

E.1 USE OF EXISTING CODE REPOSITORIES

As mentioned in the main text, we used parts of the HiRID-Benchmark code and heavily modified
and extended the code to support our extra features and extensibility, mentioned in Table 1. HiRID-
Benchmark is available at GitHub and makes use of an MIT license, as does our code repository.

E.2 ADDING A DATA SOURCE

Adding a new dataset type, to use within YAIB , can be easily done by providing it in a .gin task
definition file, see Code Listing 1. Note, however, that any datasets formatted in the default way do

32

https://github.com/eth-mds/ricu/blob/09902bdc57a1f2f720a924d32f5e053ce2ce7f97/inst/extdata/config/concept-dict.json
https://github.com/eth-mds/ricu/blob/09902bdc57a1f2f720a924d32f5e053ce2ce7f97/inst/extdata/config/concept-dict.json
https://github.com/rvandewater/YAIB/wiki
https://github.com/rvandewater/YAIB/wiki
https://github.com/ratschlab/HIRID-ICU-Benchmark
https://github.com/ratschlab/HIRID-ICU-Benchmark/blob/master/LICENSE

Published as a conference paper at ICLR 2024

not require any changes to be used by YAIB . By default, we have chosen to work with the Apache
parquet (Vohra, 2016) file format, which is a modern, open-source column-oriented format that
does not require a lot of storage due to efficient data compression12. We separate the data into three
separate files: DYNAMIC, STATIC, and OUTCOME; this is defined for dynamic variables (that change
during the stay), constant parameters, and the prediction task label respectively. Our cohort definition
code produces the files in exactly this format. Furthermore, we see the concept of roles with the
definition of the vars dictionary. These roles are assigned as defined in RECIPYS , the preprocessing
package developed alongside YAIB . The GROUP variable defines which internal dataset variable
should be used to “group by” for, e.g., aggregating patient vital signs. The SEQUENCE variable
defines the sequential dimension of the dataset (in the common case, this would be time). The other
keys in this dictionary define the feature columns and outcome variables for prediction.

CODE LISTING 1: Example preprocessing pipeline structure.
1@gin.configurable("base_classification_preprocessor")
2class DefaultClassificationPreprocessor(Preprocessor):
3def __init__(self, generate_features: bool = True, scaling: bool = True, use_static_features: bool = True):
4"""
5Args:
6generate_features: Generate features for dynamic data.
7scaling: Scaling of dynamic and static data.
8use_static_features: Use static features.
9Returns:
10Preprocessed data.
11"""
12
13
14def apply(self, data, vars):
15"""
16Args:
17data: Train, validation and test data dictionary. Further divided in static, dynamic, and outcome.
18vars: Variables for static, dynamic, outcome.
19Returns:
20Preprocessed data.
21"""
22...
23return data
24
25def _process_static(self, data, vars):
26...
27return data
28
29def _process_dynamic(self, data, vars):
30...
31return data
32
33def _dynamic_feature_generation(self, data, dynamic_vars):
34...
35return data

E.3 CREATING A PREPROCESSING PIPELINE

Our preprocessing pipeline is set up to be as general as possible and allows for custom implementa-
tions, defined as subclass from the Preprocessor class and passed as a command-line argument.
For our tasks, we have defined a default preprocessing pipeline for both classification and regression
tasks. Code Listing 2 shows the class structure of the default classification preprocessor. In the
private methods of this class, RECIPYS is used to apply feature generation steps (which differ for
ml and dl models). The abstract Preprocessor has two functions that need to be implemented:
__init__() (which initializes the preprocessor and configures the settings) and apply(data)
(which returns the preprocessed data dictionary of features and labels for each of the train, validate,
and test splits)

E.4 EXAMPLE: TRAINING A MORTALITY PREDICTION LSTM MODEL

We demonstrate the complete process of training a Long Short-Term Memory (LSTM) model to
predict sepsis on the MIMIC-III demo dataset with YAIB . This is shown schematically in Figure 9.
In Code Listing 2, the basic task setup for mortality prediction after 24 hours is shown. We define the
dataset files, by default split into 3 parquet files with the corresponding names. The listing describes
three dataset components: dynamic data, outcome definitions, and static data. Below, one sees the
variables and different “roles” assigned to concrete strings (see Appendix E.2 for detail). In this

12https://parquet.apache.org/

33

https://parquet.apache.org/

Published as a conference paper at ICLR 2024

Datasets &
Preprocessing

Prediction
Tasks

Models &
Hyperparameters

LSTM

Transformer

GRU

LR

LGBM

… … …

Task
Definition

Model Settings &
Hyperparameters

Pre-processor
Configuration

C
o

n
fi

g
u

ra
ti

o
n

Sepsis

AKI

Mortality

LoS

KF

AUMCdb

MIMIC-III/IV

eICU

HiRID

TCN

FIGURE 9: Experiment definition schematic. The fundamental experiment configuration of the benchmark
contains three basic elements, 1) the dataset, 2) the prediction task, and 3) the model and (list of) hyperparameters.
Each element can be combined in different ways. Additionally, we provide an interface for extending each
element (Datasets & Preprocessing, Prediction Tasks, Models & Hyperparameters) in the process. Provided
is an example of an experiment configuration: predicting Sepsis on MIMIC (Thoral et al., 2021) with an
LSTM (Hochreiter & Schmidhuber, 1997) model.

CODE LISTING 2: Example configuration for a task definition configuration. We identify 4 main categories:
the prediction type (classification or regression), the deep learning loss, the dataset variables, and preprocessing
settings, and the cross-validation settings. Note that the dataset is fully configurable here.

1# COMMON IMPORTS
2include "configs/tasks/common/Imports.gin"
3
4# MODE SETTINGS
5Run.mode = "Classification"
6NUM_CLASSES = 2 # Binary classification
7HORIZON = 24
8train_common.weight = "balanced"
9
10# DEEP LEARNING
11DLPredictionWrapper.loss = @cross_entropy
12# DATASET AND PREPROCESSING
13preprocess.file_names = {
14"DYNAMIC": "dyn.parquet",
15"OUTCOME": "outc.parquet",
16"STATIC": "sta.parquet",
17}
18vars = {
19"GROUP": "stay_id",
20"LABEL": "label",
21"SEQUENCE": "time",
22"DYNAMIC": ["alb", "alp", "alt", "ast", "be", "bicar", "bili", "bili_dir", "bnd", "bun", "ca", "cai", "ck",

"ckmb", "cl",
23"crea", "crp", "dbp", "fgn", "fio2", "glu", "hgb", "hr", "inr_pt", "k", "lact", "lymph", "map", "mch", "

mchc", "mcv",
24"methb", "mg", "na", "neut", "o2sat", "pco2", "ph", "phos", "plt", "po2", "ptt", "resp", "sbp", "temp",

"tnt",
25"urine", "wbc"],
26"STATIC": ["age", "sex", "height", "weight"],
27}
28
29# SELECTING PREPROCESSOR
30preprocess.preprocessor = @base_classification_preprocessor
31preprocess.vars = %vars
32preprocess.use_static = True
33
34# SELECTING DATASET
35PredictionDataset.vars = %vars
36
37# CROSS VALIDATION
38execute_repeated_cv.cv_repetitions = 5
39execute_repeated_cv.cv_folds = 5

listing, we also pass the vars to the preprocessing and dataset class. Finally, we see the definition of
the cross-validation folds and iterations.

In Code Listing 3 we see the configuration for the LSTM. We first define the generating features from
dynamic data (relevant for traditional ml). Then we bind the LSTM model with a gin flag. After this,

34

Published as a conference paper at ICLR 2024

CODE LISTING 3: Example configuration for hyperparameters of LSTM. Tunable hyperparameter ranges can
be floating points, integers, and categorical values.

1import gin.torch.external_configurables
2import icu_benchmarks.models.wrappers
3import icu_benchmarks.models.encoders
4
5default_preprocessor.generate_features = False
6
7# Train params
8train_common.model = @DLWrapper()
9
10DLWrapper.encoder = @LSTMNet()
11DLWrapper.optimizer_fn = @Adam
12DLWrapper.train.epochs = 1000
13DLWrapper.train.batch_size = 64
14DLWrapper.train.patience = 10
15DLWrapper.train.min_delta = 1e-4
16
17# Optimizer params
18optimizer/hyperparameter.class_to_tune = @Adam
19optimizer/hyperparameter.weight_decay = 1e-6
20optimizer/hyperparameter.lr = (1e-5, 3e-4)
21
22# Encoder params
23model/hyperparameter.class_to_tune = @LSTMNet
24model/hyperparameter.num_classes = %NUM_CLASSES
25model/hyperparameter.hidden_dim = (32, 256, "log-uniform", 2)
26model/hyperparameter.layer_dim = (1, 3)
27
28# Hyperparamter tuning
29tune_hyperparameters.scopes = ["model", "optimizer"]
30tune_hyperparameters.n_initial_points = 5
31tune_hyperparameters.n_calls = 30
32tune_hyperparameters.folds_to_tune_on = 2

CODE LISTING 4: Running YAIB. We train the LSTM model on the MIMIC-III demo dataset for the Mortality24
task.
#!
icu-benchmarks train \

-d demo_data/mortality24/mimic_demo \
-n mimic_demo \
-t BinaryClassification \
-tn Mortality24 \
--log-dir ../yaib_logs/ \
-m LSTM \
-gc \
-lc \
-s 2222 \
-l ../yaib_logs/ \
--tune

the hyperparameters are specified. The optimizer and encoder parameters are then specified. Note
that we can specify ranges of hyperparameters to be tuned by the hyperparameter optimizer. Settings
for this can be found in the bottom cluster of code. Code Listing 4 shows how to train our LSTM
model on the mimic_demo dataset (included in our repository).

E.5 OPTIONS

TABLE 18: Options for the train command.

Flag Required Description

-reproducible No Make torch reproducible. (default: True)
-hp, -hyperparams No Hyperparameters for model.
-tune No Find best hyperparameters. (default: False)
-checkpoint No Use previous checkpoint.

We specify the command line options that YAIB provides for benchmarking prediction tasks. One
can use the icu-benchmarks command with either train or evaluate. Table 18 shows the

35

Published as a conference paper at ICLR 2024

TABLE 19: Options for the evaluate command.

Flag Required Description

-sn -source-name Yes Name of the source dataset.
-source-dir Yes Directory containing gin and model weights.

TABLE 20: General arguments for the use of YAIB.

Flag Required Description

-d, -data-dir Yes Path to the parquet data directory.
-n, -name Yes Name of the (target) dataset.
-t, -task Yes Name of the task gin.
-m, -model No Name of the model gin)Default.
-tn, -task-name No Name of the task, used for naming experiments.
-e, -experiment No Name of the experiment gin.
-l, -log-dir No Log directory with model weights.
-s, -seed No Random seed for processing, tuning, and training.
-v, -verbose No Whether to use verbose logging. (default: True)
-cpu No Set to use CPU. (default: False)
-db, -debug No Set to load less data. (default: False)
-lc, -load_cache No Set to load generated data cache. (default: False)
-gc,
-generate_cache

No Set to generate data cache. (default: False)

-p, -preprocessor No Load custom preprocessor from file.
-pl, -plot No Generate common plots. (default: False)
-wd, -wandb-sweep No Activates Weights and Biases hyper parameter sweep.

(default: False)
-imp,
-pretrained-imputation

No Path to pre trained imputation model.

arguments that can be used with train. Table 19 contains the options to use with evaluate (i.e.,
for evaluation with a pre-trained model). In Table 20, the general options for YAIB are shown.

36

Published as a conference paper at ICLR 2024

F APPENDIX: EXTENDING YAIB

YAIB is built to adapt to your needs with as little effort as possible. YAIB allows you to change any
part of your pipeline with ease: add a new dataset, define additional clinical concepts, adapt a task,
implement imputation algorithms, use additional models, or evaluate custom metrics. This section
provides examples on YAIB may be extended with respect to each of the above.

CODE LISTING 5: ID and table configuration for the Salzburg Intensive Care Database Database in JSON.
1{
2"name": "sic",
3"id_cfg": {
4"patient": {
5"id": "patientid",
6"position": 1,
7"start": "firstadmission",
8"end": "offsetofdeath",
9"table": "cases"
10},
11"icustay": {
12"id": "caseid",
13"position": 2,
14"start": "offsetafterfirstadmission",
15"end": "timeofstay",
16"table": "cases"
17}
18},
19"tables": {
20"cases": {
21"files": "cases.csv.gz",
22"defaults": {
23"index_var": "offsetafterfirstadmission",
24"time_vars": ["offsetafterfirstadmission", "offsetofdeath"]
25},
26"cols": {
27"caseid": {
28"name": "CaseID",
29"spec": "col_integer"
30},
31"patientid": {
32"name": "PatientID",
33"spec": "col_integer"
34},
35"admissionyear": {
36"name": "AdmissionYear",
37"spec": "col_integer"
38},
39...
40}
41},
42"d_references": {
43...
44},
45...
46}
47}

F.1 ADD A NEW DATASET: SALZBURG INTENSIVE CARE DATABASE (SICDB)

SICdb is a recently published open source ICU dataset (Rodemund et al., 2023). The dataset includes
27,000 admissions to the ICU at University Hospital Salzburg (Austria) from 2013 to 2021. SICdb
provides highly granular data with up to minute level resolution. To make SICdb available within
YAIB , it must be interfaced to ricu. This ensures that ricu knows how to access and extract data
from the dataset. Interfacing a new dataset requires three key steps:

1. Define the table structure and possible ID types as a JSON configuration.

2. Define how all ID systems and their origin times relate to each other.

Define ID types and table structure First, ricu needs to know what tables and columns exist
within the data source. This is specified via the JSON configuration file partially shown in Code
Listing 5. Tables are defined under the tables element. The definition of each table contains the
name of its source file, usually provided in .csv or .csv.gz format, and a list of all columns and
their data types. In addition, default roles can be defined for certain columns in the table. These

37

Published as a conference paper at ICLR 2024

usually include the time index (if present), all other time columns, and a column that is considered to
contain the value of interest.

In addition to the available tables, ricu also expects information about the main ID types used in the
dataset. Each piece of information in ICU datasets is usually linked to a certain unit of observation,
most commonly the patient (patient), the hospital admission (hospadm), or the specific ICU
stay (icustay). By knowing what IDs a piece of information is measured for, ricu is able to
temporally relate all information within the dataset. For example, labevents in MIMIC IV are
recorded for hospital admissions, whereas chartevents are recorded for ICU stays. Defining how
these two ID systems relate to each other allows them to be mapped to a common time scale (e.g.,
time since ICU admission). At the same time, knowing that an ICU stay is detailed in icustays in
MIMIC and in cases in SICdb allows to define the same semantic reference point in both databases.

The two ID types available in SICdb are the patient and the icustay. There is no separate
demarcation of the hospadm. The observation time for a patient ranges from their first observed
admission to their death (if it occurred). icustays range from the current admission to the ICU
until the end of the stay.

Calculate origin times for each ID type After ricu has been told which ID systems exist in
the dataset, it also needs to know when they start and end. Much of this process is automated. For
SICdb, all origin times are already provided in a format suitable for use with ricu, and thus the
default behavior is appropriate for them. However, minor adjustments are often necessary. For
example, discharge times in SICdb are not provided as absolute times but in seconds since the start
of admission. Such adjustments can be made on a case-by-case basis by subtyping the respective
functions (in this case id_win_helper) and overwriting the default behavior (Code Listing 6).
Since SICdb provides time in seconds since admission, ricu must further be told to work with
relative times in seconds. This can be conveniently achieved through existing helper functions (Code
Listing 6).

Following the steps above makes SICdb available and fully usable within ricu. While some further
helper functions may be necessary to enable optional functionality such as automatic determination
of measurement units (SICdb stores units in a separate reference table that needs to be merged at
runtime), these are not essential to the main functionality of ricu. Note that the above only interfaces
SICdb. It does not automatically map all existing clinical concepts for SICdb. Defining a clinical
concept for SICdb still requires manual mapping of the concept to SICdb data items, for example via
the appropriate measurement IDs (see also the next session on adding a clinical concept). We do not
expect that this process can ever be fully avoided (unless it was already performed prior, for example
by mapping to and providing the data in OMOP format). However, we found that the framework and
helper functions that ricu provides greatly simplify this process. Additional information on ricu
and its design principles can be found in Bennett et al. (2023).

F.2 DEFINE A CLINICAL CONCEPT: POTASSIUM CHLORIDE

YAIB comes with a wide range of pre-defined clinical concepts. However, it is likely that new
tasks and applications require additional variables. An area of particular interest in this respect are
medications. Using the exemplar of Potassium Chloride (a fluid frequently administered in the ICU),
we demonstrate how new drugs can be added to YAIB with minimal effort. For many concepts, all
that is required is a JSON dict that describes the correct measurement IDs within each dataset (Code
Listing 7). The JSON snippet can then be appended to the existing ricu concept file (for additions
that should become part of the main package) or added to the search path of load_dictionary
via the cfg_dirs parameter. The definition of complicated transformations such as calculation of
hourly rates is also supported by existing helper functions. If custom calculations are necessary, they
can be provided as user-defined functions via the callback element.

F.3 ADAPT A TASK: KDIGO STAGE

Cohorts created in YAIB are built to be easily adaptable. For example, predicting ordinal KDIGO
stage rather than binary presence/absence of AKI is as simple as changing the outcome variable
from aki to kdigo. More substantial changes to the task are also supported. If the general setup
(i.e., covariates, exclusion criteria, etc.) remains the same but a novel outcome should be predicted,

38

Published as a conference paper at ICLR 2024

CODE LISTING 6: Helper functions that calculate the origin and temporal relation between events in the
Salzburg Intensive Care Database.

1
2id_win_helper.sic_env <- function(x) {
3# return a mapping between two ID systems (e.g., ICU stay ID and patient ID),
4# including relative start and end times
5cfg <- sort(as_id_cfg(x), decreasing = TRUE)
6
7ids <- field(cfg, "id")
8sta <- field(cfg, "start")
9end <- field(cfg, "end")
10
11tbl <- as_src_tbl(x, unique(field(cfg, "table")))
12
13mis <- setdiff(sta, colnames(tbl))
14
15res <- load_src(tbl, cols = c(ids, intersect(sta, colnames(tbl)), end))
16
17assert_that(length(mis) == 1L)
18res[, firstadmission := 0L]
19
20res <- res[, c(sta, end) := lapply(.SD, s_as_mins), .SDcols = c(sta, end)]
21res[, timeofstay := offsetafterfirstadmission + timeofstay] # convert to absolute discharge time
22
23res <- setcolorder(res, c(ids, sta, end))
24res <- rename_cols(res, c(ids, paste0(ids, "_start"),
25paste0(ids, "_end")), by_ref = TRUE)
26
27as_id_tbl(res, ids[2L], by_ref = TRUE)
28}
29
30load_difftime.sic_tbl <- function(x, rows, cols = colnames(x),
31id_hint = id_vars(x),
32time_vars = ricu::time_vars(x), ...) {
33# Load time differences in SICdb by treating each time variable as
34# the relative time since admission in seconds
35load_as_relative_time(x, {{ rows }}, cols, id_hint, time_vars, s_as_mins)
36}

the outcome should be created as a clinical concept in ricu which can then simply be used as
the outcome variable. If covariates, exclusion criteria, or prediction times change, existing helper
functions can be utilized. See the existing task definitions for further examples.

F.4 ADDING A NEW PREDICTION MODEL: RANDOM FOREST, RNN, AND TEMPORAL FUSION
TRANSFORMER

We allow prediction models to be easily added and integrated into a Pytorch-lighting (PL) (Falcon
& team, 2023) module. This incorporates advanced logging and debugging capabilities, as well as
built-in parallelism. Our interface derives from the PL BaseModule13.

For standard Scikit-Learn type ML models (e.g., Light Gradient Boosting Machine (LGBM) (Ke
et al., 2017)), one can implement the MLWrapper, incorporating the model steps in the process.
Note that this class is also derived from the PLBaseModule; this leads to minimal code overhead.
See Code Listing 8 for details for the implementation of a random forest model. The only needed
code here is the hyperparameter configuration and the initialization of the superclass.

The definition of DL models can be done by creating a subclass from the DLPredictionWrapper;
this inherits the standard methods needed for training DL learning models. Again, our implementation
using PL significantly reduces the code overhead and complexity. See Code Listing 9 for the example
of a simple RNN model. We can then create a gin configuration file for this model such as that in
Code Listing 11 to specify default parameters and hyperparameter ranges for hp-tuning.

More advanced, or state-of-the-art, models are also easily implemented. One of YAIB ’s users
has implemented a Temporal Fusion Transformer architecture (Lim et al., 2021). This model
provides good performance on multi-horizon time series forecasting, as well as interpretable insights.
Specifically, Lim et al. (2021) describe the TFT as follows: "(1) examining the importance of each
input variable in prediction, (2) visualizing persistent temporal patterns, and (3) identifying any
regimes or events that lead to significant changes in temporal dynamics". See Code Listing 10 for

13https://lightning.ai/docs/pytorch/stable/common/lightning_module.html

39

https://lightning.ai/docs/pytorch/stable/common/lightning_module.html

Published as a conference paper at ICLR 2024

CODE LISTING 7: JSON definition for rate of potassium chloride across included datasets.
1
2"kcl_dur": {
3"description": "potassium chloride duration",
4"category": "medications",
5"aggregate": "max",
6"sources": {
7"aumc": [
8{
9"ids": 9001,
10"table": "drugitems",
11"sub_var": "itemid",
12"stop_var": "stop",
13"grp_var": "orderid",
14"callback": "aumc_dur"
15}
16],
17"eicu": [
18{
19"regex": "^potassium chloride",
20"table": "infusiondrug",
21"sub_var": "drugname",
22"callback": "eicu_duration(gap_length = hours(5L))",
23"class": "rgx_itm"
24}
25],
26"hirid": [
27{
28"ids": 1000396,
29"table": "pharma",
30"sub_var": "pharmaid",
31"grp_var": "infusionid",
32"callback": "hirid_duration"
33}
34],
35"miiv": [
36{
37"ids": [225166, 227522],
38"table": "inputevents",
39"sub_var": "itemid",
40"stop_var": "endtime",
41"grp_var": "linkorderid",
42"callback": "mimic_dur_inmv"
43}
44]
45}
46}

CODE LISTING 8: Example ML model definition. We create a Random Forest classifier that implements the
default YAIB prediction model interface

1@gin.configurable
2class RFClassifier(MLWrapper):
3_supported_run_modes = [RunMode.classification]
4
5def __init__(self, *args, **kwargs):
6self.model = self.set_model_args(ensemble.RandomForestClassifier, *args, **kwargs)
7super().__init__(*args, **kwargs)

implementation details. This implementation is based upon the NVIDIA PyTorch implementation14.
To train and optimize this model from a choice of hyperparameters, we need to specify a GIN file
to bind the parameters, see Code Listing 11. Note that we can use modifiers for the optimizer (e.g,
Adam optimizer) and ranges that we can specify in rounded brackets "()". Square brackets, "[]",
result in a random choice where the variable is uniformly sampled.

F.5 ADDING A NEW IMPUTATION METHOD: CSDI

We have added a range of imputation methods to YAIB , including interfaces to existing imputation li-
braries (Du, 2023; Jarrett et al., 2022). Here, we describe the addition of a recently introduced method
that uses conditional score-based diffusion models conditioned on observed data: the Conditional
Score-based Diffusion models for Imputation (CSDI)(Tashiro et al., 2021). To make the process of
implementing these models easier, we have created the ImputationWrapper class that extends

14https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/
Forecasting/TFT

40

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Forecasting/TFT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Forecasting/TFT

Published as a conference paper at ICLR 2024

CODE LISTING 9: Example DL model definition. We use the inbuilt Torch RNN layers to built a Recurrent
Neural Network.

1@gin.configurable
2class RNNet(DLPredictionWrapper):
3"""Torch standard RNN model"""
4
5_supported_run_modes = [RunMode.classification, RunMode.regression]
6
7def __init__(self, input_size, hidden_dim, layer_dim, num_classes, *args, **kwargs):
8super().__init__(
9input_size=input_size, hidden_dim=hidden_dim, layer_dim=layer_dim, num_classes=num_classes, *args, **

kwargs
10)
11self.hidden_dim = hidden_dim
12self.layer_dim = layer_dim
13self.rnn = nn.RNN(input_size[2], hidden_dim, layer_dim, batch_first=True)
14self.logit = nn.Linear(hidden_dim, num_classes)
15
16def init_hidden(self, x):
17h0 = x.new_zeros(self.layer_dim, x.size(0), self.hidden_dim)
18return h0
19
20def forward(self, x):
21h0 = self.init_hidden(x)
22out, hn = self.rnn(x, h0)
23pred = self.logit(out)
24return pred

the pre-existing DLWrapper (itself a subclass of the LightningModule of Pytorch-lightning)
with extra functionality.

The CSDI model is a diffusion model that follows the general architecture of conditional diffusion
models(Ho et al., 2020); It introduces noise into a subset of time series data used as conditional
observations to later denoise the data and predict accurate values for the imputation targets. CSDI is
based on a U-Net architecture(Ronneberger et al., 2015) including residual connections.

Tashiro et al. (2021) included two additional features into their model, which are inspired by Dif-
fWave (Kong et al., 2021): an attention mechanism and the ability to input side information. The
attention mechanism uses transformer layers, as shown in Figure 10. An input with K features, L
length, and C channels is reshaped first to apply temporal attention and later reshaped again to apply
feature attention. The second additional feature allows side information to be used as input to the
model by a categorical feature embedding (Tashiro et al., 2021).

FIGURE 10: The attention mechanism of CSDI adapted from Tashiro et al. (2021).

See Code Listing 12 for the most important implementation code: the model initialization. We note
that of this code, very little has been adapted from the original code repository15 included in the
original publication (Tashiro et al., 2021).

F.6 ADDING AN EVALUATION METRIC: JENSEN SHANNON DIVERGENCE AND BINARY
FAIRNESS

We support adding multiple types of evaluation metrics for benchmarking DL or ML models. We
additionally support three common metric libraries: TorchMetrics (Nicki Skafte Detlefsen et al.,
2022), Ignite (Fomin et al., 2020), and Scikit-Learn (Pedregosa et al., 2011). Adding a metric is a
straightforward procedure. We added the Jensen Shannon Divergence (JSD) with the help of the
SciPy library (Virtanen et al., 2020). See Code Listing 13 for details.

One can then add the metric to be evaluated for a particular, see Code Listing 15.
15https://github.com/ermongroup/CSDI/tree/main

41

https://github.com/ermongroup/CSDI/tree/main

Published as a conference paper at ICLR 2024

CODE LISTING 10: Temporal Fusion Transformer model definition. Note that this implementation is similar to
existing code and can use existing methods and the original dataloader of YAIB which avoids code duplication.

1class TFT(DLPredictionWrapper):
2"""
3Implementation of Temporal Fusion Transformer, https://arxiv.org/abs/1912.09363.
4"""
5
6
7_supported_run_modes = [RunMode.classification, RunMode.regression]
8def __init__(
9self,
10num_classes, # Classes for multiclass classification
11encoder_length, # Determines interval to use for prediction
12hidden, # Amount of hidden layers
13dropout, # Dropout layers
14n_heads, # Attention heads
15dropout_att,
16example_length, # Determines interval to predict
17quantiles=[0.1, 0.5, 0.9], # quantiles to produce
18static_categorical_inp_size=[2], # Number of categories
19temporal_known_categorical_inp_size=[],
20temporal_observed_categorical_inp_size=[48], # Number of categorical observed variables
21static_continuous_inp_size=3, # Number of static continuous variables
22temporal_known_continuous_inp_size=0,
23temporal_observed_continuous_inp_size=48,
24temporal_target_size=1, # Number of target variables
25**kwargs,
26):
27
28#derived variables
29num_static_vars = len(static_categorical_inp_size) + static_continuous_inp_size
30num_future_vars = len(temporal_known_categorical_inp_size) + temporal_known_continuous_inp_size
31num_historic_vars = sum([num_future_vars, temporal_observed_continuous_inp_size, temporal_target_size,

len(temporal_observed_categorical_inp_size),])
32
33super().__init__(num_classes=num_classes, encoder_length=encoder_length, hidden=hidden,
34n_heads=n_heads, dropout_att=dropout_att, example_length=example_length, quantiles=quantiles,

num_static_vars=num_static_vars, num_future_vars=num_future_vars, num_historic_vars=
num_historic_vars, *args,static_categorical_inp_size=1, temporal_known_categorical_inp_size
=0, temporal_observed_categorical_inp_size=48, static_continuous_inp_size=3,
temporal_known_continuous_inp_size=0, temporal_observed_continuous_inp_size=48,
temporal_target_size=1, **kwargs)

35
36
37
38self.encoder_length = encoder_length # Determines from how distant past we want to use data from
39
40self.embedding = LazyEmbedding(static_categorical_inp_size, temporal_known_categorical_inp_size,

temporal_observed_categorical_inp_size, static_continuous_inp_size,
temporal_known_continuous_inp_size, temporal_observed_continuous_inp_size, temporal_target_size,
hidden) # embeddings for all variables

41
42self.static_encoder = StaticCovariateEncoder(num_static_vars, hidden, dropout) # encoding for static

variables
43self.TFTback = TFTBack(encoder_length, num_historic_vars, hidden, dropout, num_future_vars, n_heads,

dropout_att, example_length,quantiles)
44self.logit = nn.Linear(len(quantiles), num_classes) # Linear layer to output to the number of classes

and allow modification by predictionwrapper.

In order to asses fairness within ML prediction, a common metric to check is group fairness. This is
computed through the ratio between positivity rates and true positives rates for different groups. Two
types of these metrics are demographic parity (Calders et al., 2009) and equal opportunity ratio (Hardt
et al., 2016). The TorchMetrics (Nicki Skafte Detlefsen et al., 2022) library includes the group
fairness module interface which we can adapt for use in YAIB . We use a wrapper, that extends the
TorchMetrics implementation and extracts a "group tensor" that indicates to which group the sample
belongs. See Code Listing 14 to achieve the desired result. After this, we pass the data and feature
names in the training step, as the function requires information about the assigned groups of the
dataset; here, we track demographic parity by default, i.e., we use "sex" as the group name. In our
pipeline, this has been one-hot encoded to 0 or 1. Then, adding this to the constants file, as seen in
Code Listing 15, automatically calculates this metric during the training process.

42

Published as a conference paper at ICLR 2024

CODE LISTING 11: Temporal Fusion Transformer parameter configuration.
1# Hyperparameters for TFT model.
2
3# Common settings for DL models
4include "configs/prediction_models/common/DLCommon.gin"
5
6# Optimizer params
7train_common.model = @TFT
8
9optimizer/hyperparameter.class_to_tune = @Adam
10optimizer/hyperparameter.weight_decay = 1e-6
11optimizer/hyperparameter.lr = (1e-5, 3e-4)
12
13# Encoder params
14model/hyperparameter.class_to_tune = @TFT
15model/hyperparameter.encoder_length = 24
16model/hyperparameter.hidden = 256
17model/hyperparameter.num_classes = %NUM_CLASSES
18model/hyperparameter.dropout = (0.0, 0.4)
19model/hyperparameter.dropout_att = (0.0, 0.4)
20model/hyperparameter.n_heads =4
21model/hyperparameter.example_length=25

CODE LISTING 12: Implementing the CSDI architecture in YAIB. Note that our implementation is very similar
to the original github repository, which demonstrates the flexibility of implementing new models in YAIB.

1{
2def __init__(
3self, input_size, time_step_embedding_size, feature_embedding_size, unconditional, target_strategy,

num_diffusion_steps, diffusion_step_embedding_dim, n_attention_heads, num_residual_layers,
noise_schedule, beta_start, beta_end, n_samples, conv_channels, *args, **kwargs,

4):
5super().__init__(...)
6self.target_dim = input_size[2]
7self.n_samples = n_samples
8
9self.emb_time_dim = time_step_embedding_size
10self.emb_feature_dim = feature_embedding_size
11self.is_unconditional = unconditional
12self.target_strategy = target_strategy
13
14self.emb_total_dim = self.emb_time_dim + self.emb_feature_dim
15if not self.is_unconditional:
16self.emb_total_dim += 1 # for conditional mask
17self.embed_layer = nn.Embedding(num_embeddings=self.target_dim, embedding_dim=self.emb_feature_dim)
18
19input_dim = 1 if self.is_unconditional else 2
20self.diffmodel = diff_CSDI(
21conv_channels,
22num_diffusion_steps,
23diffusion_step_embedding_dim,
24self.emb_total_dim,
25n_attention_heads,
26num_residual_layers,
27input_dim,
28)
29
30# parameters for diffusion models
31self.num_steps = num_diffusion_steps
32if noise_schedule == "quad":
33self.beta = np.linspace(beta_start**0.5, beta_end**0.5, self.num_steps) ** 2
34elif noise_schedule == "linear":
35self.beta = np.linspace(beta_start, beta_end, self.num_steps)
36
37self.alpha_hat = 1 - self.beta
38self.alpha = np.cumprod(self.alpha_hat)
39self.alpha_torch = torch.tensor(self.alpha).float().unsqueeze(1).unsqueeze(1)
40
41}

G APPENDIX: EXPERIMENTAL SETUP AND REPRODUCIBILITY

To reproduce the results obtained in this paper, we have detailed our methodology in this Appendix.

G.1 INFRASTRUCTURE AND HARDWARE

We used a high-performance computing cluster to perform our experimentsNo data was transferred to
any external parties in this process. This computing cluster is run with renewable energy and can be

43

https://github.com/ermongroup/CSDI/tree/main

Published as a conference paper at ICLR 2024

CODE LISTING 13: Implementing JSD using SciPy in YAIB. In this case we used the Ignite interface, but users
can also choose to extend from the TorchMetric or SK-Learn interface.

1class JSD(EpochMetric):
2def __init__(self, output_transform: Callable = lambda x: x, check_compute_fn: bool = False) -> None:
3super(JSD, self).__init__(lambda x, y: JSD_fn(x, y), output_transform=output_transform, check_compute_fn

=check_compute_fn)
4
5def JSD_fn(y_preds: torch.Tensor, y_targets: torch.Tensor):
6return jensenshannon(abs(y_preds).flatten(), abs(y_targets).flatten()) ** 2

CODE LISTING 14: Adding a wrapper for Group fairness metric.
1class BinaryFairnessWrapper(BinaryFairness):
2"""
3This class is a wrapper for the BinaryFairness metric from TorchMetrics.
4"""
5group_name = None
6def __init__(self, group_name = "sex", *args, **kwargs) -> None:
7self.group_name = group_name
8super().__init__(*args, **kwargs)
9def update(self, preds, target, data, feature_names) -> None:
10"""" Standard metric update function"""
11groups = data[:, :, feature_names.index(self.group_name)]
12group_per_id = groups[:, 0]
13return super().update(preds=preds.cpu(),
14target=target.cpu(),
15groups=group_per_id.long().cpu())

considered climate-neutral. The cluster is running the SLURM (Yoo et al., 2003) management tool
on Ubuntu 20.04.6 LTS. with a number of Nvidia A100, A40, RTX 2080TI, and RTX Titan GPUs.
The traditional machine learning algorithms were trained with Intel Xeon Platinum 8160 and AMD
EPYC 7643 CPU resources.

TABLE 21: Average estimated duration of training tasks

Once per stay
classification

Hourly classification Hourly regression

Machine Learning Models 3 minutes 10 minutes 10 minutes
Deep Learning Models 30 minutes 60 minutes 90 minutes

G.2 LIBRARIES

A full list of libraries is available in the YAIB repository; please use the Conda environment
manager to install these. We have aimed to use the most recent library versions (while main-
taining compatibility) to improve efficiency and reduce errors. At time of writing, the most
recent version of Python that supports the used libraries was used: Python 3.10. The
most important libraries are: Gin-config 0.5.0, Pytorch 2.0 (in combination with
Cuda 11.8.0), Pytorch-lightning 2.0, Scikit-learn 1.2.2, Lightgbm 3.3.5,
Pandas 2.0.0.

G.3 COMPLEXITY

As mentioned in Yèche et al. (2022), the transformer memory complexity concerning the sequence
length is quadratic. With our hardware, training deep learning models overall takes less than 3
hours. Training ml models takes less than 1 hour. See Table 21 for average training durations.
Note that there was large variability between the cohorts due to the size difference of datasets
(i.e., eICU Collaborative Research Database contains almost eight times the amount of stays as
AmsterdamUMCdb). The algorithmic complexity is specified in the implementation details of the
Scikit-learn (Pedregosa et al., 2011) (logistic regression (LR) and elastic net (EN)), LightGBM (Ke
et al., 2017) (Light Gradient Boosting Machine (LGBM)), and PyTorch library (Falcon & team,
2023) (Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), Gated Recurrent Unit

44

Published as a conference paper at ICLR 2024

CODE LISTING 15: Metrics recorded for binary classification. Adding the metrics to this dictionary results in
automatic logging. See the whole file for more details.

1class DLMetrics:
2BINARY_CLASSIFICATION = {
3"AUC": AUROC(task="binary"),
4"PR" : AveragePrecision(task="binary"),
5"F1": F1Score(task="binary", num_classes=2),
6"Calibration_Error": CalibrationError(task="binary",n_bins=10)
7"Calibration_Curve": CalibrationCurve,
8"PR_Curve": PrecisionRecallCurve,
9"RO_Curve": RocCurve,
10"JSD": JSD,
11"Binary_Fairness": BinaryFairnessWrapper(num_groups=2, task=’demographic_parity’, group_name="sex")
12}

FIGURE 11: Schematic overview of 5 times repeated 5-fold cross-validation. This example uses only the first
three splits of the first repetition for hyperparameter tuning. The repetitions and amount of folds and the folds to
tune on can be easily adjusted (see Code Listing 3).

(GRU)). Furthermore, Bai et al. (2018) (Temporal Convolutional Network (TCN)) and (Yèche et al.,
2022) (transformer) are implementations are also detailed in their respective works. Figure 11 shows
our repeated cross-validation training method. Note that in order to obtain our final results, we do 5
repetitions of 5 fold cross-validation with an excluded test set.

G.4 REPRODUCIBLITY

For a detailed description to reproduce our experiments, we refer to the Paper reproducibility file
(included in the repository). We have followed the standards specified by official ML reproducibility
guidelines by Papers with Code16.

16https://github.com/paperswithcode/releasing-research-code

45

https://github.com/paperswithcode/releasing-research-code

Published as a conference paper at ICLR 2024

G.5 EXTERNAL VALIDATION

All external validation validation models have been trained with an 80/20 train/val split to use as
much of the dataset as possible. The test splits are the same as used for the same dataset experiments
(diagonal in Figure 2) For the external validation pooled results (d-1), we used subsets of 10,000
stays for each dataset to simulate a setting where the datasets have a similar sample size. We wanted
to ensure the size of the datasets, which differs significantly between datasets, had no undue influence
on the training.

G.6 FINE-TUNING

For our fine-tuning experiment, shown in Figure 3 we used an ADAM optimizer with a starting
learning rate of 0.00001 and an exponential learning rate scheduler to reduce learning rates gradually.
The rest of the hyperparameters are exactly as in the original source models.

46

Published as a conference paper at ICLR 2024

H HYPERPARAMETERS

Here, we detail the tuning setup and hyperparameters used in our experiments.

H.1 TUNING APPROACH

In Table 22 and 23, we specify the hyperparameters used for hyperparameter-tuning for the baseline
experiments for deep learning and machine learning models, respectively. We incorporated different
sampling methods for hyperparameter selection. Hyperparameters were chosen to be mostly identical
to Yèche et al. (2022), to improve comparability and for reproducibility reasons. However, we have
chosen to allow for continuous ranges of hyperparameters in some cases, to improve the performance
and functionality of YAIB . Log-uniform means that the parameters are sampled according to the

TABLE 22: Model hyperparameters, default values for all models (above), and the distributions for the DL
models (below), considered during Bayesian hyperparameter optimization.

Category Parameter Value

Hyperparameter search
Initial points 5
Calls 30
Folds to tune on 2

General Parameters

Epochs 1000
Min delta 1E-4
Patience 10
Batch size 64
Weight Balanced

Loss Regression task Mean Squared Error
Classification task Cross-entropy

Optimizer Parameters
Optimizer Adam
Weight decay 1e-6
Learning rate Uniform([1E-5, 3E-4])

Model Parameter Value

LSTM Hidden dimension Log-uniform([32, 128])
Hidden dimension RandomInt(1, 3)
Dropout probability Uniform([0.0, 0.4])

GRU Hidden dimension Log-uniform([32, 128])
Number of layers RandomInt(1, 3)

TCN

Hidden dimension Log-uniform([32, 128])
Number of layers Log-uniform([32, 256])
Kernel size Log-uniform([2, 32])
Horizon 24

Transformer

Hidden dimension Log-Uniform([32, 128])
Number of layers RandomInt(1, 10)
Number of heads Log-uniform(1, 8)
Depth Uniform([1,3])
Kernel size Log-uniform([2, 32])
Dropout probability Uniform([0.0, 0.4])
Dropout attention Uniform([0, 0.4])
L1 regularization 0.0
Hidden multiplication 2

reciprocal distribution:

f(x; a, b) =
1

x[loge(b)− loge(a)]
for a ≤ x ≤ b and a > 0. (1)

Uniform means that the parameters are sampled according to the uniform distribution:

f(x) =

1

b−a for a ≤ x ≤ b,

0 for x < a or x > b
(2)

47

Published as a conference paper at ICLR 2024

TABLE 23: Model hyperparameters, default values for all models (above), and distributions for the ML models
(below), considered during Bayesian hyperparameter optimization.

Category Parameter Value

Hyperparameter search
Initial points 10
Calls 50
Folds to tune on 3

General Parameters Patience 10
Jobs 8

Loss Regression task Logloss
Classification task Cross-entropy

Model Parameter Value

LR

C Log-uniform([1E-3, 1E1])
Penalty Choice(l1, l2, elasticnet)
L1 Ratio Uniform([0.0, 1.0])
Solver saga
Max iterations 100000

EN

Alpha Log-uniform([1E-2, 1E1])
Tol Log-uniform([1E-5, 1E-1])
Hidden dimension RandomInt(1, 3)
Dropout probability Uniform([0.0, 0.4])
L1 Ratio Uniform([0.0, 1.0])
Solver saga
Max iterations 10000

LGBM

Column sample Uniform([0.33, 1.0])
Sub sample Uniform([0.33, 1.0])
Leaves Log-uniform([8, 128])
Max depth RandomInt(3, 7)
Hidden dimension RandomInt(1, 3)
Estimators 10000
Min child samples 1000
Subsample frequency 1

H.2 DEEP LEARNING MODELS

We detail the hyperparameters that have been chosen using our Bayesian hyperparameter optimization
approach.

48

Published as a conference paper at ICLR 2024

Gated Recurrent Unit (GRU) The range of hyperparameters considered for the GRU model are
found in Table 24.

TABLE 24: Chosen hyperparameters for Gated Recurrent Unit (GRU).

Dataset Learning Rate Layer Dimension Hidden Dimension

Mortality
AUMC 3.00E-04 3 48
HiRID 2.37E-04 2 52
eICU 3.00E-04 1 135
MIMIC-IV 1.43E-04 2 77

AKI
AUMC 2.81E-04 3 256
HiRID 2.06E-04 3 115
eICU 1.43E-04 3 240
MIMIC-IV 2.82E-04 3 139

Sepsis
AUMC 2.28E-04 2 77
HiRID 3.00E-04 3 59
eICU 8.51E-05 2 77
MIMIC-IV 2.39E-04 3 52

KF
AUMC 3.00E-04 3 93
HiRID 1.11E-04 3 196
eICU 6.35E-05 3 196
MIMIC-IV 1.11E-04 1 148

LoS
AUMC 5.45E-05 3 158
HiRID 1.00E-05 1 117
eICU 1.03E-05 3 254
MIMIC-IV 1.57E-05 2 237

49

Published as a conference paper at ICLR 2024

Long Short-Term Memory (LSTM) The range of hyperparameters considered for the LSTM
model are found in Table 25.

TABLE 25: Chosen hyperparameters for Long Short-Term Memory (LSTM).

Dataset Learning Rate Layer Dimension Hidden Dimension

Mortality
AUMC 1.87E-04 1 145
HiRID 1.54E-04 2 256
eICU 3.00E-04 3 149
MIMIC-IV 3.00E-04 2 185

AKI
AUMC 2.62E-04 3 57
HiRID 3.00E-04 3 54
eICU 3.00E-04 3 70
MIMIC-IV 3.00E-04 3 256

Sepsis
AUMC 2.10E-04 1 153
HiRID 2.48E-04 1 139
eICU 1.12E-04 2 40
MIMIC-IV 2.46E-04 1 161

KF
AUMC 2.79E-04 2 81
HiRID 3.00E-04 1 256
eICU 1.75E-04 3 33
MIMIC-IV 2.49E-04 1 256

LoS
AUMC 3.24E-05 1 62
HiRID 6.65E-05 3 255
eICU 2.86E-05 3 215
MIMIC-IV 1.80E-05 3 253

50

Published as a conference paper at ICLR 2024

Temporal Convolutional Network (TCN) The range of hyperparameters considered for the TCN
model are found in Table 26.

TABLE 26: Chosen hyperparameters for Temporal Convolutional Network (TCN).

Dataset Learning Rate Dropout Kernel Number of Channels

Mortality
AUMC 5.84E-05 2.71E-01 6 92
HiRID 2.14E-04 1.12E-01 6 80
eICU 2.35E-05 1.15E-02 23 100
MIMIC-IV 1.81E-05 3.50E-01 3 130

AKI
AUMC 3.00E-04 4.00E-01 3 144
HiRID 2.56E-04 2.56E-01 12 168
eICU 3.00E-04 1.23E-01 3 81
MIMIC-IV 2.98E-04 7.61E-02 3 249

Sepsis
AUMC 3.00E-04 0.00E+00 2 32
HiRID 3.00E-04 0.00E+00 2 256
eICU 1.93E-04 3.98E-01 2 61
MIMIC-IV 2.23E-04 1.06E-01 4 78

KF
AUMC 2.56E-04 2.78E-01 6 169
HiRID 1.75E-04 2.33E-01 3 34
eICU 2.15E-04 1.92E-01 5 138
MIMIC-IV 1.88E-05 2.15E-01 2 33

LoS
AUMC 3.00E-04 1.92E-01 2 32
HiRID 2.74E-04 1.71E-01 29 43
eICU 3.00E-04 2.91E-01 10 32
MIMIC-IV 1.57E-04 1.67E-01 12 44

51

Published as a conference paper at ICLR 2024

Transformer The range of hyperparameters considered for the transformer model are found in
Table 27.

TABLE 27: Chosen hyperparameters for transformer.

Dataset Learning Rate Dropout Heads Hidden
Dimension

Depth

Mortality
AUMC 1.29E-04 1.32E-01 2 95 2
HiRID 1.58E-04 0.00E+00 1 247 1
eICU 1.00E-05 4.00E-01 3 256 1
MIMIC-IV 6.18E-05 1.65E-01 1 48 3

AKI
AUMC 1.18E-04 9.75E-03 8 52 3
HiRID 3.00E-04 1.50E-01 1 154 2
eICU 1.28E-04 1.33E-01 2 96 2
MIMIC-IV 1.22E-04 4.13E-02 2 72 3

Sepsis
AUMC 2.61E-04 4.39E-02 1 32 3
HiRID 3.00E-04 0.00E+00 1 32 1
eICU 2.76E-05 1.05E-02 2 211 2
MIMIC-IV 3.53E-05 3.67E-01 1 98 3

KF
AUMC 1.95E-04 4.56E-02 1 51 2
HiRID 2.48E-04 9.34E-02 7 160 3
eICU 2.62E-04 2.82E-02 1 52 1
MIMIC-IV 1.53E-04 8.62E-02 5 160 2

LoS
AUMC 1.13E-04 4.11E-02 3 76 2
HiRID 1.88E-05 1.88E-05 4 102 1
eICU 3.96E-05 5.67E-02 3 172 2
MIMIC-IV 1.13E-04 4.11E-02 3 76 2

52

Published as a conference paper at ICLR 2024

H.3 MACHINE LEARNING MODELS

Logistic regression (LR) The range of hyperparameters considered for the LR model are found in
Table 28.

TABLE 28: Chosen hyperparameters for logistic regression (LR).

Dataset C Penalty L1 Ratio

Mortality
AUMC 3.63E-02 elasticnet 1.00E+00
HiRID 3.45E-02 l2 6.63E-02
eICU 2.78E-02 elasticnet 1.00E+00
MIMIC-IV 2.05E-01 elasticnet 1.00E+00

AKI
AUMC 1.77E-02 l1 1.00E+00
HiRID 1.00E+01 l1 4.16E-01
eICU 2.52E-02 l1 5.99E-01
MIMIC-IV 1.28E-01 l1 2.98E-01

Sepsis
AUMC 4.87E-02 l1 2.21E-01
HiRID 2.59E-03 l2 3.74E-01
eICU 1.98E-03 elasticnet 6.20E-01
MIMIC-IV 2.20E-03 l1 1.81E-02

Elastic net (EN) The range of hyperparameters considered for the EN model are found in Table 29.

TABLE 29: Chosen hyperparameters for elastic net (EN).

Dataset Alpha Tol L1 Ratio

KF
AUMC 1.04E-02 3.60E-02 1.22E-03
HiRID 1.04E-02 3.60E-02 1.22E-03
eICU 1.05E-02 9.57E-04 8.09E-03
MIMIC-IV 1.00E-02 2.45E-03 0.00E+00

LoS
AUMC 1.00E-02 1.67E-05 7.66E-02
HiRID 1.00E-02 1.02E-05 2.40E-02
eICU 1.00E-02 4.82E-02 0.00E+00
MIMIC-IV 1.00E-02 7.42E-02 0.00E+00

53

Published as a conference paper at ICLR 2024

Light Gradient Boosting Machine (LGBM) The range of hyperparameters considered for the
LGBM model are found in Table 30.

TABLE 30: Chosen hyperparameters for Light Gradient Boosting Machine (LGBM).

Dataset Depth Column Sample Leaves Subsample

Mortality
AUMC 6 9.89E-01 117 9.90E-01
HiRID 5 1.00E+00 8 1.00E+00
eICU 7 5.41E-01 128 1.00E+00
MIMIC-IV 7 1.00E+00 28 1.00E+00

AKI
AUMC 7 1.00E+00 110 8.69E-01
HiRID 7 1.00E+00 79 8.69E-01
eICU 7 9.97E-01 117 8.35E-01
MIMIC-IV 7 1.00E+00 128 1.00E+00

Sepsis
AUMC 7 1.00E+00 128 7.83E-01
HiRID 4 6.18E-01 17 8.22E-01
eICU 7 8.97E-01 52 6.04E-01
MIMIC-IV 7 1.00E+00 128 5.84E-01

KF
AUMC 7 7.01E-01 15 9.99E-01
HiRID 3 9.58E-01 16 9.95E-01
eICU 7 1.00E+00 47 1.00E+00
MIMIC-IV 7 9.30E-01 33 9.96E-01

LoS
AUMC 7 3.30E-01 83 1.00E+00
HiRID 6 3.30E-01 49 5.01E-01
eICU 7 3.30E-01 51 3.30E-01
MIMIC-IV 7 3.30E-01 128 3.30E-01

54

Published as a conference paper at ICLR 2024

I MACHINE LEARNING REPRODUCIBILITY CHECKLIST

This checklist (version 2.0) was found to be the most recent version at the time of writing. It can be
found at: www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist-v2.0.pdf.
For all models and algorithms presented, check if you include:

• A clear description of the mathematical setting, algorithm, and/or model. [Yes] See
Appendix G for an overview of the used infrastructure, libraries, complexity, reproducibility.
See Appendix H for the hyperparameter tuning setup.

• A clear explanation of any assumptions. [Yes] We make limited assumptions about the data
we use. Mainly, we assume stays are i.i.d. as is usual in clinical machine learning.

• An analysis of the complexity (time, space, sample size) of any algorithm. [Yes] See
Appendix G.

For any theoretical claim, check if you include:

• A clear statement of the claim. [N/A] We did not make theoretical claims.

• A complete proof of the claim.[N/A]

For all datasets used, check if you include:

• The relevant statistics, such as number of examples. [Yes] See Appendix C and Appendix D
for details of the data.

• The details of train / validation / test splits. [Yes] See subsection 4.1.

• An explanation of any data that were excluded, and all pre-processing step. [Yes] See
subsection 4.1, Appendix C, and Appendix D.

• A link to a downloadable version of the dataset or simulation environment. [Yes] See the
included yaib-cohorts code in order to generate the datasets (additionally, the YAIB
repository contains preprocessed demo datasets)

• For new data collected, a complete description of the data collection process, such as
instructions to annotators and methods for quality control. [N/A] We did not collect new
data.

For all shared code related to this work, check if you include:

• Specification of dependencies. [Yes] This can be found in Appendix G and at our GitHub
repository (below).

• Training code. [Yes] This can be found in the main YAIB code (cross-validation.py
and train.py. Details for the used parameters can be found in Appendix G

• Evaluation code. [Yes] See answer above.

• (Pre-)trained model(s). [Yes] Pretrained models for each task are publicly available and
can be provided upon request.

• README file includes table of results accompanied by precise command to run to produce
those results.[Yes] We include the results in the main text and Appendix B. Additionally,
we have a reproducibility document (PAPER.md) in our repository that follows common
guidelines.

For all reported experimental results, check if you include:

• The range of hyper-parameters considered, method to select the best hyper-parameter
configuration, and specification of all hyper-parameters used to generate results.[Yes] For the
method see subsection 3.5, for the hyperparameter configuration, see: Appendix H. For the
individual hyperparameter configurations per model, dataset, and task, see subsection H.2
and subsection H.3 for ml and dl models, respectively.

• The exact number of training and evaluation runs. [Yes] See subsection 4.1.

55

www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist-v2.0.pdf

Published as a conference paper at ICLR 2024

• A clear definition of the specific measure or statistics used to report results.[Yes] See
subsection 4.1.

• A description of results with central tendency (e.g. mean) & variation (e.g. error bars). [Yes]
We report the standard deviation of all results, to accurately reflect the precision of our
results.

• The average runtime for each result, or estimated energy cost.[Yes] See Appendix G.

• A description of the computing infrastructure used.[Yes] See Appendix G.

56

	Introduction
	Related work
	Benchmark design
	Design philosophy
	Clinical concepts
	Patient cohort and task definition
	Preprocessing and feature extraction
	Training and evaluation

	Experiments
	Models and experimental setup
	Benchmarking baseline models on major ICU datasets
	Using YAIB as an experimental ML framework
	Transfer learning

	Discussion
	Conclusion
	Acknowledgements
	Ethics statement
	Reproducibility statement
	Appendix: YAIB's contribution in context
	Extensibility and reproducibility
	The choice of features
	Using YAIB in novel scientific work
	Extended related work
	Clairvoyance
	TemporAI
	PyHealth

	Appendix: Extended Results
	Appendix: Datasets
	Database characteristics
	Exclusion criteria
	Preprocessing

	Appendix: Outcome definitions
	ICU mortality
	Acute kidney injury
	Sepsis
	Kidney function
	Remaining length of stay

	Appendix: YAIB's usage and implementation
	Use of existing code repositories
	Adding a data source
	Creating a preprocessing pipeline
	Example: training a mortality prediction LSTM model
	Options

	Appendix: Extending YAIB
	Add a new dataset: Salzburg Intensive Care Database (SICdb)
	Define a clinical concept: Potassium chloride
	Adapt a task: KDIGO stage
	Adding a new prediction model: random forest, RNN, and Temporal Fusion Transformer
	Adding a new imputation method: CSDI
	Adding an evaluation metric: Jensen Shannon Divergence and Binary Fairness

	Appendix: Experimental setup and reproducibility
	Infrastructure and Hardware
	Libraries
	Complexity
	Reproduciblity
	External validation
	Fine-tuning

	Hyperparameters
	Tuning approach
	Deep Learning Models
	Machine Learning Models

	Machine Learning Reproducibility Checklist

